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Abstract  

The management of trade-off between experimental design space exploration and information 

maximization is still an open question in the field of optimal experimental design. In classical 

optimal experimental design methods, the uncertainty of model prediction throughout the 

design space is not always assessed after parameter identification and parameters precision 

maximization do not guarantee that the model prediction variance is minimized in the whole 

domain of model utilization. To tackle these issues, we propose a novel model-based design 

of experiments (MBDoE) method that enhances space exploration and reduces model 

prediction uncertainty by using a mapping of model prediction variance (G-optimality 

mapping). This explorative MBDoE (eMBDoE) named G-map eMBDoE is tested on two 

models of increasing complexity and compared against conventional factorial design of 

experiments, Latin Hypercube (LH) sampling and MBDoE methods. The results show that G-

map eMBDoE is more efficient in exploring the experimental design space when compared to 

a standard MBDoE and outperforms classical design of experiments methods in terms of 

model prediction uncertainty reduction and parameters precision maximization.  

Keywords: model-based design of experiments, trade-off between space exploration and 

information maximization, model prediction uncertainty, parameters precision, G-optimality, 

maps of model prediction variance 

 

1. Introduction 

Models are widespread in process industries for a variety of applications, from process 

understanding to product and process optimization. For instance, simulations of a process 

model allow to evaluate the influence of the process conditions and/or disturbances (Prada et 

al., 2019) on the variables of interest, while the use of modelling at all stages of product 

development enables the compliance of the product to the clients’ need and the selection of 

the most convenient manufacturing route (Mihaluta et al., 2008). The development of 

predictive models to be used in model-based activities requires the identification of model 

structure, i.e. the set of model equations, and model calibration, i.e. the precise estimation of 

model parameters from experimental data.    
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Improving the quality of data and information generation has a direct impact on model 

identification activities, thus several design of experiments (DoE) techniques have been 

developed in the last century at the purpose. One of the first is factorial DoE (Montgomery, 

2013), which requires a limited preliminary knowledge on the system: response variables that 

are indicative of process conditions and experimental factors that may influence the 

responses. In factorial DoE, each factor is varied over discrete levels and experiments consist 

of all combinations (or a fraction of them) of levels across all factors.  The data thereby 

generated are used to calibrate an empirical model, usually including first or second-order 

terms, which is eventually refined in order to exclude uninfluential factors and/or to add 

higher order terms. Factorial DoE can be beneficial to many industrial sectors, e.g. 

pharmaceutical industries (Singh et al., 2005 Part I and II), food science and technology 

(Granato and de Araújo Calado, 2013), manufacturing industries (Czitrom, 1999). The  use of 

factorial DoE has brought many advantages in the experimentation with respect to the 

commonly used ‘one-factor-at-a-time’  experimental design, allowing to: i) select the factors 

that are more influential on the response; ii) evaluate the effects of factors interaction on the 

response; iii) reduce the experimental burden for experimental design exploration; iv) identify 

regression models to be employed for the design, analysis and improvement of products and 

processes. However, DoE methods have some limitations too: 1) experimental conditions are 

designed all at once, without progressively updating the process knowledge as soon as data 

from a new experiment are available; thus, the experimenter is not taking advantage of the 

deeper process knowledge to improve the quality of the designed experiments; 2) 

conventional DoE approaches are typically used to calibrate empirical models, which are 

reliable in interpolation, but not always in extrapolation as they lack mechanistic process 

knowledge (Garud et al., 2017; Duarte et al., 2004).  

To overcome the aforementioned limitations, model-based design of experiments (MBDoE) 

techniques have been proposed that are centered on process knowledge (Espie and 

Macchietto, 1989). MBDoE is an optimal DoE technique because the outcome is a set of 

optimal experimental conditions (for example temperature, flow rate, feed composition in a 

flow reaction system) and it is model-based because a physics-based model is employed in the 

calculation of the optimal experimental conditions. Typically, MBDoE methods are applied 

for two main objectives in model identification: 1) MBDoE for model discrimination, where 

different candidate model structures are compared in order to select the most adequate one 
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(Huner and Reiner, 1965; Buzzi-Ferraris and Forzatti, 1983; Galvanin et al., 2016; Waldron et 

al., 2019); 2) MBDoE for improving parameter precision, which aims at minimizing the 

parameters uncertainty region (Galvanin et al., 2007; Franceschini and Macchietto, 2008; 

Waldron et al., 2020). Parameter estimation should be preceded by structural identifiability 

analysis to check the possibility of obtaining unique parameter estimates when noise-free 

experiments and absence of model uncertainty are assumed (Galvanin et al., 2013; Asprey 

and Macchietto, 2000). MBDoE for parameters precision will be described in detail because it 

is the main interest in this work. 

MBDoE for parameter precision quantifies the information content of candidate experiments 

through the Fisher Information Matrix (FIM; Fisher, 1950), which is based on the calculation 

of partial derivatives of the model response with respect to every model parameter. Compared 

to factorial DoE, such calculation requires a deeper prior knowledge: a model structure that is 

representative of the system; a set of initial values of model parameters to be refined with the 

experimental data. From the mathematical point of view, MBDoE can be described as an 

optimization problem where a scalar measure of the FIM is maximized. Depending on the 

scalar measure selected, a specific metric of the uncertainty region of model parameters is 

minimized; in other terms, parameters precision is maximized. Thus, fewer experiments are 

sufficient to identify statistically sound parameters, with great benefits in terms of time, labor 

and resources. Consequently, MBDoE has been successfully applied to both industry and 

research: in chemical processes, like the production of aziridine through the C-H activation 

with a Pd-catalysis (Echtermeyer et al., 2017) or the execution of transient flow experiments 

to study the esterification of benzoic acid with ethanol (Waldron et al, 2020); in the 

production of renewably-sourced polymers like Cerenol, which has several applications in 

automotive, cosmetics and polymer specialties (Vo et al., 2021); in the pharmaceutical 

industry, e.g. the study of Michaelis-Menten kinetics for the production of a pharmaceutical 

agent (Shahmohammadi and McAuley, 2019); in civil engineering , e.g. for the determination 

of the optimal sensor locations to obtain the Young’s moduli of tall structures (Reichert et al., 

2021).   

MBDoE methods determine experimental conditions that optimize a specific objective 

function and hence these optimal conditions are usually restricted in small regions of high 

information content. For instance, the optimal experiments to identify parameters of a kinetic 

model with two unknown parameters is made of a set of two distinct points; if several 
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experiments are designed, they should fall in one of the two optimal conditions to avoid 

information loss (Box, 1968). However, this feature of MBDoE may lead to a scarce 

exploration of the design space, which in turn may result in poor predictive capability of the 

model, particularly in unexplored regions of the experimental design space. 

The minimization of parameters uncertainty ensured by MBDoE data does not necessarily 

imply that the entire design space is characterized by a minimization of model prediction 

uncertainty. In literature, approaches have been proposed to evaluate the regions of model 

reliability within the design space based on different criteria to evaluate the prediction error. 

Dasgupta et al. (2021) built a map of supremum of the mean squared prediction error 

(SMSPE) using a kriging interpolating technique, while Quaglio et al. (2018) mapped the 

design space through a reliability function that depends mainly on the difference between 

predicted and measured responses.  

As an alternative, model prediction uncertainty can be quantified in terms of model prediction 

variance using the so-called “G-optimality” (Smith, 1918; Kiefer and Wolfowitz, 1959), a 

metric which can be evaluated in the whole design space to detect regions of model reliability 

without increasing the experimental burden. G-optimality has been explored in an MBDoE 

context; for instance, it has been used as an objective function in order to determine the 

optimal experimental conditions that minimize the response prediction variance (Smith, 1918; 

Kiefer and Wolfowitz, 1959). Moreover, the relationship between D-optimality and G-

optimality (namely, between maximization of the FIM determinant and minimization of G-

optimality, respectively) has been analysed for different types of models in order to define the 

specific conditions under which the equivalence of the two criteria holds. For example, the 

equivalence of D-optimality and G-optimality is demonstrated by Kiefer and Wolfowitz 

(1960) for linear models with homoscedastic errors. Instead, Wong (1995) demonstrates that 

the equivalence between D- and G- optimality rarely holds in case of heteroscedastic models. 

