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Abstract

Background & Aims: In patients with primary biliary cholangitis (PBC), the

serum liver biochemistry measured during treatment with ursodeoxycholic

acid—the UDCA response—accurately predicts long-term outcome.

Molecular characterization of patients stratified by UDCA response can
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RNA integrity number; STAR, Spliced transcripts alignment to a reference; TLR, Toll-like receptor; UDCA, Ursodeoxycholic acid; ULN, Upper limit of normal; WGCNA,
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improve biological understanding of the high-risk disease, thereby helping

to identify alternative approaches to disease-modifying therapy. In this

study, we sought to characterize the immunobiology of the UDCA

response using transcriptional profiling of peripheral blood mononuclear

cell subsets.

Methods: We performed bulk RNA-sequencing of monocytes and TH1,

TH17, TREG, and B cells isolated from the peripheral blood of 15 PBC

patients with adequate UDCA response (“responders”), 16 PBC patients

with inadequate UDCA response (“nonresponders”), and 15 matched

controls. We used the Weighted Gene Co-expression Network Analysis to

identify networks of co-expressed genes (“modules”) associated with

response status and the most highly connected genes (“hub genes”) within

them. Finally, we performed a Multi-Omics Factor Analysis of the Weighted

Gene Co-expression Network Analysis modules to identify the principal

axes of biological variation (“latent factors”) across all peripheral blood

mononuclear cell subsets.

Results: Using the Weighted Gene Co-expression Network Analysis, we

identified modules associated with response and/or disease status

(q< 0.05) in each peripheral blood mononuclear cell subset. Hub genes

and functional annotations suggested that monocytes are proinflammatory

in nonresponders, but antiinflammatory in responders; TH1 and TH17 cells

are activated in all PBC cases but better regulated in responders; and TREG

cells are activated—but also kept in check—in responders. Using the Multi-

Omics Factor Analysis, we found that antiinflammatory activity in mono-

cytes, regulation of TH1 cells, and activation of TREG cells are interrelated

and more prominent in responders.

Conclusions: We provide evidence that adaptive immune responses are

better regulated in patients with PBC with adequate UDCA response.

INTRODUCTION

Primary biliary cholangitis (PBC) is an autoimmune liver
disease characterized by progressive destruction of the
small, intra-hepatic bile ducts, leading in many cases to
cirrhosis.[1] First-line treatment of PBC is with ursodeox-
ycholic acid (UDCA), a hydrophilic bile acid that acts
mainly by displacing hydrophobic bile acids in bile and
by enhancing choleresis. In patients with PBC, the
serum liver biochemistry during treatment with UDCA—
the UDCA response—accurately predicts long-term
outcome.[2] Thus, patients with adequate UDCA
response are at a lower risk of disease progression,
whereas those with inadequate UDCA response are at
a higher risk. The latter are prioritized for second-line
treatment with agents that also act mainly through
choleresis: the farnesoid X receptor agonist, obeticholic
acid, or the peroxisome proliferator-activated receptor

agonists, bezafibrate or fenofibrate.[3] Up to 50% of
patients with inadequate response to UDCA also have
an inadequate response to second-line treatment,
however, and so remain at risk of disease
progression.[4] Novel therapeutic approaches—not just
targeting the composition or secretion of bile—are
needed for such patients. Molecular characterization
of patients stratified by the UDCA response can
improve biological understanding of the high-risk
disease, thereby helping to identify alternative
approaches to disease-modifying therapy.

We have reported gene expression analysis of liver
tissue from patients with high versus low-risk PBC,
which showed greater biliary epithelial cell (BEC)
senescence and T-cell activation in those with high-risk
disease.[5] More recently, we reported serum proteomic
profiling of 526 patients with PBC stratified by UDCA
response, which showed reproducible elevation of
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proteins with well-defined roles in inflammation and
immunity, such as CCL20, CXCL11, IL-4RA, and IL-
18R1, in nonresponders.[6] These findings highlight the
potential value of profiling the immune systems of
patients stratified by UDCA response. A starting point is
to profile the immune cell types that are thought to be
dysregulated in PBC itself.

