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Abstract

Trust region methods are widely applied in single-agent reinforcement learning
problems due to their monotonic performance-improvement guarantee at every
iteration. Nonetheless, when applied in multi-agent settings, the guarantee of
trust region methods no longer holds because an agent’s payoff is also affected
by other agents’ adaptive behaviors. To tackle this problem, we conduct a game-
theoretical analysis in the policy space, and propose a multi-agent trust region
learning method (MATRL), which enables trust region optimization for multi-
agent learning. Specifically, MATRL finds a stable improvement direction that is
guided by the solution concept of Nash equilibrium at the meta-game level. We
derive the monotonic improvement guarantee in multi-agent settings and show
the local convergence of MATRL to stable fixed points in differential games. To
test our method, we evaluate MATRL in both discrete and continuous multiplayer
general-sum games including checker and switch grid worlds, multi-agent MuJoCo,
and Atari games. Results suggest that MATRL significantly outperforms strong
multi-agent reinforcement learning baselines.

1 Introduction

Multi-agent systems (MASs) [1] have received much attention from the reinforcement learning
community [2]. In the real world, automated driving [3, 4], StarCraft II [5, 6] and Dota 2 [7] are a
few examples of the myriad of applications that can be modeled by MASs. Due to the complexity
of multi-agent problems [8], an investigation into whether agents can learn to behave effectively
during interactions with environments and other agents is essential [9]. This investigation can be
conducted naively through an independent learner (IL) [10], which ignores the other agents and
optimizes the policy assuming a stable environment [11, 12]; and trust region method (e.g., proximal
policy optimization (PPO) [13]) based ILs are popular [5, 7] due to their theoretical guarantee for
single-agent learning [14] and good empirical performance in real-world applications.

In multi-agent scenarios, however, an agent’s improvement is affected by other agents’ adaptive
behaviors (i.e., the multi-agent environment is nonstationary [12]). As a result, trust region learners
can measure the policy improvements of agents’ predicted policies compared to the current policies,
but the improvements compared to the other agents’ predicted policies are still unknown (shown
in Fig. 1). Therefore, trust-region-based ILs perform worse in MASs than in single-agent tasks.
Moreover, the convergence to a fixed point, such as a Nash equilibrium [15, 16, 17], is a common and
widely accepted solution concept for multi-agent learning. Thus, although ILs can best respond to
other agents’ current policies, they lose their convergence guarantee [18].

One solution for addressing the convergence problem for ILs is empirical game-theoretic analysis
(EGTA) [19], which approximates the best response to the policies generated by ILs [20, 21].
Although EGTA-based methods [20, 22, 23] establish convergence guarantees in several game
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Monotonic Improvement Against
Opponent’s Current Policy

Unknown Improvement Against
Opponent’s Predicted Policy

Figure 1: Discounted returns ηi for an agent i given different joint policy pairs, where πi is the current
policy, and π′i is the simultaneously predicted policy. Given πi, the monotonic improvements of a
fixed opponent can be easily measured: ηi(π′i, π−i) ≥ ηi(πi, π−i). However, due to simultaneous
learning, the improvement of ηi(π′i, π

′
−i) is unknown compared to ηi(πi, π−i).

classes, their computational cost is also large when empirically approximating and solving the meta-
game [24]. Other multi-agent learning approaches collect or approximate additional information such
as communication [25, 6] and centralized joint critics [26, 27, 28, 29]. Nevertheless, these methods
usually require centralized critics or centralized communication assumptions, which require extra
training efforts. Thus, there is considerable interest in the use of multi-agent learning to find an
algorithm that while having minimal requirements and computational cost as ILs, also simultaneously
improves convergence performance.