Prus (2019) discusses the features of G-optimal designs with random coefficient regression 

models and states that the equivalence with D-optimal designs does not hold in general with 

this type of models. In addition, the classical G-optimal criterion for MBDoE is modified by 

Stigler (1971) in order to allow for a few experiments suitable to check the adequacy of model 

structure (namely, to assess process-model mismatch). However, to the author’s knowledge 

G-optimality has never been used to enhance space exploration of MBDoE designs, to 

precisely estimate parameters and reduce model prediction variance in the whole design space 
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with the minimum experimental effort. Furthermore, a formal description of the relation 

between G-optimality and other MBDoE criteria for non-linear systems with general variance 

models is still lacking in the scientific community. Therefore, a numerical approach that is not 

strictly related to a specific type of model is adopted in this work and validated with simulated 

data. In this paper, we tackle these issues by proposing a general new technique that integrates 

G-optimality maps into the conventional MBDoE optimization framework for parameter 

estimation.  

Section 2 of this paper illustrates the mathematical modelling of state of the art MBDoE and 

of the proposed method, together with the indices to assess model performance. Section 3 

shows the results of the application of G-map eMBDoE to two simulated case studies, 

including a comparison with exploitation-based methods, i.e. MBDoE, and exploration-based 

ones, i.e. factorial DoE and Latin Hypercube (LH) sampling. Finally, in section 4 conclusions 

are drawn and future works are proposed. 

  

2. Model-based design of experiments (MBDoE) 

Model-based design of experiments methods for parameters precision require the model 

structure in order to quantify the expected information content of an experiment. The structure 

of a general differential and algebraic model can be represented as: 

𝐟(�̇�, 𝐱, 𝐮, 𝑡, 𝛉) = 𝟎 

�̂� = 𝐡(𝐱) , 

  (1) 

where 𝐟 is a set of model equations, 𝐱 and �̇� are 𝑁𝑥-dimensional vectors of state variables and 

their first derivatives respectively, 𝐮  is a 𝑁𝑢-dimensional vector of control variables, 𝑡 is 

time, 𝛉 is a 𝑁𝜃-dimensional vector of model parameters, 𝐲 is a 𝑁𝑦-dimensional vector of 

response variables that are measurable.  

Parameter estimates (indicated as �̂�) from experimental data are computed by minimizing the 

difference between measured responses (𝐲) and predicted responses (�̂�) through the negative 

log-likelihood function 𝐿(�̂�) (Bard, 1974) 
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𝐿(�̂�) =  
𝑁

2
log(2𝜋) +

𝑛sp

2
log(det|𝚺𝑦|) +

1

2
∑ [𝐲𝑖 − �̂�𝑖(�̂�)]

𝑇𝑛sp

𝑖=1
𝚺𝑦

−1[𝐲𝑖 − �̂�𝑖(�̂�)],   (2) 

where 𝚺𝑦 is the variance-covariance matrix of measurement error, 𝑛sp is the number of 

sampling points considering all the 𝑁𝑒 performed experiments, namely 𝑛sp = ∑ 𝑁sp𝑖

𝑁𝑒
𝑖=1  (𝑁sp𝑖

 

is the number of sampling points in the 𝑖-th experiment), 𝑁 is the total number of 

experimental measurements calculated as 𝑁 = ∑ 𝑁sp𝑖

𝑁𝑒
𝑖=1 𝑁𝑦. When experimental data are 

collected, the variance terms in 𝚺𝑦 can be calculated as the square of the pooled standard 

deviations (Killeen, 2005). However, not all experiments are equally able to provide estimates 

�̂� with enough statistical precision, because this depends on their information content. The 

information content of experiments is evaluated through the Fisher Information Matrix (FIM) 

𝐇�̂� which, for dynamic systems, can be expressed as (Zullo, 1991): 

𝐇�̂�(�̂�, 𝛗) =  [𝐕�̂�
0]

−1
+ ∑ (

d�̂�

d�̂�
)

𝑖

𝑇𝑛sp

𝑖=1
𝚺𝑦

−1 (
d�̂�

d�̂�
)

𝑖
 ,   (3) 

where 𝐕�̂�
0 is the 𝑁𝜃 × 𝑁𝜃 prior variance-covariance matrix of model parameters, while (

d�̂�

d�̂�
)

𝑖
 

is the 𝑁𝑦 × 𝑁𝜃 matrix with first-order derivatives of model responses with respect to the 

parameters at time point 𝑖.     

Based on Cramer-Rao Theorem, the inverse of the FIM represents a lower limit for the 

variance-covariance matrix (𝐕�̂�)  of the parameters (Bard, 1974): 

𝐕�̂�(�̂�, 𝛗) ≥  [𝐇�̂�(�̂�, 𝛗)]
−1

 .   (4) 

In other terms, Eq. 4 provides an upper limit to parameters precision and when the equality 

holds, parameters are defined efficient (Bard, 1974). Finally, the variance-covariance matrix 

(𝐕�̂�) can be approximated as the inverse of the FIM by using the first term Taylor expansion 

(Bard, 1974).  

MBDoE for parameter identification is an optimization problem that aims at minimizing the 

parametric uncertainty (represented by 𝐕�̂�) by maximizing a scalar measure (𝜓(𝐇�̂�)) of the 

FIM. To this purpose, the so-called alphabetical criteria (Pukelsheim, 1993) are widely used: 

maximization of the FIM determinant or minimization of 𝐕�̂� determinant (D-optimal 

criterion); maximization of FIM trace or minimization of 𝐕�̂� trace (A-optimal criterion); 
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maximization of the FIM minimum eigenvalue or minimization of the 𝐕�̂� maximum 

eigenvalue (E-optimal criterion); minimization of the ratio between maximum and minimum 

FIM eigenvalue (modified E-optimal).  The optimization problem is formulated as: 

𝛗 opt = arg min𝛗 𝜓(𝐕�̂�) ,     (5) 

with 𝜓(𝐕�̂�) = 𝜓E(𝐕�̂�) in the case of E-optimal design: 

𝜓E(𝐕�̂�) = 𝜆max(𝐕�̂�)  ,     (6) 

where 𝛗 is the “design vector”, which contains the set of control variables that define the 

experimental conditions, while  𝜆max refers to the maximum eigenvalue of the variance-

covariance matrix 𝐕�̂�.  

Instead, conventional G-optimal MBDoE minimizes the maximum prediction variance, which 

can be expressed as (Kiefer and Wolfowitz, 1959): 

  𝛗 opt = arg min𝛗 𝜓(𝐕𝑦),     (7) 

If all 𝑁𝑦 responses can be characterized through 𝑁sp𝑖
 sampling points, 𝐕𝑦 is a 𝑁𝑦𝑁sp𝑖

×

𝑁𝑦𝑁sp𝑖
 matrix containing the estimated variance of each response at each time point. Its 𝑗𝑖-th 

element 𝐕𝑦(�̂�, 𝛗)|
𝑗,𝑖 

is calculated as: 

𝐕𝑦(�̂�, 𝛗)|
𝑗,𝑖 

= (
d�̂�𝑗

d�̂�
)

𝑖

𝑇

[𝐇�̂�]−1 (
d�̂�𝑗

d�̂�
)

𝑖
 ,                   for 𝑗 = 1, … , 𝑁𝑦;  𝑖 = 1, … , 𝑁sp𝑖

   (8) 

where (
d�̂�𝑗

d�̂�
)

𝑖
 is the 𝑁𝜃 × 1 vector of first derivatives of �̂�𝑗 with respect to the full set of model 

parameters at sampling point 𝑖, while 𝐇�̂� is the Fisher information matrix of Eq.3. The scalar 

index 𝜓(𝐕𝑦) in Eq.7 is usually the largest diagonal element of 𝐕𝑦.  

Conventional MBDoE is strictly related to the identification of the optimum, therefore the 

design space can be poorly explored in favor of many replicated points around regions of high 

information content. Although this minimizes the experimental burden to obtain precise 

parameters, the predictive capability of models can be improved if it is validated over a wider 

region of the design space. We aim at overcoming these limitations by proposing a novel 
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explorative MBDoE methodology based on the mapping of model prediction uncertainty 

throughout the whole design space (Section 2.1).  

