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Abstract. We analyse the dynamics of different routes to collapse of a constrained polyelec-
trolyte gel in contact with an ionic bath. The evolution of the gel is described by a model that
incorporates non-linear elasticity, Stefan--Maxwell diffusion and interfacial gradient free energy to
account for phase separation of the gel. A bifurcation analysis of the homogeneous equilibrium
states reveals three solution branches at low ion concentrations in the bath, giving way to only one
above a critical ion concentration. We present numerical solutions that capture both the spatial
heterogeneity and the multiple timescales involved in the process of collapse. These solutions are
complemented by two analytical studies. Firstly, a phase-plane analysis that reveals the existence of
a depletion front for the transition from the highly swollen to the new collapsed equilibrium state.
This depletion front is initiated after the fast ionic diffusion has set the initial condition for this time
regime. Secondly, we perform a linear stability analysis about the homogeneous states that show
that for a range of ion concentrations in the bath, spinodal decomposition of the swollen state gives
rise to localized solvent-rich(poor) and, due to the electroneutrality condition, ion-poor(rich) phases
that coarsen on the route to collapse. This dynamics of a collapsing polyelectrolyte gel has not been
described before.

Key words. polyelectrolyte gel, collapse, phase-space analysis, spinodal decomposition, stability
analysis
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1. Introduction. Ever since the seminal papers by Tanaka [38] and Dusek and
Patterson [12], research on swelling and collapse of polyelectrolyte gels has been very
intensive, both theoretically and experimentally [8, 7, 18, 27, 29]. These systems,
combining elements of electrochemistry and condensed matter physics, display in-
triguing and subtle properties motivating both experimental and theoretical studies
to understand their rich behavior. These gels also have a wealth of technological
applications, and a better understanding of polyelectrolyte gels serves as a basis for
developing smart, responsive materials and sensors [2, 5, 16, 37], for example. In
particular, research in this field is driven by applications in medicine [16, 23], e.g.,
for drug delivery and tissue engineering. Additionally, polyelectrolyte gels are used
as a model system for many types of biological tissues [25, 30] or in the modelling of
mucus [24, 36] to gain fundamental insight into diverse phenomena in biology. Poly-
electrolytes also serve as a model for bio-macromolecules, such as DNA and RNA
[13, 32, 41].
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THE DYNAMICS OF A COLLAPSING POLYELECTRONIC GEL 1147

In its simplest form, a polyelectrolyte gel is a network of covalently cross-linked
polyelectrolyte macromolecules, that is, of polymer chains carrying fixed charges of
the same sign, immersed in a solvent. If placed in an ionic bath, the gel will approach
a new equilibrium state driven by osmotic effects and will swell or shrink [18]. This
process depends on factors such as the concentration and valency of the salt in the
solvent, the (nonlinear) elasticity of the gel, the concentration of fixed charges and
the number of ionizable groups of the polyelectrolyte macromolecule, as well external
fields, such an applied electric field or the temperature [22]. The change in volume
does not always proceed continuously [1, 29, 40]. The discontinuous volume phase
transition typically considers a gel that is divided into coexisting subdomains that
are in thermodynamic equilibrium with jump conditions imposed at their interfaces
[9, 3].

Unlike nonionic hydrogels [15, 33, 39], subtle changes in the environment sur-
rounding the gel, such as increasing the ion concetration, can have a dramatic effect
and result in discontinuous phase transitions connected with supercollapse [21, 19]
and reentrant swelling [35]. A deeper understanding of these phenomena, in particu-
lar when comparing to experiments, is obtained with a model that resolves the pattern
forming instabilities of the gel and the transient dynamics between equilibrium states
over a large range of temporal and spatial scales. This will then shed light on the
pattern formation processes leading to collapse [26, 42].

The governing equations of such a model are given in a companion paper [4],
where we use nonequilibrium thermodynamics to systematically derive a phase-field
model of a polyelectrolyte gel. That model accounts for the free energy of the internal
interfaces which form on phase separation, as well as for finite elasticity, together
with multicomponent transport models via Stefan--Maxwell diffusion. We also derive
a thermodynamically consistent model for the ionic bath surrounding the gel. The
electroneutral limit of the full three-dimensional model has been derived via matched
asymptotic expansions [14] from which we obtain the jump conditions that need to
be imposed at the gel-bath interface. First results from numerical simulations for a
one-dimensional constrained gel have been presented in [4], where the possibility of
spinodal decomposition---that is, a parameter regime where the uniform equilibrium
solution is linearly unstable and hence phase separates in response to infinitesimal
perturbations---is raised for the case of a swelling gel. Chen, Calderer, and Mori [6]
and Mori et al. [28] also derived and analyzed a coupled model for a polyelectrolyte
gel in contact with an ionic bath but do not consider phase separation.

The main goal of this study is to investigate the evolution of collapse via a vol-
ume phase transition in a constrained gel by a combination of mathematical tech-
niques. First, we consider the nonlinear equations that determine the homogeneous
equilibrium states and deduce the bifurcation that leads to the collapse as the salt
concentration in the bath is raised. The numerical solution then reveals the fast initial
transients that change the charge distribution in the gel, followed by the appearance
of a (solvent) depletion front. This in turn we study via a phase-plane analysis. We
systematically investigate the stability of the homogeneous states. This reveals a sec-
ond route to collapse, where the gel first undergoes spinodal decomposition before the
depletion front moves through the heterogeneous state.

The paper is structured as follows. In section 2, we introduce the electroneutral
version of the model for a polyelectrolyte gel, previously derived in [4]. In section 3,
we specialize the model to the case of a one-dimensional constrained gel in contact
with an ionic bath, where the thin electric double layer between gel and bath is
replaced by corresponding boundary conditions [14]. In section 4, we determine the
bifurcation diagram for the homogeneous equilibrium states which are controlled by
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1148 CELORA, HENNESSY, MUENCH, WAGNER, AND WATERS

the salt concentration in the bath and give an overview of various routes to collapse.
We carry out numerical simulations that demonstrate the fast dynamics of the free
ions that sets the stage for collapse via a moving depletion front. In section 5, we show
the existence of this moving front via a phase-plane analysis. Section 6 investigates
different parameter regimes that show spinodal decomposition. We use linear stability
analysis that identifies parameter regimes for spinodal decomposition into localized
solvent-rich(poor) phases that eventually coarsen on their path to collapse. In section
7, we draw our conclusions and give an outlook on further research directions.

2. Governing equations for a polyelectrolyte gel. We consider the problem
of a polyelectrolyte gel swelling in a solution (the bath) containing a binary salt. The
governing equations are systematically derived in [4], which extends previous models
by Drozdov et al. [11] and Hong, Zhao, and Suo [17]. In particular, we include the
gradient energy to account for the dynamics of collapse and phase separation. As
standard in the literature, we consider the electroneutral formulation of the model.
In Hennessy et al. [14], we give a detailed derivation of this limit via singular per-
turbation analysis, where we assume that the Debye length and thus the thickness of
the double layer at the free interface between the gel and the bath is small compared
to the size of the gel.

The governing equation are presented for the full three-dimensional problem in
terms of the Eulerian coordinates associated with the current (deformed) configura-
tion. The gel is described as a mixture of three phases: solvent (s), free ions (+ and - ),
and the charged polymer network (n). We assume that the fixed charges (with valence
zf ) on the polymer network are evenly distributed on the network and account for a
fixed fraction \alpha f < 1 of the network volume. In this work, we consider zf to be posi-
tive so that the positive ionic species in the solution (with valence z+) will be denoted
as co-ions (+), while the negative ones (with valence z - ) will be the counter-ions ( - ).
As standard in the polyelectrolyte gel literature, we will assume in what follows that
all mobile species (i.e., the solvent and ions) have the same molecular volume \nu .