Immune cell types implicated in the pathogenesis of
PBC include monocytes; TH1, TH17, and TREG cells;
CD8+ T cells, and B cells. For example, in PBC,
monocytes are more sensitive to toll-like receptor
signalling[7]; portal infiltrates consist mainly of CD4+ T
cells, heavily skewed towards TH1 and TH17 cells[8,9];
there is insufficiency of TREG cells[10]; CD8+ T cells
infiltrate the biliary epithelia and cause segmental
apoptotic destruction of cholangiocytes[11,12]; and B
cells contribute to disease through cross-presentation
of antigen and production of autoantibodies.[13,14]

In the current study, guided by these observations,
we used bulk RNA-sequencing (RNA-seq) to profile the
transcriptomes of monocytes and TH1, TH17, TREG, and
B cells from the peripheral blood of PBC patients with
an adequate response to UDCA, those with inadequate
response, and healthy controls. We designed the study
for case-control and within-case analyses to gain insight
into the immunobiology of PBC itself and that of
refractory disease. For each cell type, we sought to
identify networks of co-expressed genes associated
with 1 or more traits. To do this, we used an approach
called weighted gene co-expression network analysis
(WGCNA).[15] The premise of this approach (and others
like it) is that genes do not function in isolation but in
networks[16]; genes within those networks are co-
expressed; and statistical methods can be used to
identify those co-expressed genes.[17] Association can
then be determined between gene co-expression net-
works and traits of interest; and functional annotation of
associated networks can be employed to gain biological
insight into those traits.

METHODS

Participants

Cases were adults (≥18 y of age) with an established
diagnosis of PBC,[3] who had received≥12 months of
ongoing treatment with UDCA. Response to UDCA was
defined by alkaline phosphatase<1.67 times the upper
limit of normal.[18] Controls were age and sex-matched
healthy volunteers. For all participants, exclusion criteria
were other forms of liver disease (eg, viral hepatitis),
decompensated cirrhosis, HCC, liver transplantation,
immunosuppression, poorly controlled diabetes mellitus,
pregnancy, and alcohol misuse. Decompensated cirrho-
sis was defined by a total bilirubin>50 μmol/L or any
occurrence of variceal hemorrhage, ascites, or HE.[19]

Cases were recruited from 6 liver treatment centers
across the UK as part of the UK-PBC Nested Cohort
Study.[6] Adherence to treatment with UDCA was verified
in all cases. Controls were recruited from the Cambridge
NIHR BioResource (https://www.cambridgebioresource.
group.cam.ac.uk/). Written informed consent was
obtained from each participant. The study protocol
conformed to the ethical guidelines of the 1975 Decla-
ration of Helsinki. Ethical approval for the study was from
the North-West Preston Research Ethics Committee
(REC reference: 14/NW/1146).

Samples

Up to 100 mL of blood was collected from each
participant for the isolation of peripheral blood mono-
nuclear cells (PBMCs). The isolation of PBMCs was
undertaken on-site within 2 hours of phlebotomy
according to a standard operating procedure. The
PBMCs were stored overnight at −80°C and transferred
on dry ice the next day to the University of Birmingham
for long-term storage over liquid nitrogen. Please see
Supplementary Data (Fig. S1, http://links.lww.com/HC9/
A236) for further details.

Sorting of PBMC subsets

Peripheral blood mononuclear cells were sorted into
subsets at the University of Birmingham. The PBMCs
were first thawed as described in the Supplementary
Data, http://links.lww.com/HC9/A236. CD14+ mono-
cytes were then selected using human CD14 MicroBe-
ads (Miltenyi Biotec, Woking, UK) according to the
manufacturer’s instructions; CD14+ cell pellets were
frozen at −80°C until RNA extraction. Non-CD14+ cells
were resuspended in PBS and stained with live/dead
marker (Zombie APC-Cy7 at 1:1000; Biolegend, San
Diego, CA, USA) for 20 minutes at room temperature.
Cells were washed and stained with the following
fluorochrome-conjugated antibodies (BD Biosciences,
UK): CD3-APC, CD4-PECF594, CD127-PECy7, CD25-
BB515, CXCR3-PerCP-Cy5.5, CCR6-BV421, and
CD19-PE for fluorescent-associated cell sorting (using
BD Aria Fusion, BD, UK) of the immune cell subsets: (1)
CD19+CD3– B cells, (2) CD3+CD4+CD25highCD127low

TREG cells, (3) CD3+CD4+CCR6+CXCR3– TH17 cells,
and (4) CD3+CD4+CCR6–CXCR3+ TH1 cells (Fig. S2,
http://links.lww.com/HC9/A236). We used an anti-CD3
monoclonal antibody that did not induce T-cell activa-
tion (Fig. S3, http://links.lww.com/HC9/A236). All
immune cell subsets were sorted into tubes containing
RPMI−1640+10% FCS media kept at 4°C during the
sorting period. After sorting, cells were pelleted and
resuspended in RLT+βME buffer for lysis and RNA
extraction.
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RNA extraction

RNA was extracted from PBMC subsets at the
University of Birmingham using the RNEasy Plus Micro
and RNeasy Plus Mini Kits (Qiagen Ltd, Manchester,
UK) for<500,000 and> 500,000 sorted cells, respec-
tively. As recommended, eluted RNA samples were
stored at −80°C until RNA-seq.