2.1.  Explorative MBDoE (eMBDoE) based on G-optimality maps  

The novel MBDoE method proposed in this work aims at enhancing space exploration, 

precisely estimating model parameters and minimizing model prediction variance across the 

whole design space with a minimum experimental effort. To this aim, the calculation of 

model prediction variance is included within the MBDoE optimization framework. More 

specifically, mapping of G-optimality values is performed to obtain an explorative MBDoE 

(eMBDoE) method; therefore, the novel method is named G-map eMBDoE.  

Figure 1a shows the standard sequential procedure for MBDoE (Espie and Macchietto, 1989; 

Asprey and Macchietto, 2000), where optimal experimental design, experiment execution and 

model calibration are carried out sequentially in the design of Ne experiments.  
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(a) 

 

(b) 

Figure 1. Workflow of a conventional sequential MBDoE (a) and of a sequential G-

map eMBDoE (b). 

Similarly, Figure 1b shows the sequential procedure of the proposed G-map eMBDoE, in 

which optimal experimental design is carried out using the novel G-map eMBDoE method. 

The following subsections 2.1.1-2.1.3 provide more details on each step of the proposed G-

map eMBDoE procedure. 

2.1.1 Prior knowledge  

The prior knowledge is defined as the information needed to initialize the MBDoE or 

eMBDoE procedure. It includes: 

 structurally identifiable models in the form of Eq. 1; 
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 a set of preliminary experiments to obtain initial parameter estimates to initialize the 

MBDoE or G-map eMBDoE procedure. Preliminary experiments are designed using 

DoE methods, for instance factorial DoE or LH; 

 upper and lower bounds for each control variable included in the design vector 𝛗; 

 variance-covariance matrix of measurement error 𝚺𝑦.  

This information allows to calculate both FIM (Eq. 3) and G-optimality (Eq.8). 

2.1.2 G-map eMBDoE design  

In the sequential MBDoE procedure shown in Figure 1a, the optimal design 𝛗 opt is given by 

the solution to the optimization problem (Eq. 5). Whereas, in the G-map eMBDoE shown in 

Figure 1b, the most informative experiment is evaluated using an additional step which is 

described below and illustrated in Figure 2. 

 each experimental condition in the design space is characterized in terms of model 

prediction variance, represented by scalar indices 𝐽𝐺 , which leads to a map of G-

optimality named G-maps. Similarly, every point in the design space is characterized 

in terms of information content, represented by the scalar measure  𝜓, generating a 

map of FIM-based information named H-map (step 1 of Figure 2);  

 only experiments that satisfy a threshold 𝐽𝐺,𝑡ℎ𝑟 on model prediction variance 

represented by 𝐽𝐺  are retained for the subsequent optimization (blue points in step 2 of 

Figure 2); 

 among these candidates, the experimental condition maximizing information is chosen 

as the optimal experiment (red square in step 3 of Figure 2). 
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Figure 2. Schematic representation of the novel eMBDoE method based on G-maps. Grids 

refer to two general control variables 𝑢1 and  𝑢2; 𝐽𝐺  and 𝜓 indicate the G-optimality index 

and the FIM scalar measure selected; blue points represent experimental conditions 

satisfying the condition on G-optimality; the red square represent the point of maximum 

information among the candidate design points.  

This procedure has two main degrees of freedom: 

1. the definition of the scalar index 𝐽𝐺; 

2. the definition of the G-optimality-based requirement to be satisfied. 

In this work, we set the following: 

a) for a given point in the grid (i.e., for a given 𝛗), the prediction variance 𝐕𝑦(�̂�, 𝛗)|
𝑗,𝑖 

of 

each response at every time point is calculated and then summed to obtain a single 

scalar 𝐽𝐺 : 

𝐽𝐺 = ∑ ∑ 𝐕𝑦(�̂�, 𝛗)|
𝑗,𝑖

𝑁sp

𝑖=1

𝑁𝑦

𝑗=1
;                   (9) 

b) the G-optimality-based criterion to be satisfied by the candidate design points is: 

𝐽𝐺 ≥ 𝐽𝐺,thr 𝐽𝐺,max ,                      (10) 

where 𝐽𝐺,max  is the maximum value of G-optimality in the grid, while 𝐽𝐺,thr  is a threshold 

chosen by the user such that: 0 ≤ 𝐽𝐺,thr ≤ 1. More specifically, 𝐽𝐺,thr = 0 means that all 

points in the grid are candidates to solve Eq. (5), therefore the design becomes equivalent 

to a standard MBDoE. The closer 𝐽G,thr gets to 1, the fewer are the remaining design 
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candidate design points, since only points having the highest model prediction variance 

are accepted.  

The above optimal experimental design procedure of G-map eMBDoE can be translated into a 

constrained optimization problem described by: 

𝛗 opt = arg min𝛗 𝜓(𝐕�̂�)  

𝛗 s.t. 𝐽𝐺 ≥ 𝐽𝐺,thr 𝐽𝐺,max .                   

  (11) 

Therefore, information is maximized considering only the candidate design points having 

𝐽𝐺 ≥ 𝐽𝐺,thr 𝐽𝐺,max . In this paper, the grid-search approach employed to solve Eq. 11 does not 

impact on the final result, since the grid is so fine that an optimization over continuous 

variables would provide almost identical results (as shown by ad hoc simulations, omitted 

here for sake of conciseness). If the system dimensionality increases, the computational 

burden to generate the grids also increases. Therefore, it may be convenient to build grids to 

initialize the procedure and to set the result obtained as an initial guess for further 

optimization over continuous variables.  

2.1.3 Experiment execution and iterative model calibration 

Once the new experiment 𝛗 opt is designed, it can be executed either in the physical process 

or in the simulated one. The new acquired measurement is added to the calibration dataset 

collected up to the previous iteration and model parameters are estimated using the maximum 

likelihood method (Eq. 2). Then, a criterion is assessed in order to decide whether to continue 

the design and model calibration or not. This criterion is user-defined and can be based on 

model performance (such as parameter precision or model prediction accuracy) or on the 

maximum allowed experimental budget. The latter is used in this paper, which implies the 

experimental campaign is terminated when the experimental budget of 𝑁𝑒 experiments is 

reached. The performance of the model at every iteration of the sequential procedure is 

assessed after the model calibration step. The types of analyses used for this performance 

evaluation are described in section 2.2 
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2.2.  Model calibration analysis   

After calibrating the model with the new experiments designed and executed at the 𝑖-th 

iteration, the performance of the optimal experimental design procedure is assessed 

considering:  

 space exploration; 

 parameter precision; 

 model prediction variance throughout the design space; 

 FIM-based optimality metrics used to solve Eq. (5) throughout the design space. Asprey 

and Macchietto (2000) suggested E-optimality as the most effective criterion to use for 

the model presented in section 3.2, being particularly effective on reducing parametric 

uncertainty when a sequential experimental design approach (as in this work) is adopted 

(Galvanin et al., 2007). Therefore, this criterion is used for both case study 1 and 2 for 

comparison purposes. However, ongoing work is showing that the advantages of G-map 

eMBDoE over conventional design techniques hold true also when different optimality 

criteria are used. 

The corresponding analysis methods will be detailed in the following sub-sections.  

2.2.1 Space exploration 

The profile of each control variable is visualized to qualitatively compare the level of space 

exploration of the proposed experimental design techniques (eMBDoE, MBDoE or LH). As 

illustrated in Figure 3, two control variables 𝑢1 and 𝑢2 are represented in the x-axis and y-

axis, respectively; red squares indicate the preliminary experiments used to initialize the 

procedure; the blue squares represent the subsequent (eMBDoE, MBDoE or LH) experiments 

added iteratively in the sequential procedure. Figure 3a shows an example of an exploratory 

design, i.e. a design that covers the entire design space, typical of space-filling design 

methods like LH, while Figure 3b shows an example of an exploitative design where new 

experiments (blue squares) are designed in a limited region of high information content, 

frequently encountered in MBDoE applications. 
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(a) 

 

(b) 

Figure 3. Graphical representation of design space exploration for (a) an explorative, 

space-filling design; (b) an exploitative design (MBDoE).  

