
Citation: Lyu, Z.; Aminian, G.;

Rodrigues, M.R.D. On Neural

Networks Fitting, Compression, and

Generalization Behavior via

Information-Bottleneck-like

Approaches. Entropy 2023, 25, 1063.

https://doi.org/10.3390/e25071063

Academic Editors: Gerhard Bauch

and Jan Lewandowsky

Received: 30 April 2023

Revised: 11 July 2023

Accepted: 12 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

On Neural Networks Fitting, Compression, and Generalization
Behavior via Information-Bottleneck-like Approaches
Zhaoyan Lyu 1,* , Gholamali Aminian 2 and Miguel R. D. Rodrigues 1

1 Department of Electronic and Electrical Engineering, University College London, Gower St.,
London WC1E 6BT, UK; m.rodrigues@ucl.ac.uk

2 The Alan Turing Institute, British Library, 96 Euston Rd., London NW1 2DB, UK; gaminian@turing.ac.uk
* Correspondence: z.lyu.17@ucl.ac.uk

Abstract: It is well-known that a neural network learning process—along with its connections to
fitting, compression, and generalization—is not yet well understood. In this paper, we propose
a novel approach to capturing such neural network dynamics using information-bottleneck-type
techniques, involving the replacement of mutual information measures (which are notoriously
difficult to estimate in high-dimensional spaces) by other more tractable ones, including (1) the
minimum mean-squared error associated with the reconstruction of the network input data from
some intermediate network representation and (2) the cross-entropy associated with a certain class
label given some network representation. We then conducted an empirical study in order to ascertain
how different network models, network learning algorithms, and datasets may affect the learning
dynamics. Our experiments show that our proposed approach appears to be more reliable in
comparison with classical information bottleneck ones in capturing network dynamics during both
the training and testing phases. Our experiments also reveal that the fitting and compression phases
exist regardless of the choice of activation function. Additionally, our findings suggest that model
architectures, training algorithms, and datasets that lead to better generalization tend to exhibit more
pronounced fitting and compression phases.

Keywords: deep learning; information theory; information bottleneck; generalization; fitting;
compression

1. Introduction

Deep learning models have gained enormous attention thanks to their impressive
performance compared with traditional learning models in a variety of areas, such as
computer vision, speech processing, natural language processing, and many more [1,2].
However, despite their stunning performance, we still do not fully understand how deep
neural networks work [3].

A number of recent approaches have been proposed to study the generalization/
optimization properties of over-parameterized models, such as deep neural networks [4,5].
However, these approaches do not fully capture certain neural network representation
properties, including how these evolve during the neural network training procedure. Such
an understanding of the role of different components of the model and their impact on the
learning process can be essential for selecting or designing better neural network models
and associated learning algorithms.

Another popular approach to studying the generalization/optimization dynamics of
deep neural networks has been the information bottleneck (IB). This approach, which is
based on the information bottleneck theory [6,7], employs the mutual information (MI)
between the data and their neural network representation, as well as MI between labels
and the neural network representation to capture neural network behavior. In particular,
in classification problems, it is typical to model the relationship between the data label

Entropy 2023, 25, 1063. https://doi.org/10.3390/e25071063 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25071063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-0110-8622
https://orcid.org/0000-0002-4761-0151
https://orcid.org/0000-0002-8908-847X
https://doi.org/10.3390/e25071063
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25071063?type=check_update&version=1


Entropy 2023, 25, 1063 2 of 28

Y, the data themselves X, and some neural network intermediate data representation Z
via a Markov chain Y → X → Z, where Y, X, and Z represent random variables/vectors
associated with these different objects. Then, the IB principle is described via two MIs:
(1) I(Z; X) to measure the amount of information contained in the data representation
about the input data, and (2) I(Z; Y) to measure the information in the data representation
that could contribute to the prediction of ground-truth labels. One can capture how
the value of I(Z; X) and I(Z; Y) evolve as a function of the number of training epochs
for a neural network by plotting pairs of these mutual information values on a two-
dimensional plane [8]. The plane defined by these MI terms is called the information plane
(IP), and the trace of the MI value versus training epoch is called the information plane
dynamic (IP-dynamic).

This approach has led to the identification of some trends associated with the opti-
mization of neural networks. In particular, by observing the IP-dynamic of the networks
trained on a synthetic dataset and the MNIST dataset, ref. [8] found that, in early epochs,
both I(Z; X) and I(Z; Y) increase; and, in later epochs, I(Z; Y) will keep increasing while
I(Z; X) decreases. This led to the conjecture that the training of a neural network contains
two different phases: (1) a fitting phase, where the network representation Z fits the input
data X as much as possible, and (2) a subsequent compression phase in which the network
compresses the useless information in the representation Z about the labels Y.

However, the IB approach requires estimating I(Z; X) and I(Z; Y), which is notori-
ously difficult to accomplish because the inputs and representations typically lie in very
high-dimensional spaces. For example, non-parametric mutual information estimators—
such as [9,10]—suffer from either high bias or high variance, especially in high-dimensional
settings [10]. This will directly affect any conclusions extracted from the IP-dynamics
because high bias prevents recognizing the existence of fitting or compression phases,
whereas high variance leads to inconsistent results across different numerical experiments.
Indeed, with different mutual information estimators, researchers drew diverse or opposite
conclusions about trends in IP-dynamics [8,11–25]. For instance, Saxe et al. [24] argued that
the reported phenomena of fitting and compression in Shwartz et al.’s study [8] are highly
dependent on the simple binning MI estimator setup adopted.

Therefore, the trends that one often extracts from an IB analysis may not always hold.

1.1. Paper Contributions

This paper attempts to resolve these issues by introducing a different approach to
studying the dynamics of neural networks. Our main contributions are as follows:

1. First, we propose to use more tractable measures to capture the relationship between
an intermediate network data representation and the original data or the intermediate
network representation and the data label. In particular, we used the minimum mean-
squared error between the intermediate data representation and the original data to
try to capture fitting and compression phenomena occurring in a neural network; we
also used the well-known cross-entropy between the intermediate data representation
and the data label to capture performance.

2. Second, by building upon the variational representations of these quantities, we also
propose to estimate such measures using neural networks. In particular, our experi-
mental results demonstrate that such an approach leads to consistent estimates of the
measures using different estimator neural network architectures and initializations.

3. Finally, using our proposed approach, we conducted an empirical study to reveal
the influence of various factors on neural network learning processing, including
compression, fitting, and generalization phenomena. Specifically, we considered the
impact of (1) the machine learning model, (2) the learning algorithm (optimizer and
regularization techniques), and (3) the data.

The main findings deriving from our empirical study—along with the literature that
explored similar network architecture, training algorithm, or data setups—are summa-
rized in Table 1. In particular, we highlight that our study suggests that (1) a neural



Entropy 2023, 25, 1063 3 of 28

network generalization performance improves with the magnitude of the network’s fitting
and compression phase; (2) a network tends to undergo a fitting phase followed by a
compression phase, regardless of the activation function; and (3) the specific behavior of
the fitting/compression phases depends on a number of factors, including the network
architecture, the learning algorithm, and the nature of the data.

Table 1. Overview of our main results and related literature results. Fit., Com., and Gen. are
abbreviations for fitting, compression, and generalization, respectively. Note that the related literature
listed explored the information bottleneck under similar setups but may report different observations
or focus on different phenomena in the dynamics.

Study Model Training
Algorithm Dataset Section Our Observation Related

Literature

Effects
of model
architec-
tures

Tishby-nets with
saturated or non-
saturated activa-
tion functions

SGD

Tishby-
dataset Section 5.2.1 Fit./Com. phases exist regardless of

the type of activation function.
[8,11,14,
24,26,27]

MLPs with more
or fewer neurons
per layer

MNIST Section 5.2.2

MLPs with more neurons per layer
exhibit faster Fit., more Com., and
better Gen.

-

MLPs with more
or fewer layers

MLPs with more layers have less
Fit. but more Com. The MLP that
exhibits more pronounced Fit. and
Com. also tends to Gen. better.

[27]

CNNs with more
or fewer kernels

Adam

CIFAR-10

Section 5.2.3

CNNs with fewer kernels cannot Fit.
and Com. effectively, and do not
Gen. well. Increasing the number of
kernels on a well-generalized CNN
does not have a significant impact
on Fit., Com., or Gen.

-

CNNs with big-
ger or smaller
kernels

Both very large and very small ker-
nel sizes tend to result in less Fit. and
Com., and can harm Gen.

ResCNN Section 5.2.4

The representations at the outputs
of residual blocks do not exhibit
Fit./Com. phases, while the repre-
sentations in the residual blocks ex-
hibit Fit./Com. phases.

[13,18,28]

Effects of
training al-
gorithms

CNN

SGD, SGD-
momentum,
RMSprop,
Adam

Section 5.3.1 Adaptive optimizers compress more
on layers closer to the input. [29]

MLP

SGD with
or without
weight de-
cay

MNIST

Section 5.3.2

Weight decay does not significantly
affect the Fit. phase, but it can in-
crease the Com. capability of the
model and improve its Gen. perfor-
mance.

[11,18,21]

CNN

Adam
with or
without
dropout

CIFAR-10

A low dropout rate does not signifi-
cantly impact Fit., but it can enhance
Com. and improve Gen. In contrast,
a high dropout rate can lead to less
Fit. and Com., resulting in worse
Gen.

-

Effects of
dataset
size

Adam CIFAR-10,
CINIC Section 5.4

CINIC dataset enhances Fit., Com.,
and Gen. CIFAR-10 subset has less
Com. and worse Gen..

[8,14]



Entropy 2023, 25, 1063 4 of 28

1.2. Scope of Study

Finally, we note that the information bottleneck technique has been used as a tool to
cast insight into other machine learning paradigms, including semi-supervised learning [30]
and unsupervised learning [31–33]. However, we focused exclusively on supervised
learning settings—with an emphasis on neural networks—in order to contribute to a
deeper understanding of deep learning techniques.

1.3. Paper Organization

This paper is organized as follows: Section 2 offers an overview of the literature that
relates to our work. Section 3 proposes our approach to studying the compression, fitting,
and generalization dynamics of neural networks, whereas Section 4 discusses practical
implementation details associated with our proposed approach. Section 5 leverages our
approach to conducting an empirical study of the impact of various factors on the compres-
sion, fitting, and generalization behavior of a neural network, including the underlying
architecture, learning algorithm, and nature of the data. Finally, we summarize the paper,
discuss its limitations, and propose future directions in Section 6.

1.4. Paper Notation

We adopt the following convention for random variables and their distributions
throughout the paper. A random variable (or vector) is denoted by an upper-case letter
(e.g., Z), and its space of possible values is denoted with the corresponding calligraphic
letter (e.g., Z). The probability distribution of the random variable Z is denoted by PZ.
The joint distribution of a pair of random variables (Z1, Z2) is denoted by PZ1,Z2 . H(Z)
represents the entropy (or differential entropy) of random variable Z, H(Z1|Z2) represents
the entropy (or differential entropy) of random variable Z1 given random variable Z2,
and I(Z1; Z2) represents the mutual information between random variables Z1 and Z2. We
denote the set of integers from 1 to n by [n] , {1, · · · , n}.

