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Regional genetic correlations highlight relationships
between neurodegenerative disease loci and the
immune system
Frida Lona-Durazo1,2, Regina H. Reynolds 3,4, Sonja W. Scholz5,6, Mina Ryten 3,4,7 &

Sarah A. Gagliano Taliun 1,8✉

Neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are devastating

complex diseases resulting in physical and psychological burdens on patients and their

families. There have been important efforts to understand their genetic basis leading to the

identification of disease risk-associated loci involved in several molecular mechanisms,

including immune-related pathways. Regional, in contrast to genome-wide, genetic correla-

tions between pairs of immune and neurodegenerative traits have not been comprehensively

explored, but could uncover additional immune-mediated risk-associated loci. Here, we

systematically assess the role of the immune system in five neurodegenerative diseases by

estimating regional genetic correlations between these diseases and immune-cell-derived

single-cell expression quantitative trait loci (sc-eQTLs). We also investigate correlations

between diseases and protein levels. We observe significant (FDR < 0.01) correlations

between sc-eQTLs and neurodegenerative diseases across 151 unique genes, spanning both

the innate and adaptive immune systems, across most diseases tested. With Parkinson’s, for

instance, RAB7L1 in CD4+ naïve T cells is positively correlated and KANSL1-AS1 is negatively

correlated across all adaptive immune cell types. Follow-up colocalization highlight candidate

causal risk genes. The outcomes of this study will improve our understanding of the immune

component of neurodegeneration, which can warrant repurposing of existing immu-

notherapies to slow disease progression.
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Adult-onset neurodegenerative diseases, such as Alzhei-
mer’s disease (AD), Parkinson’s disease (PD), and
amyotrophic lateral sclerosis (ALS), are devastating con-

ditions affecting populations worldwide and resulting in a large
physical and psychological burden to patients and their families.
Neurodegeneration occurs when the cells in the nervous system
deteriorate, leading to cell death caused by various pathological
factors and possibly multiple biological systems. Large-scale
genome-wide association studies (GWASes), which have mostly
been conducted in individuals of European genetic ancestry,
identified multiple risk loci associated with AD, PD, ALS, and
other complex neurodegenerative diseases1–7. However, there is a
gap in our understanding of the mechanisms by which genetic
risk factors influence the pathogenesis of neurodegenerative
diseases.

Computational and experimental evidence of several complex
neurodegenerative diseases suggest that the immune system is
involved in disease development4,7–11 (Supplementary Fig. 1). For
instance, there is experimental evidence in transgenic mice sug-
gesting an association between AD progression and accumulation
of B cells and immunoglobulin deposits around Aβ plaques9. In
addition, computational evidence has shown a genetic enrich-
ment of AD GWAS signals across the innate and adaptive
immune systems8,9. Further, an experimental study uncovered
the role of CD4+ T cells in brains of Lewy Body Dementia (LBD)
patients and its relationship with neurodegeneration12. In the
case of ALS, the largest GWAS identified the Human Leukocyte
Antigen (HLA) region as a novel disease risk locus, and an
epigenome-wide association study highlighted an enrichment of
Immunoglobulin E as associated with disease risk5,13. In addition,
the immune system is thought to be implicated in PD, in which
the gene LRRK2 is a shared disease risk for Crohn’s disease (CD)
and PD10,14. Further, tyrosine kinase inhibition has shown to
modulate the immune response in PD15. These findings motivate
the study of links between neurodegeneration and immune pro-
cesses. The wealth of large-scale omic data becoming available
presents a unique opportunity to apply new data-driven
approaches to better understand the molecular and cellular
immune-related mechanisms influencing neurodegenerative dis-
eases, through the lens of genetics.

Pinpointing targets for neurodegenerative diseases in specific
cell types involved in the immune system will be key to down-
stream repurposing of existing immune therapies as treatment
options for certain neurodegenerative diseases. Here, we identify
and investigate shared genomic loci between immune function
and risk of neurogenerative disease risk using bioinformatics tools
with large-scale GWAS datasets and expression quantitative trait
loci (gene expression and protein). In our investigation of the role
of immune-mediated pathways in neurodegenerative diseases, we
not only demonstrate known relationships among genes, cell
types and diseases, but also identify, to the best of our knowledge,
new potential links. Our approach pinpoints pertinent genes in a
particular cell type for a particular neurodegenerative disease.

Results
Genome-wide overview of genetic correlations among diseases.
We performed pairwise genome-wide genetic correlations (rg)
across GWAS datasets16. These GWAS datasets include five
neurodegenerative diseases (AD, PD, LBD, ALS and FTD)
immune-mediated diseases (MS, UC and CD) and SCZ, a neu-
ropsychiatric disorder. Using a Bonferroni-corrected p-value=
0.0014, we identified six significant positive correlations (Fig. 1),
of which one was between two neurodegenerative diseases: PD
and LBD (rg = 0.65; p-value= 1e−03). We did, however, observe
nominally significant correlations (p-value < 0.05) between other

pairs of tested neurodegenerative diseases, except for FTD, for
which there were no nominally significant correlations (Supple-
mentary Table 1). Between immune-mediated diseases (our
control traits), we confirmed the expected significant positive
correlations across these diseases (Fig. 1). Finally, we saw positive
significant correlations between SCZ and immune-mediated
diseases (i.e. UC and CD), but not between SCZ and neurode-
generative diseases (Fig. 1). All genome-wide genetic correlations
results are provided in Supplementary Table 1.

