Moskovitz, T;
Wilson, SR;
Sahani, M;
(2022)
A FIRST-OCCUPANCY REPRESENTATION FOR REINFORCEMENT LEARNING.
In:
Proceedings of the The Tenth International Conference on Learning Representations ICLR 2022.
ICLR
Preview |
Text
3831_a_first_occupancy_representati.pdf - Published Version Download (3MB) | Preview |
Abstract
Both animals and artificial agents benefit from state representations that support rapid transfer of learning across tasks and which enable them to efficiently traverse their environments to reach rewarding states. The successor representation (SR), which measures the expected cumulative, discounted state occupancy under a fixed policy, enables efficient transfer to different reward structures in an otherwise constant Markovian environment and has been hypothesized to underlie aspects of biological behavior and neural activity. However, in the real world, rewards may only be available for consumption once, may shift location, or agents may simply aim to reach goal states as rapidly as possible without the constraint of artificially imposed task horizons. In such cases, the most behaviorally-relevant representation would carry information about when the agent was likely to first reach states of interest, rather than how often it should expect to visit them over a potentially infinite time span. To reflect such demands, we introduce the first-occupancy representation (FR), which measures the expected temporal discount to the first time a state is accessed. We demonstrate that the FR facilitates exploration, the selection of efficient paths to desired states, allows the agent, under certain conditions, to plan provably optimal trajectories defined by a sequence of subgoals, and induces similar behavior to animals avoiding threatening stimuli.
Type: | Proceedings paper |
---|---|
Title: | A FIRST-OCCUPANCY REPRESENTATION FOR REINFORCEMENT LEARNING |
Event: | 10th International Conference on Learning Representations ICLR 2022 |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | https://openreview.net/forum?id=JBAZe2yN6Ub |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | successor representation, successor features, generalized policy improvement, GPI |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neurosci Unit |
URI: | https://discovery.ucl.ac.uk/id/eprint/10173753 |
Archive Staff Only
View Item |