RNA-sequencing

RNA-seq was completed in the Stratified Medicine Core
Laboratory at the University of Cambridge. Following
quality control (QC) checks, the SMARTer Stranded
Total RNA-seq Pico kit from Clontech (Mountain View,
CA, USA) was used to generate cDNA libraries within
30 days of RNA extraction, and the Illumina (San Diego,
CA, USA) HiSeq. 2500 and HiSeq. 4000 platforms were
used to sequence them.

Statistical analysis

We employed a standardized pipeline for QC and
processing of reads. Read quality was assessed using
FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc); alignment was performed using STAR
(Spliced Transcripts Alignment to a Reference)[20]; and
count matrices were generated using FeatureCounts in
Rsubreads[21] and stored as a DGEList object in
edgeR[22] for downstream analysis. Additional QC
checks (including tests for batch effect) were done
using DESeq2[23] and limma (Linear models for micro-
array data).[24]

For each PBMC subset, we used WGCNA to identify
networks of co-expressed genes associated with dis-
ease or UDCA response status. We first identified
modules, which are clusters of highly interconnected
genes, each representing a gene co-expression net-
work. By convention, each module is arbitrarily allo-
cated the name of a color. For each module, we
calculated the module eigengene (ME), module mem-
bership, and gene significance. The ME is the first
principal component of the module, representative of
gene expression profiles in that module; module
membership is the correlation coefficient for each gene
with the ME; and gene significance is the correlation
coefficient for each gene with the trait of interest. Finally,
we tested the association of each module with each trait
(ie, all cases vs. controls, nonresponders vs. controls,
responders vs. controls, and responders vs. nonres-
ponders) by calculating the eigengene significance,
based on correlation between the ME and trait of
interest. We defined a significant association between a
module and trait as q<0.05, where q is the false
discovery rate adjusted p-value.

For each module associated with 1 or more traits, we
identified hub genes and looked for enrichment of
functional annotations. Hub genes are the genes with
the highest connectivity within the module (ie, the genes
most strongly co-expressed with the greatest number of
other genes). In general, we identified hub genes as
being among the 30 most connected genes in the
module, as well as having module membership≥ 3rd
quartile and gene significance≥3rd quartile. We used
the Enrichr platform[25] to look for the enrichment of
functional annotations. For brevity and consistency,
only Hallmark gene sets[26] are reported in this manu-
script. For each pairwise comparison, we also per-
formed Gene Set Enrichment Analysis (GSEA)[27] of
normalized count data from each PBMC subset. As
recommended at the GSEA platform (https://www.gsea-
msigdb.org/gsea/index.jsp), we took q< 0.25 to define
significant enrichment.

Finally, recognizing that each PBMC subset is part of
a unified immune system, we used Multi-Omics Factor
Analysis (MOFA)[28] for integrated analysis of all
modules identified across all PBMC subsets. By this
approach, we decomposed the combined data into a
small number of latent factors (LFs) and used ANOVA
to identify the LFs associated with trait status (ie,
control, responder, or nonresponder). To characterize
the LFs associated with trait status, we identified the
modules with the heaviest loading on each of these
factors. Please see the Supplementary Data, http://
links.lww.com/HC9/A236, for further details.

RESULTS

Participants and samples

We analyzed samples from 15 responders (median
alkaline phosphatase 0.87×ULN, interquartile range
[IQR] 0.75–1.00); 16 nonresponders (median alkaline
phosphatase 3.68×ULN, IQR 3.14–4.48); and 15
disease-free controls. These groups were well-matched
except for PBC status or activity (Table 1, Fig. S4, http://
links.lww.com/HC9/A236). Vibration-controlled transient
elastography measurements were comparable in res-
ponders and nonresponders. Only 1 participant, a
responder, had cirrhosis according to the Vibration-
controlled transient elastography thresholds proposed
by Corpechot et al (2012).[29] Cell counts are shown in
Fig. S5, http://links.lww.com/HC9/A236. The median
RNA integrity number (RIN) of the samples was 8.9
(IQR 8.1–9.2). Following QC checks, the mean number
of raw reads per sample was 145 million; the number of
mapped reads was 43 million; the percentage PCR
duplicates was 37%; and the number of genes at 1
fragment per kilobase of transcript per million mapped
reads, was 14,000. MA plots showed no evidence of
systematic bias in the RNA-seq output (Fig. S6, http://
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links.lww.com/HC9/A236). We confirmed the identity of
each cell subset by high expression of characteristic
genes (Fig. S7, http://links.lww.com/HC9/A236). Multi-
dimensional scaling of count data confirmed similarity
within PBMC subsets and dissimilarity between them
(Fig. S8, http://links.lww.com/HC9/A236).