This paper presents a multi-agent trust region learning (MATRL) algorithm that augments the trust
region ILs with a meta-game analysis to improve learning stability and efficiency. In MATRL, a trust
region trial step for an agent’s payoff improvement is implemented by ILs, which provide a predicted
policy based on the current policy. Then, an empirical policy-space meta-game is constructed to
compare the expected advantages of the predicted policies with those of the current policies. By
solving the meta-game, MATRL finds a restricted step by aggregating the current and predicted
policies using the meta-game Nash equilibrium. Finally, MATRL takes the best responses based on
the aggregated policies from the last step for each agent to explore because the identified stable trust
region is not always strictly stable. MATRL is, therefore, able to provide a weakly stable solution
compared to naive ILs. Based on a trust region IL, MATRL requires the knowledge of other agents’
policy during the meta-game analysis but does not need extra centralized parameters, simulations,
or modifications to the IL itself. We provide insights into the empirical meta-game in Section 2.2,
showing that the approximated Nash equilibrium of the meta-game is a weak stable fixed point of
the underlying game. Our experiments demonstrate that MATRL significantly outperforms deep
ILs [13] with the same hyperparameters, VDN [30], QMIX [29] and QDPP [28] methods in discrete
action grid worlds, decentralized PPO ILs, centralized MADDPG [26] and independent DDPG
and COMIX [31] in a continuous action multi-agent MuJoCo task [31] and zero-sum multi-agent
Atari [32].

2 Multi-Agent Trust Region Learning

Notations & Preliminaries. A stochastic game [33, 34] can be defined as follows: G =
〈N ,S, {Ai}, {Ri},P, p0, γ〉, where N is a set of agents, n = |N | is the number of agents, and S
denotes the state space. Ai is the action space for agent i. A = A1×· · ·×An = Ai×A−i is the joint
action space, and for simplicity, we use −i to denote agents other than agent i. Ri = Ri(s, ai, a−i)
is the reward function for agent i ∈ N . P : S ×A× S → [0, 1] is the transition function. p0 is the
initial state distribution, and γ ∈ [0, 1) is a discount factor. Each agent i ∈ N has a stochastic policy
πi(ai|s) : S ×Ai → [0, 1] and aims to maximize its long-term discounted return:

ηi(πi, π−i) = Es0,a0i ,a0−i···

[ ∞∑
t=0

γtRi(s
t, ati, a

t
−i)

]
, (1)

where s0 ∼ p0, st+1 ∼ P(st+1|st, ati, at−i), and ati ∼ πi(a
t
i|τ ti ). Then,

we have the standard definitions of the state-action value and state value functions:
Q
πi,π−i
i (st, ati, a

t
−i) = Est+1,at+1

i ,at+1
−i ···[

∑∞
l=0 γ

lRi(s
t+l, at+li , at+l−i )] and V

πi,π−i
i (st) =

Eati,at−i,st+1···[
∑∞
l=0 γ

lRi(s
t+l, at+li , at+l−i )]; also the advantage function A

πi,π−i
i (st, ati, a

t
−i) =

Q
πi,π−i
i (st, ati, a

t
−i)− V

πi,π−i
i (st), given the state and joint action.

Motivations. A trust region algorithm aims to answer two questions: how to compute a trial step and
whether the trial step should be accepted. In multi-agent learning, a trial step toward agents payoff
improvement can be easily implemented with ILs, denoted as independent improvement direction
(IID). The remaining issue is resolved by finding a restricted step leading to a stable improvement
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�i

<latexit sha1_base64="Fw1dfCbZJkKFI2hnPQ98LMPUPAY=">AAACNXicdZA9T8MwEIYdPkv5CjCyWFQghrZKUCVgq8TCWCT6IbUhcly3tWo7ke0gVVH+Ab+GhQH+CAMbYmVlxGkz0FacdNKr5+7suzeIGFXacd6tldW19Y3NwlZxe2d3b98+OGypMJaYNHHIQtkJkCKMCtLUVDPSiSRBPGCkHYxvsnr7kUhFQ3GvJxHxOBoKOqAYaYN8+2zoJzR9SHojpI0oV0waVMkYLVdynPp2yak604DLws1FCeTR8O2fXj/EMSdCY4aU6rpOpL0ESU0xI2mxFysSITxGQ9I1UiBOlJdM70nhqSF9OAilSaHhlP6dSBBXasID08mRHqnFWgb/q2Uvqrn/k4Av7KMHV15CRRRrIvBsnUHMoA5hZiHsU0mwZhMjEJbUXATxCEmEtTG6aKxyF41ZFq2LqlurXt/VSnUnN60AjsEJOAcuuAR1cAsaoAkweALP4BW8WS/Wh/Vpfc1aV6x85gjMhfX9CzS8rPg=</latexit>

⇡̄i = PA(⇡i, ⇡̂i, ⇢i)

<latexit sha1_base64="FJvkU7DV4jSSBKrnDinbQeKHKfc="></latexit>

⇡̄�i = PA(⇡�i, ⇡̂�i, ⇢�i)