2. Related Work

There are various lines of research that connect to our work.
Information bottleneck (IB) and information plane (IP) dynamics: Many works

have adopted the IB and the IP to study the optimization dynamics of neural networks.
Refs. [8,18,19,26,28] concluded that there is a different fitting and compression phase
during the training of a deep neural network, while [24,34] claim that neural networks
with saturating activation functions exhibit a fitting phase but do not exhibit a compression
phase. Ref. [11] conveyed that the network may occasionally compress only for some
random initializations. On the other hand, ref. [11] found that weight decay regularization
will increase the magnitude of the compression, while [14] did not observe compression
unless weight decay is applied. Finally, overfitting was observed from the IP associated
with hidden layers in [8,23,34].

While these works mentioned above explore various aspects of deep learning tech-
niques, such as how network behaviors are affected by varying training dataset sizes and
regularization techniques, their conclusions may not always be reliable due to the fact
that MI estimation can be inaccurate and unstable in high-dimensional settings, as argued
in [12].

IB and IP based on other information measures: Many works have also adopted
IBs/IPs based on other information measures to study the dynamics of neural networks.
Motivated by source coding, ref. [35] proposes to replace the I(Z; X) with the entropy of the
representation Z. The authors in [36] introduced a generalized IB based on f -divergence.
The authors also proposed an estimation bottleneck based on χ2-information, but this
quantity is difficult to estimate in practice, preventing its applicability in various problems.
The paper [37] proposed an information bottleneck approach based on MMSE and Fisher
information to develop robust neural networks. However, the authors utilized MMSE to
substitute mutual information between the representation and ground truth label, whereas



Entropy 2023, 25, 1063 5 of 28

we employed it to evaluate the association between representation and data. Inspired
by [38], ref. [39] introduced a new IB—called the V-information bottleneck—that articulates
the amount of useful information a representation embodies about a target usable by a
classifier drawn from a family of classifiers V . Recently, refs. [40,41] have used sliced
mutual information to study fitting in neural networks. However, their work mainly
focused on the fitting phase and did not explore the role of compression and its relationship
with generalization.

Mutual information estimation: Relying on mutual information to study the dy-
namics of neural networks leads to various challenges. The first challenge relates to the
fact that the MI between two quantities that lie in continuous space and are linked by a
functional relationship, such as the input and the output of a neural network, is theoreti-
cally infinite [42]. This limits its use since a neural network representation is typically a
deterministic function of the neural network input [8,11,21,24]. Many works have circum-
vented this issue by adding additional noise to the random variables. For instance, kernel
density estimation (KDE) [43,44] was used by [11,13,24,45], and the k-nearest-neighbor
based Kraskov estimator [46] was used in [18,24,47]. Other works using variational mutual
information estimators address the challenge by adding noise to the neural network rep-
resentations [14,19]. However, adding noise to the representations of a neural network is
not a widespread practice in most deep learning implementations. An alternative measure
of dependence between two variables is sliced mutual information, which was proposed
by [48]. This method involves random projections and the averaging of mutual information
across pairs of projected scalar variables. Our approach differs from this method as we
directly processed the random variables in high-dimensional space.

The second challenge relates to the fact that many mutual information estimators
exhibit high bias and/or high variance in a high-dimensional setting. For example, simple
binning methods [8,49] are known to lead to mutual information estimates that vary greatly
depending on the bin size choice. Further, variational mutual information estimators, such
as MINE [9], are also known to produce mutual information estimates that suffer from high
bias or high variance [10,50].

Our work departs from existing work because we propose to study the evolution of
two more stable measures during a neural network optimization process: (1) the minimum
mean-squared error associated with the estimation of the original data given some interme-
diate network representation and (2) the cross-entropy associated with the original data
label given an intermediate data representation. This offers a more reliable lens for studying
compression, fitting, and generalization phenomena occurring in neural networks.

3. Proposed Framework

We now introduce our approach to studying the compression, fitting, and general-
ization dynamics of neural networks. We focused exclusively on classification problems
characterized by a pair of random variables {(X, Y)|X ∈ X , Y ∈ Y}, where X is the input
data and Y is the ground-truth label, that follow a distribution PX,Y. We delivered an
estimate of the ground-truth label Ŷ ∈ Y given the data X ∈ X using an L-layer neural
network as follows:

Ŷ = fθ(X) = f (L)
θL

(
f (L−1)
θL−1

(
· · · f (1)θ1

(X)
))

(1)

where f (l)θl
(·) models the operation of the l-th (l ∈ [L]) network layer, where θl represents the

parameters of this layer (the weights and biases). The network parameters were optimized
using standard procedures given a (training) dataset containing various (training) samples.

The optimized network can then be used to make new output predictions Ŷ given
new input data X.

The network optimization procedure involves the application of iterative learning
algorithms such as stochastic gradient descent. Therefore, at a certain epoch i associated



Entropy 2023, 25, 1063 6 of 28

with the learning algorithm, we can model the flow of information in the neural network
via a Markov chain as follows:

Y → X → Z(i)
1 → Z(i)

2 → · · · → Z(i)
L → Ŷ (2)

where the random variable Z(i)
l = f (l)θl

(
Z(i)

l−1

)
∈ Rnl represents the network representation

at layer l at epoch i in the nl-dimension (with a convention that Z(i)
0 = X). Our goal was to

examine how certain quantities—capturing the compression, fitting, and generalization
behavior—associated with the network optimization process evolve as a function of the
number of algorithm training epochs.

Z-X measure: Our first quantity describes the difficulty in recovering the original data
X from some intermediate network representation Z(i)

l as follows:

m
Z(i)

l ;X
= inf

fx∈C(Rnl→X )
E
[
`X

(
fx

(
Z(i)

l

)
; X
)]

(3)

where fx(·) : Rnl → X is an estimator living in the function space C(Rnl → X ) and `X(·; ·)
is a loss function. We will take the loss function to correspond to the squared error so that
the Z-X measure reduces to the well-known minimum mean-squared error given by:

m
Z(i)

l ;X
= mmse

(
X|Z(i)

l

)
= E

[(
X−E

[
X|Z(i)

l

])2
]

(4)

where the function fx(·) that minimizes the right-hand side of Equation (3) is the well-
known conditional mean estimator. Our rationale for adopting this quantity to capture
the relationship between the network representation and the data in lieu of mutual
information—which is used in the conventional IB—is manifold:

• First, the minimum mean-squared error can act as a proxy to capture fitting—the
lower the MMSE, the easier it is to recover the data from the representation—and
compression—the higher the MMSE, the more difficult it is to estimate the data from
the representation.

• Second, this quantity is also easier to estimate than mutual information, allowing us
to capture the phenomena above reliably (see Section 5.1).

• Finally, the minimum mean-squared error is also connected to mutual information
(see Section 3.1).

Z-Y measure: Our second quantity describes the difficulty in recovering the original
label Y from some intermediate network representation Z(i)

l as follows:

m
Z(i)

l ;Y
= inf

fy∈C(Rnl→Y)
E
[
`Y

(
fy

(
(Z(i)

l

)
; Y
)]

(5)

where fy(·) : Rnl → Y is an estimator living in the function space C(Rnl → Y) and `Y(·; ·)
is a loss function. We will take the loss function to correspond to the cross-entropy so that
the Z-Y measure reduces to the well-known conditional entropy given by:

m
Z(i)

l ;Y
= H(Y|Z(i)

l ) (6)

where the function fy(·) that minimizes the right-hand side of Equation (5) should model
the distribution of the label given the representation. We also adopted this measure because
it connects directly to performance—hence the ability of the network to generalize—but
also to mutual information (see Section 3.1).

Plane and Dynamics of the Z-X and Z-Y Measures: Equipped with the measures in
Equations (4) and (6), one can immediately construct a two-dimensional plane plotting the
Z-X measure m

Z(i)
l ;X

against the Z-Y measure m
Z(i)

l ;Y
as a function of the number of network



Entropy 2023, 25, 1063 7 of 28

training epochs i = 1, 2, 3, . . . in order to understand (empirically) how a particular neural
network operates. Such a plane and the associated dynamics are the analogue of the IB
plane and the IB dynamics introduced in [8].

3.1. Connecting our Approach to the Information Bottleneck

Our approach is also intimately connected to the conventional information bottleneck
because—as alluded to earlier—our adopted measures are also connected to mutual infor-
mation. First, in accordance to [51] (Theorem 10), we can bound the mutual information
between the data X and the representation Z(i)

l as follows:

1
2

I(X; Z(i)
l ) ≥ var(X)−mmse(X|Z(i)

l ) (7)

where var(·) represents the variance of the random variable.
Second, we can also trivially express the mutual information between the data Y and

the representation Z(i)
l as follows:

I(Z(i)
l ; Y) = H(Y)−H(Y|Z(i)

l ) (8)

However, the main advantage of our approach in relation to the traditional IB is that
it is much easier to estimate the proposed Z-X and Z-Y measures than the corresponding
mutual information in high-dimensional settings; see Section 5.1.

4. Implementation Aspects
4.1. Experimental Procedure

The crux of our approach involves tracking how the Z-X and Z-Y measures evolve
during the network optimization process as a function of the learning algorithm epochs.
However, we cannot estimate the measures in Equations (4) and (6) directly because we
do not have access to the relevant probability distributions. Instead, we will leverage the
variational representations of the Z-X measure in Equation (3) and the Z-Y measure in
Equation (5) to approximate the measures in a data-driven manner, given access to a dataset
S = {X(k), Y(k)}n

k=1 consisting of various input–label pairs.
In particular, given this dataset S = {X(k), Y(k)}n

k=1, we used learnable functions
fφ : Rnl → X and fψ : Rnl → Y—which are neural networks parameterized by φ and ψ,
respectively—to approximate the measures in Equations (4) and (6) as follows:

m
Z(i)

l ;X
= inf

fx
E
[
`x

(
fx(Z(i)

l ); X
)]
≤ min

φ
E
[
`x

(
fφ(Z(i)

l ); X
)]
≈ min

φ

1
n

n

∑
k=1

`x

(
fφ(Z(i)

l (k)); X(k)
)

= m̂
Z(i)

l ;X
(9)

and

m
Z(i)

l ;Y
= inf

fy
E
[
`y

(
fy(Z(i)

l ); Y
)]
≤ min

ψ
E
[
`y

(
fψ(Z(i)

l ); Y
)]
≈ min

ψ

1
n

n

∑
k=1

`y

(
fψ(Z(i)

l (k)); Y(k)
)

= m̂
Z(i)

l ;X
(10)

respectively, where the learnable function parameters φ and ψ are drawn from Φ and
Ψ, Z(i)

l = f (l)θl

(
Z(i)

l−1

)
, and Z(i)

l (k) = f (l)θl

(
Z(i)

l−1(k)
)

. Note that—in view of the fact that{
fφ : φ ∈ Φ

}
⊂ C(Rnl → X ) and

{
fψ : ψ ∈ Ψ

}
⊂ C(Rnl → Y)—one is confronted with

an immediate trade-off: the higher the number of parameters in the learnable functions, the
closer the upper bounds to the measures in Equations (9) and (10) are to the actual measure
but also the higher the number of samples that may be required to approximate the upper
bound reliably. This will be further discussed in Section 5.1.



Entropy 2023, 25, 1063 8 of 28

Our setup is summarized in Figure 1. We re-emphasize that there were three neural
networks involved in our study: (1) fθ(·) is the network whose dynamics we wish to study
(in the green box of Figure 1), (2) fφ(·) represents the neural network used to approximate
the Z-X measure (in the blue box of Figure 1), and (3) fψ(·) represents the neural network
used to estimate the Z-Y measure (in the yellow box of Figure 1)

subject network

Z-X measure estimator

Z-Y measure estimator

(SE)

(CE)

Figure 1. Proposed approach. We used two estimator neural networks fφ(·) and fψ(·) to study the
behavior of the Z-X measure and the Z-Y measure associated with the different representations of the
subject network fθ(·). The `x(·) and `y(·) are squared loss and cross-entropy, respectively.