Using WGCNA, we identified 19 modules (ie, net-
works of co-expressed genes) in monocytes (Figure 1A).
Of these, 6 were correlated at q<0.05 with 1 or more
traits (ie, case vs. control, nonresponder vs. control,
responder vs. control, or nonresponder vs. responder)
(Figure 1B). Among the other PBMC subsets, 7 of 11
modules in TH1 cells; 6 of 11modules in TH17 cells; 5 of 9
modules in TREG cells; and 5 of 10 modules in B cells
were also correlated at q<0.05 with 1 or more traits.
Table 2 lists modules showing at least moderate
correlation (r≥0.5) with 1 trait or another.

In monocytes, the salmon module was positively
correlated with nonresponders versus controls (r= 0.56,
q=0.023). This module was strongly enriched for TNF
signalling (Table 3). Hub genes (ie, the most highly
connected genes in the module) included CD83, an
activation marker for Ag-presenting cells; RIPK2, a
potent activator of NF-кB; and IL1B, a key mediator of
inflammation (Table 2, Figure 1D). In contrast, the
turquoise module was negatively correlated with
responders versus controls (r=−0.61, q= 7.7 × 10−3).
Hub genes in this module included JUND, an activator
protein (AP)-1 transcription factor; and CYBA, which is
essential for the generation of superoxide in
phagocytes. As shown in Figure 1C, genes in the
salmon module were upregulated in nonresponders
compared with controls (p = 1.2 × 10−3), whereas
those in the turquoise module were downregulated in
responders compared with controls (p = 3.8 × 10−4).
This suggests a predominance of activated and

proinflammatory monocytes in nonresponders, in
contrast to a predominance of inactivated monocytes
in responders.

In TH1 cells, the yellow module showed a strong
positive correlation with both responders (r= 0.75,
q= 2.2 × 10−5) and nonresponders (r=0.72,
q= 9.6 × 10−5) versus controls (Table 2). This module
was enriched for TNF signalling and contained hub
genes such as CD69, an activation marker; JUN and
FOS, which form the mitogenic AP-1 transcription
factor; and GADD45B, which activates MAP kinases.
Conversely, the green module showed a strong
negative correlation with responders versus controls
(r=−0.74, q=2.2 × 10−5) and a moderate negative
correlation with nonresponders versus controls
(r=−0.5, q= 0.03). This module was enriched for IL-2,
IFNγ, and IL-6 signalling. Hub genes included IRF8, a
transcription factor that promotes TH1 cells.[30] Genes in
the yellow module were upregulated in both responders
and nonresponders, whereas those in the green module
were downregulated in responders more than in
nonresponders (Fig. S10, http://links.lww.com/HC9/
A236). This suggests that TH1 cells are activated in all
patients with PBC (irrespective of UDCA response),
with stronger regulation of these cells in responders.

In TH17 cells, the red module was correlated with
responders (r=0.67, q=5.30 × 10−4) as well as non-
responders (r=0.63, q=2.46 × 10−3) versus controls
(Table 2). It was enriched for TNF, IFNγ, and
IL-2 signalling; hub genes included JUN, GADD45B,
and NR4A2. The purple module was also correlated
with both responders (r= 0.53, q= 0.015) and
nonresponders (r=0.51, q= 0.024) versus controls.
Hub genes in this module included EGR1, which
induces transcription of T-bet[31] and ZC3H12A, which
is critical for IL-17-mediated inflammation.[32] In

TABLE 1 Participant characteristics

Nonresponders (n=16) Responders (n=15) Controls (n= 15) p-value

Age (y) 60 (56–66) 65 (54–71) 57 (31–74) 0.2

No. of women (%) 14 (87.5%) 15 (94%) 15 (100%) 0.4

Disease duration (y) 10.8 (6.7–13.8) 8.3 (3.2–12.5) — 0.3

UDCA dose (mg/kg/day) 14.3 (13.2–16.0) 11.9 (10.3–13.8) — 7.2 × 10−3

ALP (U/L) 467.5 (383.8–541.5) 97.0 (83.5–120.0) 64 (53–78) 2.3×10−6

ALP/ULN 3.7 (3.1–4.5) 0.8 (0.7–1.0) 0.5 (0.4–0.6) 2.3×10−6

ALT (U/L) 60.5 (47–81.5) 31 (19.5–49.5) 19 (16–28) 5.3×10−3

Bilirubin (μmol/L) 12 (9.8–19.3) 7 (6–10) 10 (9–11) 1.4×10−3

Albumin (g/L) 38 (36–40.3) 45.0 (42.5–47.5) 39 (37–40) 4.5×10−4

Platelets (109/L) 250 (203.5–303.5) 245 (190–322.5) 224 (198–300) 0.9

Transient elastography (kPa) 6.8 (5.6–8.0) 7.6 (5.0–13.9) — 0.7

Notes: Median values (interquartile range) are shown for all parameters except for the number (percentage) of women.
Statistical tests were ANOVA for comparison of age across all 3 groups; the Kruskal-Wallis chi-square test to compare the proportion of women in each group; and a 2-
tailed Mann-Whitney test to compare all other parameters in nonresponders versus responders.
Abbreviations: ALP, alkaline phosphatase; UDCA, Ursodeoxycholic acid.
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contrast, the magenta module was negatively correlated
with responders versus controls (r=−0.50, q= 0.015). It
was enriched for KRAS, IL-6, and IFNγ signalling; and
contained the hub gene, PIK3AP1, which is required for