<latexit sha1_base64="Qm796agVEwoLg34NMapQFt+yPJg="></latexit>

⇡̄0
�i = argmax⇡̃�i

⌘�i(⇡̄i, ⇡̃�i)

<latexit sha1_base64="KjxX7vY8UaMI852OzA+r3Zb0HkE="></latexit>

⇡̄0
i = argmax⇡̃i

⌘i(⇡̄�i, ⇡̃i)

<latexit sha1_base64="RmEhXuKMESeXTLqItVf6386vzfs="></latexit>

⌘i(⇡̂i,⇡�i) � ⌘i(⇡i,⇡�i)

<latexit sha1_base64="ULWi/ZIc5l2mK36yR99hr0XKr7M=">AAACUXicdVFNSwMxEJ2u3/Wr6tFLsAgKWnaloN5ELx4VrApuWbLptA1mP0xmhbLs//HXePGg/hO9ma0FbcWBwMubN5OZlzBV0pDrvlecqemZ2bn5heri0vLKam1t/dokmRbYEolK9G3IDSoZY4skKbxNNfIoVHgT3p+V+ZtH1EYm8RUNUmxHvBfLrhScLBXUTn0kHuSy2PH7nHI/lUV522MWBfm+LHaZ38MH9iMr+TFBUKu7DXcY7C/wRqAOo7gIah9+JxFZhDEJxY2589yU2jnXJIXCoupnBlMu7nkP7yyMeYSmnQ93Ldi2ZTqsm2h7YmJD9ndFziNjBlFolRGnvpnMleR/ubKjGXs/D6OJeah71M5lnGaEsfgep5spRgkr7WUdqVGQGljAhZZ2Iyb6XHNB9hOq1ipv0pi/4Pqg4TUbx5fN+snRyLR52IQt2AEPDuEEzuECWiDgCZ7hFd4qL5VPBxznW+pURjUbMBbO4hdNe7TO</latexit>

⌘�i(⇡i, ⇡̂�i) � ⌘�i(⇡i,⇡�i)

<latexit sha1_base64="c8WZPQ42qH3CmIbJ3KseYDuF5+Q="></latexit>

Independent Payoff 

Improvement Directions

Stable Directions

in Joint Policy Space

Po
lic
y
of
A
ge
nt
2

Policy of Agent 1

Current policies
Predicted policies

Stable improvement points

<latexit sha1_base64="JPY3g3hMmLMKxxf5jzIio8QJYhg=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBKvgQsuMKLosuHFZwT6gHUsmzbShmUxIMkoZ+h9uXCji1n9x59+YaWehrQfu5XDOveTmBJIzbVz32yksLa+srhXXSxubW9s75d29po4TRWiDxDxW7QBrypmgDcMMp22pKI4CTlvB6CbzW49UaRaLezOW1I/wQLCQEWys9NCVrMdOs56esUmvXHGr7hRokXg5qUCOeq/81e3HJImoMIRjrTueK42fYmUY4XRS6iaaSkxGeEA7lgocUe2n06sn6NgqfRTGypYwaKr+3khxpPU4CuxkhM1Qz3uZ+J/XSUx47adMyMRQQWYPhQlHJkZZBKjPFCWGjy3BRDF7KyJDrDAxNqiSDcGb//IiaZ5Xvcuqe3dRqR3lcRThAA7hBDy4ghrcQh0aQEDBM7zCm/PkvDjvzsdstODkO/vwB87nDzEukjc=</latexit>⇡i,⇡�i
<latexit sha1_base64="tH/2Z+mYL573ZZMEA0SR5Vm8sjk=">AAACA3icbZDLSgMxFIbP1Futt1F3uglWwYWWGVF0WXDjsoK9QGcomTTThmYyQ5IRylBw46u4caGIW1/CnW9j2g6orQcSPv7/HJLzBwlnSjvOl1VYWFxaXimultbWNza37O2dhopTSWidxDyWrQArypmgdc00p61EUhwFnDaDwfXYb95TqVgs7vQwoX6Ee4KFjGBtpI695/WxzryEjTrs5IezU3PZZafiTArNg5tDGfKqdexPrxuTNKJCE46VartOov0MS80Ip6OSlyqaYDLAPdo2KHBElZ9NdhihI6N0URhLc4RGE/X3RIYjpYZRYDojrPtq1huL/3ntVIdXfsZEkmoqyPShMOVIx2gcCOoySYnmQwOYSGb+ikgfS0y0ia1kQnBnV56HxlnFvag4t+fl6mEeRxH24QCOwYVLqMIN1KAOBB7gCV7g1Xq0nq03633aWrDymV34U9bHN470mAI=</latexit>