We optimized these networks using the procedure outlined in Algorithms 1 and 2. The
algorithm used to optimize the neural network fθ can be used with different neural network
models, different learning algorithms, or different datasets. Note that this algorithm saves
the neural network learnable parameters as checkpoints every several epochs (as shown
in Algorithm 1), where we used T to control the total number of checkpoints to limit
computational overhead.

In turn, the algorithm used to train the estimator networks fφ(·) and fψ(·) uses the
Adam optimizer with a learning rate of 0.01 for efficient and stable estimation. The estimator
networks were initialized using the standard Xavier [52] initialization (unless otherwise
specified), and the estimator networks were also optimized until convergence (which is
identified by the increase in loss value on the validation set).

We note that we trained the subject network on a training set, but we trained the
estimator networks on a different (independent) validation set in order to obtain estimates
of the Z-X and Z-Y measures that can also capture generalization behavior. The Tishby-
dataset is an exception since it does not have a separate validation set. Note, however,
that, in the IB literature, few studies have reported differences in trends by estimating the
relevant mutual information quantities on the training set or an independent validation
set. Some studies (e.g., [8]) also do not specify the dataset used to compute the mutual
information measures.

We will be referring for simplicity in the sequel to the network whose dynamics we
wish to study (i.e., fθ(·)) as the subject network and to the networks whose purpose is to
estimate the relevant measures (i.e., fφ(·) and fψ(·)) as the estimator networks.



Entropy 2023, 25, 1063 9 of 28

Algorithm 1: Train the subject network
Input: number of epochs I, number of checkpoints T
Data: {(X(k); Y(k))}n

k=1
Output: T checkpoint files containing network parameters associated with the

different intermediate points
initialize fθ with random θ(0);
i← 1, t← 1;
while i ≤ I do

if i%bI/Tc = 0 then
save θ(i) to a checkpoint file θ(t);
t← t + 1;

end
optimize the parameters θ(i) of the subject neural network with a standard
learning algorithm given dataset {(X(k); Y(k)}n

k=1 ;
end

Algorithm 2: Estimate Z-X measure and Z-Y measure
Input: fθ(t) from Algorithm 1, t, random seed s
Data: {(X(k); Y(k)}n

k=1
Output: {m̂Z1;X , . . . , m̂ZL ;X}, {m̂Z1;Y, . . . , m̂ZL ;Y}
Obtain subject network representations {{Zl(k)}n

k=1}
L
l=1 ← fθ(t)({X(k)})|nk=1;

l ← 1;
while l ≤ L; // This loop is parallelizable.
do

initialize fφl , fψl with random seed s;
while fφl not converge; // Estimating Z-X measure.
do

m̂Zl ;X(φl)← 1
n ∑n

k=1 `x( fφl (Zl(k)); X(k));
update φl to minimize m̂Zl ;X with a standard learning algorithm;

end
while fψl not converge; // Estimating Z-Y measure.
do

m̂Zl ;Y(ψl)← 1
n ∑n

k=1 `y( fψl (Zl(k)); Y(k));
update ψl to minimize m̂Zl ;Y with a standard learning algorithm;

end
end

4.2. Experimental Setups

Our experiments studied the effect of the (subject) network model architecture, the (sub-
ject) network learning algorithm, and the dataset on key aspects, such as network fitting,
compression, and generalization, via the Z-X and the Z-Y dynamics; see also Table 1. We
therefore summarize next the main models, learning algorithms, and datasets used in the
study reported in Section 5.

Subject Network Models: We adopted a series of neural network models, including:
(1) the Tishby-net, proposed by [8], with the Tishby-dataset, consisting of 4096 samples
with binary labels; (2) MLP models with varying number of layers and varying width per
layer with an MNIST dataset [53], which has 60,000 grayscale handwritten digit images
for training and 10,000 for validation; (3) a convolutional neural network (CNN) with
VGG-like [54] architecture trained on the CIFAR-10 [55] and CINIC [56] dataset, where
the CIFAR-10 dataset comprises 50,000 RGB images categorized into 10 classes for training
and 10,000 for validation, and the CINIC dataset consists of 900,000 training samples labeled



Entropy 2023, 25, 1063 10 of 28

in the same way as the CIFAR-10 dataset; and (4) a ResCNN model on the CIFAR-10 dataset,
which is a CNN architecture with residual connections modified from the original CNN.
The various models and datasets will allow us to study the effect of model architectures
and datasets on network dynamics. These models are illustrated in Figure 2. Note that,
for MNIST and CIFAR-10 datasets, we separated the validation sets into two halves of the
same size: one half was used for plotting the dynamics, and the other half served as the
test set for evaluating generalization performance.

Subject Network Learning Algorithm: We also adopted a series of learning algo-
rithms, including (1) training a CNN on the CIFAR-10 dataset using different optimizers,
such as non-adaptive (SGD, SGD-momentum) and adaptive (RMSprop, Adam); (2) training
an MLP on the MNIST dataset with or without weight decay regularization, where the
regularization hyper-parameter was set to 0.001; and (3) training a CNN on the CIFAR-10
dataset with or without dropout regularization, where the dropout was only applied on
the fully connected layer of the CNN as implemented in [54]. These setups allowed us
to study the effect of different optimization algorithms and regularization methods on
network dynamics.

Estimator Neural Network Model and Algorithms: We deployed a variety of estima-
tor network architectures that depend on the architecture of the subject network (namely,
the specific shape of the subject network representations in the different layers) as follows:

• For Tishby-net and MLP WxL models, the models for both the Z-X measure estimator
and Z-Y measure estimator are fully connected neural networks. The input layer of the
estimator networks matches the dimension of the representation (Zl), while the output
layer has a dimension equivalent to either the input vector (for Z-X measures) or label
length (for Z-Y measures). If the estimator network has multiple layers, its hidden
layers will be connected using ReLU non-linearity and have a number of neurons
equal to the dimension of representation (Zl).

• To estimate the Z-Y measure for CNN and ResCNN, we flattened the representation
into a vector and employed the same network architecture as for the Z-Y measure
estimator of Tishby-net and MLP WxL models. In turn, to estimate the Z-X measure,
we used a convolution layer with a 3 × 3 kernel size to map the representation into
the input space of 32 × 32 × 3. However, if the representation is down-sampled
by a pooling layer (e.g., Figure 2 CNN Z2), we up-sampled it using a transposed
convolutional layer with a 2 × 2 kernel size before feeding it into the convolutional
layer. The number of transposed convolutional layers equals the number of pooling
layers that the representation has gone through since each transposed convolutional
layer can only up-sample the representation by a factor of 2. ReLU non-linearity exists
between all hidden layers. For example, when the representation is generated by a
layer with two pooling layers before it (e.g., Figure 2 CNN Z3), the estimator for the
Z-X measure would contain two transposed convolutional layers.

These estimators have been shown to be computationally efficient, offering stable results.

4.3. Other Practical Considerations

In view of the fact that we computed the relevant measures for different layers of the
subject network at different learning epochs, we also adopted various other practical tricks
to improve the computation efficiency as follows:

1. Parallelize checkpoint enumeration t ∈ {1, 2, . . . , T}: To plot the Z-X / Z-Y measures
dynamics, we need to calculate these quantities at different checkpoints saved from
various epochs during the training of the subject network.
We can easily deploy multiple Algorithm 2 instances on different checkpoints saved
per Algorithm 1 in parallel;

2. Parallelize layer iteration l ∈ {1, 2, . . . , L}: We can also break up the iteration of l
layers in Algorithm 2 into parallel processes since the estimations of the measures on
different layers are independent;



Entropy 2023, 25, 1063 11 of 28

3. Parallelize estimation of Z-X measure and Z-Y measure: We can also deploy the Z-X
measure estimator and the Z-Y measure estimator on different processes because they
are also independent;

4. Warm-start: Moreover, we can accelerate the convergence of estimator networks by
using warm-start. We randomly initialized and trained the estimators from scratch in
the first checkpoint for Tishby-net and MLP WxL models. We then used the learned
parameters as initialization for the estimators in subsequent checkpoints. However,
we did not use warm-start in CNN and ResCNN estimator networks as it does not
noticeably accelerate convergence in these cases.

We deployed our algorithms on a server equipped with one NVIDIA Tesla V100 GPU.

Tishby-net

FC
-1

2×
10

ac
tiv

at
io

n 
fu

nc
tio

n

FC
-1

0×
7

ac
tiv

at
io

n 
fu

nc
tio

n

FC
-7

×5
ac

tiv
at

io
n 

fu
nc

tio
n

FC
-5

×4
ac

tiv
at

io
n 

fu
nc

tio
n

FC
-4

×3
ac

tiv
at

io
n 

fu
nc

tio
n

FC
-3

×2
so

ftm
ax

FC
-7

84
×W

R
eL

U

FC
-W

×W
R

eL
U

FC
-W

×W
R

eL
U

FC
-W

×1
0

so
ftm

ax...

MLP WxL

so
ftm

ax
FC

-1
28

×1
0

R
eL

U

R
eL

U

C
on

v 
32

×3
×3

C
on

v 
32

×3
×3

R
eL

U

R
eL

U

C
on

v 
64

×3
×3

C
on

v 
64

×3
×3

Po
ol

 2
×2

R
eL

U

R
eL

U

C
on

v 
12

8×
3×

3

C
on

v 
12

8×
3×

3

Po
ol

 2
×2

R
eL

U
FC

-2
04

8×
12

8

Po
ol

 2
×2

Fl
at

te
n

block 1 block 2 block 3 block 4 block 5

CNN

ResCNN

R
eL

U
FC

-2
04

8×
12

8

Po
ol

 2
×2

Fl
at

te
n

so
ftm

ax
FC

-1
28

×1
0

R
eL

U
C

on
v 

32
×3

×3

C
on

v 
32

×3
×3

R
eL

U

R
eL

U
C

on
v 

64
×3

×3

R
eL

U
C

on
v 

64
×3

×3
Po

ol
 2

×2

R
eL

U
C

on
v 

12
8×

3×
3

R
eL

U
C

on
v 

12
8×

3×
3

Po
ol

 2
×2

Res-block 1 Res-block 2 Res-block 3

Figure 2. The architectures of subject neural networks involved in this paper. Tishby-net will be
trained on the Tishby-dataset proposed in [8], MLP W×L will be trained by MNIST dataset [53],
and CNN and ResCNN will be trained on CIFAR-10 dataset [55]. FC stands for fully connected
layer, Conv represents the convolutional layer, and Pool refers to the max pooling layer. Note
that we intentionally kept the architecture of the CNN as close to ResCNN as possible to enable a
better-controlled comparison in later experiments.

5. Results

We now build upon the proposed framework to explore the dynamics of the Z-X
and Z-Y measures and their relationship with fitting/compression (F/C) phases and
generalization in a range of neural network models. In particular, the fitting phase refers to
the initial phase of training where the Z-X measure decreases with the number of epochs,
indicating that the network is attempting to fit the dataset. This phase commonly occurs
during early training. On the other hand, the compression phases refer to the subsequent
increase in the Z-X measure, indicating the compression of information in the network.