the generation of pathogenic TH17 cells.[33] Genes in
the red and purple modules were upregulated in
responders and nonresponders, whereas those in the
magenta module were downregulated in responders

(A) (D)

(B) (C) 

F IGURE 1 Weighted gene co-expression network analysis (WGCNA) of RNA-sequencing data from CD14 cells. (A) Dendrogram showing gene co-
expression networks (‘modules’). (B) Heatmap showing the strength of correlation between eachmodule (rows) and each trait (columns). Asterisks indicate
that the module is associated with the trait at q<0.05, where q is the false discovery rate-adjusted p-value. Rows outlined in black identify modules with at
leastmoderate correlation (r≥0.5) with 1 ormore traits and enrichedwithHallmark gene sets at q<0.05. (C) Boxplots of themodule eigengenes (ie, the first
principal component of gene expression in themodule; y-axis) in each group of participants (x-axis). Asterisks indicate the statistical difference between the
module eigengene significance (based on the correlation between the module eigengene and trait of interest) and the trait comparison groups. Asterisks
indicate the corresponding p values. (D) GeneMANIA protein-protein interaction plot showing protein-coding–hub genes in the salmon module for
nonresponders versus controls. Protein-coding–hub genes are shownwith cross-hatched circles of a uniform size, while those that were added as relevant
genes by GeneMANIA are shown with solid circles whose size is proportional to the number of interactions they have. Lines correspond to the type of
interactions. Purple: Genes known to be co-expressed in existing gene databases. Pink: Proteins known to be linked. Turquoise: Genes present in a shared
annotated pathway. Blue: Genes expressed in the same tissue. Orange: Predicted functional relationships between genes. Green: Predicated genetic
interactions. Olive: Shared protein domains. Abbreviations: WGCNA, Weighted gene co-expression network analysis.
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(Fig. S11, http://links.lww.com/HC9/A236). These find-
ings suggest that TH17 cells are activated in all PBC
patients—but may be better regulated in responders.

In TREG cells, the pink module was correlated with
responders versus controls (r=0.69, q=1.4 × 10−4). Hub
genes in this module notably included the immune
checkpoint, CTLA4. The green module was also corre-
lated with responders versus controls (r=0.64, q=4.0
×10−4). It was enriched for TNF signalling and contained
the hub genes, CXCR4 and IL7R. Conversely, the brown

module showed a strong negative correlation with
responders versus controls (r=−0.80, q=1.17×10−6);
moderate negative correlation with nonresponders ver-
sus controls (r=−0.56, q=0.011); and a moderate
negative correlation with responders versus nonrespond-
ers (r=−0.49, q=0.026) (Fig. S12, http://links.lww.com/
HC9/A236). This module was enriched for KRAS, IL-6, IL-
2 signalling, and TNF signalling; and contained the hub
gene, IRF8, the identity-keeper for suppressive TH1-like
TREG cells[34] (Fig. S12H, http://links.lww.com/HC9/

TABLE 2 Modules of co-expressed genes

Notes: Modules are shown that were at least moderately correlated (r≥ 0.5) with one or more traits.
Bold indicates correlation at q< 0.05.
Selected hub genes are those which readily describe the module.
Abbreviations: NR, non-responder; PBMC, peripheral blood mononuclear cell; R, responder.
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A236). Genes in the pink and green modules were
upregulated in responders versus controls, whereas
those in the brown module were downregulated in
responders and nonresponders versus controls and
responders versus nonresponders. These observations
suggest that TREG cells are more active—but also kept in
check—in responders.

In B cells, the black module showed a strong
correlation with responders versus controls (r= 0.73,

q= 7.37× 10−5). This module was enriched with genes
involved in TNF signalling.