Since optimal experimental design methods tend to select replicated design points, i.e. 

optimal experiments with the same design vector 𝛗 opt, the different methods are compared in 

terms of number of distinct design points 𝛗 opt (see Tables 2 and 4 of section 3 for further 

details) to measure space exploration.  

2.2.2 Parameter precision   

Parameter precision is assessed through a t-test. At a given iteration of the sequential 

procedure, the Fisher information 𝐇�̂� associated to the collected calibration data is calculated. 

Then, the corresponding parameters variance-covariance matrix 𝐕�̂� is calculated from Eq. (4) 

and t-values are calculated for each iteration as: 

𝑡𝑖 =
�̂�𝑖

𝑡
1−

𝛼
2

(𝑁−𝑁𝜃)√𝐕�̂�𝑖𝑖
 
                    𝑖 = 1, … , 𝑁𝜃   (12) 

where 𝑡1−
𝛼

2

(𝑁 − 𝑁𝜃) is the Student 𝑡-value with significance level 𝛼 and (𝑁 − 𝑁𝜃) degrees of 

freedom, while 𝐕�̂�𝑖𝑖
 is the 𝑖-th diagonal element of the variance-covariance matrix. A 

parameter is statistically precise if: 

𝑡𝑖 >  𝑡ref                    𝑖 = 1, … , 𝑁𝜃   (13) 

with 𝑡ref = 𝑡1−𝛼(𝑁 − 𝑁𝜃). 

2.2.3 Maps of G-optimality and information content 

At every iteration of the eMBDoE sequential procedure, two maps are built and compared: 
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 a G-optimality map (G-map), where 𝐽𝐺  is calculated at every point of the grid and 

displayed as a contour plot. 

 an information map (H-map), where 𝜓 is calculated at every point of the grid and 

displayed as a contour plot. 

The comparison between the two maps is useful to better understand which are the regions 

that would be selected based only on 𝜓 (i.e. regions of maximum information) and how much 

the method will move the design points from those regions by changing the threshold on  𝐽𝐺 .  

In addition to building G-maps using  𝐽𝐺  values, the distribution of G-optimality values (𝐽𝐺  

values) in the entire experimental design space at each iteration of the G-map eMBDoE 

procedure are represented by the following scalar indices:  

𝐽𝐺,min = min (𝐽𝐺,𝑖) ,                                              𝑖 = 1, … , 𝑁𝜙   (14) 

𝐽𝐺,mean = mean(𝐽𝐺,𝑖) =
∑ 𝐽𝐺,𝑖

𝑁𝜙
𝑖=1

𝑁𝜙
 ,                        𝑖 = 1, … , 𝑁𝜙 

  (15) 

𝐽𝐺,max = max (𝐽𝐺,𝑖) ,                                           𝑖 = 1, … , 𝑁𝜙   (16) 

where 𝐽𝐺,min, 𝐽𝐺,mean and 𝐽𝐺,max are the minimum, mean and maximum values of 𝐽𝐺 , 

considering all the 𝑁𝜙 points in the grid.  

2.2.4 Implementation of G-maps and H-maps  

The two case studies of Section 3.1 and 3.2 are implemented in Python 3.9 (Spyder) and 

simulated in an Intel® Core™ i7-10875H CPU, @ 2.30 GHz processor with 64.0 GB RAM. 

The grid of points used to select candidate design points based on their G-optimality value is 

obtained by discretising the ranges of control variables into equal intervals. Maps of 

information content across the design space (H-maps) are also built using the same 

discretization of the design space used with G-maps. The procedures of the two optimization-

based methods, namely MBDoE and G-map eMBDoE, differ mainly for the additional step of 

selection of candidate design points based on their 𝐽𝐺  values. To compare the methods in 

terms of required computational time, the time to design one experiment in each case 

(MBDoE or G-map eMBDoE) are reported in Section 3.1 and 3.2.  
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3. Results and discussion 

Two simulated case studies are used to compare the performance of the following design of 

experiments techniques in terms of space exploration, precise parameter estimation and 

minimization of model prediction uncertainty: 

 MBDoE: this is an exploitative design, i.e. only optimal experiments based on the 

iterative solution of Eq. 5 are selected; 

 full-factorial DoE and LH: these designs are exploratory designs, i.e. they guarantee an 

exploration of the whole experimental design space; 

 G-map eMBDoE: this design seeks a trade-off between information maximization and 

space exploration through the definition of a threshold 𝐽𝐺,thr. Different values of 𝐽𝐺,thr are 

considered.  

The space-filling LH design is generated with the doepy package for Python 

(https://doepy.readthedocs.io/en/latest/). Preliminary simulations revealed that the results in 

terms of parameters precision and model prediction variance are similar regardless of random 

variations of the selected LH samples.  

In both case studies, in silico data is generated according to the following procedure: 

 model equations and true parameter vector 𝛉true (see Section 3, Table 1 and 3) are 

used to generate the exact value of the model responses 𝑦exact at the selected 

experimental condition; 

 a gaussian error with zero mean and a user-defined standard deviation 𝜎𝑦 is then added 

to 𝑦exact to obtain a “noisy” measurement 𝑦noisy. 

The user-defined standard deviation 𝜎𝑦 is chosen by the user to mimic the precision of the 

measurements in the physical system and can be typically evaluated from a set of preliminary 

replicated experiments.      

To make the results comparable, the same initial settings are used for all scenarios of the same 

case study: true model parameter vector (𝛉true) for the in silico data generation; initial 

parameters values and lower and upper bounds (𝛉0, 𝛉LB, 𝛉UB respectively) for parameter 

estimation; standard deviation of the response measurement error (𝛔𝑦); ranges for the control 

variables; set of preliminary experiments and total (maximum) number of experiments (𝑁𝑒) to 
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be executed. Finally, the selection of the proper threshold for G-optimality is case-dependent, 

therefore different sets of  𝐽𝐺,thr may be considered in case study 1 and 2.  

Finally, robustness of results to the selection of sampling points for case study 2 and different 

realisations of random noise for the response variables of case study 1 and 2 are shown in 

section 1 and 2, respectively, of the Supplementary Material. 

3.1. Case study 1 

The following two-inputs, single response algebraic model is considered in case study 1. 

𝑦 =  𝜃1𝑢1 + 𝜃2𝑢1𝑢2 + 𝜃3𝑢1
2 + 𝜃4𝑢2

2 + 𝜃5 sin(𝑢1) .   (17) 

Preliminary analysis showed that this model is structurally identifiable (by using the structural 

identifiability technique of Asprey and Macchietto, 2000), therefore MBDoE for parameters 

precision can be applied. Moreover, E-optimality criterion is used to optimize information 

content, since Asprey and Macchietto (2000) showed its efficacy for the model of case study 

2 (in section 3.2) and the same optimality criterion is used with both case studies for 

comparison purposes. Initial settings on variables and parameters are provided in Table 1. In 

this case, the design vector 𝛗 is equal to 𝐮 = [𝑢1, 𝑢2] 

Different thresholds of G-optimality are employed for the explorative MBDoE: 𝐽𝐺,thr ∈ {0, 

0.25, 0.50, 0.65, 0.75, 0.85} to evaluate the impact of threshold choice on design performance. 

Notice that 𝐽𝐺,thr = 0 corresponds to a state-of-the-art E-optimal MBDoE, since the constraint 

in Eq. 11 becomes 𝐽𝐺 ≥ 0 and 𝐽𝐺  is always non-negative. All eMBDoE scenarios employ the 

E-optimal criterion (Eq. 6). 

 

Table 1. Case study 1 (algebraic model): initial settings.  
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Model type Algebraic 

Inputs  𝑢1, 𝑢2 

𝑢1 ∈ [−10,10] 

𝑢2 ∈ [−10,10] 

Outputs 

- standard deviation of 

measurement errors 

𝐲  

𝛔𝒚 = 5  

Parameters 

- true values 

- initial value 

- lower bounds 

- upper bounds 

 

𝛉true = [𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5] = [3.5, −2, 1.7, 1.1, 8]  

𝛉0 = [1,1,1,1,1]  

𝛉LB = [−10, −10, −10, −10, −10]  

𝛉UB = [10,10,10,10,10]   

 

Even though LH and 4
2
 full factorial DoE experiments are designed at once and should be 

evaluated at the end of the experimental campaign, in this paper intermediate results are 

included in order to understand and compare the evolution of different design methods.   