⇡̂i, ⇡̂�i

Payoff improvement directions
for current policies <latexit sha1_base64="JPY3g3hMmLMKxxf5jzIio8QJYhg=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBKvgQsuMKLosuHFZwT6gHUsmzbShmUxIMkoZ+h9uXCji1n9x59+YaWehrQfu5XDOveTmBJIzbVz32yksLa+srhXXSxubW9s75d29po4TRWiDxDxW7QBrypmgDcMMp22pKI4CTlvB6CbzW49UaRaLezOW1I/wQLCQEWys9NCVrMdOs56esUmvXHGr7hRokXg5qUCOeq/81e3HJImoMIRjrTueK42fYmUY4XRS6iaaSkxGeEA7lgocUe2n06sn6NgqfRTGypYwaKr+3khxpPU4CuxkhM1Qz3uZ+J/XSUx47adMyMRQQWYPhQlHJkZZBKjPFCWGjy3BRDF7KyJDrDAxNqiSDcGb//IiaZ5Xvcuqe3dRqR3lcRThAA7hBDy4ghrcQh0aQEDBM7zCm/PkvDjvzsdstODkO/vwB87nDzEukjc=</latexit>⇡i,⇡�i

Payoff improvement directions
for predicted policies

<latexit sha1_base64="tH/2Z+mYL573ZZMEA0SR5Vm8sjk=">AAACA3icbZDLSgMxFIbP1Futt1F3uglWwYWWGVF0WXDjsoK9QGcomTTThmYyQ5IRylBw46u4caGIW1/CnW9j2g6orQcSPv7/HJLzBwlnSjvOl1VYWFxaXimultbWNza37O2dhopTSWidxDyWrQArypmgdc00p61EUhwFnDaDwfXYb95TqVgs7vQwoX6Ee4KFjGBtpI695/WxzryEjTrs5IezU3PZZafiTArNg5tDGfKqdexPrxuTNKJCE46VartOov0MS80Ip6OSlyqaYDLAPdo2KHBElZ9NdhihI6N0URhLc4RGE/X3RIYjpYZRYDojrPtq1huL/3ntVIdXfsZEkmoqyPShMOVIx2gcCOoySYnmQwOYSGb+ikgfS0y0ia1kQnBnV56HxlnFvag4t+fl6mEeRxH24QCOwYVLqMIN1KAOBB7gCV7g1Xq0nq03633aWrDymV34U9bHN470mAI=</latexit>

⇡̂i, ⇡̂�i

Case 1

Case 4

Case 2

Case 3

<latexit sha1_base64="Hv2/pooGwevOZcpnTyTF8/B26CI=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahgpZEFF0W3LisYB/QhjCZTtuhk0mYmSgl9lPcuFDErV/izr9x0mahrQcu93DOvcydE8ScKe0431ZhZXVtfaO4Wdra3tnds8v7LRUlktAmiXgkOwFWlDNBm5ppTjuxpDgMOG0H45vMbz9QqVgk7vUkpl6Ih4INGMHaSL5drvZi5rNTlLX0jE1PfLvi1JwZ0DJxc1KBHA3f/ur1I5KEVGjCsVJd14m1l2KpGeF0WuolisaYjPGQdg0VOKTKS2enT9GxUfpoEElTQqOZ+nsjxaFSkzAwkyHWI7XoZeJ/XjfRg2svZSJONBVk/tAg4UhHKMsB9ZmkRPOJIZhIZm5FZIQlJtqkVTIhuItfXiat85p7WXPuLip1J4+jCIdwBFVw4QrqcAsNaAKBR3iGV3iznqwX6936mI8WrHznAP7A+vwB0iSTAw==</latexit>

(⇡i,⇡�i)

1. Independent Policy Improvement

2. Solve the Nash Equilibrium of Meta Game3. Best Response to Weak Stable Fixed Point

Independent Improvement
Direction (IID)

Stable Improvement
Point (SIP)