Gene set enrichment analysis

We found that GSEA was broadly consistent with
WGCNA. In monocytes, for example, GSEA showed
positive enrichment of proinflammatory pathways in both

TABLE 3 Pathway enrichment

Enrichr

PBMC subset Module
Comparison group direction of effect

in WGCNA Hallmark pathway p q

CD14+ Salmon — — TNFα signalling through NF-кB 1.75×10−52 7.89×10−51

— — Apoptosis 3.45× 10−6 3.58× 10−5

NR vs. CN mTORC1 signalling 4.78× 10−6 3.58× 10−5

— — KRAS signalling up 4.78× 10−6 3.58× 10−5

— — IL-2/STAT5 signalling 2.56× 10−6 1.51× 10−4

— — IFNγ response 2.69× 10−6 1.51× 10−4

TH1 Yellow NR vs. CN TNFα signalling via NF-кB 2.35×10−39 1.08×10−37

R vs. CN p53 pathway 2.36× 10−4 3.63× 10−3

CS vs. CN Apoptosis 5.30× 10−4 6.10× 10−3

Green — — IL-2/STAT5 signalling 2.32× 10−4 2.77× 10−3

R vs. CN IFNγ response 2.46× 10−4 2.77× 10−3

NR vs. CN IL-6/JAK/STAT3 signalling 1.83× 10−3 9.94× 10−3

CS vs. CN TNFα signalling through NF-кB 1.99× 10−3 9.94× 10−3

— — KRAS signalling up 1.99× 10−3 9.94× 10−3

TH17 Purple NR vs. CN TNFα signalling through NF-кB 3.35× 10−6 8.71× 10−5

R vs. CN — — —

CS vs. CN — — —

Red NR vs. CN TNFα signalling via NF-кB 2.04×10−30 9.40×10−29

CS vs. CN IFNγ response 3.72× 10−6 4.27× 10−5

R vs. CN IL-2/STAT5 signalling 1.52× 10−5 1.40× 10−4

Magenta R vs. CN KRAS signalling up 1.13× 10−9 2.08× 10−8

— — IFNγ response 6.48× 10−5 4.79× 10−4

— — IL-6/JAK/STAT3 signalling 1.40× 10−4 8.60× 10−4

TREG Green R vs. CN TNFα signalling through NF-кB 1.74× 10−2 6.43× 10−1

Brown R vs. NR KRAS signalling up 1.44× 10−6 6.77× 10−5

NR vs. CN IL-6/JAK/STAT3 signalling 8.10× 10−6 1.27× 10−4

R vs. CN IL-2/STAT5 signalling 1.33× 10−5 1.36× 10−4

CS vs. CN TNFα signalling through NF-кB 4.27× 10−5 2.87× 10−4

B Black R vs. CN TNFα signalling through NF-кB 2.60× 10−4 1.09× 10−2

CS vs. CN — — —

Notes: Enrichment of Hallmark pathways was evaluated using the platform, Enrichr.
Pathways enriched at q< 0.05 are shown.
The direction of effect for the comparison groups is highlighted.

indicates positive correlation; indicates negative correlation.
q is the FDR corrected p-value.
▴▴ indicates moderate correlation; ▴▴▴ indicates strong correlation.
Abbreviation: FDR, false discovery rate; NR, non-responder.
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responders and nonresponders versus controls—but
also showed positive enrichment of MYC signalling and
oxidative phosphorylation in responders versus non-
responders. In TH1 cells, GSEA showed positive enrich-
ment of TNF signalling in nonresponders versus controls
(implying activation)—but negative enrichment of IL-2
and IL-6 signalling in responders and nonresponders
versus controls, and negative enrichment of IFNγ signal-
ling in responders versus controls (implying regulation)
(Fig. S15, http://links.lww.com/HC9/A236). In TREG cells,
GSEA showed positive enrichment of MYC signalling
(which encourages the proliferation of TREG cells) in
responders versus controls—but negative enrichment of
TGFβ and IL-2 signalling in both responders and
nonresponders versus controls (Fig. S17, http://links.
lww.com/HC9/A236). Thus, GSEA reiterated a balance
between proinflammatory and immunoregulatory proc-
esses in PBC, favoring the latter in responders. Please
see Supplementary Data (Fig. S14-S18, http://links.lww.
com/HC9/A236) for further details.

Multi-omics factor analysis

In WGCNA and GSEA, we observed an overarching
theme of immune cell activation counterbalanced by
regulation. To confirm this, we used MOFA to identify
the principal axes of variation across all PBMC subsets.
We identified 7 latent factors accounting for most of the
variance in each dataset (Figure 2A). Of these, LF1 and
LF4 were associated with trait status at p = 2.8× 10−7

and p = 0.0045, respectively. LF1 was active in all cell
types. It was most active in TREG cells, however,
accounting for 27% of the total variance observed in
this PBMC subset, compared with 18% in TH17 cells,
14% in TH1 cells, 9% in CD14+ cells, and 8% in B cells.
LF4 was active only in B cells, accounting for 34% of the
variance in this PBMC subset. The modules with the
heaviest loading on LF1 or LF4 are listed in Table 4.
Broadly, LF1 reaffirmed a balance between the
activation and regulation of immune processes across
PBMC subsets, favoring regulation. Thus, LF1 showed
a strong correlation with the pink and green modules in
TREG cells, representing suppressive activity; a negative
correlation with the turquoise module in monocytes and
green module in TH1 cells, representing immune
suppression; and only a modest correlation with the
yellow module in TH1 cells and red module in TH17
cells, representing proinflammatory activity. Notably,
LF1 showed a stronger association with responders,
implying stronger regulation of innate and adaptive
immune responses in this group of patients. The
modules accounting for LF4 were enriched with genes
involved in TNF signalling.