For all the scenarios, the same preliminary dataset is used: 5 experiments selected through a 

LH sampling. These preliminary experiments are used to achieve a first parameter estimation 

and to initialize 𝐇�̂� calculations to avoid potential singularity issues in the information matrix. 

Moreover, parameter estimates from each iteration become initial parameters values for the 

Maximum Likelihood estimation in the subsequent iteration. A maximum budget of 16 

designed experiments is considered in each scenario; therefore, 𝑁𝑒 = 21 experiments are 

obtained at the end of the experimental campaign.  

All the scenarios are compared in terms of space exploration: Fig. 4 shows the location of the 

𝑁𝑢 = 2 control variables within the entire design space, while Table 2 shows the number of 

distinct experimental conditions (i.e., different 𝛗s) selected by different methods. Results 

show that the novel explorative MBDoE has the best performance in terms of space 

exploration when a threshold of 0.65-0.75 is selected (Figure 4d-e; 16 different design points 

indicated in Table2). Similarly, LH (Figure 4g) and 4
2
 full factorial DoE (Figure 4h), which 

are inherently explorative, select 16 distinct points that cover all regions of the design space. 

Moreover, the smaller the threshold 𝐽𝐺,thr, the less eMBDoE experiments are spread in the 

design space  (see Figures 4b-d): with 𝐽𝐺,thr=0.50, 15 different optimal experiments are 
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selected; with 𝐽𝐺,thr=0.25, 12 different are selected; with 𝐽𝐺,thr=0, namely a conventional E-

optimal MBDoE, only 7 distinct points are selected (see Table 2).   

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

  

(h) 

Figure 4. Design space with the experiments selected by: (a) MBDoE ; (b) G-map 

eMBDoE 𝐽𝐺,𝑡ℎ𝑟 = 0.25; (c) G-map eMBDoE 𝐽𝐺,𝑡ℎ𝑟 = 0.50; (d) G-map eMBDoE 

𝐽𝐺,𝑡ℎ𝑟 = 0.65; (e) G-map eMBDoE 𝐽𝐺,𝑡ℎ𝑟 = 0.75; (f) G-map eMBDoE 𝐽𝐺,𝑡ℎ𝑟 = 0.85;  

(g) Latin Hypercube; (h) 4
2
  full factorial DoE. Red squares indicate the 5 

preliminary experiments 

 

 

Table 2.  Number of distinct design points for each scenario compared in the study. 

 

Scenario No. distinct design points  

MBDoE 7 

eMBDoE, thr:0.25 12 

eMBDoE, thr:0.50 15 

eMBDoE, thr:0.65 16 

eMBDoE, thr:0.75 16 

eMBDoE, thr:0.85 14 

LH 16 

DoE  16 

 

Although G-map eMBDoE with 𝐽𝐺,thr = 0.85 is one of the most explorative methods (Figure 

4f) and has the greatest reduction of G-optimality throughout the entire design space (results 

are provided in Appendix A, section A.1), it is the eMBDoE scenario that requires more 

                  



23 

 

experiments to precisely estimate parameter 𝜃5 (Appendix A, section A.1). Hence, to find a 

better trade-off between space exploration and information maximization, eMBDoE with 

𝐽𝐺,thr = 0.75 is considered in the analysis of precise parameter estimation. For this purpose, 

the t-values calculated at every iteration for the full set of model parameters are shown in 

Fig.5. As shown in Figure 5, the most critical parameter which requires a higher number of 

calibration experiments to be precisely estimated is still 𝜃5 (Figure 5e). MBDoE and 

eMBDoE with 𝐽𝐺,𝑡ℎ𝑟 = 0.75 require 10 experiments (5 preliminary and 5 optimal) to pass the 

t-test, LH requires 17 experiments, while DoE is not able to pass the t-test. Finally, details on 

parameters accuracy (i.e. distance from the assumed true value) can be found in Appendix A, 

section A.2; moreover, reproducibility of the LH results despite random variations of different 

LH designs is shown in Appendix A.3. 

 

 
(a) 

  
(b) 

 

  
(c) 

 

  
(d) 

  

                  



24 

 

 
(e) 

 

Figure 5. Profiles of t-values calculated with: MBDoE (𝐽𝐺,𝑡ℎ𝑟=0.00); G-map eMBDoE 

(𝐽𝐺,𝑡ℎ𝑟=0.75); Latin Hypercube (LH); 4
2
 full factorial DoE. Figures (a)-(e) show results of 

parameters 1-5, respectively. t-values are compared against the reference t-value (‘ref’ in 

the legend). Only t-values referred to the 16 optimal/explorative data are shown.  

In Figure 6 the different scenarios are compared in terms of model prediction variance across 

the whole experimental design space. Results are shown for MBDoE, G-map eMBDoE with  

𝐽𝐺,thr = 0.75 threshold, factorial DoE and LH. The smaller the scalar index of 𝐽𝐺 , the better 

the performance in terms of reduction of model prediction uncertainty. Scalar indices are 

calculated for the G-maps generated during experiment design step: therefore, the iterative 

generation of G-maps starts with a calibration dataset of 5 preliminary experiments and 

terminates with a calibration dataset of 20 experiment, which is the map used to calculate the 

last optimal experiment since 𝑁𝑒=21. The following ranking is obtained in terms of scalar 

measures of model prediction variances of (Eqs. 14-16):  

 mean G-optimality 𝐽𝐺,mean, from the 11
th

 experiment onwards (Figure 6a): 

MBDoE > DoE > LH > eMBDoE (𝐽𝐺,thr=0.75) 

 maximum G-optimality  𝐽𝐺,max, from the 14
th

 experiment onwards (Figure 6b): 

MBDoE > DoE > LH > eMBDoE (𝐽𝐺,thr=0.75) 

Instead, the minimum G-optimality is equal to zero in all scenarios throughout the 

experimental campaign, therefore it is omitted here for sake of conciseness.  

To conclude, scalar indices of G-optimality prove that eMBDoE with 𝐽𝐺,thr = 0.75 has the 

best performance in terms of reduction of model prediction variance. Moreover, compared to 

MBDoE, both mean and maximum values of G-optimality are smaller in explorative design 

methods such as DoE and LH. This suggests that space exploration promotes the reduction of 

prediction uncertainty, but the best overall result (i.e. minimum prediction variance and 
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maximum parameter precision) is only achieved when a trade-off between space exploration 

and information maximization is realised.  

 

(a) 

 

(b) 

Figure 6. Profiles of scalar indices of G-optimality including (a) mean G-optimality; (b) 

maximum G-optimality calculated for: MBDoE (𝐽𝐺,𝑡ℎ𝑟=0.00); G-map eMBDoE 

(𝐽𝐺,𝑡ℎ𝑟=0.75); Latin Hypercube (LH); 4
2
 full factorial DoE.        

 

G-maps are shown in Figures 7 and 8 to visualize the regions of higher prediction variance 

within the design space for MBDoE, G-map eMBDoE with 𝐽𝐺,thr = 0.75, LH and DoE. This 

result is compared to the maps of information content (H-maps, Figures 9, 10) for every 

scenario. For sake of conciseness, only a subset of G-maps and H-maps are included: 

 calibration dataset of 6 experiments (5 preliminary and 1 optimal): maps obtained after 

the first iteration;  

 calibration dataset of 20 experiments (5 preliminary and 15 optimal): maps generated in 

the last iteration. 

In these maps, different experimental conditions are highlighted: data from experiments 

already performed, which are used to calibrate the model (orange squares); candidate design 

points based on the G-optimality threshold (black dots); experiment selected at the current 

iteration (red dot). Notice that the discretization of the design space and the selection of 

candidates (black dots) are not performed in LH and DoE, therefore black points are not 

present in these figures (see Figures 7c-d and 8c-d).  

Finally, it must be noticed that: 
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 G-maps represent the model prediction variance, which must be minimized; therefore, the 

best performance is found in ‘blue’ regions of Figures 7 and 8 (i.e., the smallest G-

optimality values) and the worst one is found in yellow regions (i.e., the highest G-

optimality values); 

 H-maps represent the amount of information, based on the E-optimal criterion, which 

must be maximized; in this case, the best performance is found in dark green regions of 

Figures 9 and 10 (i.e., high information values) and the worst performance is found at the 

red regions (small information values). 