Let us denote by t time and \bfitx = (x, y, z) the Eulerian coordinates, while \bfitX =
\bfitX (\bfitx , t) are the corresponding Lagrangian coordinates. Then the gel kinematics are
described by the deformation gradient tensor \bfsansF = (\partial \bfitX /\partial \bfitx ) - 1, with its determinant
J =det\bfsansF representing the volume expansion of the gel compared to the dry reference
state, where J = 1. The velocity of the polymer network \bfitv n can be expressed as

\bfitv n = - \bfsansF 
\partial \bfitX 

\partial t
.(2.1)

The composition of the gel is described in terms of volume fractions \phi i = \phi i(\bfitx , t) with
i\in \{ s,+, - , n\} . Assuming there are no voids in the gel, the volume fractions satisfy

1 = \phi n + \phi s + \phi + + \phi  - .(2.2a)

Moreover, all of the phases are assumed to be incompressible; consequently, J is
related to the network volume fraction \phi n by J = \phi  - 1

n . The volume fraction occupied
by fixed charges is \phi f = \alpha f\phi n, where \alpha f indicates, as defined above, the fraction
of volume of the network phase occupied by fixed charges. Since we assume the gel
is electrically neutral at each location in space, its net charge must be zero. This
introduces the additional constraint

zf\phi f + z+\phi + + z - \phi  - = 0.(2.2b)
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THE DYNAMICS OF A COLLAPSING POLYELECTRONIC GEL 1149

Conservation of mass and momentum are given by

\partial t\phi n +\nabla \cdot (\phi n\bfitv n) = 0,(2.2c)

\partial t\phi m +\nabla \cdot (\phi m\bfitv n) = - \nabla \cdot \bfitj m,(2.2d)

\nabla \cdot \bfsansT = 0(2.2e)

for m \in \BbbM = \{ s,+, - \} . Here, \bfsansT denotes the Cauchy stress tensor (to be specified
below), and \bfitj m are the volumetric fluxes of mobile species relative to the network
that moves with velocity \bfitv n. By differentiating (2.2a) and (2.2b) with respect to time
and using (2.2c)--(2.2d), we obtain

\nabla \cdot 

\Biggl( 
\bfitv n +

\sum 
m\in \BbbM 

\bfitj m

\Biggr) 
= 0,(2.2f)

\nabla \cdot 
\bigl( 
z+\bfitj + + z - \bfitj  - 

\bigr) 
= 0,(2.2g)

which are used to replace (2.2c) and (2.2d) for the counter-ion fraction \phi  - .
To complete the model, constitutive relations are required. The fluxes are de-

scribed via Stefan--Maxwell diffusion to account for the relative friction between ions
and solvent,

\bfitj s = - \phi sK

\biggl( 
\nabla \mu s +

\phi +

\phi s
\nabla \mu + +

\phi  - 

\phi s
\nabla \mu  - 

\biggr) 
,(2.3a)

\bfitj \pm = - \scrD \pm \phi \pm 

kBT
\nabla \mu \pm +

\phi \pm 

\phi s
\bfitj s,(2.3b)

where \mu s, \mu +, and \mu  - denote the (electro)chemical potentials of the mobile species,
T is the temperature, kB is the Boltzmann constant, K = \scrD s/(kBT ) is the sol-
vent permeability, and \scrD m are the diffusivities of the mobile ions, where we consider
\scrD + = \scrD  - = \scrD > \scrD s in line with the characteristic values reported (see supplemen-
tary material (suppmats.pdf [local/web 295KB]) Table SM1 and the literature cited
therein [34, 11]). Furthermore, we have the following expressions for the three chem-
ical potentials:

\mu s = \mu 0
s + \nu p - \gamma 

\nu 
\nabla 2\phi s + kBT

\biggl[ 
ln(\phi s) +

\chi (1 - \phi s)

J
+

1

J

\biggr] 
,(2.3c)

\mu \pm = \mu 0
\pm + \nu p+ z\pm e\Phi + kBT

\biggl[ 
ln(\phi \pm ) - 

\chi \phi s

J
+

1

J

\biggr] 
,(2.3d)

where \mu 0
m are reference chemical potentials, \Phi is the electric potential, p is the pres-

sure, e is the elementary charge, \chi is the temperature-dependent Flory interaction
parameter, and \gamma is the interfacial stiffness parameter. The latter is associated with
the free energy cost of internal interfaces separating regions of low and high solvent
concentration. The pressure dependence of the ionic chemical potentials (2.3d) is a
result of accounting for the ionic volume fractions in the no-void condition (2.2a) when
deriving the model using an energy-imbalance inequality; see Celora et al. [4] for de-
tails. The pressure dependence of all of the chemical potentials allows stress-assisted
diffusion to be captured in the model. For the stresses in the gel, we consider three
contributions:

\bfsansT = - p\bfsansI +\bfsansT K +\bfsansT E .(2.3e)

The first represents an isotropic stress from the fluid pressure with \bfsansI denoting the iden-
tity tensor, while \bfsansT K represents the Korteweg stress generated at internal interfaces
(i.e., gradients of the solvent concentration),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1150 CELORA, HENNESSY, MUENCH, WAGNER, AND WATERS

\bfsansT K =
\gamma 

\nu 2

\biggl[ \biggl( 
| \nabla \phi s| 2

2
+ \phi s\nabla 2\phi s

\biggr) 
\bfsansI  - \nabla \phi s \otimes \nabla \phi s

\biggr] 
,(2.3f)

and \bfsansT E is the elastic stress from the response of a neo-Hookean polymer network

\bfsansT E =
G (\bfsansB  - \bfsansI )

J
,(2.3g)

where \bfsansB = \bfsansF \bfsansF T is the left Cauchy--Green tensor and G is the shear modulus. To close
the system, we further need boundary and initial conditions which we derive next for
the problem of a constrained gel, which is the focus of this study.

3. Specialization to constrained swelling and collapse. We consider the
case of a constrained gel with monovalent fixed charges (zf = +1) which undergoes
uniaxial deformation (in the z direction) due to the uptake or release of a monovalent
(z\pm = \pm 1) salt solution (see Figure 1). This is analogous to the scenario considered
in [9, 15] for the study of constrained swelling and deswelling of neutral hydrogels.

The gel is assumed to be attached to a substrate at z = 0, while the interface at
z = h(t) is free to move along frictionless side walls that do not influence the bulk
behavior (see [15] for more details). The problem can be reduced to a one-dimensional
Cartesian geometry, where the deformation gradient tensor \bfsansF and the stress tensor \bfsansT 
have the form

(3.1) \bfsansF =diag(1,1, J(z, t)), \bfsansT =diag(T\ell (z, t), T\ell (z, t), Tzz(z, t))

and the diffusive fluxes and network velocity are given by \bfitj m = jm(z, t)\bfite z and
\bfitv n = vn(z, t)\bfite z respectively, with \bfite z representing the unit vector in the z direc-
tion. Moreover, all variables in (2.2)--(2.3) are assumed to only depend on z and t. At
z = 0, we assume that the gel is bounded by a solid, insulated, impermeable substrate;
hence,

vn(0, t) = 0, js(0, t) = 0, j\pm (0, t) = 0.(3.2a)

Given the fourth-order derivative in the solvent fraction that ultimately arises from
the interfacial term in the solvent chemical potential (2.3c), we need an additional
condition on \phi s. We assume the solvent is neutral to substrate, resulting in [31]

\partial z\phi s(0, t) = 0.(3.2b)

In most scenarios considered in this paper, we assume that the free surface of the
gel at z = h(t) is in contact with an ionic and electroneutral bath, which behaves like

Fig. 1. Schematic of a laterally confined polyelectrolyte gel that collapse along the z-axis only.
The free interface with the bath is located at z = h(t). As solvent is expelled by the gel, the free
interface moves toward the left, and salt ions are absorbed/desorbed by the gel so as to maintain
electroneutrality of the gel.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE DYNAMICS OF A COLLAPSING POLYELECTRONIC GEL 1151

an infinite reservoir of ions. For this scenario, we adapt the boundary conditions de-
rived in [14] starting from the full nonelectroneutral model via singular perturbation
analysis to account for the formation of a small layer, known as the electric double
layer, near the free interface where electroneutrality breaks down. Away from the
interface with the gel, the volume fraction of ions in the bath is controlled experi-
mentally and set to the value \phi 0. In our one-dimensional situation and assuming the
electric potential is zero in the bath, we have

Tzz(h(t), t) = 0,(3.3a)

\partial z\phi s(h(t), t) = 0,(3.3b)

\mu \pm (h(t), t) = \mu 0
\pm + kBT ln(\phi 0),(3.3c)

\mu s(h(t), t) = \mu 0
s + kBT ln(1 - 2\phi 0).(3.3d)

To close the system, we further specify a kinematic condition for the boundary z =
h(t), which here moves with the gel velocity such that

dh

dt
= vn(h(t), t).(3.3e)

Having specified the geometry and boundary conditions for the problem, we
nondimensionalize the system as follows:

(3.4)
\^\mu m =

\mu m  - \mu 0
m

kBT
, \^\Phi =

\Phi e

kBT
, \^\bfsansT =

\bfsansT 

G
, \^z =

z

L
,

\^t=
t

\tau 
, \^p=

p

G
, \^jm =

\nu L

\scrD s
jm, \tau =

L2

\scrD s
,

where m \in \BbbM and L is the characteristic size of the gel. The system possesses a
second natural length scale, Lint =

\sqrt{} 
\gamma /(\nu kBT ), which characterizes the thickness

of the internal interfaces that can occur via phase separation of the gel into highly
and poorly swollen regions. The ratio of these two length scales gives rise to the
nondimensional parameter \omega = Lint/L. Further nondimensional material parameters
are

(3.5) \scrG =
\nu G

kBT
, \^\scrD =

\scrD 
\scrD s

.