Firstly, we experimentally examined whether the estimation of the proposed measures
is stable. Then, we examined the impact of (1) the model architecture; (2) the learning
algorithm including optimizer and regularization techniques; and (3) the data on the
dynamics of the measures.



Entropy 2023, 25, 1063 12 of 28

The results will be presented using Z-X and/or Z-Y dynamics, and the tables show
the losses, accuracy, and generalization error of each experiment. In the figures, the x-axes
or y-axes will be shared unless specified otherwise by the presence of ticks.

5.1. Z-X and Z-Y Measures Estimation Stability

The reliability of the estimation of the proposed measures is critical for extracting
robust conclusions about the behavior of the Z-X and Z-Y dynamics in a neural network.
Such studies are, however, largely absent in the information bottleneck literature [12].

5.1.1. Criteria to Describe the Stability of Estimated Measures

We assessed the stability of the Z-X and Z-Y measures estimation using two criteria:

• Stability with regard to the initialization of estimator networks: First, we explored
how different initializations of an estimator network affect the Z-X and Z-Y measures.

• Stability with regard to the architecture of estimator networks: Second, we also
explored how (estimator) neural network architectures—with different depths—affect
the estimation of the Z-X and Z-Y measures.

5.1.2. Subject Networks, Estimator Networks, and Datasets Involved

We examined the stability of Z-X and Z-Y measures estimates in both fully connected
and convolutional subject networks. In particular, we used: (1) a Tishby-net (which has
an MLP-like architecture) trained on the Tishby-dataset classification task with a standard
stochastic gradient descent (SGD) optimizer, and (2) a CNN trained on the CIFAR-10
classification task trained with an Adam optimizer. However, we noticed that the Tishby-
net may not always converge due to its simple architecture and small dataset size of
4096 samples. Therefore, we repeated the training process multiple times with different
initializations and only retained converged subject networks to ensure meaningful results.
We built estimator networks as elaborated in the previous sections, and their architectures
are detailed in Appendix A.

To verify the first stability criterion, we tested different initializations by modifying the
random seed of the Xavier initializer. For the second stability criterion, we experimented
with estimators at different depths.

5.1.3. Are the Measures Stable in the MLP-like Subject Neural Networks?

Figure 3 depicts the Z-X and Z-Y measures estimates on the Tishby-net. Specifically,
panels (a) and (b) display the behavior of such measures under different initializations of a
one-layer and two-layer estimator network, respectively. Our results indicate that these
measures are robust to changes in the initialization of the estimator network (for a given
estimator network architecture).

In turn, panels (c) and (d) depict the behavior of the Z-X and Z-Y measure estimates for
different estimator network architectures. It is clear that the capacity of the estimator (which
depends on the number of estimator network layers) may affect the exact value of the Z-X
and Z-Y measures estimate, indicating the presence of a bias; however, such estimators
can still capture consistent trends (such as increases and decreases in the measures that are
critical to identifying fitting or compression behavior; see panel (d)).

We however note—as we had elaborated previously—that the estimator networks
need to be sufficiently complex to emulate a conditional mean estimator—to estimate the Z-
X measure—or to emulate the conditional distribution of the label given the representation—
to estimate the Z-Y measure. This may not always be possible depending on the complex-
ity/capacity of the estimator network e.g., one-layer estimator networks are only capable
of representing linear estimators whereas two-layer networks can represent more complex
estimators (therefore, linear one-layer networks cannot reliably estimate the minimum
mean-squared error unless the random variables are Gaussian). However, our results sug-
gest that, with a two-layer network, we may already obtain a reliable estimate since—except
for some representations—the difference in the measures estimated using a two-layer net-



Entropy 2023, 25, 1063 13 of 28

work does not differ much from those using a three-layer network. Naturally, with an
increase in the capacity of the estimator networks, one may also need additional data in
order to optimize the estimator network to deliver a reliable network, but our results also
suggest that the variance of the estimates is relatively low for both two-layer and three-layer
estimators. Further, the results in [57] suggest that the difference between the estimated
value and the true value for our Z-X measure decays rapidly with the number of points
in the (validation) dataset (note, however, that these results only apply for scalar random
variables). Therefore, we will adopt a two-layer estimator network in our study of MLPs in
the sequel.

We conducted a more robust analysis of the efficacy of different estimators using
a Gaussian mixture data model in Appendix B, where we can also directly analytically
compute the mean-squared error for comparison purposes.

-0.04
0.00

-0.08
-0.12

0.008

0.004

0.000

stability w.r.t. initialization

Z-
X

 m
ea

su
re

Z-
Y

 m
ea

su
re

stability w.r.t. estimator architecture

subject network epoch (  1000) subject network epoch (  1000)
(a) (b) (c) (d)

3 4210 3 4210 3 4210 3 4210

0.6

0.4

0.2

0.0

0.20

0.10

0.00
0.6

0.4

0.2

0.0

0.20

0.10

0.00

1-layer 2-layer 3-layer

Figure 3. Z-X and Z-Y measures estimate on the Tishby-net: (a,b) stability with regard to the
initialization of estimator networks, and (c,d) stability with regard to the architecture of estimator
networks. The lines are averaged over five different initializations, and the shadow is five times
the standard deviation. The representations (e.g., Z1) are taken from the corresponding layer of
the Tishby-net in Figure 2. The measures in (a) are estimated with 1-layer estimators with varying
initializations, and measures in (b) are estimated with 2-layer estimators with different initializations.
(c) compares the measures estimated by estimators with different depths, while the curves in (d)
depict the measures increasing/decreasing trend, obtained by taking the derivative of (c).

5.1.4. Are the Measures Stable in the Convolutional Subject Neural Networks?

Figure 4 shows the Z-X and Z-Y measure estimates on the CNN. To test the stability
criteria, we again used different estimator network initializations (varying the random seed
of the Xavier initializer) and different estimator network architectures. We first plotted
the Z-X dynamics and Z-Y dynamics based on the setup described in Section 4, and the
results are shown in the left column of Figure 4. Then, for comparison, we added an extra
convolutional layer to all Z-X estimators and a fully connected layer to all Z-Y estimators,
and the results are displayed in the right column of Figure 4.



Entropy 2023, 25, 1063 14 of 28

1.4
1.0
0.6
0.2

0.06
0.04
0.02
0.00

0 10 20 40 50 0 10 20 4030 50

Z-
Y

 m
ea

su
re

Z-
X

 m
ea

su
re

standard w/ one extra layer

30
subject network epoch subject network epoch

Figure 4. Z-X and Z-Y measures estimate on the CNN: the lines are averaged over five different
initializations, and the shadow is five times the standard deviation. The representations (e.g., Z1)
are taken from the corresponding layer of the CNN in Figure 2. Note that the violation of the data
processing inequality (DPI) observed in the Z-Y measure is attributed to the use of a pre-defined
estimator model. This aspect is also acknowledged in the context of the V-information framework,
as discussed in [38].

The results show that both estimator networks lead to relatively consistent and stable
measure estimates. This suggests that our proposed measures can be reliably inferred using
such estimator networks—under different initializations—even in this high-dimensional
setting that poses significant challenges to mutual information estimators. Comparing the
dynamics estimated by the standard estimator architecture and the one with an extra layer,
we observed that the trends of the dynamics are similar. Hence, we used the standard
setup in the rest of the paper due to its higher computational efficiency, which is illustrated
in Figure A3.

We next relied on this approach to estimate the Z-X and the Z-Y dynamics for different
(subject) neural network models and algorithms in order to cast further insights into the
compression, fitting, and generalization dynamics of deep learning.

5.2. The Impact of Model Architectures to the Network Dynamics

We started our study by investigating the effect of the neural network model on the Z-X
and Z-Y dynamics of neural networks. We considered both MLPs with different activation
functions, depths, and widths. We also considered CNN and res-net architectures. Our
study will allow us to identify possible fitting, compression, and generalization behavior.

5.2.1. Does the Activation Function Affect the Existence of F/C Phases?

We began by examining whether the presence of the fitting and compression (F/C)
phases is dependent on the activation function used in the network. This topic has been
explored in previous studies using the IB approach [8,11,24,27], but different studies have
led to different conclusions [27].

Setups: We deployed Tishby-net architecture with various activation functions, in-
cluding both saturating (tanh and softsign [58]) and non-saturating (ReLU [59], ELU [60],
GELU [58], swish [61,62], PELU [63], and leaky-ReLU [64]) options. The Tishby-net was
trained on the Tishby-dataset using the same optimizer and hyper-parameter setups as
described in the literature [8,24]. The Z-X and Z-Y measures were estimated using two-layer
estimators, as argued in Section 5.1.

Results: Figure 5 reveals that the Z-X dynamics exhibit a consistent pattern among all
Tishby-nets, characterized by an initial decrease in Z-X measures followed by an increase.
Note that the initial decrease happens prior to the decrease in the subject network loss.
There can be a longer period of epochs where the network struggles to converge and, during
this phase, the changes in the Z-X measure may not be easily visible. The Z-X dynamics in
some experimental setups, such as PELU, display fluctuation, which we attribute to the



Entropy 2023, 25, 1063 15 of 28

unstable convergence of the subject network, as evidenced by the fluctuations in the subject
network loss. Moreover, the increases in Z-X measures coincide with epochs where the
network experiences a decrease in loss. These observations suggest that the F/C phases
are likely to occur in the network, regardless of the activation function employed. Our
observation is in line with some of the previous studies that have used MI measures, such
as [8,11].

tanh ReLU GELU PELU

softsign ELU swish leaky-ReLU

0.4

0.6

0.2

0.0

0.4

0.6

0.2

0.0

su
bj

ec
t n

et
w

or
k

lo
ss

su
bj

ec
t n

et
w

or
k

lo
ss

0.2

0.1

0.0

0.2

0.1

0.0

Z-
X

 m
ea

su
re

Z-
X

 m
ea

su
re

subject network loss
subject network epoch (  1000)

21 430 21 430 21 430 21 430

Figure 5. Z-X dynamics on Tishby-net with different activation functions. The left y-axes displays
the Z-X measure estimate values, while the right y-axes represent the cross-entropy loss value of the
subject network.

5.2.2. How Do the Width and Depth of an MLP Impact Network Dynamics?

We now examine the effect of the MLP width (number of neurons per layer) and depth
on the Z-X and Z-Y dynamics.

Setups: For the MLP width analysis, we constructed four-layer MLPs with different
numbers of neurons per layer: 16, 64, and 512. For the MLP depth experiment, we fixed
the width of the subject network to 64 and varied its depth from two to six hidden layers.
All models were trained on the full MNIST dataset using a standard SGD optimizer with a
fixed learning rate of 0.001. We also used two-layer estimator networks to estimate the Z-X
and Z-Y measures.

Figure 6 depicts the dynamics of the Z-X measure against the Z-Y measure for MLP
networks with four layers and with different widths. As shown in Table 2, the best
generalization performance is associated with the model MLP 512 × 4. We can observe
that all MLP networks exhibit fitting and compression phases. However, wider networks
(e.g., MLP 512 × 4) tend to begin compressing earlier, while the thinner ones (e.g., MLP
16 × 4) tend to have a longer fitting phase. This trend suggests that wider networks are
able to fit data more quickly. We can also observe that the networks with more neurons per
layer (MLP 512 × 4) exhibit more compression than network with fewer neurons per layer
(MLP 16 × 4). Interestingly, the MLP 512 × 4 model also exhibits the best generalization
performance, so one can potentially infer that significant compression may be necessary for
good generalization [8,29].