After measuring the first optimal experiment (Figure 7a-7d), the G-maps of MBDoE, 

eMBDoE and LH are quite similar in terms extension of regions with small model prediction 

variance (blue regions). Moreover, in all of them the G-optimality is smaller in central 

regions, while it increases towards extreme values of 𝑢1 and 𝑢2. The G-map of DoE (Figure 

7d) is similar, but slightly worse due to a larger extension of regions with high model 

prediction variance (i.e., yellow regions). The differences in the distribution of G-optimality 

becomes more evident after measuring the 20
th

 experiment: indeed, the best performance is 

achieved with eMBDoE using 𝐽𝐺,thr = 0.75 (Figure 8b) since it has the largest extension of 

the blue region; moreover, the yellow regions at extreme values of the two control variables 

disappear. The second-best performance in terms of reduction of model prediction variance is 

found with LH (Figure 8c); instead, MBDoE and DoE (Figure 8a and 8d, respectively) still 

have regions with larger model prediction variance (yellow regions). This suggests that an 

explorative strategy as LH can improve the prediction precision with respect to an optimal 

design, but the best solution is found when a good trade-off between space exploration and 

information maximization is achieved.  

By looking at the H-maps generated with 6 measured experiment (Figure 9) and with 20 

measured experiments (Figure 10), it is clear that MBDoE and G-map eMBDoE outperforms 

LH and DoE: indeed, their H-maps are red in the first iteration (Figures 9a-b) and become 

green in the subsequent iterations (Figures 10a-b), while LH and DoE end up with a light 

green (Figures 10c) and a red maps (Figures 10d), respectively. This further confirms that the 

enhancement of space exploration of the proposed explorative MBDoE does not entail a 

significant loss of information content with respect to a completely optimal design.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7. G-maps generated after 6 calibration experiments designed with: (a) MBDoE, 

(b) eMBDoE and 𝐽𝐺,𝑡ℎ𝑟=0.75, (c) LH, (d) 4
2
 full factorial DoE. The candidate design points 

of MBDoE and eMBDoE are represented with black dots, while already measured 

experiments are indicated with orange squares. Finally, the red point indicates the 

experiment selected at this iteration.   
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(a) (b) 

 

(c) 

 

(d) 

Figure 8. G-maps generated after
 
20 calibration experiments designed with: (a) MBDoE, 

(b) eMBDoE and 𝐽𝐺,𝑡ℎ𝑟=0.75, (c) LH, (d) 4
2
 full factorial DoE. The candidate design points 

of MBDoE and eMBDoE are represented with black dots, while already measured 

experiments are indicated with orange squares. Finally, the red point indicates the 

experiment selected at this iteration.    

 

 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 9. H-maps generated with 6 calibration experiments (orange squares). Different 

methods are compared: (a) MBDoE; (b) eMBDoE with 𝐽𝐺,𝑡ℎ𝑟=0.75; (c) LH and (d) 4
2
 full 

factorial DoE. The red dot represents the experiment design at the current iteration. 

 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 10. H-maps generated with 20 calibration experiments (orange squares). Different 

methods are compared: (a) MBDoE; (b) eMBDoE with 𝐽𝐺,𝑡ℎ𝑟=0.75; (c) LH and (d) 4
2
 full 

factorial DoE. The red dot represents the experiment design at the current iteration. 

The computational times to build G-maps and H-maps (with E-optimal criterion) and to 

design one experiment with Python 3.9 in an Intel® Core™ i7-10875H CPU, @ 2.30 GHz 

processor with 64.0 GB RAM are: 

 0.12 seconds with G-map eMBDoE and 𝐽𝐺,thr=0.75; 

 0.12 seconds with MBDoE. 

3.2. Case study 2 

The G-map eMBDoE is applied to the Canoid-type kinetic model describing the material 

balances of the fermentation of baker’s yeast in a fed-batch reactor. Original model and proof 

of structural identifiability can be found in Asprey and Macchietto (2000).    

The two-response dynamic model is represented by the following set of differential and 

algebraic equations:  

𝑟 =  
𝜃1𝑥2

𝜃2𝑥1+𝑥2
 ,   (18) 

𝑑𝑥1

𝑑𝑡
= (𝑟 − 𝑢1 − 𝜃4)𝑥1 ,   (19) 

𝑑𝑥2

𝑑𝑡
= −

𝑟𝑥1

𝜃3
+ 𝑢1(𝑢2 − 𝑥1) .    (20) 
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Some simplifying assumptions are made: the inputs u1 and u2 are constant in time, and the 

number of sampling points is fixed (𝑁sp = 3).  Therefore, the design vector becomes: 

𝛗 = 𝐮 = [𝑢1, 𝑢2]; 𝑢1 is the dilution factor with range 0.05-0.20 h−1, while 𝑢2 is the substrate 

concentration in the feed with range 5.0-35.0 g/L. The two measured concentrations are the 

biomass concentration 𝑥1 [g/L] and the substrate concentration 𝑥2 [g/L].  

As in Section 3.1, model calibration data are obtained by using a simulated process: ‘true’ 

parameter vector 𝛉true is used in the model (Eqs. 18-20) to generate noise-free simulated 

responses for x1 and x2; then, gaussian noise with zero mean and a user-defined standard 

deviation 𝛔y (𝜎𝑦 =[1.0, 1.0]gL−1, see Table 3) is added in order to mimic measurement 

errors. Model parameters can be estimated using the in-silico calibration data starting from a 

set of initial parameters values 𝛉0 within the ranges 𝛉LB − 𝛉UB 

Details on settings and parameters and variables ranges are reported in Table 3. 

 

 

 

 

 

Table 3. Case study 2 (dynamic differential model): initial settings.  
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Model type Differential 

Inputs  𝑢1, 𝑢2  

𝑢1 ∈ [0.05,0.20] 

𝑢2 ∈ [5.0, 35.0] 

Outputs 

- standard deviation of measurement 

errors 

- initial conditions 

- sampling points 

𝐲 = [𝑥1, 𝑥2]  

𝛔y = [1.0, 1.0]gL−1 

 

 

𝒚0 = [𝑥1(0), 𝑥2(0)] = [1.0, 0.01] gL−1  

𝐭sp = [7,14, 21]h  

  

Parameters 

- true values 

- initial values 

- lower bounds 

- upper bounds 

 

𝛉true = [𝜃1, 𝜃2, 𝜃3, 𝜃4] =

[0.31, 0.18, 0.55, 0.05]  

𝛉0 = [5.0, 5.0, 5.0, 5.0]  

𝛉LB = [−20, −20, −20, −20]  

𝛉UB = [20,20,20,20,20]   

 

The same G-map based eMBDoE method applied to the algebraic model of section 3.1 can be 

applied to this model, but a higher level of complexity is introduced here. In case study 1, the 

algebraic model was simulated to get the value of a single response variable that corresponds 

to the single measurement in an experiment at a particular time instance, such as at steady 

state. However, in this second case study, the dynamic model is simulated to obtain output 

responses at different time points, which corresponds to a typical fed-batch experiment with 

multiple sampling points in time. Since we set 𝑁sp=3, 6 values of model prediction variance 

can be calculated: 𝑉𝑦 of 𝑥1 at 𝐭sp = [7,14, 21] h and 𝑉𝑦 of 𝑥2 at 𝐭sp = [7,14, 21] h. To 

summarize these results, the sum 𝐽𝐺  of all contributions 𝑉𝑦 is calculated as in Eq. (9), which is 

used in the G-map eMBDoE method to design the optimal and explorative experiments. More 

details on the single contributions 𝑉𝑦 can be found in Appendix B, section B.4. 
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As in Case Study 1, 4 different design of experiments techniques are compared: 

 an E-optimal MBDoE, which is Gmap eMBDoE with 𝐽𝐺,thr =0.00; 

 two explorative designs, namely LH and 4
2
 full factorial DoE; 

 a G-map eMBDoE with E-optimal criterion and different threshold values 𝐽𝐺,thr ∈ {0.25, 

0.50, 0.65, 0.75, 0.85}. 