Regional genetic correlations highlight pleiotropic loci impli-
cated in neurodegenerative diseases. Reassured by the detection
of known global genetic correlations and cognisant of the fact that
regional correlations between two traits can be masked when
assessing in a genome-wide basis17, we estimated regional genetic
correlations using LAVA18. The advantage of this tool is that it
can perform correlations across multiple traits simultaneously.
We performed a total of 1,902 pair-wise correlations across 389
loci with adequate univariate signal, yielding a total of 59 genomic
regions (i.e. LD blocks—See Methods) with significant correla-
tions in at least one trait pair (Bonferroni-corrected p-value
threshold = 2.629e−05).

We identified significant regional correlations between various
diseases and genomic loci, including loci that contain genes
known to be implicated in neurodegenerative diseases. For
example, we observed positive genetic correlations between AD
and LBD at two genomic loci. The locus located on chromosome
2 [chr2:126754028-127895644] contains the BIN1 gene (rg =
0.564; p-value= 9.80e−06), whereas the locus on chromosome 19
[chr19:45040933-45893307] contains the APOE gene (rg = 0.80;
p-value= 1.97e−124). Both genes have been implicated in AD
and LBD risk1,2,4,19,20. We also observed a positive genetic
correlation between PD and LBD at a locus on chromosome 4
[chr4:812416-1529267] containing TMEM175 (rg = 0.648;
p-value= 1.49e−05). In contrast, other genomic loci containing
genes that are known to be involved in more than one
neurodegenerative disease did not yield significant correlations,
such as the locus containing SNCA [chr4:90236972-91309863]
between LBD and PD (rg = 0.165; p-value= 0.130), and the locus
that includes GRN [chr17:42348004-43460500], known to be
involved in AD, PD, FTD and LBD. In the latter case of GRN,
AD, FTD and LBD did not have sufficient univariate signal (p-
value ≥ 2.63e−05) to test genetic correlations at that locus. In the
case of the locus including SNCA, the lack of correlation may be
explained by previous colocalization analyses, which have
suggested that there are different regulatory causal variants
implicated in PD and LBD19.

Aside from observing significant correlations at known
pleiotropic loci, we also saw significant genetic correlations
between neurodegenerative and immune-mediated diseases. One
such example was a genomic locus on chromosome 1
[chr1:161054077-161945442] containing, among multiple genes,
FCGR2A. This locus was negatively correlated between PD and
UC (rg=−0.652; p-value= 1.64e−05), positively correlated
between UC and CD (rg = 0.835; p-value= 1.81e−06), and it
was correlated with nominal significance between PD and CD
(rg=−0.462; p-value= 0.018) (Fig. 2; Supplementary Fig. 2;
Supplementary Data 1). The gene FCGR2A has been previously
associated with several immune-mediated diseases, and it is a risk
locus for PD7,21. In addition, a locus [chr4:169555115-
170682809] that includes six protein-coding genes (i.e. PALLD,
CBR4, NEK1, CLCN3, C4orf27 and SH3RF1) was significantly
correlated between PD and UC (rg = 0.525; p-value= 1.02e−05)
and nominally significant between ALS and CD (rg = 0.369;
p-value= 0.044) (Fig. 2; Supplementary Fig. 3). The gene CLCN3

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05113-5

2 COMMUNICATIONS BIOLOGY |           (2023) 6:729 | https://doi.org/10.1038/s42003-023-05113-5 | www.nature.com/commsbio

www.nature.com/commsbio


is the nearest gene at a disease risk locus for PD7, whereas NEK1
within this locus is a known ALS risk gene5. Finally, there was a
significant correlation at a locus [chr7:49632427-50894508] that
includes the gene IKZF1, which encodes a transcription factor of
the zinc-finger DNA-binding protein family, involved in B cell
activation and differentiation, between AD and MS (rg=−0.77;
p-value= 3.55e−06). This same locus was also nominally
positively correlated between AD and CD (rg = 0.489; p-value=
0.002) (Fig. 2; Supplementary Fig. 4).
The Human Leukocyte Antigen (HLA) locus, a region in the

genome with clear immune influences, spans multiple genomic
loci that were tested in the analysis. However, we only observed
one locus within this region [chr6:32208902-32454577] with
significant positive correlations between neurodegenerative and
immune-mediated diseases, correlated between AD and MS (rg =
0.778; p-value= 2.01e−06). This locus contains the Major
Histocompatibility Complex (MHC) class II gene HLA-DRA.
The same genomic locus was positively correlated between SCZ
and UC (rg = 0.683; p-value= 1.47e−06). An additional locus

also spanning the HLA region [chr6:32682214-32897998] was
positively correlated between SCZ and UC (rg = 0.626;
p-value= 9.99e−06) and between CD and SCZ (rg = 0.677;
p-value= 2.58e−05). This locus includes the following MHC
class II genes: HLA-DQA2, HLA-DQB2 and HLA-DOB.