Note that \scrG can be related to the number density of polymer chains Np in the dried
network via \scrG =Np\nu , which helps in the estimation of its value (see Table SM1). We
introduce the scalings into the one-dimensional model and then drop the hat notation
so that the nondimensional governing equations read

\partial t\phi s + \partial z(\phi svn) = - \partial zjs,(3.6a)

\partial t\phi + + \partial z(\phi +vn) = - \partial zj+,(3.6b)

\partial zTzz = 0,(3.6c)

From (2.2f)--(2.2g), we obtain \partial z(vn + js + j+ + j - ) = 0 and \partial z(j+  - j - ) = 0, which
we can integrate, imposing the no-flux condition at z = 0, to get

j+ = j - ,(3.6d)

vn = - js  - 2j+.(3.6e)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1152 CELORA, HENNESSY, MUENCH, WAGNER, AND WATERS

We can use (3.6d) to eliminate the electric potential \Phi from the model, which can be
obtained by solving

\partial z\Phi = \partial z (\scrG p+ ln\phi  -  - \chi \phi s\phi n + \phi n) +
j+
\phi  - \scrD 

 - js
\phi s\scrD 

.(3.7a)

The Dirichlet boundary condition for (3.7a) is derived by subtracting (3.3c) and using
the definition of the chemical potentials \mu \pm (see (2.3d)) and is given by

(3.7b) \Phi (h(t), t) =
1

2
ln

\biggl( 
\phi  - 

\phi +

\biggr) \bigm| \bigm| \bigm| \bigm| 
z=h(t)

.

Similarly, we eliminate the pressure from the model by integrating \partial z(Tzz) = 0
and applying the boundary condition (3.3a), which leads to

p=
\omega 2

\scrG 

\biggl[ 
\phi s\partial zz\phi s  - 

(\partial z\phi s)
2

2

\biggr] 
+

\bigl( 
1 - \phi 2

n

\bigr) 
\phi n

.(3.8)

The evolution of the gel composition is therefore dictated by the two governing equa-
tions,

\partial t\phi s + \partial z(\phi svn) = - \partial zjs,(3.9a)

\partial t\phi + + \partial z(\phi +vn) = - \partial zj+,(3.9b)

which are coupled to the constitutive laws (2.3)

js = - \phi 2
s

1 - \phi n
\partial z\mu s +

2\phi s

(1 - \phi n)\scrD 
j+,(3.10a)

j+ = - \scrD \phi +\phi  - 

\phi + + \phi  - 
\partial z \=\mu +

2\phi +\phi  - 

\phi s(\phi + + \phi  - )
js,(3.10b)

vn = - js  - 2j+,(3.10c)

\=\mu =A(\phi s, \phi +) + 2\omega 2\phi s\partial zz\phi s  - \omega 2 (\partial z\phi s)
2
,(3.10d)

\mu s =B(\phi s, \phi +) - (1 - \phi s)\omega 
2\partial zz\phi s  - 

\omega 2

2
(\partial z\phi s)

2
,(3.10e)

\phi n =
1 - \phi s  - 2\phi +

1 + \alpha f
,(3.10f)

\phi  - =
\phi + + (1 - \phi s  - \phi +)\alpha f

1 + \alpha f
.(3.10g)

In (3.10b), \=\mu is defined as the dimensionless chemical potential of the free ions (\=\mu =
\mu ++\mu  - ), and (3.10d) is obtained by summing over (2.3d) after nondimensionalization
according to the scaling given in (3.4). The functions A, B are defined as follows:

A(\phi s, \phi +) = ln

\biggl( 
\phi +

\phi + + (1 - \phi s  - \phi +)\alpha f

1 + \alpha f

\biggr) 
+ 2 [1 - \chi \phi s]

1 - \phi s  - 2\phi +

1 + \alpha f
(3.10h)

+
2\scrG 

1 + \alpha f

(1 + \alpha f )
2  - (1 - \phi s  - 2\phi +)

2

1 - \phi s  - 2\phi +
,

B(\phi s, \phi +) = ln\phi s + [\chi (1 - \phi s) + 1]
1 - \phi s  - 2\phi +

1 + \alpha f
(3.10i)

+
\scrG 

1 + \alpha f

(1 + \alpha f )
2  - (1 - \phi s  - 2\phi +)

2

1 - \phi s  - 2\phi +
.
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THE DYNAMICS OF A COLLAPSING POLYELECTRONIC GEL 1153

The system is closed by imposing the boundary conditions:

\partial z\phi s(h(t), t) = 0,(3.11a)

\mu s(h(t), t) = ln(1 - 2\phi 0),(3.11b)

\=\mu (h(t), t) = 2 ln(\phi 0).(3.11c)

Here (3.11a)--(3.11b) are the dimensionless counterpart of (3.3b)--(3.3d), while (3.11c)
is obtained by summing over the dimensionless form of (3.3c). In one case, Figure 12
(and in Figure SM1 in the supplemental materials (suppmats.pdf [local/web
295KB])), we also consider the scenario in which the gel is isolated from the bath.
When this is the case, the boundary conditions (3.11b)--(3.11c) are replaced by no-flux
conditions at the free interface (since mobile species are trapped in the gel). More-
over, (3.7b) is replaced with a grounding condition at z = h(t). Hence, for an isolated
bath, we impose

\partial z\phi s(h(t), t) = 0,(3.12a)

js(h(t), t) = j+(h(t), t) = 0,(3.12b)

\Phi (h(t), t) = 0.(3.12c)

Unless otherwise stated, the parameters used in the simulations are

\alpha f = 0.04, \scrD = 5, \chi = 0.78, \scrG = 2\times 10 - 4, \omega = 0.025.(3.13a)

We further consider the the volume fraction of ions in the bath, \phi 0, to change at time
t= 0 from \phi 0 - = 10 - 6 to a new value \phi 0+ . For the latter, we consider two scenarios:

set 1: \phi 0+ = 10 - 4 and set 2: \phi 0+ = 10 - 2.(3.13b)

The details on the numerical methods used to solve the system (3.9)--(3.10) in the dif-
ferent scenarios can be found in the supplemental material (suppmats.pdf [local/web
295KB]) section SM2. We note that the rescaled spatial variable which maps the gel
to a fixed domain is denoted by Z = z/h(t) \in [0,1].

4. Homogeneous equilibrium states and routes to collapse. We now
consider the system (3.9)--(3.10) for \phi s and \phi + in equilibrium with an ionic bath.
More specifically, we consider homogeneous, flux-free steady states that satisfy the
boundary conditions (3.2)--(3.3). The equilibrium states are denoted by (\phi \ast 

s, \phi 
\ast 
+) and

satisfy

A(\phi \ast 
s, \phi 

\ast 
+) - 2 ln(\phi 0) = 0,(4.1a)

B(\phi \ast 
s, \phi 

\ast 
+) - ln(1 - 2\phi 0) = 0.(4.1b)

Recall that \phi 0 denotes the volume fraction of ions in the surrounding bath. The
conditions (4.1) define the generalization of the Donnan equilibrium [10] as it applies
to our situation, i.e., a polyelectrolyte gel with its fixed charges and the mobile species
represented by the salt ions [20].

Considering the shear modulus of the gel \scrG to be fixed, we investigate how the
equilibria depend on the concentration of ions in the bath \phi 0 and the Flory interaction
parameter \chi . For large shear moduli \scrG , as in Figure 2(b), there is a unique homoge-
neous equilibrium solution. Although variations of \phi \ast 

s along \phi 0 are small, there is a
sensitive dependence on the Flory interaction parameter \chi .

For small \scrG , as in Figure 2(a), there is a range of \chi for which the system either
exhibits one or three equilibrium states, depending on the value of the salt fraction

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

3/
23

 to
 1

93
.6

0.
23

8.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://epubs.siam.org/doi/suppl/10.1137/21M1419726/suppl_file/suppmats.pdf
https://epubs.siam.org/doi/suppl/10.1137/21M1419726/suppl_file/suppmats.pdf
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(a) \scrG = 2\times 10 - 4. (b) \scrG = 10 - 3.

Fig. 2. Surfaces of homogeneous equilibrium solutions for the volume fraction of solvent in the
gel \phi \ast 

s . The equilibrium solutions are obtained by solving (4.1) using the parameter values in (3.13a).
The surfaces are plotted in terms of the salt fraction in the bath \phi 0 and the Flory parameter \chi . The
solid lines represent level sets at fixed values of \chi .

in the bath \phi 0. A value of \chi = 0.78 lies within this range, for example. For large
values of \phi 0, a single equilibrium solution exists that is characterized by a small
concentration of solvent; i.e., the equilibrium corresponds to a collapsed state. As
\phi 0 is decreased, a disconnected branch of equilibrium solutions appears. This new
branch consists of two highly swollen equilibrium states. The stability of these three
equilibria will be characterized in section 6. In summary, the collapsed and most
swollen equilibrium states are stable, whereas the state with an intermediate degree
of swelling is unstable. A volume phase transition will occur when the gel is driven
off the stable swollen branch onto the stable collapsed branch by an increase in \phi 0.

4.1. Routes to collapse. Our aim is to understand the dynamic response of the
gel during the volume phase transition. The analysis in subsequent sections will reveal
that the volume phase transition can follow one of two routes, which we summarize
in the panels in Figure 3. For the parameter values in (3.13a), the equilibrium solvent
fraction is plotted as a function of the salt fraction in the bath \phi 0 in Figure 3(a). The
red square on the swollen branch when \phi 0 = 10 - 6 denotes the initial state of the gel
that we consider here.