Three preliminary experiments are designed with LH in order to initialize all the four design 

of experiments methods. Then, the maximum number of experiments designed in each 

scenario is fixed to 20, providing a total number of experiments 𝑁𝑒=23.  

The extent of space exploration realized by each method can be deduced from Fig.11 and 

Table 4. After 20 iterations of experiments design, MBDoE (Figure 11a) has selected 

replicates at 2 different experimental conditions and design space exploration is very limited. 

Instead, eMBDoE (Figure 11b-f) is able to increase space exploration in such a way as the 

number of replicated points is reduced, i.e., more distinct experimental conditions are 

obtained. This is evident with 𝐽𝐺,thr ∈{0.65, 0.75, 0.85} (Figure 11d-f). In these cases, the 

distinct points increase to 3 or 4 (Table 4) instead of the 2 selected by the conventional E-

optimal MBDoE.  The control variable which is affected by the 𝐽𝐺,thr is 𝑢1, whereas the 

different optimal designs select the same value for  𝑢2 for all optimal experiments.  

  
(a) 

  
(b) 
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(c) 

 
(d) 

 
(e) 

  
(f) 

  
(g) 

  
(h)  

Figure 11. Design space with the experiments selected by: (a) MBDoE ; (b) G-map 

eMBDoE 𝐽𝐺,𝑡ℎ𝑟 = 0.25; (c) G-map eMBDoE 𝐽𝐺,𝑡ℎ𝑟 = 0.50; (d) G-map eMBDoE 

𝐽𝐺,𝑡ℎ𝑟 = 0.65; (e) G-map eMBDoE 𝐽𝐺,𝑡ℎ𝑟 = 0.75; (f) G-map eMBDoE 𝐽𝐺,𝑡ℎ𝑟 = 0.85;  

(g) Latin Hypercube; (h) 4
2
 full factorial DoE. Red squares indicate preliminary 

experiments, blue squares indicate experiments designed with the method 

considered 

Table 4.  Number of distinct design points for every scenario compared in the study. 

 

Scenario No. distinct design points  

MBDoE 2 
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eMBDoE, thr:0.25 3 

eMBDoE, thr:0.50 2 

eMBDoE, thr:0.65 4 

eMBDoE, thr:0.75 4 

eMBDoE, thr:0.85 5 

LH 16 

DoE  16 

 

Parameters precision is assessed through t-tests; Figure 12 shows the results of MBDoE (i.e., 

𝐽𝐺,thr = 0), eMBDoE with 𝐽𝐺,thr = 0.75 (the others are omitted for sake of conciseness), LH 

and factorial DoE. The G-optimality threshold 𝐽𝐺,thr = 0.75 is selected since it has the best 

performance in terms of precise parameters estimation and in reduction of model prediction 

variance (for more details, see Appendix B, section B.1).   

Parameters 𝜃1 (Figure 12a) and 𝜃3 (Figure 12c) pass the 𝑡-test with few experiments in every 

scenario, while the most critical parameters are 𝜃2 (Figure 12b) and, especially, 𝜃4 (Figure 

12d). Conventional E-optimal MBDoE requires 2 optimal experiments to estimate parameter 

𝜃2 (Figure 12b) and 12 experiments to estimate 𝜃4 (Figure 12d). The performance is improved 

by enhancing space exploration through G-map eMBDoE with 𝐽𝐺,thr = 0.75, requiring 2 

experiments to pass the 𝑡-test for 𝜃2 (Figure 12b) and 11 experiments to pass the t-test for 𝜃4 

(Figure 12d). However, explorative designs such as factorial DoE and LH do not allow to 

precisely estimate 𝜃4 (Figure 12d) within the experimental budget of 𝑁𝑒=23 experiments. 

This suggests that a trade-off between space exploration and information maximization 

provides the best results in terms of parameters precision.  

Additional details on parameter estimation accuracy (i.e. distance from the assumed true 

value) can be found in Appendix B, section B.2; reproducibility of the LH results is shown in 

Appendix B.3. 
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(a) 

   

(b) 

 

(c) 

  
(d) 

Figure 12. Profiles of t-values calculated with: MBDoE (𝐽𝐺,𝑡ℎ𝑟=0.00); G-map eMBDoE 

(𝐽𝐺,𝑡ℎ𝑟=0.75); Latin Hypercube (LH); 4
2
 full factorial DoE. The 𝑡-values are compared 

against the reference 𝑡-value (‘ref’ in the legend) for parameters 1-4 in figures (a)-(d), 

respectively  

As indicated in Eq. 9 (Section 2), the G-map for the selection of eMBDoE experiment is built 

by summing the prediction variance contributions from the two model responses. More details 

of the contributions to the overall 𝐽𝐺  can be found in Appendix B, section B.4. To compare 

quantitively the grids of G-optimality values obtained at every iteration of MBDoE, 

eMBDoE, factorial DoE and LH, scalar measures of G-optimality are calculated: minimum, 

mean and maximum values of the 𝐽𝐺  calculated for each point in the grid (see Eqs. 14-16 in 

Section 2.2.3).  

Considering the minimum, mean and maximum values of G-optimality (Figures 13a-c), 

explorative designs such as LH and factorial DoE provide a slower reduction in model 

prediction variance at the beginning of the experimental campaign and they stabilize at higher 

values when the maximum experimental budget is reached. When 𝐽𝐺,mean and 𝐽𝐺,max are 

considered (Fig. 13b-c), the explorative MBDoE has a better performance than conventional 
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MBDoE and it is able to reduce the model prediction variance with the lowest number of 

experiments. This further suggests that the trade-off between space exploration and 

information maximization realized by eMBDoE leads to the best performance also in terms of 

prediction variance. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 13. Profiles of scalar indices of G-optimality calculated with: MBDoE 

(𝐽𝐺,𝑡ℎ𝑟=0.00); G-map eMBDoE (𝐽𝐺,𝑡ℎ𝑟=0.75); Latin Hypercube (LH); 4
2
 full factorial DoE. 

Results are obtained by summing up the variance calculated for every response at every 

time point. Three different scalar measures are considered: (a) minimum G-optimality; (b) 

mean G-optimality; (c) maximum G-optimality.      

The different experimental design methods are compared in terms of G-maps and H-maps: 

- E-optimal MBDoE (Fig. 14a, 15a, 16a and 17a); 

- eMBDoE, with E-optimal criterion and a threshold of 𝐽𝐺,thr = 0.75 (Fig. 14b, 15b, 

16b and 17b); 

- LH (Fig. 14c, 15c, 16c and 17c); 

- 4
2
 full-factorial DoE (Fig. 14d, 15d, 16d and 17d). 
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Both maps are built at every iteration in order to calculate the optimal and explorative 

experiments as in Eq. (11). Here, only the results obtained in two iterations are shown for the 

sake of conciseness. This include results after 4 calibration experiments (Figures 14-15), to 

assess model prediction variance reduction and information gain after adding only one 

designed experiment besides the 3 preliminary ones; and results after 15 calibration 

experiments (Figure 15 and 17), being the first iteration where G-map eMBDoE is able to 

reduce completely model prediction variance in the entire design space (darkest blue in the 

whole design space, as shown in Figure 15).  

After calibrating the model with the data obtained from the fourth experiment (Figure 14), the 

G-map is characterized by high G-optimality values with 𝑢2 between 30 and 35 g/L  for 

MBDoE (Figure 14a) and eMBDoE (Figure 14b) and with 𝑢2 between 15 and 35 g/L in case 

of LH (Figure 14c) and factorial DoE (Figure 14d). Therefore, designs that take into account 

information content, such as MBDoE and eMBDoE, provide a better performance at the first 

iteration with respect to completely explorative designs, such as LH and factorial DoE. When 

the number of experiments used in calibration increases to 15, G-map eMBDoE (Figure 15b) 

is the only scenario able to reduce completely model prediction variance in the entire design 

space, confirming the results obtained with scalar indices of G-optimality (Figure 13). 