Gene expression levels of immune-related genes share causal
signals with neurodegenerative diseases. We then moved for-
ward to ask whether regional genetic correlations could allow us
to identify immune targets for neurodegenerative diseases. To do
so, we estimated regional genetic correlations between diseases
and genes significantly expressed across seven immune cell types
(i.e., naive B cells, memory B cells, classical monocytes, CD4+
naive T cells, CD8+ naive T cells, CD4+ effector memory T cells
and CD8+ effector memory T cells) from one of the largest
datasets, the OneK1K dataset22, to assess if changes in gene
expression are correlated with disease risk. We performed 1628
pair-wise correlations across 2553 significantly expressed genes in
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at least one cell type (Supplementary Table 2), which resulted in
366 significant correlations (FDR < 0.01) (Fig. 3; Supplementary
Data 2). In addition, we followed up on the significant correla-
tions through colocalization analyses to assess if there is a shared
causal signal driving the correlation. This information provided
insights about specific immune cell types and genes implicated in
disease risk.

Across the tested neurodegenerative diseases, there were no
expressed genes significantly correlated with FTD or LBD, which
were the two GWASes with the smallest sample size. In terms of
the total number of tested correlations within a disease,
qualitatively, AD had a higher proportion of correlations with
expressed genes in classical monocytes. Similarly, qualitatively
there was a relatively higher proportion of expressed genes
significantly correlated with ALS in memory B cells (but there
were only 12 significant correlations across all cell types for ALS).
Finally, compared to all other tested diseases, there was a
qualitatively relatively higher proportion of expressed genes
significantly correlated with PD in CD8+ effector memory
T cells. We tested whether the proportion of significant
correlations per a particular trait-cell type combination was
significantly different across the total number of significant
correlations per trait, using the prop.test() function in R.
Quantitatively, we did not reject the null hypothesis for any cell
type proportion (chi-square test p > 0.05), and thus cannot
conclude that the proportions are significantly different (Fig. 3).
Of note, the absolute number of significant correlations was not
solely driven by the number of significant GWAS signals. For
instance, SCZ is highly polygenic, but CD was the disease with the
highest number of significant correlations. These results provide
an initial overview of how disease risk across neurodegenerative
diseases may be influenced by different immune cell types.

Significant correlations between diseases and expressed genes
were distributed across all autosomes except on chromosome 9,
where we only observed nominally significant correlations

(Supplementary Fig. 5). In addition, there were genes for which
their expression was significantly correlated with a disease across
more than one cell type (N= 47), whereas other expressed genes
were significantly correlated with a disease in only one cell type
(N= 96). For example, the expression of BIN1 was positively
correlated with AD across five immune cell types (i.e., memory B
cells, CD4+ naive and effector memory T cells and CD8+ naive
and effector memory T cells). It was also nominally correlated
with LBD only in CD4+ effector memory T cells (Fig. 4a). BIN1
is ubiquitously expressed across multiple tissues, including the
brain, and is implicated in AD pathogenesis, possibly through its
role in neuron hyperexcitability23. However, BIN1 expression in B
cells has not been associated with AD risk. Our colocalization
analysis in the BIN1 region indicate that there is no colocalization
between AD risk and gene expression (H3 > 0.99). This result
suggests that different variants in the locus influence either BIN1
expression in B cells or AD risk (Fig. 5), highlighting the
importance of complementing significant regional genetic
correlations with colocalization analyses.

Amongst all diseases assessed, we observed a relatively higher
number of significant correlations between PD and gene
expression across all cell types tested (N= 79), many of which
were not correlated with other diseases (Supplementary Fig. 5).
After following up these significant correlations, we observed
colocalization (H4 > 0.8) with three genes expressed in one or
more cell types (i.e., RAB7L1, ARSA and KANSL1-AS1) (Fig. 5;
Supplementary Data 3).

The expression of RAB7L1 in CD4+ naive T cells was
positively correlated with PD (rg = 0.826; p-value= 0.001). This
gene is a known risk locus for PD6,7, involved in the regulation of
the T cell receptor signalling pathway. It has also been shown to
interact with LRRK2 to alter the intraneuronal sorting of proteins
and the lysosomal pathway24,25, suggesting that the overexpres-
sion of RAB7L1 in T cells may increase PD risk through the
interaction with LRRK2.
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The expression of KANSL1-AS1, an anti-sense RNA gene, was
negatively correlated with PD across all adaptive immune cell
types, but the correlation was the strongest for CD8+ T cells (i.e.,
effector memory T cells: rg=−0.831; p-value= 1.34e−39, naive
T cells: rg=−0.768; p-value= 1.13e−25; Supplementary Fig. 5).
In addition, colocalization analysis suggested the presence of a
shared causal variant at the KANSL1-AS1 locus (Fig. 5;
Supplementary Data 3). The protein coding gene KANSL1 is in
the MAPT locus, which has been previously associated with
PD6,7,26,27, but recent experimental evidence suggests that the
differential expression of another gene in the MAPT locus,
KANSL1, also plays a crucial role in PD risk28.