Equilibrium
of the Meta Game

<latexit sha1_base64="KSZBOqUwG4gSm7NWq9dhE7JIKQA=">AAACBnicbVDLSsNAFL2pr1pfUZciDBahgpZEFF0W3LisYB/QhDCZTtrByYOZiVBCVm78FTcuFHHrN7jzb5y2AbX1wIUz59zL3Hv8hDOpLOvLKC0sLi2vlFcra+sbm1vm9k5bxqkgtEViHouujyXlLKItxRSn3URQHPqcdvy7q7HfuadCsji6VaOEuiEeRCxgBCsteeZ+zfGxyJyE5R47Rj+P7ITlR55ZterWBGie2AWpQoGmZ346/ZikIY0U4VjKnm0lys2wUIxwmlecVNIEkzs8oD1NIxxS6WaTM3J0qJU+CmKhK1Joov6eyHAo5Sj0dWeI1VDOemPxP6+XquDSzViUpIpGZPpRkHKkYjTOBPWZoETxkSaYCKZ3RWSIBSZKJ1fRIdizJ8+T9mndPq9bN2fVRq2Iowx7cAA1sOECGnANTWgBgQd4ghd4NR6NZ+PNeJ+2loxiZhf+wPj4BqcXmIU=</latexit>

(⇡̄i, ⇡̄�i)

<latexit sha1_base64="34r0unYLWUW+rfJ9z/BvkKyKUtg=">AAACJHicbVDLSsNAFJ3UV62vqEs3g0WooCURRcFNwY3LCvYBTQyT6aQdOpOEmYlSQj7Gjb/ixoUPXLjxW5y2wUfrgcs9nHMvM/f4MaNSWdaHUZibX1hcKi6XVlbX1jfMza2mjBKBSQNHLBJtH0nCaEgaiipG2rEgiPuMtPzBxchv3RIhaRReq2FMXI56IQ0oRkpLnnlecXwkUiemmUdvdBeUk+wA/qjpIc2+jX3oCNrrKyREdOeZZatqjQFniZ2TMshR98xXpxvhhJNQYYak7NhWrNwUCUUxI1nJSSSJER6gHuloGiJOpJuOj8zgnla6MIiErlDBsfp7I0VcyiH39SRHqi+nvZH4n9dJVHDmpjSME0VCPHkoSBhUERwlBrtUEKzYUBOEBdV/hbiPBMJK51rSIdjTJ8+S5lHVPqlaV8flmpXHUQQ7YBdUgA1OQQ1cgjpoAAzuwSN4Bi/Gg/FkvBnvk9GCke9sgz8wPr8A1OSmHA==</latexit>

(⇡̄0
i, ⇡̄

0
�i)!

<latexit sha1_base64="RsIsv616ZrqjflNhdcYZdszGgcE=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQQUsiii4LblxWsA9oQphMJ+3g5MHMjVBCVm78FTcuFHHrN7jzb5y2AbX1wIUz59zL3Hv8RHAFlvVllBYWl5ZXyquVtfWNzS1ze6et4lRS1qKxiGXXJ4oJHrEWcBCsm0hGQl+wjn93NfY790wqHke3MEqYG5JBxANOCWjJM/drzpBA5iQ89/gx/nlkJzw/8syqVbcmwPPELkgVFWh65qfTj2kasgioIEr1bCsBNyMSOBUsrzipYgmhd2TAeppGJGTKzSZn5PhQK30cxFJXBHii/p7ISKjUKPR1Z0hgqGa9sfif10shuHQzHiUpsIhOPwpSgSHG40xwn0tGQYw0IVRyvSumQyIJBZ1cRYdgz548T9qndfu8bt2cVRtWEUcZ7aEDVEM2ukANdI2aqIUoekBP6AW9Go/Gs/FmvE9bS0Yxs4v+wPj4BsLvmJ0=</latexit>

(⇡̂i, ⇡̂�i)
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Figure 2: (Left): Overview of the MATRL phases. The pale red area indicates independent payoff
improvement directions; the pale blue area shows stable improvement directions in joint policy space
and π: current policy, π̂: predicted policy in IID step, π̄: aggregated policy in SIP step; π′, next
policy. (Right): the gray area illustrates IID and SIP with a two-agent game, in which the arrows
indicate the payoff improvement directions for agents. The IID guarantees the partially monotone
game in red arrows; then, the SIPs are determined by improvement directions (include four cases) of
predicted policies in blue arrows.