An example of the first route to the gel collapse occurs when \phi 0 is increased to
10 - 4, which we call set 1 in (3.13). In this case, a deswelling front propagates into
the gel from the free surface. A snapshot of a numerical simulation, which depicts the
propagating front by plotting the solvent fraction as a function of space, is provided
in Figure 3(b). Simulation details can be found in section 5. The deswelling front
separates two homogeneous states that are not equilibrium solutions. The properties
of the front can be predicted from a phase-plane analysis of the steady model (5.3),
which will be presented in section 5.1. By exploiting the diluteness of the ions, the
steady model (5.3) reduces to a pair of first-order differential equations for the sol-
vent fraction \phi s and its gradient \partial z\phi s given by (5.9). The deswelling front is well
approximated by a heteroclinic orbit that exists in the phase plane of (5.9), shown
schematically in Figure 3(c).

An example of the second route to gel collapse occurs when \phi 0 is increased to
10 - 2, which we call set 2 in (3.13). In this case, front propagation occurs, but the
bulk of the gel undergoes spinodal decomposition, leading to isolated, solvent-poor
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THE DYNAMICS OF A COLLAPSING POLYELECTRONIC GEL 1155

Fig. 3. Summary of the two routes to collapse. (a) Equilibrium solvent fraction obtained by
solving (4.1) using the parameter values in (3.13a). A volume phase transition is triggered by in-
creasing the salt fraction in the bath \phi 0 from 10 - 6 (red square) to 10 - 4 (set 1; orange circle) or
10 - 2 (set 2; green circle). (b) Set 1 leads to the first route to collapse, where a deswelling front
invades the gel from the free surface, which is seen by plotting the solvent fraction as a function
of space; simulation details can be found in section 5. (c) A heteroclinic orbit of (5.9), which pro-
vides an approximation to the propagating front; see section 5.1. (d) The second route to collapse
involves front propagation and spinodal decomposition in the bulk of the gel. Simulation details are
provided in section 6.2. (e) A two-dimensional projection of a homoclinic orbit of (5.9); these orbits
provide approximations of the phases that form within the bulk of the gel during the second route to
collapse; see section 6.2. (f) Evolution of the solvent and cation fraction at the substrate (z = 0) for
parameter set 1 (orange) and set 2 (green). Stars denote the composition after the front has formed.
The linearly unstable spinodal regime is shaded and computed in section 6.1. For more information
about the panels, see section 4.1. All panels except (a) are to be interpreted schematically.

phases spontaneously appearing. A snapshot of a numerical simulation (see section
6.2) is provided in Figure 3(d), which shows the solvent fraction as a function of space
and the emergence of collapsed phases in the bulk. In section 6.2, we show that the
solvent-poor phases are well approximated by homoclinic orbits that exist in the phase
space for (5.3). Two-dimensional projections of these orbits are shown schematically
in Figure 3(e).

A linear stability analysis of the full time-dependent model, carried out in section
6.1, elucidates why the volume phase transition has two routes. The first route to
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1156 CELORA, HENNESSY, MUENCH, WAGNER, AND WATERS

collapse occurs when the bulk of the gel has a composition that is linearly stable. That
is, the bulk composition remains outside of the linearly unstable region of the phase
diagram (this region is called the spinodal region). This is illustrated in Figure 3(f),
which tracks how the solvent and cation fraction at the substrate (z = 0) evolve during
the volume phase transition. The orange star represents the composition after front
propagation is initiated. The path that is traced out in the phase diagram avoids
the spinodal (shaded) region. The second route to collapse occurs when the bulk of
the gel has a composition that is linearly unstable. In this case, the formation of a
propagating front pushes the bulk composition into the spinodal region, as shown by
the path to the green star in Figure 3(f).

5. Front propagation in a collapsing gel. We start by investigating the
simpler scenario of collapse driven uniquely by propagation of a depletion front using
numerical simulations of (3.9)--(3.11) with parameter values given by set 1 in (3.13).
Results from the numerics are used to generate Figures 4--5. We find that the collapse
of the gel is characterized by two timescales: The first is dictated by the fast diffusion
of ions into the gel that precede the onset of the depletion front and the second by
the slower transport of solvent into the gel. The presence of these two timescales is
evident in Figure 4(a), where we illustrate the trajectory the volume fraction \phi s and
\phi + in the bulk of the gel, specifically, at the substrate (Z = 0) in the (\phi +, \phi s)-plane.
As shown in Figure 4(a), for t \sim O(102), the ion concentration in the interior of the
gel quickly increases while \phi s remains approximately constant. As the gel is initially
highly swollen, i.e., \phi + \ll \phi s, the gel size is determined by the concentration of solvent
and so remains approximately constant during this first transient (see Figure 4(c)),
i.e., h(t) \approx h(0) for t \sim O(102) with h(0) \approx (1  - \phi s(0))

 - 1 \approx 8. Focusing on the
evolution of \phi + (see Figure 4(b)), we see that within less than one time unit, the
concentration builds up at the boundary and subsequently penetrates into the gel.
At t = 12, the process has almost concluded, and, in fact, early signs of a new front
manifest themselves at the free interface, which becomes more pronounced at t= 301.
Together with the ion concentration, the generalized chemical potential \=\mu move from
its initial value 2 ln(\phi 0 - )) to approximately 2 ln(\phi 0+). This difference in chemical
potential drives the process of ion diffusion. Since the flux of ions is \scrD times the
gradient of the chemical potential (and the domain size h(0)\approx 8), we can estimate the
timescale of ionic diffusion as t\sim [h(0)]2/[2\scrD ln(\phi 0+/\phi 0 - )]\approx 2.15, which is consistent

(a) (b) (c)

Fig. 4. Numerical solutions of (3.9)--(3.11) for the case of a dilute bath for the parameter set
1 in (3.13). (a) Evolution of the solution at the substrate (i.e., Z = 0) in the (\phi s, \phi +) plane. The
instability region \scrS  - , defined by (6.6) (see stability analysis in section 6), is highlighted in blue. (b)
Evolution of the ion fraction \phi +(Z, t). (c) Time evolution of the size of the gel (color of the dots
corresponds to those points used in panel (a)).
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THE DYNAMICS OF A COLLAPSING POLYELECTRONIC GEL 1157

Fig. 5. Numerical solution of the model (3.9)--(3.10) for parameter set 1 in (3.13) and boundary
conditions (3.11) (same scenario as Figure 4): The first row illustrates the gel composition at differ-
ent points in time. For the same time points, we also plot the volume fractions, the corresponding
fluxes, and the electric field  - \partial z\Phi (defined by using (3.7a)).

with the observation in the numerical simulations. Using a scaling argument, we can
also estimate the concentration of ions in the gel prior to and after the transient.
Given that the concentration of ions in the bath is small, i.e., \phi 0 \ll 1, the logarithmic
term ln\phi 0 in (4.1a) becomes large and needs to be balanced. Since the gel is not too
swollen, i.e., 1 - \phi s  - 2\phi + \gg \phi 0, or dry, i.e., \phi 

 - 1
n \scrG \ll 1, the only term in (3.10h) that

can balance ln\phi 0 is the logarithmic term so that

(5.1) \phi +
\phi + + \alpha f (1 - \phi s  - \phi +)

1 + \alpha f
\sim \phi 0+

2,

and given the chosen value of \alpha f (see 3.13)), the balance (5.1) gives

(5.2) \phi + \sim \phi 0+
2(1 - \phi s)

 - 1/\alpha f

so that we predict the concentration of ions to be \phi + \sim 1.25\times 10 - 10 prior to t = 0
and \phi + \sim 1.25\times 10 - 6 after the fast ion diffusion (given (1 - \phi s)

 - 1 \approx 8). These are in
good agreement with numerical result in Figure 4(b).

After the ion concentration has equilibrated, a slower process takes place whereby
solvent is removed from the gel through the aforementioned depletion front. This is
illustrated in Figure 5, where we present snapshots in time of the gel composition (see
first row). For the same time points of the snapshots, we also illustrate the values of
the volume fractions, fluxes, and electric field in the gel. The front is clearly seen in
the concentration profiles for the solvent \phi s as well as for the mobile ion species \phi +

and the gradient of the electric potential  - \partial z\Phi , i.e., the electric field in the gel. In the
poorly swollen region of the gel (near the free interface), \phi s \approx 0.7; using the scaling
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1158 CELORA, HENNESSY, MUENCH, WAGNER, AND WATERS

(5.2), we therefore expect a reduction in the concentration of ions, More precisely, we
obtain \phi + \sim 8\times 10 - 7, which is again in line with the numerical results. In the last
column (t= 42500), the front has reached the substrate, and the gel has collapsed with
its composition having reached a new state (see ""powder"" blue square in Figure 4(a)).
The solvent flux js is only on the order of 10 - 4; hence, the appropriate timescale for
the depletion front movement is O(104). The main contribution is from the gradient
of the chemical potential \mu s, which is set by the function B (see (3.10i)). The latter is
connected with \scrG , which is small, and it is this small value that determines the slow
collapse.