DISCUSSION

In this study, we profiled the transcriptomes of mono-
cytes and TH1, TH17, TREG, and B cells from the
peripheral blood of patients with PBC with an adequate
response to UDCA, those with inadequate response,
and healthy controls to gain insight into the immunobi-
ology of the UDCA response. Our data suggest that: (1)
monocytes are proinflammatory in nonresponders, but
antiinflammatory in responders; (2) TH1 and TH17 cells
are activated in all PBC patients, but there is stronger
regulation of these cell types in responders; (3) TREG

cells show greater activation counterbalanced by
greater regulation in responders; and (4) B cells show
greater activation in responders (Figure 3). Our data
imply stronger regulation of immune responses in
patients with a well-controlled disease.

Previous studies have shown that transcriptional
profiling of PBMC subsets can provide insight into the
pathogenesis of immune traits.[35–38] This is the first
study, however, to use transcriptional profiling of PBMC
subsets to identify networks of genes associated with
UDCA response or nonresponse in PBC. We employed

F IGURE 2 Multi-omics latent factor analysis (MOFA) of modules
identified by weighted gene co-expression network analysis (WGCNA)
for all cell types. (A) Heatmap to show the fitted MOFA model, dis-
playing the percentage of variance explained for each factor (rows) in
each cell type. (B) Violin plots representing the distribution of the factor
values for each patient group and each latent factor (1–7). ANOVA
was used to identify latent factors associated with trait status; the
p-value for each latent factor is shown. Abbreviations: MOFA, Multi-
omics latent factor analysis; WGCNA, Weighted gene co-expression
network analysis.
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WGCNA, a well-established method for identifying gene
networks associated with traits of interest. The major
advantage of WGCNA is its use of a weighted approach
to identify indirect as well as direct relationships between
genes, enabling robust and informative gene clustering.
Strong correlations between genes are emphasized at
the expense of weak correlations, which helps to identify
the most highly connected (and thus most representa-
tive) genes within each cluster—so-called “hub genes”.
We then used MOFA for integrated analysis of the
modules identified across all PBMC subsets. MOFA can
be viewed as a statistically rigorous generalization of
principal component analysis to multi-omics data, which
identifies the principal axes of variation across distinct
data modalities in terms of latent factors. Its advantage
over corresponding methods is that MOFA quantifies the
proportion of variance explained by each source of
variability (ie, each latent factor) in each data modality,
enabling the identification of factors shared across
multiple data modalities, as well as those unique to
just one.

Previous studies have shown the hyper-reactivity of
monocytes in PBC.[7] Consistent with this, our data
suggest that monocytes are proinflammatory in non-
responders. For example, the salmon module—
enriched with proinflammatory gene sets—was corre-
lated with nonresponders. In contrast, GSEA showed
positive enrichment of MYC signalling and oxidative
phosphorylation in responders compared with non-
responders. In monocytes, MYC signalling promotes
M2 polarization,[39] while oxidative phosphorylation is
the primary source of energy in M2 macrophages.[40]

Thus, our findings also suggest that monocytes
might be antiinflammatory in responders. One

possibility, albeit speculative, is that persistent choles-
tasis (and the inflammatory signals associated with
this) might influence the behavior of monocytes—and
both, in turn, might influence adaptive immune
responses.

Our data suggest that TH1 cells are activated in all
PBC patients, irrespective of UDCA response, but they
are regulated better in responders. Thus, in TH1 cells, the
yellow module—enriched for TNF signalling, which
enhances T-cell proliferation[41]—was correlated with
both responders and nonresponders. Conversely, the
green module—enriched for IFNγ signalling, which
promotes TH1 cell differentiation[42,43]—was negatively
correlated just with responders. We made comparable
observations in TH17 cells: activation in all patients but
stronger regulation in responders. Consistent with this,
we found evidence for greater activity of TREG cells in
responders. For example, in TREG cells, the green
module containing hub genes, such as CXCR4 and
IL7R, was correlated with responders. Paradoxically, the
brown module—enriched for IL-2 signalling, which
causes expansion of TREG cells—was negatively corre-
lated with responders versus nonresponders, and
responders versus controls. This might represent neg-
ative feedback, however, which keeps activated TREG

cells in check. We might expect such feedback to be
more prominent in those with well-controlled disease.