Of the initial 366 significant correlations observed across all
tested diseases traits and cell types, 92 correlations (25.14%)
implicated loci that did not encompass genome-wide significant
GWAS variants (p-value ≥ 5e−08). However, 33.7% of these
aforementioned loci are suggestive of association (p-value < 1e
−06), whereas the remaining 66.3% loci are nominally significant
(p-value < 0.05) (Supplementary Data 4). We observed colocaliza-
tion with only two of these loci: (1) between AD and the
expression of FNBP4 in memory B cells (H4= 0.913) and in
CD8+ T cells (H4= 0.85 and 0.84, for effector and naive CD8+
T cells, respectively), and (2) between PD and the expression of
ARSA in CD8+ effector T cells (H4= 0.88). FNBP4 (situated
~15,000 base pairs away from CELF1) has been previously
identified as an AD risk locus29, but in a more recent
transcriptome-wide association study (TWAS) of AD, this gene
was discarded in conditional analyses30. ARSA has been
previously investigated as a PD risk locus in a Chinese
population, in which no significant associations were found with

PD susceptibility31. These results provide an complementary line
of in silico evidence, suggesting that the expression of FNBP4 and
ARSA in adaptive immune cell types may play a role in AD and
PD risk, respectively.

Regional correlations with blood protein levels provide evi-
dence of additional mechanisms involved in disease risk. Pro-
teins contain biologically meaningful information that cannot
always be identified by solely assessing the transcriptome. For
instance, as the proteome is often dysregulated by diseases, it is
amenable to drug targeting and thus a better understanding of the
of the proteome could aid in identifying novel treatments32.
Therefore, we performed regional genetic correlations between
diseases and protein levels in plasma using a large pQTL
database32, with the aim of exploring an additional level of bio-
logical variation and its relation to neurodegenerative disease risk.

We performed a total of 1863 bivariate tests between diseases
and protein levels. We considered a significant regional correla-
tion if FDR < 0.01. We observed significant correlations between
protein levels and all diseases, except FTD. PD had a higher
number of significant correlations, compared to other tested
diseases (Supplementary Fig. 6; Supplementary Data 5). We
evaluated the concordance between the regional genetic correla-
tions performed with gene expression levels from diverse immune
cell types and regional genetic correlations performed with
protein levels derived from peripheral blood samples (Supple-
mentary Fig. 7). A total of 68 unique gene/proteins were
evaluated across both datasets (i.e., 68 genes with significant
eQTLs also had genome-wide significant pQTLs), resulting in 35
genetic correlations that were at least nominally significant across
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both tests, including 24 significant correlations across both tests
(FDR < 0.01). The direction of effect was consistent across 17 of
the significant correlations.

To obtain a biological understanding of the significant
correlations with protein levels, specifically to assess if immune-
related pathways were significantly enriched, we performed a
gene-set enrichment test with FUMA33. We observed enrichment
of several gene ontology (GO) biological processes (BP) across
immune-mediated diseases, as well seven GO BP enriched for
LBD (Supplementary Data 6). The enriched GO BP for UC, CD
and MS include several immunological processes (such as
adaptive immune response, regulation of immune effector process
and regulation of immune system process), whereas the GO BP
enriched for LBD correspond to gene-sets related to triglyceride
processes (including protein lipid complex assembly and lipid
complex subunit organization). While there was a partial overlap
of the GO BP among the three immune-related diseases (5.5%),
there was no overlap of GO BP between LBD and other diseases
(Supplementary Fig. 8). Nevertheless, there were proteins
harbouring significant correlations with at least one neurodegen-
erative disease and at least one of the immune-mediated diseases,
none of which were significant in the regional genetic correlations
with sc-eQTLs, but which have a function in the immune system
(Fig. 6). However, we note that our regional genetic correlations
are dependent on the data at hand and the current capacities of
the computational approach. For instance, these results could
change as GWAS sample sizes continue to increase, as additional
sc-eQTL data become available, and once other types of variants
(such as rare variants) that are not currently handled by LAVA
are able to be assessed for regional genetic correlation using
summary statistics.

One of the proteins harbouring a significant correlation with
both a neurodegenerative and an immune-mediated disease was
Fc fragment of IgG receptor IIa (FCGR2A), a cell surface receptor
found on phagocytic cells (i.e., neutrophils, macrophages),
involved in the process of clearing immune complexes34. Protein
levels of FCGR2A were negatively correlated with UC (rg=
−0.675; p-value= 1.44e−20) and positively correlated with PD
(rg = 0.237; p-value= 6.02e−13) (Fig. 6). In line with these
results, our regional genetic correlations among diseases high-
lighted a locus on chromosome 1 that encompasses this gene as

negatively correlated between PD and UC (Fig. 2a). However,
there were no significant correlations between the expression of
FCGR2A and PD or UC, even though the gene harbours genome-
wide significant eQTLs in CD8+ effector memory T cells, but not
in monocytes (macrophage precursors). These findings suggest
that the protein levels of FCGR2A have opposite risk effects in UC
and PD, which may be regulated by transcriptome-independent
processes. Alternatively, FCGR2A may be differentially expressed
in another cell type (such as macrophages), which we did not
assess in the current study.