Z-
Y

 m
ea

su
re

va
lid

at
io

n 
se

t

Z-X measure Z-X measure Z-X measure

MLP 16  4 MLP 64  4 MLP 512  4
1.2

0.8

0.4

0.2
0.04 0.05 0.03 0.04 0.05 0.01 0.03 0.05

su
bj

ec
t n

et
w

or
k 

ep
oc

h
30

0
0

10
0

20
0

Figure 6. Z-X/Z-Y measures dynamics plane of MLP networks with different widths. The represen-
tations (e.g., Z1) are taken from the corresponding layer of the MLP WxL network in Figure 2.



Entropy 2023, 25, 1063 16 of 28

Table 2. The epoch that reached the minimum validation loss (ep.), the training losses, test losses (test
loss), generalization error (GE), training accuracy (train acc.), and test accuracy (test acc.) of the MLPs
with different widths and depths. The experiment with the best generalization error is highlighted
using bold font.

Subject Network ep. Train Loss Test Loss GE Train acc. Test acc.

MLP 16 × 4 197 0.0890 0.1471 0.0581 0.9740 0.9572
MLP 64 × 4 168 0.0344 0.0967 0.0623 0.9919 0.9748
MLP 512 × 4 142 0.0191 0.0697 0.0506 0.9967 0.9800

MLP 64 × 2 299 0.0688 0.1247 0.0559 0.9815 0.9760
MLP 64 × 3 275 0.0338 0.0570 0.0232 0.9919 0.9762
MLP 64 × 4 142 0.0344 0.0967 0.0623 0.9919 0.9748
MLP 64 × 5 85 0.0659 0.1185 0.0526 0.9822 0.9672
MLP 64 × 6 68 0.0736 0.1320 0.0584 0.9798 0.9616

Figure 7 depicts the dynamics of the Z-X measure (associated with the first and
last layers) of MLPs with a width of 64 and with different depths (we note that the best
generalization performance is associated with the model MLP 64 × 3). In terms of fitting,
we can observe that the different MLPs experience a fitting phase. However, deeper models
such as MLP 64 × 5 and MLP 64 × 6 appear to experience a more pronounced fitting
phase than shallower models, though deeper models still exhibit a higher Z-X measure
than shallower ones toward the end of this fitting phase (see marker #1). In terms of
compression, we find that deeper networks (e.g., MLP 64 × 5, MLP 64 × 6) compress data
more aggressively than shallower ones. Indeed, the gap between the Z-X measure value
between the last layer and the first layer of the network is much higher for a deeper model
than for shallower ones (as indicated by marker #2).

0.06

0.04

0.05

0.02

0.03Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t

0 100 200 300
subject network epoch

MLP 64  2

MLP 64  3

MLP 64  4

MLP 64  5

MLP 64  6 first layer
last layer

1 2

Figure 7. Z-X dynamics of the MLP 64 networks with different depths. The curves with higher
saturation correspond to the last layer of the MLP model, while those with lower saturation belong to
the first MLP layer.

We also highlight that the MLP 64× 3 network, which demonstrated the best general-
ization performance (refer to Table 2), exhibited a significant fitting phase similar to MLP
64 × 2, as well as a notable compression phase close to MLP 64-4.

Overall, shallow networks may have difficulty compressing data effectively, while the
layers close to the output in the deep networks may lose important information and cannot
fit data well. We hypothesize that both of these phenomena—which are both present in the
MLP 64× 3 network—can have an impact on a network’s ability to generalize effectively.

5.2.3. How Do the Number of Kernels and Kernel Size of a CNN Impact
Network Dynamics?

We now examine the effect of the kernels, including their number and size, on the Z-X
and Z-Y dynamics in a CNN.



Entropy 2023, 25, 1063 17 of 28

Setups: To analyze the impact of the number of kernels on network F/C phases in
CNNs, we adjusted the number of kernels by a factor derived from the baseline CNN
architecture shown in Figure 2. To analyze the impact of the kernel size, we used 1 × 1,
3 × 3 (baseline), 5 × 5, and 7 × 7 kernel sizes for all convolutional layers The CNN models
were trained on the CIFAR-10 dataset using the Adam optimizer with a learning rate of
0.001. We utilized minimal estimator networks, as described in the previous section.

Results: Figure 8 depicts the Z-X dynamics of our CNN network with different
numbers of kernels. We observe that having a low number of kernels (e.g., /4, /8) seems to
impair both the fitting and compression process, particularly in early layers (e.g., layers 1
and 2). In contrast, we observed that a high number of kernels do not significantly impact
the F/C phases or the generalization performance. Indeed, as shown in Table 3, CNNs with
more kernels (e.g., ×2, ×4) have a similar test loss performance to the baseline model (note
that the best test loss performance corresponds to the ×4 model, and that its generalization
performance is also similar to that of the baseline model). This suggests that adding more
kernels to a well-generalized CNN may not significantly impact the F/C phases and may
not lead to an improved generalization.

Table 3. The epoch that reached the minimum validation loss (ep.), the training losses, test losses (test
loss), generalization error (GE), training accuracy (train acc.), and test accuracy (test acc.) of the CNNs
with a different number of kernels and kernel sizes. The experiment with the best generalization
error is highlighted using bold font.

Subject Network ep. Train Loss Test Loss GE Train acc. Test acc.

CNN baseline 5 0.6747 0.8300 0.1553 0.7657 0.7190
CNN ×2 7 0.3826 0.8303 0.4477 0.8637 0.7514
CNN ×4 4 0.5667 0.7801 0.2135 0.8001 0.7332
CNN /2 11 0.6015 0.9055 0.3040 0.7871 0.7008
CNN /4 14 0.7704 1.0494 0.2790 0.7306 0.6492
CNN /8 26 0.9515 1.1353 0.1838 0.6589 0.6060

CNN 1 × 1 18 1.0307 1.1860 0.1553 0.6343 0.5978
CNN 3 × 3 5 0.6747 0.8065 0.1318 0.7657 0.7190
CNN 5 × 5 9 0.6001 0.9805 0.3804 0.7887 0.6958
CNN 7 × 7 6 0.8372 1.2011 0.3639 0.7031 0.6042

Figure 9 depicts the Z-X dynamics of our CNN network with different kernel sizes.
It appears that networks with large kernels fail to fit and compress, but networks with
small kernels also exhibit little fitting and compression. Indeed, the best test loss and
generalization performance are associated with the CNN model with a 3 × 3 kernel size,
which also exhibits a more pronounced fitting and compression phase (refer to Table 3).

Overall, we hypothesize that selecting an appropriate kernel size can improve a net-
work’s ability to both fit and compress data, leading to a better generalization performance,
which is in line with the conclusion in [8,29].



Entropy 2023, 25, 1063 18 of 28

su
bj

ec
t n

et
w

or
k

lo
ss

su
bj

ec
t n

et
w

or
k

lo
ss

Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t
Z-

X
 m

ea
su

re
va

lid
at

io
n 

se
t

subject network epcohs

baseline

/8 kernels/4 kernels

100 20 30 40 50 100 20 30 40 50 100 20 30 40 50

/2 kernels

  2 kernels   4 kernels 2.0

1.0

0.0

2.0

1.0

0.0

0.04

0.06

0.02

0.00

0.04

0.06

0.02

0.00

training loss validaion loss

Figure 8. Z-X dynamics of the CNN network with different number of kernels on each layer. We
make modifications based on the baseline CNN structure shown in Figure 2. For example, “×2”
means doubling the number of kernels in each convolutional layer, while “/2” means halving the
number of kernels in each convolutional layer. The representations (e.g., Z1) are taken from the
corresponding block of the CNN network in Figure 2.

0.05

0.03
0.04

0.06

0.01
0.02

0.00

Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t

su
bj

ec
t n

et
w

or
k 

lo
ss

10 3020 400 50 10 3020 400 50 10 3020 400 50 10 3020 400 50

2.0

1.0

0.0

baseline (3  3) 7  75  51  1

subject network epcohs
training loss validaion loss

Figure 9. Z-X dynamics of the CNN network with different kernel sizes. The representations (e.g.,
Z1) are taken from the corresponding block of the CNN network in Figure 2.

5.2.4. How Does Residual Connection Affect the Network Dynamics?

We finally assessed the impact of residual connections—introduced in [65]—on neural
network learning dynamics, since these have been frequently used to address the gradient
vanishing problem in very deep neural networks. We note that some works [13,18] have
studied the behavior of ResNet or DenseNet (which also contain residual connections [66]).
However, these studies did not delve into how residual connections may impact the
information bottleneck of hidden layer representations and their relation to generalization.

Setup: We deployed a ResCNN, as elaborated in the previous section, that was trained
using an Adam optimizer with a learning rate of 0.001 on the CIFAR-10 dataset. We
also used the standard estimator network setups elaborated in Section 4.2 and shown in
Appendix A Figure A3.

Results: We first analyzed the behavior of the Z-X dynamics at the output of the
residual blocks (e.g., Z1,out) and the fully connected layers, and compared it with the CNN
with a similar architecture but without residual connections; see Figure 10.



Entropy 2023, 25, 1063 19 of 28

su
bj

ec
t n

et
w

or
k

lo
ss

Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t

w/o residual 2.0

1.0

0.0

0.04

0.06

0.02

0.00
10 30 500 20 40 10 30 500 20 40

w/ residual

subject network epoch

training losstraining loss
validation loss

/

/
/

Figure 10. Z-X dynamics of CNNs with or without residual connections. The representations (e.g.,
Z1, Z1,out) are taken from the corresponding locations of the CNN or ResCNN network shown in
Figure 2.

We notice that the ResCNN tends to have less pronounced compression in the (residual)
convolutional blocks, e.g., the Z-X dynamic of Z3 (without residual connection) shows a
more pronounced increase than that of Z3,out (with residual connection). Additionally, we
can see that the model with residual connection depends more on the fully connected layers
to compress the Z-X measure, which is demonstrated by the significantly wider gap between
representations Z4 and Z5, as well as between Z4 and Z3/Z3,out in the residual model.

We then inspected the behavior of the Z-X measure and the Z-Y measure within
each residual block; see Figure 11 (note that the dynamics of the Z-X and Z-Y measures
associated with Z1,in are flat because Z1,in corresponds to X).

0.03

0.01

0.00

0.02

va
lid

at
io

n 
se

t
Z-

X
 m

ea
su

re

subject network epoch
10 30 500 20 40 10 30 500 20 40 10 30 500 20 40

Figure 11. Z-X dynamics of the ResCNN in each residual block. l is the index of the residual block.
The representations (e.g., Z1,in) are taken from the corresponding block of the ResCNN network in
Figure 2.

We can observe that, within each residual block (i.e., for a given index l), the Z-X
measure of Zl,out is generally lower than that of Zl,res1 and Zl,res2 . This is because the repre-
sentation Zl,out is the sum of Zl,res2 and Zl,in and thus retains more information associated
with the data.

We can also observe that, in every residual block, the Z-X dynamics of Zl,res1 and Zl,res2
have a pronounced increase over the epoch, while the Z-X dynamics of Zl,in and Zl,out are
relatively stable. This suggests that each residual block may learn to form a mini-bottleneck.
However, the overall network does not exhibit a visible compressing phase when observing
the output of the residual blocks alone. Our experiments demonstrate the distinct behavior
of networks with residual connections compared to those without.