To summarize (as illustrated in Figure 4(a)), the gel starts from a state of high
concentration of solvent and a small concentration of co-ions. From there, it quickly
evolves to a new state with higher salt content. As derived in section 6 and shown in
Figure 4(a), both of these states are stable and show no sign of spinodal decomposition.
Instead, a depletion front moves through the gel. At a later time (i.e., t\sim 30000), as
the front approaches the substrate, the solvent concentration \phi s(0, t) increases slightly
before decreasing to its new linearly stable steady-state value, with a slightly higher
salt but a much lower solvent concentration.

5.1. Phase-plane analysis. The slow movement of the depletion fronts on the
diffusive timescale suggests that these structures are in a quasi-stationary state, which
simplifies their analysis by enabling the time derivatives and fluxes from the system
(3.9)--(3.10) to be neglected so that the solution will only depend on the spatial
variable z. Since fluxes are negligible, \mu s, \=\mu are almost constant (independent of z)
in an O(1) vicinity of the front. With this assumption and after rescaling z with \omega ,
we have

\partial z\phi s = q,(5.3a)

\partial zq=
1

1 - \phi s
[B(\phi s, \phi +) - \mu s] - 

1

2(1 - \phi s)
q2,(5.3b)

\mu s =
\phi s  - 1

2\phi s
[\=\mu  - A(\phi s, \phi +)] +B(\phi s, \phi +) - 

1

2\phi s
q2,(5.3c)

where A and B are as defined by (3.10h)--(3.10i) and we introduce the auxiliary
variable q. The fixed points (q,\phi s, \phi +) = (0, \phi 0

s, \phi 
0
+) of the system (which correspond

to homogeneous equilibrium states for the full model) are found from (5.3) via

(5.4) A(\phi 0
s, \phi 

0
+) = \=\mu , B(\phi 0

s, \phi 
0
+) = \mu s.

As shown in Figure 6, the number of fixed points varies depending on the values
assigned to \mu s and \=\mu . For sufficiently small values of \mu s (see \mu s = - 0.1, for example),
the system has a unique fixed point. As we increase the value of \mu s, there is an
intermediate region near \mu s = 0 where multiple fixed points can exist depending on
the values of \=\mu . As shown on the right-hand side panel of Figure 6, when considering
\mu s = 10 - 4, the system has three fixed points when \=\mu is below a critical negative
value, i.e., in the dilute limit \phi 0

+ \ll 1. As \=\mu increases, the system undergoes a saddle-
node bifurcation resulting in a unique fixed point. Note that the equilibrium states
computed in section 4 are a subset of the fixed points of the system (5.3), as the
values of \mu s and \=\mu are not independent, being set by the ionic bath via the boundary
conditions (3.11b)--(3.11c).

For our local analysis, we note that the depletion front represents a narrow, slowly
moving transition between two almost homogeneous states so that we can approximate
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THE DYNAMICS OF A COLLAPSING POLYELECTRONIC GEL 1159

Fig. 6. Level sets for the functions A and B (defined by (3.10h)--(3.10i)) that define the fixed
points of the system (5.3). Note that the functions are expressed in terms of \phi 0

s and \phi 0
+. The dashed

line in right panel is taken from the left one (i.e., \mu s \equiv 10 - 4). The value of the parameters \chi , \alpha f

and \scrG are given in (3.13a).

it by a quasi-stationary solution that tends to homogeneous states as z \rightarrow \pm \infty . We
then linearize around (0, \phi 0

s, \phi 
0
+) and determine the number of modes consistent with

these limits, which we then use to carry out a degree-of-freedom count. We make the
ansatz

(5.5) \phi s = \phi 0
s + \delta \phi 1

se
sz, q= \delta q1esz, \phi + = \phi 0

+ + \delta \phi 1
+e

sz,

with \delta \ll 1 and s being a constant. Inserting this, we obtain at O(\delta ) the condition

(5.6)

\left[  B\phi s
 - (1 - \phi 0

s)s
2 B\phi +

(1 - \phi 0
s)A\phi s

+ 2\phi 0
sB\phi s

(1 - \phi 0
s)A\phi +

+ 2\phi 0
sB\phi +

\right]  \left[  \phi 0
s

\phi 0
+

\right]  = 0,

where the subscripts \phi s and \phi + denote partial derivatives of A and B, which are
evaluated at the equilibrium point (\phi 0

s, \phi 
0
+). In order for the system to have nontrivial

solutions, we must set the determinant of the coefficient matrix to zero, which gives

(5.7) s2 =
A\phi +B\phi s  - A\phi sB\phi +

(1 - \phi 0
s)A\phi + + 2\phi 0

sB\phi +

.

We therefore conclude that the equilibrium is a saddle point if s2 > 0. We now seek
a nonhomogeneous quasi-stationary solution connecting two saddle points, (0, \phi a

s , \phi 
a
+)

and (0, \phi b
s, \phi 

b
+). This corresponds to imposing the far-field conditions (\phi s, \phi +) \rightarrow 

(\phi a
s , \phi 

a
+) and (\phi s, \phi +) \rightarrow (\phi b

s, \phi 
b
+) as z \rightarrow  - \infty and z \rightarrow +\infty , respectively. When

considering the degrees of freedom in the solution, we have one mode for each saddle
point, which is consistent with the limit, namely, sa < 0 for (0, \phi a

s , \phi 
a
+) and sb > 0

for (0, \phi b
s, \phi 

b
+). These account for two degrees of freedom, which, together with the

two unknown constants \mu s and \=\mu , add up to four degrees of freedom. The system
(5.3) is second order and hence removes two degrees of freedom, and the invariance
of any solution with respect to translations along the z-axis subtracts another one.
Hence, one degree of freedom remains, and this is associated with \=\mu , which needs to
be given. We note that a full expansion at higher orders about the quasi-stationary
solution might lead to additional constraints that fix the degree of freedom remaining
in the system. However, this goes beyond the purpose of this analysis, which aims at
understanding the structure of the depletion front.
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1160 CELORA, HENNESSY, MUENCH, WAGNER, AND WATERS

5.1.1. The limit of dilute salt concentrations. We here consider the limit
of dilute salt concentration, i.e., \phi + \ll \phi s < 1, which is representative of the numerical
results from Figure 5. Here, we use the same equations and boundary conditions and
the same parameter set, where \phi + is small. Inspired by the scaling (5.2), we rescale
the model variables via

(5.8) \phi + = \alpha f \epsilon 
2 \~\phi +, \=\mu = 2 ln(\alpha f \epsilon ) + \~\mu ,

where the dilute limit is therefore taken by considering \epsilon \rightarrow 0. Note that if we define
\epsilon = \phi 0+/\alpha f , we recover (5.2) up to a factor 1 - \phi s, allowing us to relate the phase-
plane analysis to the numerical simulations in the presence of a bath (which is instead
here neglected). Substituting (5.8) into (5.3) and considering only the leading order
problem in this limit, we obtain

\partial z\phi s = q,(5.9a)

\partial zq=
1

1 - \phi s
[B0(\phi s) - \mu s] - 

1

2(1 - \phi s)
q2,(5.9b)

\mu s =
1 - \phi s

2\phi s

\Bigl[ 
A0(\phi s, \~\phi +) - \~\mu 

\Bigr] 
+B0(\phi s) - 

1

2\phi s
q2,(5.9c)

with

A0(\phi s, \~\phi +) = ln

\Biggl[ \biggl( 
1 - \phi s

1 + \alpha f

\biggr) \~\phi +

\phi 2
s

\Biggr] 
 - 2\chi 

\biggl( 
1 - \phi s

1 + \alpha f

\biggr) 
+ 2B0(\phi s),(5.9d)

B0(\phi s) = ln(\phi s) + (\chi (1 - \phi s) + 1)

\biggl( 
1 - \phi s

1 + \alpha f

\biggr) 
+ \scrG (1 + \alpha f )

2  - (1 - \phi s)
2

(1 + \alpha f )(1 - \phi s)
.(5.9e)

Equations (5.9a) and (5.9b) decouple from the algebraic constraint (5.9c). The
first integral of (5.9a) and (5.9b) is then used to investigate the phase plane as a
function of the chemical potential \mu s as illustrated in Figure 7. In contrast to a
nonionic hydrogel [15], the contribution of the fixed charges allows multiple fixed
points to exist when \mu s = 0, i.e., for a gel in contact with pure water. There is a unique
critical value of \mu s, denoted by \mu c

s, for which the two saddle points are connected by
an heteroclinic orbit, corresponding to a front-type nonhomogeneous quasi-stationary
solution (see Figure 7(b)). If \mu s < \mu c

s as shown in Figure 7(a), there is a homoclinic
orbit attached to the right fixed point (i.e., the orange point), corresponding to a
quasi-stationary solution with a localized solvent-depleted zone. On the contrary, for
\mu s >\mu c

s, the homoclinic orbit is attached to the left fixed point (i.e., the blue point; see
Figure 7(c)), which represents a localized solvent-rich zone. We can find the critical
value of \mu s by combining (5.9a) and (5.9b) into a second-order equation and using
f = 1/

\surd 
1 - \phi s as an integrating factor to obtain\int \phi b

s

\phi a
s

B0(\phi s) - \mu s

(1 - \phi s)2
d\phi = 0,(5.10a)

B0(\phi 
a
s) - \mu s = 0, B0(\phi 

b
s) - \mu s = 0,(5.10b)

where \phi a
s and \phi b

s are the values of the solvent fraction at the two saddle points.
Note that this is a Maxwell condition for the coexisting states \phi a

s and \phi b
s, which are

independent of the ion fraction \~\phi + in the dilute limit. Solving numerically the system
with the parameters for \alpha and \chi and \scrG corresponding parameter set 1 in (3.13) gives

(5.11) \mu s = 0.903\times 10 - 4, \phi a
s = 0.883, \phi b

s = 0.710.
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THE DYNAMICS OF A COLLAPSING POLYELECTRONIC GEL 1161

(a) (b) (c)

Fig. 7. Phase-plane analysis for the dilute limit (i.e., (5.9a) and (5.9b)) with parameters as in

(3.13a) and three different values of \mu s: (a) \mu s <\mu 
(c)
s ; (b) \mu s = \mu 

(c)
s for which there is an heteroclinic

orbit connecting the two equilibrium state; (c) \mu s >\mu c
s. Fixed points are highlighted by small circles,

trajectories leaving from or asymptoting into fixed points are indicated by solid colored lines, while
all other trajectories are denoted by dashed black lines.