The protein levels of Phospholipase C gamma 2 (PLCG2) were
significantly correlated with UC and AD, in opposite directions
(rgUC = 0.442; p-value= 2.28e−06, and rgAD=−0.491;
p-value= 3.03e−04) (Fig. 6). We did not estimate regional
genetic correlations between the expression of PLCG2 and
diseases, given that this gene did not harbour genome-wide
significant eQTLs in the immune cell types tested. Nonetheless,
mutations in the gene PLCG2 have been associated with
dysregulation of the immune system, as well as with several
dementias, in which distinct genetic variants are associated with
different diseases, based on the identification of different
functional point mutations across diseases35. For instance, the
G allele of a missense variant within PLCG2 has been shown to be
protective against AD, LBD and FTD36. In contrast to our in
silico observations of low PLCG2 blood protein levels correlated
with high AD risk, a recent study showed an upregulation of
PLCG2 expression in post-mortem brains of late-onset AD
patients and its association to inflammation in microglia37. These
seemingly discordant findings may be explained by different
effects of PLCG2 across stages of neurodegeneration, as well as by
differences across sampled tissues.

Discussion
The aim of the work was to assess the role that peripheral
immune cells and related processes play in neurodegenerative
diseases. We addressed this aim through orthogonal bioinfor-
matics approaches: (i) by applying regional genetic correlations to
relate neurodegenerative diseases to diseases known to be driven
by immune dysfunction, (ii) by extending the correlation analysis
by incorporating single-cell eQTLs to identify known gene-
disease relationships in immune cell types, and (iii) by assessing
the evidence for specific genes through expression and pQTL
analyses. Through our approach, we identified links that warrant
additional follow-up to better understand immune-mediated loci
that may play a role in neurodegenerative diseases, such as the
role of SCIMP expression in memory B cells as an AD risk locus,
and the role of FCGR2A blood protein levels, correlated with
PD risk.

By performing regional genetic correlations between pairs of
diseases, we highlighted relationships between neurodegenerative
diseases across loci encompassing known risk genes (e.g., BIN1,
TMEM175, APOE). In addition, we highlighted relationships
between neurodegenerative and immune-mediated diseases,
suggesting the presence of shared immune-related biological
pathways across these diseases (e.g., FCGR2A, CLCN3, IKZF1).
The gene FCGR2A, for instance, located within a locus sig-
nificantly correlated between PD and UC, has been previously
associated with immune-mediated diseases21, and is significantly
expressed in CD8+ effector T cells and memory B cells22.
Although our regional genetic correlations with gene expression
levels indicated that the expression of FCGR2A is correlated with
neither PD nor UC risk, we observed significant correlations with
the corresponding protein levels for both PD and UC. Similarly,
the gene IKZF1 is within an LD locus significantly correlated
between MS and AD, and is significantly expressed in CD8+
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naive T cells22. However, regional genetic correlations with gene
expression levels showed no evidence of significant correlation
with AD (rg = 0.113; p-value= 0.487), whereas the correlation
test with MS was not performed due to lack of significant uni-
variate signal. In addition, we observed significant positive cor-
relations between AD and SCIMP expression in naive and
memory B cells (Fig. 4b). Furthermore, colocalization analysis
supported the hypothesis of a single shared causal variant
(H4= 0.99 and 0.85 for naive and memory B cells, respectively),
suggesting that the expression of SCIMP in B cells may contribute
to AD risk. SCIMP is a gene that has been previously associated
with immune-mediated diseases, such as lupus and rheumatoid
arthritis38, as well as with AD risk1,4. The gene encodes a protein
expressed in antigen-presenting cells, localized in the immuno-
logic synapse, and serves as a regulator of antigen presentation39.
Overall, this result supports a role of the adaptive immune system
in AD risk, specifically of B cells, mediated by the expression of
genes, such as SCIMP.

The observations at these loci (i.e., FCGR2A and IKZF1) sug-
gest that different cell types or alternative molecular mechanisms
may be involved in disease risk. In fact, we observed only a partial
overlap and concordance of loci evaluated in both gene expres-
sion and protein regional genetic correlations, in line with our
expectations, given that the eQTL and pQTL datasets used were
generated through different sources: single-cell RNA-sequencing
from specific immune cell types and bulk blood tissue,
respectively.

Our regional analysis of genetic correlations with gene
expression levels shed light on overall differences among diseases,
including the varying proportion of correlations accounted for by
gene expression in immune cell types. For example, a higher
proportion of significant correlations between AD and sc-eQTLs
were accounted for by genes expressed in classical monocytes,
including genes within and outside of the HLA region. These
results are in line with previous evidence pointing at a key role of
the innate immune system (i.e., microglia) in AD. However, it has
also been suggested that circulating monocytes participate in the
clearance of Aβ plaques that diffuse into the bloodstream40,41,
and that monocyte-derived macrophages have a more efficacious
phagocytic capacity than microglia in the brain42,43. Therefore,
aside from the crucial role microglia play in AD, peripheral innate
immune cells may be independently contributing to AD risk via
changes in transcription levels. The communication between both
the central and peripheral components are likely required for
healthy brain function, as previously reviewed, and a breakdown
in this cross-talk may contribute to neurodegenerative disease
risk44. This interaction between both immune system compo-
nents is also supported by a recent study in mouse models for AD
where T cells, in cross-talk with microglia, promote
neurodegeneration45.