5.3. The Impact of Training Algorithm to the Network Dynamics

A neural network generalization ability also tends to depend on the training procedure,
including the learning algorithm and regularizers. Therefore, we now explore how different
learning settings affect neural network Z-X and Z-Y measures dynamics.

5.3.1. How Does the Optimizer Impact the Network Dynamics?

It was suggested by [29] that the Adam optimizer leads to a better performance
during the fitting phase, but it tends to perform worse during the compression phase.



Entropy 2023, 25, 1063 20 of 28

We investigated, under the lens of our approach, the effect of Adam and various other
optimizers on neural network learning dynamics.

Setup: Our experiments were conducted on CNNs (with the standard architec-
ture illustrated in Figure 2) trained on the CIFAR-10 dataset using different optimiz-
ers. Specifically, we experimented with non-adaptive optimizers such as SGD and SGD-
momentum [67], as well as adaptive optimizers such as RMSprop [68]. We also considered
the Adam optimizer [69], which can be viewed as a combination of a momentum op-
timizer and RMSprop optimizer, representing a hybrid approach. We used standard
hyper-parameters commonly used for CIFAR-10 classification tasks, setting the learning
rate to 0.001 for all optimizers and a momentum parameter of 0.9 (if applicable). Our
estimator networks are akin to those used in previous studies.

Results: Figure 12 shows the behavior of the normalized Z-X measure for CNNs
trained with different optimizers. We normalized this measure using min-max normaliza-
tion to allow for a better visualization of relative changes in performance. Specifically, each
Z-X dynamic curve was normalized individually, and the minimum and maximum values
were taken from the curve after the 50th epoch, as we observed that all Z-X dynamics enter
the compression phase before this epoch.

0.10

0.05

0.00

RMSpropSGD SGD-momentum Adam

0 100 200 300 0 100 200 300 0 10 20 300 10 20 30

Z-
X

 m
ea

su
re

no
rm

al
iz

ed
va

lid
at

io
n 

se
t

1.00

0.00

0.75

0.50

0.25

subject network epoch
training loss validaion loss

su
bj

ec
t n

et
w

or
k 

lo
ss

Figure 12. Z-X dynamics for a CNN trained with different optimizers. The representations (e.g., Z1)
are taken from the corresponding block of the CNN network in Figure 2.

We observe that SGD and SGD-momentum exhibit similar fitting phases, while Adam
and RMSprop also display similar fitting phases. We can also note that, when trained on
the Adam and RMSprop optimizer—which are adaptive optimizers—the representations
associated with the various layers exhibit major compression; in contrast, when trained
with the SGD optimizer, the representations {Z2, Z3} do not show noticeable compression
and, likewise, when trained with SGD-momentum optimizers, the representations {Z2, Z3}
also do not exhibit much compression. Note that, in our experiment with the CNN trained
on the CIFAR classification task, we can see from Table 4 that the model trained with the
RMSprop optimizer achieved the best generalization performance, followed closely by the
model trained with Adam. Therefore, it appears that adaptive optimizers—which adjust
the learning rate per parameter—may be critical for leading to network compression, and
hence generalization [70].

Table 4. The epoch that reached the minimum validation loss (ep.), the training losses, test losses
(test loss), generalization error (GE), training accuracy (train acc.), and test accuracy (test acc.) of
the CNNs trained with different optimizers. The experiment with the best generalization error is
highlighted using bold font.

Subject Network ep. Train Loss Test Loss GE Train acc. Test acc.

CNN SGD 106 0.0202 0.0429 0.0226 0.9945 0.9882
CNN SGD-momentum 131 0.0130 0.0356 0.0226 0.9972 0.9882
CNN Adam 24 0.0067 0.0275 0.0208 0.9979 0.9896
CNN RMSproop 11 0.0123 0.0263 0.0139 0.9965 0.9908



Entropy 2023, 25, 1063 21 of 28

5.3.2. How Does Regularization Impact the Network Dynamics?

It has been suggested by [11,12] that weight decay regularization can significantly
enhance the compression phase associated with a neural network learning dynamic. It
has also been argued by others [18] that compression is only possible with regularization.
Therefore, we also investigated, under the lens of our approach, the effect of regularization
on the learning dynamics of MLPs and CNNs.

Setup: We deployed MLP 64× 4 models trained on the MNIST dataset with or without
weight decay (WD) regularization and CNN models trained with the CIFAR-10 dataset
with or without dropout regularization. The weight decay was applied to all layers in
the MLP 64 × 4 model with its hyper-parameter set to 0.001, while the dropout was only
adopted in the first fully connected layer in the CNN with a 30%, 60%, or 90% dropout
rate (which is a common approach in the literature [54]). The MLP with weight decay
regularization requires more epochs to converge. Therefore, we trained the MLP 64 × 4
without weight decay for 300 epochs and the model with weight decay for 1200 epochs.

Results: We offer the dynamics of the Z-X and Z-Y measures associated with the MLP
setting in Figure 13. We infer that weight decay regularization does not significantly impact
the fitting phase; however, weight decay does seem to affect network compression, leading
networks to compress more aggressively. Moreover, weight decay not only prevents the
subject network from overfitting [2] but also prevents its representations from overfitting.
Therefore, we conjecture that the weight decay regularization boosts the compression in
MLPs (as also observed in [11]) and prevents the representation overfitting to improve the
generalization performance (shown in Table 5), which is also in line with [11].

Z-X measure
w/o w/0.2 0.3 0.4 0.5

Z-
Y

 m
ea

su
re

0.6

0.4

0.2

0.0 0 0

10
0 40

0

20
0 80

0

30
0

12
00

su
bj

ec
t n

et
w

or
k 

ep
oc

h

Figure 13. Z-X and Z-Y dynamics of MLP 64 × 4 trained on the MNIST dataset with or without
weight decay regularization. The subject network regularized by weight decay gives relatively better
test loss. The representations (e.g., Z1) are taken from the corresponding block of the MLP 64 × 4
network in Figure 2.

We also offer the dynamics of the Z-X measure associated with the CNN setting in
Figure 14 (Table 5 shows that the best generalization performance is obtained for a CNN
with dropout regularization at a 60% dropout rate on the first fully connected layer). Our
results suggest that tuning the dropout rate on the first fully connected layer affects not
only the dynamics of its representation (Z4) but also the dynamics of other layers. When a
high dropout rate (e.g., 90%) is used, we observe less pronounced fitting and compression
phases, which also lead to a worse generalization performance (refer to Table 5). Conversely,
a low dropout rate (30%) showed similar fitting phases to the no-dropout group, but with
more compression. These results support our conjecture that the F/C phases are linked to
the generalization behavior of the model.



Entropy 2023, 25, 1063 22 of 28

Table 5. The epoch that reached the minimum validation loss (ep.), the training losses, test losses
(test loss), generalization error (GE), training accuracy (train acc.), and test accuracy (test acc.) of
the MLPs and CNNs trained w/ or w/o regularization algorithms. The experiment with the best
generalization error is highlighted using bold font.

Subject Network ep. Train Loss Test Loss GE Train acc. Test acc.

MLP w/o WD 168 0.0344 0.0967 0.0623 0.9919 0.9748
MLP w/ WD 626 0.0216 0.0722 0.0505 0.9976 0.9784

CNN 0% dropout 5 0.6747 0.8300 0.1553 0.7657 0.7190
CNN 30% dropout 12 0.4993 0.7985 0.2992 0.7608 0.7398
CNN 60% dropout 10 0.6888 0.7606 0.0718 0.8237 0.7510
CNN 90% dropout 19 1.0768 0.8765 0.2003 0.5959 0.7000

On the other hand, it can be observed that adopting dropout regularization dimin-
ishes the visibility of fitting phases across multiple layers. This suggests that the training
algorithm effectively leverages the neurons and connections within the model, enabling
rapid dataset fitting.

0.06

0.04

0.02

0.00 0.0

2.0

1.0

su
bj

ec
t n

et
w

or
k 

lo
ss

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t

0% (baseline) 30% 60% 90%

subject network epoch
training loss validaion loss

Figure 14. The Z-X dynamics for a CNN trained on the CIFAR-10 dataset with different amounts
of dropout in its fully connected layers. The subject network regularized with a 60% dropout rate
provides the best test loss and generalization error. The representations (e.g., Z1) are taken from the
corresponding block of the CNN network in Figure 2.

5.4. The Impact of Dataset to the Network Dynamics

It is well established that the size of the training set directly affects a machine learn-
ing model’s generalization performance [71]. Our goal was to also understand how the
dataset size affects neural network model learning dynamics, including its fitting and
compression phases.

Setup: We compared the learning dynamics of CNN models trained on three different
datasets: 1% of CIFAR-10 (0.5k samples), CINIC [56] (which has the same classes as CIFAR-
10 but contains 180k samples), and the full CIFAR-10 dataset (50k samples).

We used the Adam optimizer with a learning rate of 0.001 to train the neural networks.
We also estimated the Z-X and Z-Y measures using the network in Figure A3 using the
CIFAR-10 validation and test sets.

Results: Figure 15 shows the Z-X dynamics of CNNs trained on datasets of different
sizes. We can observe from Table 6 that the model trained on the CINIC dataset achieves
the best generalization performance, while the model trained on the smallest dataset (1%
CIFAR-10) performs the worst.



Entropy 2023, 25, 1063 23 of 28

Table 6. The epoch that reached the minimum validation loss (ep.), the training losses, test losses
(test loss), generalization error (GE), training accuracy (train acc.), and test accuracy (test acc.) of
the CNNs trained on different datasets or dataset sizes, including 1% CIFAR-10 dataset (w/0.5k
training samples), 100% CIFAR-10 dataset (w/50k training samples), and CINIC dataset (180k training
samples). The experiment with the best generalization error is highlighted using bold font.

Subject Network ep. Train Loss Test Loss GE Train acc. Test acc.

CNN 1% CIFAR-10 38 1.2497 1.9902 0.7405 0.5380 0.3248
CNN 100% CIFAR-10 5 0.6747 0.8300 0.1553 0.7657 0.7190
CNN CINIC 12 0.5952 0.6395 0.0443 0.7744 0.7872

0.06

0.00

0.02

0.04

Z-
X

 m
ea

su
re

va
lid

at
io

n 
se

t

su
bj

ec
t n

et
w

or
k

lo
ss

0 4030 502010 0 4030 502010 0 4030 502010
0.0

1.0

2.0

1% CIFAR-10 (0.5k) 100% CIFAR-10 (50k) CINIC (180k)

subject network epcohs
training loss validaion loss

Figure 15. Z-X measures of representations in CNN trained on 1% CIFAR-10 dataset, full CIFAR-10
dataset, and CINIC dataset. The representations (e.g., Z1) are taken from the corresponding block of
the CNN network in Figure 2.

Our experiments show that the fitting behavior of the network trained on the small
dataset is identical to that of the network trained on the standard CIFAR-10 dataset. How-
ever, the degree of compression exhibited by the network optimized on the 1% CIFAR-10
dataset was much less pronounced than that of the model trained on richer datasets. This
suggests that compression may only be possible for sufficiently large datasets. Our experi-
ments also show that the behavior of the Z-X measure associated with the network trained
on the CINIC dataset rapidly increases during the optimization process. This indicates a
significant F/C phase that may also justify the superior generalization performance.