direction, which is not in the single agent’s policy space but in the joint policy space. In other words,
MATRL decomposes trust region learning into two parts: first, an IID between current policy πi
and predicted policy π̂i should be identified; then, with the help of the predicted policy, a more
refined method, to some extent, can approximate a stable trial step. Instead of line searching in a
single-agent payoff improvement [35] direction, MATRL searches for a joint policy space to achieve
a conservative and stable improvement. Essentially, MATRL is an extension of the single-agent
TRPO to a MAS, which learns to find a stable point between the current policy and the predicted
policy. To find the stable improvement directions, we assume knowledge about other agents’ policies
during training to avoid unstable improvement via empirical meta-game analysis, while the execution
can still be fully decentralized. We explain every step of MATRL in detail in the following sections
(also in Fig. 2).

2.1 Independent Trust Payoff Improvement

Single-agent reinforcement learning algorithms can be straightforwardly applied to multi-agent
learning, where we assume that all agents behave independently [10]. In this section, we have
chosen the policy-based reinforcement learning method—ILs. In multi-agent games, the environment
becomes a Markov decision process for agent i when each of the other agents plays according
to a fixed policy. We set agent i to make a monotonic improvement against its opponents’ fixed
policies. Thus, at each iteration, the policy is updated by maximizing the utility function ηi over a
local neighborhood of the current joint policy πi, π−i. We can adopt TRPO (or, PPO [13]), which
constrains the step size in the policy update:

π̂i = arg max
π∈Πθi

ηi(π, π−i) s.t. D (πi, π̂i) ≤ δi, (2)

where D is a distance measurement, and δi is a constant. Independent trust region learners produce
the monotonically improved policy π̂i, which guarantees ηi (π̂i, π−i) ≥ ηi (πi, π−i) and provides
a trust payoff bound by π̂i. Due to simultaneous policy improvement without awareness of other
agents , however, the lower bound of payoff improvement from single-agent [35] no longer holds for
multi-agent payoff improvement. By following a similar logic in proof, we can obtain a precise lower
bound for a simultaneous-move multi-agent payoff improvement.
Remark 1. The approximated expected advantage gπi,π−ii gained by agent i when πi, π−i → π̂i, π̂−i
is denoted as follows:

g
πi,π−i
i (π̂i, π̂−i) :=

∑
s

pπi,π−i(s)
∑
ai,a−i

π̂i(ai|s)π̂−i(a−i|s)Aπi,π−ii (s, ai, a−i), (3)

where pπi,π−i(s) discounted state visitation frequencies induced by πi, π−i. Then, the following
lower bound can be derived for multi-agent independent trust region optimization:

ηi(π̂i, π̂−i)− ηi(πi, π−i) ≥ gπi,π−ii (π̂i, π̂−i)−
4γεi

(1− γ)2
(αi + α−i − αiα−i)2, (4)

where εi = maxs,a−i,a−i
∣∣Aπi,π−ii (s, ai, a−i)

∣∣, αi = Dmax
TV (πi, π̂i) = maxsDTV(πi(·|s)‖π̂i(·|s))

for agent i, and DTV is the total variation divergence [35]. More details are included in Appendix B.
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Based on the independent trust payoff improvement, although the predicted policy π̂i will guide
us in determining the step size of the IID, the stability of (π̂i, π̂−i) is still unknown. As shown in
Remark 1, an agent’s lower bound is approximatelyO(4α2), which is four times larger than the single-
agent lower bound trust region of O(α2) [14]. Furthermore, εi = maxs,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣

depends on other agents’ action a−i, which will be very large when agents have conflicting interests.
Therefore, the most critical issue underlying MATRL is finding a Stable Improvement Point (SIP)
after the IID. In the next section, we illustrate how to search for a weak stable fixed point within the
IID based on the meta-game analysis.

2.2 Approximating the Weak Stable Fixed Point

Stabilizing the independent trust payoff improvements is one of the essential components of MATRL.
Since each iteration of MATRL requires the solving of additional stable improvement subproblem,
finding an efficient solver for this subproblem is very important. Instead of using the stable fixed
points [36] as the stable improvement target, we choose the weak stable fixed point in Definition 2,
which is much easier to find. To maximize the objective defined in Eq. (1), we can ask that reasonable
algorithms avoid all strict minimums (unstable fixed points), which imposes only that agents are
well-behaved regarding strict minima, even if their individual behaviors are not self-interested [37].
Before providing the clear definitions for these points, we first define a differentiable game restricted
by the IID:
Definition 1 (Differentiable Restricted Game (DRG)). If the policy space for each agent i in a game
is restricted to open sets Π̄i = [πi, π̂i] ⊆ Πi, where Π̄i ⊆ Πi, and the expected advantage gi is twice
continuously differentiable in this range, then we call it a differentiable restricted game.