Fig. 8. Comparison of the asymptotic approximation for the phase-plane solution (5.9)--(5.10)
(shown with dashed red lines) for \phi s, \phi +, and \mu s with the numerical results from Figure 5 at a
time t= 30075 when the concentration profile fronts have settled into a quasistationary state (solid
black lines), using the parameter set 1 in (3.13). A single shift along the Z-axis was applied to all
phase-plane profiles so that \phi s matches the numerical solution at \phi s = 0.8.

As shown in Figure 8, the phase-plane analysis is overall in good agreement with
the dynamical simulation from Figure 5. While the value of \mu s at the free interface
(i.e., Z = 1) is set by the bath, in the bulk of the gel, \mu s sets around the critical value
obtained by our phase-plane analysis (see (5.11)). Note that provided \~\mu is known
from the numerical simulations, we can use the constraint (5.9c) to compute \~\phi +. In
this set of simulations, we find \~\mu \in (2.75\times 10 - 8,3.89\times 10 - 4), that is, \~\mu \ll ln(\epsilon \alpha f ),
and therefore (see (5.8)) we have set it to zero for the phase-plane solutions involving
parameter set 1.

5.1.2. The general case. We now explore the nondilute limit. This requires
solving the general case of (5.3)--(5.4), which is done numerically applying a shooting
method. Starting from slightly perturbed values for the left state, we integrate the
resulting initial value problem for a system of differential algebraic equations (DAEs),
rewritten in terms of \phi s and \phi + as the dependent variables. For a fixed the value of \~\mu ,
there is a unique value of \mu s such that the trajectory connects to the right equilibrium.
The critical value of \mu s is then determined using a bisection iteration. The resulting
solution defines \mu s and the associated values for the left and right state \phi a

s and \phi b
s for

\phi s and similarly for \phi  - .
For the case of \~\mu equal to zero, the results are shown in Figure 9. The plots in

(a) show graphs of the values for 100\mu s and for the values of the two equilibrium
states for \phi 0

s and \~\phi 0
+ as a function of \phi 0+ = \alpha f \epsilon (5.10). Moreover, near to \epsilon = 0, the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1162 CELORA, HENNESSY, MUENCH, WAGNER, AND WATERS

(a) (b)

Fig. 9. (a) The figure shows graphs of 100\mu s, \phi a
s , \phi 

b
s,

\~\phi a
+, and \~\phi b

+, listed in order from bottom

to top. The diamonds at \epsilon = 0 represent the values 100\mu \alpha , \phi \alpha 
s , \phi 

\beta 
s , \~\phi \alpha 

+, and \~\phi \beta 
+ obtained from the

asymptotic solution as given by (5.11) and (5.9c). (b) This log-log plot has graphs for | \mu s  - \mu \alpha 
s | ,

\phi a
s  - \phi \alpha 

s , \phi b
s  - \phi \beta 

s , \~\phi a
+  - \~\phi \alpha 

+, | \~\phi b
+  - \~\phi \beta 

+| . The short top line represents a quadratic function and is
included to guide the eye.

behavior is quadratic, as can be seen from the log-log plot in Figure 9(b), consistent
with neglecting O(\epsilon 2)-terms in (5.9). However, for \alpha f \epsilon greater than 1 \times 10 - 3, the
value for \~\phi +,2 departs from this behavior and in fact passes through a maximum as it
reverses its trend. We remark that \mu s is positive for \alpha f \epsilon \leq 5.45\times 10 - 3 and negative
for larger values of \epsilon .

A comparison between DAE solutions and the PDE simulation where the dilute
approximation is no longer valid will be carried out in section 6.2. There, we show
that the estimates from the phase space analysis for the DAE system (5.3)--(5.4) can
be used to investigate the structure observed in Figure 3 (set 2). In addition, for
parameter set 1, a comparison of the results from the DAE system (5.3)--(5.4) and
the PDE simulations is given in the supplemental notes, section SM4.

6. Spinodal decomposition. In the previous section, we have seen how chang-
ing the properties of the bath can be sufficient to induce phase separation of the gel
via development and propagation of a depletion front. In this section, we are inter-
ested in another common modality of phase separation: spinodal decomposition. In
this scenario, a spatially homogeneous region of the gel spontaneously separates into
regions of high and low solvent content once perturbed with noise. This can occur
when the homogeneous state the gel is in is unstable. As discussed in [15], spinodal de-
composition can be induced in neutral gels by changing the temperature T and hence
the parameter \chi . While we will also discuss this scenario briefly (see Figure 12), for
the polyelectrolyte gels studied here, we examine whether spinodal decomposition can
also be induced by changing the ion concentration in the bath.

6.1. Stability analysis. As shown in Figure 3, the transition between different
equilibrium states can also be accompanied by phase separation via spinodal decom-
position of the gel bulk (region ahead of the front). To understand this mechanism,
we investigate the stability of the initial homogeneous composition of the gel bulk,
here denoted by (\=\phi s, \=\phi +), to small amplitude perturbations. As in section 5.1, we
rescale z with \omega , which is the characteristic length scale of the internal interfaces;
to ease the algebra, we further scale t with \omega  - 1. Since \omega is small, the homogeneous
region of the gel now fills the entire space  - \infty < z <\infty .

We can now perturb the base state (\=\phi s, \=\phi +) with normal modes suitable for an
infinite domain by letting

(6.1) \phi s = \=\phi s + \delta \~\phi se
ikz+\lambda t, \phi + = \=\phi + + \delta \~\phi +e

ikz+\lambda t

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE DYNAMICS OF A COLLAPSING POLYELECTRONIC GEL 1163

with k \in \BbbR , \delta \ll 1, and \lambda \in \BbbC being the wavenumber, amplitude, and growth rate
of the perturbation. Substituting (6.1) into the governing equations (3.9)--(3.10) and
keeping only the O(\delta ) terms leads to the 2\times 2 system

\lambda \~\phi s + k2
\bigl[ \bigl( 
1 - \=\phi s

\bigr) 
\~js  - 2\=\phi s

\~j+
\bigr] 
= 0,(6.2a)

\lambda \~\phi + + k2
\bigl[ \bigl( 
1 - 2\=\phi +

\bigr) 
\~j+  - \=\phi +

\~js
\bigr] 
= 0,(6.2b)

where \~js and \~j+ are the solution of the linear system\biggl( 
1 +

\alpha f
\=\phi n

\scrD \=\phi s

\biggr) 
\~js  - 

\alpha f
\=\phi n

\scrD \=\phi  - 
\~j+ =

\Bigl[ \bigl( 
\=\phi sB\phi +

+ \=\phi +A\phi +

\bigr) 
\~\phi +(6.2c)

+
\bigl( 
k2 \=\phi s (1 + \alpha f ) \=\phi n + \=\phi sB\phi s

+ \=\phi +A\phi s

\bigr) 
\~\phi s

\Bigr] 
\biggl( 
1 +

\=\phi +

\=\phi  - 

\biggr) 
\~j+  - 2\=\phi +

\=\phi s

\~js =\scrD \=\phi +

\Bigl[ \bigl( 
A\phi +

 - 2k2 \=\phi s

\bigr) 
\~\phi s +A\phi +

\~\phi +

\Bigr] 
.(6.2d)

The subscripts \phi s, \phi + now denote the derivatives of A and B with respect to these
variables evaluated at (\=\phi s, \=\phi +). The values of \=\phi  - and \=\phi n are defined by evaluating
(3.10f)--(3.10g) at \=\phi s, \=\phi +. Note that we could have solved explicitly for \~js and \~j+, but
this would not benefit the exposition given the complexity of the equations. Imposing
that the system (6.2) has nontrivial solution, we obtain the growth rate \lambda = \lambda (k) as
the roots of the characteristic polynomial,