Overall, these observations suggest that providing sufficient training data can amplify
the magnitude of compression. This in turn helps the model learn to abstract key informa-
tion for predicting labels more effectively, leading to a better generalization performance.
Therefore, we conclude that compression may be a crucial factor for effective generalization
in neural networks, and providing sufficient training data is essential for amplifying this
phase [8].

6. Conclusions

In this paper, we proposed to replace the mutual information measures associated
with information bottleneck studies with other measures capable of capturing fitting,
compression, and generalization behavior. The proposed method includes: (1) the Z-
X measure corresponding to the approximation of the minimum mean-squared error
associated with the recovery of the network input (X) from some intermediate network
representation (Z) and (2) the Z-Y measure associated with the cross-entropy of the data
label/target (Y) given some intermediate data representation (Z). We also proposed to
estimate such measures using neural-network-based estimators. The proposed approach
can handle representations in high-dimension space, is computationally stable, and is also
computationally affordable.

Our series of experiments explored—via the dynamics between the Z-X and Z-Y
measure estimates—the interplay between network fitting, compression, and generalization
on different neural networks, with varying architectures, learning algorithms, and datasets,
that are as complex or more complex than those used in traditional IB studies [12]. Our
main findings are as follows:



Entropy 2023, 25, 1063 24 of 28

• Impact of Neural Network Architecture:

– We have found that MLPs appear to compress regardless of the non-linear activa-
tion function.

– We have observed that MLP generalization, fitting, and compression behavior
depend on the number of neurons per layer and the number of layers. In general,
the MLPS offering the best generalization performance exhibit more pronounced
fitting and compression phases.

– We have also observed that CNN generalization, fitting, and compression behav-
ior also depend on the kernel’s number/size. In general, CNNs exhibiting the
best generalization performance also exhibit pronounced fitting and compression
phases.

– Finally, we have seen that the fitting/compression behavior exhibited by networks
with residual connections is rather distinct from that shown in networks without
such connections.

• Impact of Neural Network Algorithms: We have observed that adaptive optimizers
seem to lead to more compression/better generalization in relation to non-adaptive
ones. Likewise, we have also observed that regulation can help with compres-
sion/generalization.

• Impact of Dataset: Our main observation is that insufficient training data may prevent
a model from compressing and hence generalizing; in turn, models trained with
sufficient training data exhibit both a fitting phase followed by a compression phase,
resulting in a higher generalization performance.

Overall, our findings are in line with an open conjecture that good neural network
generalization is associated with the presence of a neural network fitting phase followed
by a compression phase during the learning process [8,11,29].

There are some interesting directions for further research. First, it would be intriguing
to explore the dynamics of state-of-the-art machine learning models, including transform-
ers, which have demonstrated exceptional performance in various tasks. By analyzing
the behavior of transformers under the lens of the information bottleneck theory, we
may be able to gain additional insights into how these advanced models learn, compress
information, and generalize.

Second, it would also be interesting to extend the study to other learning paradigms
such as semi-supervised or unsupervised tasks. In semi-supervised learning, where a
limited amount of labeled data are available along with a larger unlabeled dataset, using the
proposed approach to study the learning process may help to uncover effective strategies
for leveraging unlabeled data. Similarly, in unsupervised learning tasks, where the goal is
to discover patterns and structure in unlabeled data, a similar approach could potentially
uncover the interplay between compression and fitting and their implications in leading
up to meaningful representations capturing essential information.

Finally, although our study has shed some light on the interplay between compression
and generalization using the proposed method, conducting a specialized study and analysis
to obtain a more comprehensive understanding of the relationship between these two
factors would be interesting.

Author Contributions: Methodology, Z.L.; Software, Z.L.; Validation, Z.L. and G.A.; Formal analysis,
Z.L., G.A. and M.R.D.R.; Writing—original draft, Z.L. and G.A.; Writing—review & editing, Z.L. and
M.R.D.R.; Supervision, M.R.D.R. All authors have read and agreed to the published version of the
manuscript.

Funding: The APC was funded by UCL Dean’s Prize and China Scholarship Council.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2023, 25, 1063 25 of 28

Appendix A. Estimator Network Architectures

This appendix lists the architectures of the Z-X and Z-Y estimator networks.

FC
-  

   
×1

2

ta
nh

FC
-4

09
6×

12

FC
-  

   
×1

2

ta
nh

FC
-1

2×
12

ta
nh

FC
-1

2×
12

FC
-  

   
×1

2

1-layer 2-layer 3-layer

Z-X estimators

FC
-  

   
×2

so
ftm

ax

ta
nh

FC
-2

×2
so

ftm
ax

FC
-  

   
×2

ta
nh

FC
-2

×2
ta

nh
FC

-2
×2

so
ftm

ax

FC
-  

   
×2

1-layer 2-layer 3-layer

Z-Y estimators

Figure A1. Architecture of the Z-X and Z-Y estimator networks for Tishby-net models. Note that
estimators with different depths are used for the stability tests.

R
eL

U
FC

-3
2×

10
so

ftm
ax

FC
-  

   
×3

2

R
eL

U
FC

-6
4×

78
4

FC
-  

   
×6

4

Z-X estimator Z-Y estimator

Figure A2. Architecture of the Z-X and Z-Y estimator networks for MLP WxL models.

FC
-2

04
8×

12
8

FC
-1

28
×1

28
R

eL
U

R
eL

U

TC
on

v 
12

8×
2×

2
R

eL
U

R
eL

U
C

on
v 

3×
3×

3

C
on

v 
3×

3×
3

TC
on

v 
12

8×
2×

2
R

eL
Uye

s

no

...

no

ye
s

re
pr

es
en

ta
tio

n 
fr

om
 F

C
 la

ye
rs

?

ne
ed

up
sa

m
pl

in
g?

up-sampling block

no

ye
s

re
pr

es
en

ta
tio

n 
fr

om
 C

on
v 

la
ye

rs
?

so
ftm

ax
FC

-d
×1

0

Fl
at

te
n

R
eL

U
FC

-d
×d

Z-X estimatorZ-X estimator Z-Y estimator

Figure A3. Architectures of the Z-X and Z-Y estimator networks for CNN and ResNet. The number
of up-sampling blocks in the Z-X estimator is set to be equal to the number of down-sampling blocks
in the network being analyzed, and the dimension of the fully connected layer d in the Z-Y measure
is determined by the shape of the flattened input vector length. To test the stability of the estimators
at different depths (as described in Section 5.1), we added an extra convolutional layer with ReLU
non-linearity at the end of the Z-X estimator, and a fully connected layer with a width of d before the
first fully connected layer in the Z-Y estimator.

Appendix B. Empirical Comparison of MMSE Estimator and MI Estimator for
Multivariant Gaussian Random Variables

We experimentally compared the minimal mean-squared estimator and mutual infor-
mation estimator for multivariant Gaussian random variables.

Consider a simple case where random vector X ∈ Rd (target) and Y ∈ Rd (ob-
servation) follow a multivariate normal distribution with correlation ΣXY = ρI, i.e.,
Y = ρX +

√
1− ρ2N. Under this setup, the mutual information between X and Y is

I(X; Y) = − d
2 log(1− ρ2), and the minimal mean-squared error is mmse(X|Y) = 1− ρ2.



Entropy 2023, 25, 1063 26 of 28

Now, we estimate I(X; Y) with MI estimators from the literature and estimate minimal
mean-squared error with neural-network-based mean-squared error estimators. The results
are shown in Figure A4. We show the case where d = 20 and change ρ from −0.99 to 0.99.
Each test takes 4000 randomly generalized samples.

We can see from Figure A4a that the variational estimators tend to have high biases
when the mutual information is high. The simple binning method failed to estimate the
correct value of mutual information. Although the Kraskov estimator shows a relatively
consistent trend, the time consumption of this algorithm grows exponentially as the dimen-
sion and number of samples increase [46]. On the other hand, the results of the estimated
minimal mean-squared error are shown in Figure A4b. We can see that the estimated values
are very close to the ground-truth values.

0.8

1.0

0.6

0.4

0.2

0.0

30

40

20

10

0

ground-truth

TNCE
infoNCE

JS
Kraskov
Simple binning

depth=1
depth=2
depth=3

ground-truth

(a) (b)

  0.99
  0.9

  0.7
  0.5

  0.3
  0.1

0 0.99
0.9

0.7
0.5

0.3
0.1

  0.99
  0.9

  0.7
  0.5

  0.3
  0.1

0 0.99
0.9

0.7
0.5

0.3
0.1

Figure A4. (a) The estimated mutual information, and (b) the neural network estimated MMSE for
20-dimension correlated Gaussian random variables. In both panels, the hollow purple circles are
ground-truth values. In panel (a), the infoNCE [10], TNCE [72], and JS [73] are variational estimators,
and the error bar is the variance. The simple binning method is adopted via the same implementation
as in [24] and the Kraskov estimator is implemented based on the original paper [46]. For panel (b),
we use a 1-layer (linear), 2-layer, and 3-layer network to estimate the minimal mean-squared error,
respectively. The networks have 20 neurons per layer, and the activation function is the hyperbolic
tangent function. The estimators are trained with Adam optimizer for 5000 epochs, and the learning
rate is set to 0.001.

References
1. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press:

Cambridge, UK, 2014.
2. Bengio, Y.; Goodfellow, I.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2017; Volume 1,
3. Raukur, T.; Ho, A.C.; Casper, S.; Hadfield-Menell, D. Toward Transparent AI: A Survey on Interpreting the Inner Structures of

Deep Neural Networks. arXiv 2022, arXiv:2207.13243.
4. Ma, S.; Bassily, R.; Belkin, M. The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized

Learning. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.
5. Frei, S.; Chatterji, N.S.; Bartlett, P.L. Benign Overfitting without Linearity: Neural Network Classifiers Trained by Gradient

Descent for Noisy Linear Data. arXiv 2022, arXiv:2202.05928.
6. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
7. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the 2015 IEEE Information

Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5.
8. Shwartz-Ziv, R.; Tishby, N. Opening the black box of deep neural networks via information. arXiv 2017, arXiv:1703.00810.
9. Belghazi, M.I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, D. Mutual information neural estimation. In

Proceedings of the International Conference on Machine Learning, PMLR, Vienna, Austria, 25–31 July 2018; pp. 531–540.
10. Poole, B.; Ozair, S.; Van Den Oord, A.; Alemi, A.; Tucker, G. On variational bounds of mutual information. In Proceedings of the

International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 5171–5180.
11. Chelombiev, I.; Houghton, C.; O’Donnell, C. Adaptive estimators show information compression in deep neural networks. arXiv

2019, arXiv:1902.09037.
12. Geiger, B.C. On Information Plane Analyses of Neural Network Classifiers–A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021,

33, 7039–7051. [CrossRef]
13. Fang, H.; Wang, V.; Yamaguchi, M. Dissecting deep learning networks—Visualizing mutual information. Entropy 2018, 20, 823.

[CrossRef]
14. Elad, A.; Haviv, D.; Blau, Y.; Michaeli, T. Direct validation of the information bottleneck principle for deep nets. In Proceedings of

the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019.

http://doi.org/10.1109/TNNLS.2021.3089037
http://dx.doi.org/10.3390/e20110823


Entropy 2023, 25, 1063 27 of 28

15. Yu, S.; Wickstrøm, K.; Jenssen, R.; Principe, J.C. Understanding convolutional neural networks with information theory: An
initial exploration. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 435–442. [CrossRef]

16. Elidan, G.; Friedman, N.; Chickering, D.M. Learning Hidden Variable Networks: The Information Bottleneck Approach. J. Mach.
Learn. Res. 2005, 6, 81–127.