Denote the simultaneous gradient of the DRG as ξ(πi, π−i) = (∇πigi,∇π−ig−i). Adapted from
[36] and [37], we introduce the Hessian of DRG as the block matrix H = ∇πi,π−iξ(πi, π−i) to
define the types of fixed points:
Definition 2 (Weak Stable Fixed Point). A point (π̄i, π̄−i) is a fixed point if ξ(π̄i, π̄−i) = 0. We then
say that (π̄i, π̄−i) is stable if H(π̄i, π̄−i) � 0, is unstable if H(π̄i, π̄−i) � 0 and is a weak stable
fixed point if H(π̄i, π̄−i) � 02.

We denote the weak stable fixed points in the DRG as the stable improvement point (SIP), it is
reasonable if it converges only to fixed points and avoids unstable fixed points (strict minimum)
almost completely. Given that we already have the IID, which produces a predicted policy, with the
knowledge about all agents policies, it is natural to conduct an EGTA [38] to search for a SIP in the
area bounded by the current and predicted policy pair. We then define a meta-game in which each
agent i has only two strategies πi, π̂i:

M(πi, π̂i, π−i, π̂−i) =

(
gi,−ii , gi,−i−i gi,−îi , gi,−î−i
gî,−ii , gî,−i−i gî,−îi , gî,−î−i

)
, (5)

where gî,−îi = g
πi,π−i
i (π̂i, π̂−i) (as defined in Eq. (3)) is an empirical payoff entry of the meta-

game, and note that gi,−ii = 0, as it has an expected advantage over itself. Compared with using

ηi(π̂i, π̂−i) = ηi(πi, π−i) + gî,−îi as the meta-game payoff, gî,−îi has lower variance and is easier to
approximate because ηi(πi, π−i) is a constant baseline. However, most entries inM are unknown,
and many extra simulations are required to estimate the payoff entries (e.g., gî,−îi ) in EGTA. Instead,

we reuse the trajectories in the IID step to approximate gî,−îi by ignoring the small changes in the
state visitation density caused by πi → π̂i.
Remark 2. The meta-game M(πi, π̂i, π−i, π̂−i) is a partially monotone game and has a pure
strategy equilibrium [39], because the monotonic improvements gi,−ii ≤ gî,−ii and gi,−i−i ≤ gi,−î−i
when πi, π−i → π̂i, π̂−i.

Taking the two-agent case as an example, as we can see in Eq. (5), meta-game M becomes a
2× 2 matrix-form game, which is much smaller in size than the whole underlying game. Besides,
according to Fig. 2 Right and Remark 2, all four cases have at least one pure strategy that leads a

2In this paper, we want to maximize the return, not minimize the loss, so we need to avoid a strict minimum.

4



stable improvement direction. To this end, we can use the existing Nash solvers (e.g.,CMA-ES [40])
for matrix-form games to compute a Nash equilibrium ρi, ρ−i = NashSolver(M) for meta-game
M, where ρi and ρ−i ∈ [0, 1], and the Nash equilibrium of the meta-game is also an approximated
equilibrium of the restricted underlying game [41]. Then, SIP policies π̄i, π̄−i can be aggregated
based on current policy πi and predicted policy π̂i in the IID for each agent i.
Assumption 1. In the IID step, ILs enjoy the monotonic improvement against fixed opponent policies,
in which the change from πi to π̂i is usually constrained by a small step size. Therefore, it is
reasonable to assume that there is a linear, continuous and monotonic change in the restricted policy
space between πi and π̂i.

In this case, with ρi being agent i’s Nash equilibrium policy in the meta-game, π̄i can be derived
via a linear mixture: π̄i = ρiπi + (1− ρi)π̂i, which delimits agent i’s SIP. Now, we can prove that
(π̄i, π̄−i) is a weak stable fixed point for the underlying game in Theorem 1. Furthermore, based on
Assumption 1, the payoff and policy space [πi, π̂i] for DRG are bounded in a linear continuous space,
we can conclude the following theorem:
Theorem 1 (Existence of a Weak Stable Fixed Point). If (ρi, ρ−i) is a Nash equilibrium of the
meta-gameM, then linear mixture joint policy (π̄i, π̄−i) is a weak stable fixed point for the DRG.
Proof. See Appendix C.