(6.3) Pk(\lambda ) = \lambda 2 +
\zeta 20 + \zeta 22k

2

\zeta 1
k2\lambda +

\zeta 30 + \zeta 32k
2

\zeta 1
k4\scrD ,

where the relevant coefficients \zeta are functions of (\=\phi s, \=\phi +) (see supplemental material
(suppmats.pdf [local/web 295KB]), section SM3) and \zeta 1 > 0. The two roots of (6.3)
are

\lambda \pm (k) =
1

2

\biggl[ 
\scrT k \pm 

\sqrt{} 
\scrT 2
k  - 4\Delta k

\biggr] 
,(6.4a)

\scrT k = - \zeta 20 + \zeta 22k
2

\zeta 1
k2, \Delta k =

\zeta 30 + \zeta 32k
2

\zeta 1
k4\scrD .(6.4b)

The homogeneous state is stable if and only if the real part of \lambda \pm (k) is negative for
all k. We note that \lambda \pm (k) are equivalent to the eigenvalues of the linear dynamical
system \.\bfity =Ak\bfity , where \bfity \in \BbbR 2 and Ak \in \BbbR 2\times 2 has trace \scrT k and determinant \Delta k. We
will refer to this class of dynamical systems, which is parametrized by k, as \Sigma k. The
problem of studying the stability of the mode k is therefore analogous to studying the
stability of (0,0) for the system \Sigma k. We therefore have that the kth mode is stable
if and only if \scrT k < 0 and \Delta k > 0. When considering k \gg 1, \Delta k \approx \scrD k6\zeta 32/\zeta 1 and
\scrT k \approx  - \zeta 22k

4/\zeta 1. Since \zeta 1, \zeta 22, and \zeta 32 are always positive, the conditions of stability
are always satisfied for large wavenumbers. This implies that (\=\phi s, \=\phi +) is unstable if
and only if the system \Sigma k has at least a bifurcation point k\ast > 0, where the stability
of \bfity = (0,0) changes. If \Sigma k has no bifurcation point, then (\=\phi s, \=\phi +) is stable. Let us
assume such k\ast > 0 exist. Then

either \Delta k\ast = 0 and \scrT k\ast \leq 0(6.5a)

or \Delta k\ast \geq 0 and \scrT k\ast = 0,(6.5b)

where (6.5a) corresponds to (0,0) switching from a saddle to a stable node, while (6.5a)
corresponds to a transition from an unstable to a stable spiral. The first scenario can
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1164 CELORA, HENNESSY, MUENCH, WAGNER, AND WATERS

occur only if \zeta 30 < 0 and \zeta 30\zeta 22 - \zeta 20\zeta 32 \leq 0 (condition 1), while the second can occur
only if \zeta 20 < 0 and \zeta 30\zeta 22  - \zeta 20\zeta 32 \geq 0 (condition 2). If we denote by \scrS  - the set
of unstable homogeneous states, this is given by the union of the subsets of states
satisfying condition 1 or 2. Manipulating the given inequalities, we find that the
condition on \zeta 30\zeta 22  - \zeta 20\zeta 32 does not actually play a role in determining the stability
of a homogeneous state and \scrS  - is given by

(6.6) \scrS  - =
\bigl\{ 
(\=\phi s, \=\phi +)\in (0,1)2 s.t. \zeta 30(\=\phi s, \=\phi +)< 0 or \zeta 20(\=\phi s, \=\phi +)< 0

\bigr\} 
.

The spinodal curve, which delimits the region of stability, is therefore

(6.7)
\partial \scrS =

\bigl\{ 
(\=\phi s, \=\phi +)\in (0,1)2 s.t. \zeta 30(\=\phi s, \=\phi +) = 0\& \zeta 20(\=\phi s, \=\phi +)\geq 0

\bigr\} \bigcup \bigl\{ 
(\=\phi s, \=\phi +)\in (0,1)2 s.t. \zeta 30(\=\phi s, \=\phi +)\geq 0 \& \zeta 20(\=\phi s, \=\phi +) = 0

\bigr\} 
.

6.1.1. The limit of dilute salt concentration. Let us define \=\phi + = \alpha f \epsilon 
2 \~\phi +

(as in section 5.1) and take the limit \epsilon \rightarrow 0. Reasoning as in the previous section
(more details are in section SM3.1 of supplemental material (suppmats.pdf [local/web
295KB])), we obtain that the stability of the system is governed by the leading order

approximation of the coefficients \zeta 
(0)
20 and \zeta 

(0)
30 , which are of the form

(6.8) \zeta 
(0)
20 =

(\=\phi 
(0)
n ) - 1

1 + \alpha f

\Bigl( 
B

(0)
\phi s

\=\phi s(1 - \=\phi s) +
\Bigl[ 
\scrD + \alpha f

\=\phi  - 1
s

\=\phi (0)
n

\Bigr] \Bigr) 
, \zeta 

(0)
30 = \=\phi sB

(0)
\phi s

,

where B
(0)
\phi s

=B
(0)
\phi s

(\=\phi s) only depends on the concentration of the solvent. It is therefore

apparent that when \zeta 
(0)
20 = 0, \zeta 

(0)
30 < 0, while whenever \zeta 

(0)
30 = 0, \zeta 

(0)
20 > 0. Consequently,

the spinoidal curve \partial \scrS as in (6.7) reduces to

\partial \scrS =
\Bigl\{ 
\=\phi s \in (0,1) s.t. B

(0)
\phi s

(\=\phi s) = 0
\Bigr\} 
,(6.9a)

where

B
(0)
\phi s

(\=\phi s) = \=\phi  - 1
s  - 

\bigl[ 
1 + 2\chi (1 - \=\phi s)

\bigr] 
1 + \alpha f

+
\scrG 

1 + \alpha f

\Biggl[ 
1 +

\biggl( 
1 + \alpha f

1 - \=\phi s

\biggr) 2
\Biggr] 
.(6.9b)

As discussed in the supplemental material (suppmats.pdf [local/web 295KB]),
section SM3.1, (6.9) still holds for \alpha f \rightarrow 0. Furthermore, setting \alpha f = 0, we retrieve
the same result as in [15] for phase separation in neutral hydrogels (i.e., gel with no
fixed charge on the polymer network). As shown in Figure 10(a), as we increase \alpha f , the
domain \scrS  - shrinks, which means that a higher concentration of fixed charges on the
polymer network can stabilize the system. Small perturbations of the homogeneous
state will generate an electric field that tends to redistribute charges homogeneously.
As the number of fixed charges in the network increases, so does the strength of
the electric field, resulting in the stabilization of homogeneous states. As shown in
Figure 10(b), we can see a similar trend also for the nondilute limit (more details in
the following section). Fixed charges tend again to stabilize the system; however, for
larger \=\phi +, the shrinking of the unstable region \scrS  - is less than in the dilute scenario.

6.1.2. The general case. Let us now go back to the general case of a nondilute
solutions. For the reference parameter values in (3.13), we have that \zeta 20(\=\phi s, \=\phi +) is
always positive. This implies that the transition to instability can only occur via a
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THE DYNAMICS OF A COLLAPSING POLYELECTRONIC GEL 1165

(a) (b)

Fig. 10. Effect of the fixed charges on the stability region of an homogeneous steady state for
(a) dilute salt solution (b) nondilute solution (\=\phi + = 0.05). We highlight with color the instability
region \scrS  - , which is the region contained in the curve \partial S. In both plots, \scrG is set to its default given
in (3.13a).

(a) \chi = 0.75. (b) \chi = 0.78. (c) \chi = 1.5.

Fig. 11. Plots of the instability region \scrS  - (as defined by (6.6)) for increasing values of \chi .
Parameters \alpha f and \scrG are set to their default given in (3.13a).

saddle-node bifurcation. Hence, \partial \scrS is implicitly defined by \zeta 30(\=\phi s, \=\phi +) = 0, which can
be computed via numerical continuation.

As shown in Figure 11, for concentrations \=\phi + < 10 - 4, the shape and size of the
domain \scrS  - is independent of the actual value of \=\phi +, in line with the result from the
dilute analysis in section 5.1. As we move away from the dilute limit by increasing \=\phi +,
two scenarios are possible. If \chi is sufficiently small (as in Figure 11(a)--11(b)), then
the size of \scrS  - tends to increase with \=\phi +. This is particularly evident in Figure 11(a),
where in the dilute regime all homogeneous states are stable, and the system only
allows for spinodal decomposition to occur in the nondilute regime, i.e., \=\phi + \approx 10 - 3.
If we are, however, to increase \=\phi + further (i.e., \=\phi + \approx 10 - 2), then \scrS  - starts to shrink,
and the unstable state corresponds to a less swollen gel. If \chi is chosen to be even
larger (such as Figure 11(c)), then increasing \=\phi + only results in the shrinking of the
instability region. We note that Figure 11(b) is generated using the default parameter
values used in the paper and given in (3.13a); consequently, the spinodal region in
Figure 11(b) is the same one presented in Figures 3, 4(a), and 13. Furthermore, the
linear stability analysis reveals that the parameter \omega , related to the interfacial energy,
does not influence the boundary of the region of linear stability for the system (both
in the dilute and nondilute cases). However, the larger \omega is, the smaller the value
of largest unstable mode k\ast is, where k\ast \rightarrow \infty as \omega \rightarrow 0. The initial development
of instability will be thus driven by the mode k < k\ast corresponding to the largest
positive growth rate \lambda (k). Therefore, \omega does not determine (in the limit where \omega is
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Fig. 12. Spinodal decomposition in an isolated gel. Initially (see red point in the phase plane),
the gel is equilibrated with a bath (\phi 0 - = 5 \times 10 - 3). At time t = 0, we isolate the gel, increase
\chi from 0.78 to 1.2 (see green point in the phase plane), and introduce some noise. On the left,
we illustrate the evolution of the \phi s approximated solving numerically (3.9)--(3.10) with boundary
conditions (3.12); on the right, we identify the manifold \partial \scrS that divides the stable (yellow) and
unstable (blue) region. The points P and Q represent the peak and the trough of the spikes. We use
the values \scrG = 0.001, \omega = 0.01, \alpha f = 0.04, and \scrD = 5.

small compared to the size of the gel) whether spinodal decomposition occurs or not,
but it can impact the spatial patterns that emerge as a result of instability.