Our gene set enrichment analysis, aimed at better under-
standing the significant correlations observed between diseases
and protein levels, did not highlight significant immune-related
biological pathways enriched for neurodegenerative diseases.
However, we identified proteins across neurodegenerative and
immune-related diseases for follow-up. We believe that novel
pathway enrichment methods that consider gene-specific weights
(i.e. weights dependent on a measure of the strength of the
regional correlations) could provide an important avenue for
follow-up, alongside the current methods that consider all genes
as input to the analysis as having equal effects.

Through our data-driven approach, we provide fine resolution
links for genomic regions to a disease in a particular cell type to
better understand the etiology of neurodegenerative diseases in
relation to the peripheral immune system. However, this
approach is not without limitations. First, our analyses used

GWAS and QTL datasets of inferred European genetic ancestry,
which is a limitation stemming from the lack of diversity in
GWAS cohorts46. Genetic ancestry may be particularly important
for immune function given different selection pressures placed by
infectious diseases. Even though GWAS of neurodegenerative
diseases have been performed in cohorts of other genetic
ancestries5, the sample sizes needed to reach sufficient power to
identify significant correlations falls short, as we observed in the
case of the smaller FTD and LBD GWAS datasets. Second, it is
known that there are sex differences in the incidence of some
neurodegenerative and immune-mediated diseases, but the
GWAS datasets used do not include sex-stratified analyses or sex
chromosome data, which is a limiting factor in the identification
of (i) sex-specific or sex-skewed expressed genes, or (ii) candidate
immune-related genes on the sex chromosomes. Future studies
that consider sex-chromosomes or sex differences may provide
new insights on underlying mechanisms or cell types involved in
disease pathogenesis. Third, mechanisms other than varying gene
expression could be responsible for the absence of particular
eQTL-disease correlations, which we were not able to capture
with our approach. One such example is the absence of genome-
wide significant eQTLs for LRRK2 in any of the immune cell
types tested, a gene in which missense point mutations have been
associated with PD risk47. Indeed, there have been reports sug-
gesting that LRRK2 does not only influence at the transcriptional-
level, but also at the protein-level rather. For instance, it has been
reported that LRRK2 protein levels are increased in individuals
with sporadic PD and other studies have observed that LRRK2
transgenic mice exhibit dysregulated immune responses48–50. An
additional consideration that was not assessed here, but will be
important to further this research, is to incorporate data from
longitudinal clinical studies to better evaluate peripheral and
central immune mechanisms over time44. Finally, our main
analyses are based on correlations, which cannot assess causal
relationship between diseases and the molecular mechanisms
assessed. Nonetheless, we have highlighted immune-related genes
as clear candidates for further investigation to better understand
neurodegenerative diseases.

Here, we chose to focus on the role of the immune system in
neurodegeneration. Indeed, for certain neurodegenerative dis-
eases, the role of the immune system is arguably more prominent
than for others. For AD, for instance, there is substantial evidence
of the role of the immune system, including immune-mediated
tissues being enrichment for heritability and single-cell RNA-
sequencing enrichment analyses pointing to microglia4,51. Work
has also highlighted activated microglia and T cell responses in
tauopathies45. Studies of other neurodegenerative diseases have
identified the HLA region on chromosome 6 as being implicated
in disease risk; for example, the HLA region is a genome-wide
signal in PD GWASes6,7, and there is evidence of immune-
mediated genetic enrichment for FTD within this region11. Fur-
thermore, for PD, there is recent converging evidence of immune-
related influences on disease risk through the role of T cells in
brain inflammation and neurodegeneration52,53. Altogether, these
lines of evidence, in combination with the utility of repurposing
existing immune-based treatments, motivated our focus on
immune-mediated factors presented here. Nevertheless, we
acknowledge evidence of enrichment in non-immune cell and
tissue types across neurodegenerative diseases. For instance, for
PD and ALS, analyses have demonstrated heritability enrichment
for brain tissue, and work based on single-cell RNA-sequencing
has shown enrichment for neurons for these two diseases5,7.
Likely, neurodegenerative disease risk and progression are
mediated by a complex interplay of multiple cell and tissue types
influencing a diverse set of biological systems. Neurodegeneration
is not limited to a single system such as the central nervous
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system or, as assessed here, the immune system. Indeed, future
research is warranted to further investigate immune-mediated
mechanisms on neurodegenerative disease risk, and to expand
explorations to assess other biological systems to improve our
understanding of additional disease mechanisms.

