UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Remodelling of the Mitochondrial Bioenergetic Pathways in Human Cultured Fibroblasts with Carbohydrates

Protasoni, Margherita; Taanman, Jan-Willem; (2023) Remodelling of the Mitochondrial Bioenergetic Pathways in Human Cultured Fibroblasts with Carbohydrates. Biology , 12 (7) , Article 1002. 10.3390/biology12071002. Green open access

[thumbnail of biology-12-01002.pdf]
Preview
PDF
biology-12-01002.pdf - Published Version

Download (2MB) | Preview

Abstract

Mitochondrial oxidative phosphorylation defects underlie many neurological and neuromuscular diseases. Patients’ primary dermal fibroblasts are one of the most commonly used in vitro models to study mitochondrial pathologies. However, fibroblasts tend to rely more on glycolysis than oxidative phosphorylation for their energy when cultivated in standard high-glucose medium, rendering it difficult to expose mitochondrial dysfunctions. This study aimed to systematically investigate to which extent the use of galactose- or fructose-based medium switches the fibroblasts’ energy metabolism to a more oxidative state. Highly proliferative cells depend more on glycolysis than less proliferative cells. Therefore, we investigated two primary dermal fibroblast cultures from healthy subjects: a highly proliferative neonatal culture and a slower-growing adult culture. Cells were cultured with 25 mM glucose, galactose or fructose, and 4 mM glutamine as carbon sources. Compared to glucose, both galactose and fructose reduce the cellular proliferation rate, but the galactose-induced drop in proliferation is much more profound than the one observed in cells cultivated in fructose. Both galactose and fructose result in a modest increase in mitochondrial content, including mitochondrial DNA, and a disproportionate increase in protein levels, assembly, and activity of the oxidative phosphorylation enzyme complexes. Galactose- and fructose-based media induce a switch of the prevalent biochemical pathway in cultured fibroblasts, enhancing aerobic metabolism when compared to glucose-based medium. While both galactose and fructose stimulate oxidative phosphorylation to a comparable degree, galactose decreases the cellular proliferation rate more than fructose, suggesting that a fructose-based medium is a better choice when studying partial oxidative phosphorylation defects in patients’ fibroblasts.

Type: Article
Title: Remodelling of the Mitochondrial Bioenergetic Pathways in Human Cultured Fibroblasts with Carbohydrates
Open access status: An open access version is available from UCL Discovery
DOI: 10.3390/biology12071002
Publisher version: https://doi.org/10.3390/biology12071002
Language: English
Additional information: © 2023 by the Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Keywords: fructose; galactose; glucose; mitochondria; mitochondrial DNA; mitochondrial respiration; oxidative phosphorylation
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences
URI: https://discovery.ucl.ac.uk/id/eprint/10173848
Downloads since deposit
14Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item