Also paradoxical, our results suggest that there is
greater activation of B cells in responders. Thus, the
black module, enriched for TNF signalling, showed the
strongest correlation with responders. B cells can
promote regulatory T-cell differentiation[44]; and in a
murine model of PBC, B-cell depletion exacerbates
cholangitis.[45] Therefore, it is plausible that B cells

TABLE 4 Modules associated with LF1 and LF4

Latent factor PBMC subset Module Weight r p

1 CD14+ Black 0.61 0.56 5.4× 10−5

— Turquoise −0.66 −0.74 8.1× 10−9

1 TH1 Yellow 0.44 0.51 3.0× 10−4

— Green −0.56 −0.62 4.7× 10−6

1 TH17 Red 0.45 0.55 9.7× 10−5

— Greenyellow 0.63 0.69 1.4× 10−7

1 TREG Brown −0.57 −0.61 6.2× 10−6

— Green 0.66 0.74 5.8× 10−9

— Pink 0.88 0.86 3.4× 10−14

1 B Red 0.39 0.60 1.6× 10−5

— Black 0.46 0.76 2.5× 10−9

4 B Black −0.65 −0.86 3.4× 10−12

— Brown −0.91 −0.91 <2.2× 10−16

— Turquoise 0.93 0.94 <2.2× 10−16

Notes: Modules with the greatest loading on latent factors 1 or 4 are shown.
The weight measures how strongly the module relates to the latent factor (scale from −1 to 1).
r is the correlation coefficient between the modules and the latent factor, with the associated p-value.
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might have a protective role in PBC. This requires
further exploration, especially the relationship between
B and TREG cells in this condition.

Collectively, our findings suggest that immune
responses are better contained in responders than
nonresponders. One possibility is that UDCA has direct

F IGURE 3 UDCAnonresponders show immunological differences compared to responders. Schematic illustrating the significant pathways correlated
with nonresponders versus controls (A) and responders versus controls (B) overall highlighting the key findings of this study: (1) that monocytes are
activated and proinflammatory in nonresponders; (2) TH1 and TH17 cells are activated in nonresponders and responders, but there is stronger regulation of
both in the latter; (3) TREG cells exhibit greater activation counterbalanced by greater regulation in responders; and (4) B cells are activated in responders.
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immunomodulatory effects on the immune cells tested in
this study; this seems unlikely given the breadth of effects
observed. Our findings might however be consistent with
the BEC senescence hypothesis. Thus, when UDCA fails
to ameliorate BEC senescence, proinflammatory signals
from the liver continue to drive the monocyte and TH1/
TH17 cell activation seen in this study. Conversely, when
UDCA-induced choleresis is effective, BEC senescence
is diminished, proinflammatory signals are curtailed, and
regulatorymechanisms supervene. Our findings inMOFA
support this concept in that LF1 showed a stronger
association with responders, favored immunoregulatory
over proinflammatory activity, and was most active in
TREG cells. This has implications for drug development in
PBC: there is clearly an important role for anti-cholestatic
therapies that diminish BEC senescence—but there may
also be a role for agents that target the immune
processes downstream of BEC senescence.

We acknowledge the limitations of this study. The
cross-sectional study design enabled us to identify
associations but not causality. Even so, our study provides
insight into the immunobiology of well-controlled PBC,
highlighting regulatorymechanisms that could be explored
for therapeutic potential. A frequent criticism of transcrip-
tional profiling is that the genome-wide correlation
between expression levels of mRNA and protein is poor.
Correlation between mRNA and protein is stronger for
differentially expressed genes, however, supporting the
view that differential gene expression has biological
meaning. We did not profile CD8+ T cells in the current
study, even though CD8+ T cells are involved in the
destruction of BECs in PBC.[46] There were technical
constraints on the number of PBMC subsets that could be
sorted, however, so we prioritized T-helper and B-cell
subsets to study immunoregulatory phenotypes. We
acknowledge the importance of profiling CD8+ T cells
(and other immune cell types, such as NK cells) in future
work. Finally, we profiled circulating immune cells rather
than liver infiltrates. We acknowledge that the immunopa-
thogenic functionality and spatial array of effector and
regulatory populations within inflammatory infiltrates in the
liver are important to determine response to therapy in
PBC. Transcriptional profiling of these populations has
only recently become tractable, however, using novel
approaches such as spatial transcriptomics. We look
forward to using these approaches in the future.

In conclusion, this is the first study to profile the
transcriptomes of PBMC subsets in patients with
PBC stratified by UDCA response. Our data suggest
immunological differences between responders and
nonresponders—and suggest that immune cells are better
restrained in PBC patients with well-controlled disease.
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