Methods
Datasets and data formatting. We obtained genome-wide association study
(GWAS) datasets from publicly available repositories, or requested access to their
corresponding summary statistics. We selected five GWAS datasets from European
genetic ancestry case/control studies of common neurodegenerative diseases as test
traits: (1) Alzheimer’s disease, (2) Parkinson’s disease7, (3) Lewy body dementia19,
(4) amyotrophic lateral sclerosis5, and (5) frontotemporal dementia3. We also
included three GWAS datasets corresponding to case/control studies of immune-
mediated diseases as control traits: (1) multiple sclerosis54, (2) ulcerative colitis55,
and (3) Crohn’s disease55. Finally, we included as a test dataset a well-powered
case/control study of schizophrenia56, a neuropsychiatric disorder in which there is
a genome-wide association with the Human Leukocyte Antigen (HLA) region,
encoding genes that play a key role in the immune system. Detailed information on
the GWAS sample sizes, number of genetic variants, genomic build, and source
URLs are available in Table 1. After download, we formatted the GWAS summary
statistics with R (version 4.0.2)57 and lifted over the genomic coordinates to the
Human Genome Build GRCh37 with the R package rutils version 0.99.258 as
needed. We used the R package SNPlocs.Hsapiens.dbSNP144.GRCh3759 to map
reference SNP IDs (rsids) to genomic coordinates or vice versa. All analyses in the
present study were performed using the Digital Research Alliance of Canada
compute clusters.

We obtained single-cell expression quantitative trait loci (sc-eQTLs) summary
statistics from the OneK1K study22 by personal communication with the
corresponding author. The dataset includes single-cell expression data on 1.27 million
peripheral blood mononuclear cells in 982 individuals of European genetic ancestry,
clustered into 14 immune cell types. To minimize the multiple testing burden, we
selected a subset of these cell types for the present study. Specifically, we included the
following cells from the innate and adaptive immune system: (1) classical monocytes,
(2) effector memory CD4+ T cells, (3) naive CD4+ T cells, (4) effector memory
CD8+ T cells, (5) naive CD8+ T cells, (6) naive B cells, and (7) memory B cells. To
explore an additional level of biological variation, we also obtained summary statistics
of plasma protein QTLs, pQTLs32, corresponding to the “European American”
sample, including 7213 individuals (http://nilanjanchatterjeelab.org/pwas/).

All ethical regulations were followed and informed consent was obtained in the
original manuscripts. The relevant local institutional review boards approved the
studies.

Statistics and reproducibility. Code to reproduce analyses have been provided
(See Data Availability statement). Sample sizes of the datasets are described in
Table 1. There were no replicates.

Genome-wide genetic correlations across GWAS datasets. We estimated
genome-wide genetic correlations (rg) across GWAS trait pairs using linkage dis-
equilibrium score regression (LDSC)16. We first formatted GWAS summary sta-
tistics for each trait using the munge_sumstats.py function to align the alleles and
keep SNPs present in the HapMap Project Phase 3, with the MHC region removed.
Next, we ran the ldsc.py function for each trait pair using the 1000 Genomes Project
Phase 3 European super-population as the LD reference to obtain rg estimates. We
applied a Bonferroni-corrected p-value threshold to account for the number of
pair-wise correlations performed, and subsequently defined a significant correla-
tion if p-value < 0.0014.

Regional genetic correlations across GWAS datasets. We estimated regional
genetic correlations (rg) across GWAS pair traits with the R package Local Analysis
of [co]Variant Association (LAVA)18. In brief, LAVA conducts a bivariate test to
assess pairwise rg across predefined genomic regions. It is not limited to two GWAS
traits, but other genome-wide associations, such as quantitative trait loci for gene
expression or protein levels (as we describe in the subsequent section), can be used.
A significant bivariate test suggests that there is a statistically significant genetic
correlation at the tested region for the pair of traits. For each trait, LAVA can also
assess univariate regional genetic signal (i.e. an estimate of the per-trait local
heritability), which can then be used to filter out regions with sufficient univariate
signal to be subsequently assessed in the bivariate test. We used the genomic
regions defined as autosomal LD blocks (N= 2495) across autosomal chromo-
somes by Werme et al., which are characterized by having minimum LD across
regions, a minimum of 2500 variants included on each LD block, and with an
average LD block size of 1 million bases. To define which genomic regions to test
across GWAS traits, we selected LD blocks that contained at least one genome-wide
significant signal in at least one GWAS trait (n= 389). We considered sample
overlap across GWAS datasets in the analysis by including the pair-wise genetic
covariance estimated by LDSC and further standardizing it into a correlation
matrix. To estimate regional rg, we first performed a univariate test for each trait

per LD block and performed a bivariate test only for those trait pairs that had a
significant univariate genetic signal (p-value < 1.28e−04, correcting for the 389 LD
blocks tested). We applied a Bonferroni-corrected p-value threshold to account for
the number of pair-wise regional correlations performed and defined a significant
correlation if p-value < 2.63e−05 (0.05/1902) (Supplementary Fig. 9).