By analysing the distribution of information content throughout the design space with four 

calibration experiments, factorial DoE (Figure 16d) provides the smallest amount of 

information, while eMBDoE (Figure 16b) and MBDoE (Figure 16a) guarantee higher 

information levels. Unexpectedly, LH generates the highest values of information (Figure 

16c); this may be caused by the initialization of the MBDoE and eMBDoE procedure with 

parameters estimates that are still quite far from the true values. Indeed, with 15 experiments, 

the following rank of information content is found: MBDoE (Figure 17a) > eMBDoE (Figure 

17b) > LH (Figure 17c) > factorial DoE (Figure 17d). Therefore, conventional MBDoE 

generates the maximum amount of information content as expected, while eMBDoE provides 

an intermediate result between optimal (MBDoE) and explorative designs (LH, factorial 

DoE). Maps generated in the last experiment design iteration are shown in Appendix B, 

section B.5. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 14. G-maps generated after 1 calibration experiment. Four methods are compared: 

(a) MBDoE; (b) G-map eMBDoE with 𝐽𝐺,𝑡ℎ𝑟=0.75; (c) LH; (d) 4
2
 full factorial DoE. 

Orange squares indicate already measured data (namely, data used to calibrate the 

model); black dots indicate candidate design points; the red point indicates the experiment 

designed at the current iteration.   
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(a) 

 

(b) 

 

(c) 

 

Figure 15. G-maps generated after 15 calibration experiments. Four methods are 

compared: (a) MBDoE; (b) G-map eMBDoE with 𝐽𝐺,𝑡ℎ𝑟=0.75; (c) LH; (d) 4
2
 full factorial 

DoE. Orange squares indicate data already used to calibrate the model; black dots indicate 

candidate design points; the red point indicates the experiment designed at the current 

iteration.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 16. H-maps generated with 1 calibration experiment. The compared methods are: 

(a) MBDoE; (b) G-map eMBDoE with 𝐽𝐺,𝑡ℎ𝑟=0.75; (c) LH; (d) 4
2
 full factorial DoE.. 

Orange squares indicate already measured data (namely, data used to calibrate the 

model); the red point indicates the experiment designed at the current iteration. 
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(a) (b) 

 

(c) 

 

(d) 

Figure 17. H-maps generated with 15 calibration experiments. The compared methods are: 

(a) MBDoE; (b) G-map eMBDoE with 𝐽𝐺,𝑡ℎ𝑟=0.75; (c) LH; (d) 4
2
 full factorial DoE. 

Orange squares indicate already measured data (namely, data used to calibrate the 

model); the red point indicates the experiment designed at the current iteration.  

The computational time required to discretize the design space, characterize it in terms of 

information content and model prediction variance (i.e., to build H-maps and G-maps) and to 

calculate the optimal and/or explorative experiment is approximately 0.65 seconds for both 

MBDoE and eMBDoE.  

This suggests that building of both G-maps and H-maps does not lead to an excessive 

computational burden even though the model complexity is increased significantly with 

respect to case study 1.   

 

4. Conclusions and future work 

A novel exploratory model-based design of experiments method (eMBDoE) has been 

proposed in this paper with the objective of precisely estimating model parameters and 

minimizing model prediction uncertainty in the whole domain of model utilization, with the 

minimum experimental effort. The proposed method is based on a mapping of model 

prediction variance evaluated across the entire design space through a scalar measure of G-

optimality (G-map), which is calculated based on the evaluation of Fisher information matrix 

and requires knowledge on model structure (set of equations) and estimated parameter values. 
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Experimental conditions within the design space are then selected from the candidate design 

points, which are associated to a G-optimality value higher than a user-defined threshold. 

Therefore, the exploration of the space is pushed towards regions that are still not well-

described by the model. The G-map based explorative MBDoE is compared against purely 

explorative methods, i.e. full factorial DoE and LH, and against a purely information-based 

exploitative method, i.e. MBDoE.  

These experimental design techniques were applied to two simulated case studies of 

increasing complexity: an algebraic model characterized by one response and two control 

variables and a nonlinear differential equation model of baker’s yeast fermentation in a fed-

batch reactor with two response variables measured at three sampling points and two control 

variables. In both cases, the constraint on G-optimality enables an increase of space 

exploration: the larger the threshold on G-optimality, the more the designed experiments 

depart from the ones selected by MBDoE.  

Results from both case studies suggest that the trade-off between space exploration and 

information maximization achieved by G-map eMBDoE allows to minimize the number of 

experiments required to precisely estimate model parameters and to minimize model 

prediction variance in the whole design space. Indeed, in case study 1, 14 calibration 

experiments designed through G-map eMBDoE with 𝐽𝐺,thr=0.75 allows to estimate all model 

parameters with statistical precision and to reduce G-optimality to the minimum values 

among all considered scenarios.  As regards case study 2, the experimental burden is 

minimized by eMBDoE with 𝐽𝐺,thr=0.75: indeed, 15 calibration experiments are enough to 

precisely estimate model parameters and reduce G-optimality to a minimum value throughout 

the design space. Different simulations of the systems under study suggest that a good trade-

off is found with a G-optimality threshold of 0.65-0.85. Ongoing work is focused on further 

validation of G-map eMBDoE through data generated by a physical system and on the 

development of a systematic method to determine the best G-optimality threshold. 

Finally, the additional step of candidate design points selection required by G-map eMBDoE 

leads to a negligible increase in computational time with respect to the state of the art 

MBDoE. Moreover, the time required to design a single experiment increases with model 

complexity, namely with the increase of the number of control variables, response variables 

and/or sampling points, but it is still negligible in the case studies analysed in this work: 0.12 

seconds for case study 1 and 0.65 seconds for case study 2. Thanks to the satisfactory 
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performance of the G-map eMBDoE with the two simulated processes and the limited 

computational burden, we envisage the future implementation of this technique in automated 

platforms for online model identification, to integrate and test the proposed experimental 

design method in an actual experimental system.   

Nomenclature 

Symbols 

det(∙) matrix determinant 

𝐟  set of model equations 

𝐡  set of equations of measurable responses 

𝐇�̂�  Fisher Information Matrix of a general model with estimated parameters �̂� 

𝐽𝐺   scalar value summarizing the G-optimality values calculated for all 

responses and all time points at a specific point in the design space 

𝐽𝐺,min (/mean/max)   minimum (or mean or maximum) values of 𝐽𝐺 calculate in the whole design 

space 

𝐽𝐺,thr   thresholds of G-optimality 

𝐿(�̂�)  negative log-likelihood function 

𝑁  total number of experimental measurements 

𝑁𝑒  number of performed experiments 

𝑛sp  number of sampling points considering all the performed experiments 

𝑁sp𝑖
  number of sampling points in the 𝑖-th experiment 

𝑁𝑢  number of control variables 

𝑁𝑥  number of state variables 

𝑁𝑦  number of response variables 

𝑁𝜃  number of model parameters 
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𝑁𝜙  number of possible experimental conditions within the discretised design 

space 

𝑃𝑚  polynomial function of order 𝑚 

𝑟  kinetic rate 

𝑡  time 

𝑡𝑖  t-value for the 𝑖-th parameter 

𝐭sp  vector of sampling points 

𝑡ref  reference t-value 

𝐮  vector of control variables 

𝐕𝑦  matrix of model prediction variances calculated by means of the G-

optimality definition 

𝐕�̂�  variance-covariance matrix 

𝐕�̂�
0  prior variance-covariance matrix of model parameters 

𝐱  vector of state variables 

�̇�  vector of first derivatives of state variables 

𝐲  vector of measurable model responses 

�̂�  vector of measurable model responses predicted by the model 

  

Greek symbols 

𝛼   significance level 

𝛉  vector of model parameters  

�̂�  vector of estimated model parameters 

𝛉0, 𝛉LB, 𝛉UB vector of initial parameters values, lower bounds (LB) and upper bounds (UB) 
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for parameters estimation 

𝜆min (/max)  maximum (or maximum) eigenvalue 

𝛔𝑦  standard deviation of the response measurement error 

𝚺𝑦  response variance-covariance matrix 

𝛗  design vector 

𝜓  scalar measure of the FIM 

 

Acronyms 

CI confidence intervals 

DoE factorial design of experiments 

eMBDoE explorative MBDoE 

FIM Fisher information matrix 

G-map G-optimality map 

G-map eMBDoE explorative MBDoE based on G-optimality map 

H-map Fisher information map 

LB lower bounds 

LH Latin Hypercube 

MBDoE model-based design of experiments 

OFAT one factor at a time 

SMSPE supremum of the mean squared prediction error 

UB upper bounds 
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