17. Wickstrøm, K.; Løkse, S.; Kampffmeyer, M.; Yu, S.; Principe, J.; Jenssen, R. Information plane analysis of deep neural networks
via matrix-based Renyi’s entropy and tensor kernels. arXiv 2019, arXiv:1909.11396.

18. Kirsch, A.; Lyle, C.; Gal, Y. Scalable training with information bottleneck objectives. In Proceedings of the International Conference
on Machine Learning (ICML): Workshop on Uncertainty and Robustness in Deep Learning, Virtual, 17–18 July 2020.

19. Jónsson, H.; Cherubini, G.; Eleftheriou, E. Convergence behavior of DNNs with mutual-information-based regularization.
Entropy 2020, 22, 727. [CrossRef]

20. Schiemer, M.; Ye, J. Revisiting the Information Plane. 2020. Available online: https://openreview.net/forum?id=Hyljn1SFwr
(accessed on 5 May 2023).

21. Goldfeld, Z.; Berg, E.v.d.; Greenewald, K.; Melnyk, I.; Nguyen, N.; Kingsbury, B.; Polyanskiy, Y. Estimating information flow in
deep neural networks. arXiv 2018, arXiv:1810.05728.

22. Lorenzen, S.S.; Igel, C.; Nielsen, M. Information Bottleneck: Exact Analysis of (Quantized) Neural Networks. arXiv 2021,
arXiv:2106.12912.

23. Shwartz-Ziv, R.; Alemi, A.A. Information in infinite ensembles of infinitely-wide neural networks. In Proceedings of the
Symposium on Advances in Approximate Bayesian Inference, PMLR, Vancouver, BC, Canada, 8 December 2020; pp. 1–17.

24. Saxe, A.M.; Bansal, Y.; Dapello, J.; Advani, M.; Kolchinsky, A.; Tracey, B.D.; Cox, D.D. On the information bottleneck theory of
deep learning. J. Stat. Mech. Theory Exp. 2019, 2019, 124020. [CrossRef]

25. Zeitler, G.; Koetter, R.; Bauch, G.; Widmer, J. Design of network coding functions in multihop relay networks. In Proceedings
of the 2008 5th International Symposium on Turbo Codes and Related Topics, Lausanne, Switzerland, 1–5 September 2008;
pp. 249–254.

26. Noshad, M.; Zeng, Y.; Hero, A.O. Scalable mutual information estimation using dependence graphs. In Proceedings of the
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May
2019; pp. 2962–2966.

27. Abrol, V.; Tanner, J. Information-bottleneck under mean field initialization. In Proceedings of the ICML 2020 Workshop on
Uncertainty and Robustness in Deep Learning, Virtual, 17–18 July 2020.

28. Darlow, L.N.; Storkey, A. What Information Does a ResNet Compress? arXiv 2020, arXiv:2003.06254.
29. Cheng, H.; Lian, D.; Gao, S.; Geng, Y. Utilizing Information Bottleneck to Evaluate the Capability of Deep Neural Networks for

Image Classification †. Entropy 2019, 21, 456. [CrossRef]
30. Voloshynovskiy, S.; Taran, O.; Kondah, M.; Holotyak, T.; Rezende, D.J. Variational Information Bottleneck for Semi-Supervised

Classification. Entropy 2020, 22, 943. [CrossRef]
31. Yu, S.; Príncipe, J.C. Understanding Autoencoders with Information Theoretic Concepts. Neural Netw. 2018, 117, 104–123.

[CrossRef]
32. Tapia, N.I.; Est’evez, P.A. On the Information Plane of Autoencoders. In Proceedings of the 2020 International Joint Conference

on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.
33. Lee, S.; Jo, J. Compression phase is not necessary for generalization in representation learning. arXiv 2021, arXiv:2102.07402.
34. Raj, V.; Nayak, N.; Kalyani, S. Understanding learning dynamics of binary neural networks via information bottleneck. arXiv

2020, arXiv:2006.07522.
35. Strouse, D.; Schwab, D.J. The deterministic information bottleneck. Neural Comput. 2017, 29, 1611–1630. [CrossRef]
36. Hsu, H.; Asoodeh, S.; Salamatian, S.; Calmon, F.P. Generalizing bottleneck problems. In Proceedings of the 2018 IEEE International

Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 531–535.
37. Pensia, A.; Jog, V.; Loh, P.L. Extracting robust and accurate features via a robust information bottleneck. IEEE J. Sel. Areas Inf.

Theory 2020, 1, 131–144. [CrossRef]
38. Xu, Y.; Zhao, S.; Song, J.; Stewart, R.; Ermon, S. A Theory of Usable Information under Computational Constraints. In Proceedings

of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
39. Dubois, Y.; Kiela, D.; Schwab, D.J.; Vedantam, R. Learning optimal representations with the decodable information bottleneck.

Adv. Neural Inf. Process. Syst. 2020, 33, 18674–18690.
40. Wongso, S.; Ghosh, R.; Motani, M. Using Sliced Mutual Information to Study Memorization and Generalization in Deep Neural

Networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics, PMLR, Valencia, Spain,
25–27 April 2023; pp. 11608–11629.

41. Wongso, S.; Ghosh, R.; Motani, M. Understanding Deep Neural Networks Using Sliced Mutual Information. In Proceedings of
the 2022 IEEE International Symposium on Information Theory (ISIT), Espoo, Finland, 26 June–1 July 2022; pp. 133–138.

42. Polyanskiy, Y.; Wu, Y. Lecture notes on information theory. Lect. Notes ECE563 (UIUC) 2014, 6, 7.
43. Kolchinsky, A.; Tracey, B.D. Estimating mixture entropy with pairwise distances. Entropy 2017, 19, 361. [CrossRef]
44. Moon, Y.I.; Rajagopalan, B.; Lall, U. Estimation of mutual information using kernel density estimators. Phys. Rev. E 1995, 52, 2318.

[CrossRef]
45. Kolchinsky, A.; Tracey, B.D.; Wolpert, D.H. Nonlinear information bottleneck. Entropy 2019, 21, 1181. [CrossRef]

http://dx.doi.org/10.1109/TNNLS.2020.2968509
http://dx.doi.org/10.3390/e22070727
https://openreview.net/forum?id=Hyljn1SFwr 
http://dx.doi.org/10.1088/1742-5468/ab3985
http://dx.doi.org/10.3390/e21050456
http://dx.doi.org/10.3390/e22090943
http://dx.doi.org/10.1016/j.neunet.2019.05.003
http://dx.doi.org/10.1162/NECO_a_00961
http://dx.doi.org/10.1109/JSAIT.2020.2991005
http://dx.doi.org/10.3390/e19070361
http://dx.doi.org/10.1103/PhysRevE.52.2318
http://dx.doi.org/10.3390/e21121181


Entropy 2023, 25, 1063 28 of 28

46. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [CrossRef]
47. Kirsch, A.; Lyle, C.; Gal, Y. Learning CIFAR-10 with a simple entropy estimator using information bottleneck objectives. In

Proceedings of the Workshop Uncertainty and Robustness in Deep Learning at International Conference on Machine Learning,
ICML, Virtual, 17–18 July 2020.

48. Goldfeld, Z.; Greenewald, K. Sliced mutual information: A scalable measure of statistical dependence. Adv. Neural Inf. Process.
Syst. 2021, 34, 17567–17578.

49. Li, J.; Liu, D. Information Bottleneck Theory on Convolutional Neural Networks. arXiv 2019, arXiv:1911.03722.
50. Song, J.; Ermon, S. Understanding the Limitations of Variational Mutual Information Estimators. In Proceedings of the

International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
51. Wu, Y.; Verdú, S. Functional properties of minimum mean-square error and mutual information. IEEE Trans. Inf. Theory 2011,

58, 1289–1301. [CrossRef]
52. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the

International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010.
53. LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database. ATT Labs [Online]. 2010, Volume 2 Available online:

http://yann.lecun.com/exdb/mnist (accessed on 1 May 2023).
54. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
55. Krizhevsky, A.; Hinton, G.; Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto,

ON, Canada, 2009.
56. Darlow, L.N.; Crowley, E.J.; Antoniou, A.; Storkey, A.J. CINIC-10 is not ImageNet or CIFAR-10. arXiv 2018, arXiv:1810.03505.
57. Díaz, M.; Kairouz, P.; Liao, J.; Sankar, L. Neural Network-based Estimation of the MMSE. In Proceedings of the 2021 IEEE

International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021; pp. 1023–1028.
58. Hendrycks, D.; Gimpel, K. Gaussian Error Linear Units (GELUs). arXiv 2020, arXiv:1606.08415.
59. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 11–13 April
2011; pp. 315–323.

60. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv
2015, arXiv:1511.07289.

61. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
62. Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network function approximation in reinforcement

learning. Neural Netw. 2018, 107, 3–11. [CrossRef] [PubMed]
63. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015;
pp. 1026–1034.

64. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the
International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3.

65. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

66. Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

67. Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [CrossRef]
68. Hinton, G. Coursera Neural Networks for Machine Learning; Lecture 6; University of Toronto: Toronto, ON, Canada, 2018.
69. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
70. Choi, D.; Shallue, C.J.; Nado, Z.; Lee, J.; Maddison, C.J.; Dahl, G.E. On Empirical Comparisons of Optimizers for Deep Learning.

arXiv 2019, arXiv:1910.05446.
71. Bianchini, B.; Halm, M.; Matni, N.; Posa, M. Generalization Bounded Implicit Learning of Nearly Discontinuous Functions. In

Proceedings of the Conference on Learning for Dynamics & Control, Virtual Event, 7–8 June 2021.
72. Oord, A.v.d.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748.
73. Hjelm, R.D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Bachman, P.; Trischler, A.; Bengio, Y. Learning deep representations

by mutual information estimation and maximization. arXiv 2018 arXiv:1808.06670.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1109/TIT.2011.2174959
http://yann.lecun.com/exdb/mnist
http://dx.doi.org/10.1016/j.neunet.2017.12.012
http://www.ncbi.nlm.nih.gov/pubmed/29395652
http://dx.doi.org/10.1016/S0893-6080(98)00116-6

	Introduction
	Paper Contributions
	Scope of Study
	Paper Organization
	Paper Notation

	Related Work
	Proposed Framework
	Connecting our Approach to the Information Bottleneck

	Implementation Aspects
	Experimental Procedure
	Experimental Setups
	Other Practical Considerations

	Results
	Z-X and Z-Y Measures Estimation Stability
	Criteria to Describe the Stability of Estimated Measures
	Subject Networks, Estimator Networks, and Datasets Involved
	Are the Measures Stable in the MLP-like Subject Neural Networks?
	Are the Measures Stable in the Convolutional Subject Neural Networks?

	The Impact of Model Architectures to the Network Dynamics
	Does the Activation Function Affect the Existence of F/C Phases?
	How Do the Width and Depth of an MLP Impact Network Dynamics?
	How Do the Number of Kernels and Kernel Size of a CNN Impact Network Dynamics?
	How Does Residual Connection Affect the Network Dynamics?

	The Impact of Training Algorithm to the Network Dynamics
	How Does the Optimizer Impact the Network Dynamics?
	How Does Regularization Impact the Network Dynamics?

	The Impact of Dataset to the Network Dynamics

	Conclusions
	Appendix A
	Appendix B
	References