Regional genetic correlations between GWAS and QTLs. We estimated regional
rg between GWAS and QTL datasets using LAVA18. In the case of the regional
correlations between GWAS and gene expression levels, we tested protein and non-
protein coding genes harbouring at least one genome-wide significant sc-eQTL per
cell type separately. We extended the tested region 100 kb upstream and down-
stream of the start and end positions of the gene, which is where the majority of the
cis-eQTLs are located60. We followed the same approach when defining the
genomic regions to test between GWAS and protein levels, in which we included
proteins that harboured at least one genome-wide significant pQTL, and extended
the tested region +/− 100 kb from the start/end gene coordinates of the respective
protein. In both cases (i.e. sc-eQTLs and pQTLs) we assumed that there was no
sample overlap between the GWAS and QTL datasets, which we believe is a rea-
sonable assumption. We estimated regional rg as described above, in which we first
performed a univariate test for each trait, and then performed a bivariate test
between GWAS-QTL only if both had a significant univariate genetic signal, cor-
recting for the number of genes or proteins tested (Supplementary Fig. 2). We
applied an FDR correction to the p-value threshold to account for the number of
pair-wise regional correlations, separately for the analysis with sc-eQTLs and
pQTLs, thus defining a significant GWAS-QTL correlation if FDR < 0.01. We chose
an FDR correction, instead of a stricter Bonferroni correction, given that genic
regions do not necessarily represent unique regions of linkage equilibrium (i.e.
variants in one gene may be in linkage disequilibrium with variants in nearby genes
as well).

Colocalization to follow-up on regional correlations between GWAS and gene
expression levels. We performed colocalization analysis to follow-up on the
significant (FDR < 0.01) regional correlations between GWAS and gene expression
levels using the tool, coloc61,62. For those traits where the sample minor allele
frequency (MAF) was available, we checked the correlation between the MAF of
the 1000 Genomes European super-population and the sample MAF, which was
0.99 in all cases. Similar to the regional correlations approach, we tested the genic
region +/− 100 kb from the start/end gene coordinates and assumed a maximum
of one causal signal per colocalization. We tested a total of 366 GWAS-QTL pairs
using the default SNP priors (p1= p2= 1e−04 and p12= 1e−05). We considered a
region to colocalize between gene expression levels and a GWAS trait, if the
posterior probability (PP) of H4 ≥ 0.8, which suggests a high probability of a shared
causal signal between both traits.

Gene set enrichment analysis to follow-up on regional genetic correlations
between GWAS and protein levels. We performed a gene set enrichment analysis
with the GENE2FUNC tool implemented in FUMA33 to aid in the interpretation of
the regional genetic correlations between GWAS traits and protein levels. We
analysed one GWAS trait at a time and included only genes with protein levels that
were significantly correlated with that GWAS trait (FDR < 0.01). We used Ensembl
version 92 and included the list of 4657 genes for which protein levels were
assessed (hence the genes used in the pQTL analysis) as the background set of
genes32. FUMA performs a hypergeometric test for gene set enrichment using gene
set databases obtained from MSigDB, WikiPathways and the GWAS Catalog. Of
the available datasets, we focused specifically on Gene Ontology biological pro-
cesses. We set a minimum threshold of overlapping genes with gene sets of ≥2 and
used the Benjamin-Hochberg FDR multiple testing correction method (alpha =
0.05) to define enriched gene sets.

Validation of AD and PD signals using GWAS without proxy cases. The AD
and PD GWAS used in these analyses included proxy cases (i.e., individuals who do
not have the disease of interest, but have a close relative who does). The inclusion
of proxy cases has been suggested as a useful means to increase case sample size,
particularly for late-onset disorders such as AD and PD63. However, there are also
concerns raised on the impact of proxies on heritability and careful diagnosis,
which has been examined in the context of AD64. As a sensitivity analysis to verify
that our results involving AD and PD are not primarily driven by possible spurious
effects of the inclusion of proxy cases, we reperformed the analyses for significant
findings for the regional genetic correlations with gene expression levels and with
protein levels using AD and PD without proxy cases2,65. Validation results are
described in Supplementary Note 1 (Supplementary Figs, 10–12 and Supplemen-
tary Tables 3, 4). In brief, the directions of effect were consistent between the
primary (AD and PD GWAS with proxy cases) and sensitivity analyses (AD and
PD GWAS without proxy cases) when assessing the significant regional correla-
tions (for either gene expression or protein levels) detected in the primary analysis
that had sufficient univariate signal in the sensitivity analysis.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its supplementary information files. Source data underlying Figs. 2–6 are
presented in Supplementary Data 1,2,3 and 5. The GWAS summary statistics analysed
during the current study are available through the NHGRI-EBI GWAS Catalog FTP site
or consortium-specific websites. The source links for each file is provided in Table 1.
OneK1K sc-eQTL summary statistics that include effect sizes and standard errors were
provided through personal communication with the corresponding author of the paper
describing this dataset. pQTL summary statistics are available from the Nilanjan
Chatterjee lab webpage at http://nilanjanchatterjeelab.org/pwas/.

Code availability
All code generated for performing the analyses in the present study is available in the
following GitHub repository: https://github.com/GaglianoTaliun-Lab/neuroimmune_
genetics_project and in the corresponding Zenodo repository: https://doi.org/10.5281/
zenodo.806454666.
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