Based on stability analysis, we now want to identify how we can drive spinodal
decomposition in a gel. A standard approach is to increase the value of \chi (i.e., the
temperature) [15]. This exploits the fact that size of the domain \scrS  - increases with
\chi and that moving along a vertical line in Figure 10 can push the system into the
unstable regime.

We explore this scenario numerically by considering an initially homogeneous gel
in equilibrium with an ionic bath (parameter values \phi 0 = 5 \times 10 - 3 and \chi = 0.78).
At time t = 0, the gel is isolated, and the temperature is raised so that \chi increases
to \chi = 1.2. As shown in the phase plane in Figure 12, this is sufficient to move the
system from the stable region (see the red point in the phase plane of Figure 12)
into the unstable regime (see the green point in the phase plane of Figure 12). As
we introduced some noise in the system, growing perturbations rapidly fill the entire
length of the gel and then begin to coarsen or collide, resulting in fewer and broader
spikes. As shown in the phase plane in Figure 12, the peak (point P) and trough
(point Q) of the spikes are located in the region of linear stability. Hence, no further
instabilities develop. Over time, the evolution slows down until the pattern is almost
stationary. However, we expect that, in principle, coarsening continues until only
two regions remain, one in the collapsed state with \phi s \approx 0.3 and the other in the
swollen state with \phi s \approx 0.9. These two end-state values are stable, as indicated in the
rightmost panel in the figure.

6.2. Spinodal decomposition of a collapsing gel. The stability analysis,
however, hints at another possible mechanism to drive spinodal decomposition in
polyelectrolyte gels: increasing the concentration of co-ions in the system. Experi-
mentally, this can be achieved by maintaining the gel in contact with the bath and
increasing \phi 0. As discussed in section 5, the ions rapidly diffuse in the gel bulk
while the solvent concentration remains constant in this fast transient. Exploiting the
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Fig. 13. Spinodal decomposition in a collapsing gel: (top) time evolution of the gel composition
(\phi s, \phi +) at location z = 0. The instability region \scrS  - as predicted by the stability analysis is high-
lighted in blue (details on how this is computed are given in section 6.1.2); the panel on the right
is a zoom near the green star and the blue dot to better visualize the complexity of the trajectories;
(bottom) snapshot of the gel composition at different time points approximated solving numerically
(3.9)--(3.11) with parameter values corresponding to set 2 in (3.13).

full dynamic 
simulation

heteroclinic 
orbit

homoclinic 
orbit

Fig. 14. Comparison of the phase-plane solution and the numerical values of \phi s, \phi  - , and \phi +

at time t = 501 estimated from the full dynamical simulation (same parameter values as Figure
13). We compare the front from the solution of the simulation of the full system (blue curve) with
the approximated heteroclinic orbit for (5.3). The downward spikes are instead compared with the
approximated homoclinic orbit (green crosses) for (5.3). Details on the computations can be found
in section 5.1.2.

different timescales in the system, we can therefore move along horizontal lines in the
phase plane of Figure 11. For \chi = 0.78 (as in the simulation in section 5), changes in
the instability region \scrS  - occur only when \phi + \sim O(10 - 3). Using (5.2), we obtain that
\phi 0+ must be increased to \phi 0+ \sim O(10 - 2) in order to exploit the growth of \scrS  - .

An example of this scenario is shown in Figure 13, where we present the results
of the numerical simulation for set 2 in (3.13). As expected, the ions rapidly diffuse
in the gel, driving the bulk of the gel into the unstable region of the phase diagram;
see t = 26 in the right panel of Figure 13. This results in the onset of spinodal
decomposition, which gives rise to a series of solvent-depleted phases, which coarsen
and collide first rapidly and then very slowly. Interestingly, at the center of each region
with a low solvent concentration, there is also a high counter-ion (\phi  - ) concentration as
a consequence of maintaining electroneutrality (see Figure 14). As shown in Figure 13,
on a longer timescale, the depletion front propagates into the gel, consuming the array
of solvent-depleted domains. When comparing with the result in Figure 5, we note
that the front propagates faster in this case, with spinodal decomposition facilitating
the removal of solvent from the gel.
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Again, we can use phase-plane analysis (see section 5.1) for (5.3)--(5.4) to predict
the structure of the collapsing gel. In doing so, we set \~\mu = 0 since, numerically, we
find that | \~\mu | < 10 - 3 \ll ln\alpha f \epsilon . When considering the depletion front, the full model
and the phase-space analysis prediction deviate slightly. As shown in Figure 14, the
front obtained via phase-plane analysis is too steep, and its lower limit does not
capture the actual right state of the front very well. The interface of the solvent-
depleted subdomains forming in the bulk of the gel yields a better comparison with
a homolinic orbit. The value of \mu s was chosen so that the minimum value for \phi s

matches the local minimum for the PDE simulations next to the depletion front (see
first panel in the figure). The homoclinic orbit matches the PDE simulations almost
perfectly for all three variables displayed in the panels. A possible explanation of the
higher discrepancy is that the front evolves more rapidly so that the quasi-stationary
assumption underlying the phase-plane analysis breaks down. This is located near the
free interface, where we have larger variations in the chemical potentials and therefore
fluxes so that the quasi-stationary assumption underlying phase-plane analysis may
not hold.

7. Conclusions. In this study, we have focussed on the transient dynamics of a
polyelectrolyte gel in contact with a ionic bath containing a monovalent salt. Starting
from a homogeneous equilibrium, we initiate the collapse of the gel by changing the
surrounding salt concentration. Depending on the properties of the system, temporary
patterns form with highly swollen and collapsed regions coexisting in the gel. Using
the phase-field model developed in the companion paper [4], we can track the evolution
of these internal interfaces, delineating the regions where the gel network has collapsed
after they have formed via phase separation. We here consider the case of a one-
dimensional constrained geometry, with a single free interface in contact with the
bath. The model is further simplified by passing to the electroneutral limit, justified
by the infinitesimal size of the electric double layer compared to the other spatial
scales in the model.

Depending on the value of various model parameters, such as the Flory interaction
parameter \chi , the gel shear modulus \scrG , and the ratio of the salt concentration in the
bath and the fixed charges on the polymer network \epsilon = \phi 0/\alpha f , the stability properties
of the homogeneous states vary. Our numerical results for the case where the gel is
isolated from the bath (by using no-flux boundary conditions at the free interface)
show that as the unstable homogeneous state undergoes spinodal decomposition, it
forms arrays of locally collapsed solvent-depleted domains with a high concentrations
of counter-ions. These eventually coarsen into a new stable equilibrium.

When in contact with the bath, the gel is sensitive to the salt concentration \phi 0

in the surrounding fluid. Increasing \phi 0 initiates and drives the collapse of the gel.
This process is characterized by a depletion front that forms via phase separation
and travels into the gel. Using phase-plane analysis, we are able to show that the
depletion front selects the homogeneous states at its front and rear. These are always
linearly stable. In the spinodally unstable regime, the emerging structure of collapsed
solvent-depleted domains are well approximated by homoclinic solutions of the DAE
system and are consumed by the depletion front that propagates through the gel on
a faster timescale than the coarsening process.

Even though our analysis is currently only one-dimensional, it sheds light on the
possibility of observing these patterns experimentally. Depending on parameter set-
tings, the transient patterns with a high concentration of \phi  - in the collapsed and
a high concentration of \phi + in the swollen regions are in principle observable. Our
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approach provides a template for how mathematical techniques such as phase-plane
analysis and stability analysis can elucidate the notoriously complicated models for
polyelectrolytes beyond numerical simulations, particularly when employed in combi-
nation.

An important consequence of our approach is that fundamental quantities, such as
the velocity of the localized front, can now be predicted using an asymptotic analy-
sis based on our approximation of the depletion front. Our analysis can also be
easily generalized to settings that account, for example, for multivalent salts and
concentration-dependent permittivity and may allow to capture further scenarios of
collapse. This will be carried out in our forthcoming work in the one-dimensional
setting as well as in higher-dimensional formulations.
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