According to Theorem 1, (π̄i, π̄−i) is a weak stable fixed point of the restricted underlying game.
Although the weak stable fixed point is relatively weak compared to the stable fixed points [36], as
we have stated, a weak stable fixed point is a reasonable (not as strong as it is rational) requirement
for an algorithm to avoid the minimum. Furthermore, weak stable fixed points can suit general game
settings. As shown in Appendix C, in cooperative, competitive, and general-sum games, the fixed
points found by the meta-game analysis can be either stable or saddle points. Similarly, a local
Nash equilibrium can be stable or saddle in different games [17]. Therefore, the goodness of stable
concepts depends on specific settings. If we make some additional game class assumptions, then we
can easily obtain stronger fixed point types. Nevertheless, this approach comes with a cost, requiring
additional computation or assumptions that may break the most general settings. In addition, when
the meta-game has multiple Nash equilibria, an equilibrium is randomly selected in our work.

2.3 Improvement over a Weak Stable Fixed Point

Algorithm 1 MATRL
Input: Initialize policies πi for each i.

1: for k ∈ {0, 1, 2, · · · } do
2: Use current policies πi, π−i to collect trajectories.
3: for each i do
4: Compute a one-step predicted policy π̂i (Eq. (2)).
5: end for
6: Solve meta-gameM(πi, π̂i, π−i, π̂−i).
7: Compute weak stable fixed point π̄i, π̄−i.
8: For each i: Compute best response π′i (Eq. (6)).
9: πi ← π′i, π−i ← π′−i.

10: end for

Although the weak stable fixed point,
(π̄i, π̄−i), binds the policy update to an-
other fixed point, there are still fully
stable points according to Theorem 1.
Besides, it is difficult to generalize for
the other parts of the policy space not
reached by SIP, especially in anticoor-
dination games [20]. Similar to the ex-
tragradient method [42], to encourage
the exploration, we apply the best re-
sponse against the weak stable fixed
point (π̄i, π̄−i):

π′i = arg max
π∈Πθi

ηi (π, π̄−i) . (6)

To perform the best response, we need another round to collect the experiences and perform a gradient
step in Eq. (6). However, in practice, since we already have the trajectories in the IID step, the
best response to the weak stable fixed point can be easily estimated through importance sampling.
Alternatively, by defining ci

def
= min

(
1 + c̄,max(1− c̄, πi(ai|s)π̄i(ai|s) )

)
as truncated importance sampling

weights, we can rewrite the best response update to Eq. (6) as an equivalent form to the following one
in terms of expectations: π′i = arg maxπ Ea−i∼π̄−i [c−iηi (πi, π−i)]. If the agents end up playing
the BR, then there is no further improvement in the IID step; the payoff entries in the restricted
meta-game would be zero, meaning agents will stay at the current policies following MATRL steps.

2.4 Local Convergence
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Figure 3: Learning the dynamics of MA-
TRL in a rotational differential game.
GD cannot converge; EG, LA and MA-
TRL converge to the stable fixed point
and MATRL has the fastest convergence
speed with same learning rate 0.02.

MATRL is a gradient-based algorithm with the best re-
sponse to policies within the SIPs, which is essentially a
variant of LookAhead methods [43, 44, 45]. More specif-
ically, MATRL enhances the classic LookAhead method
with variable step size scaling [46] or two time-scale up-
date rules [47] at each SIP step, which is controlled by
restricted meta-game analysis. It has been proven that
the LookAhead method can locally converge to a stable
fixed point and avoid strict saddles in all differentiable
games [45, 48, 49]. Similarly, we show the local con-
vergence of MATRL in Theorem 2. Please note, here,
that to investigate the convergence, fixed point iterations
are conducted on the whole learning process, while the
meta-game analysis step in MATRL borrows the variable
stepsize scaling and shows it is reasonable to locally avoid
unstable fixed points. Unlike LOLA, which uses a first-
order Taylor expansion to estimate the best response to
a predicted policy, we elaborately design the look-ahead
step within the SIPs and perform the gradient steps for
the best response to the SIPs. We also show that MATRL
empirically outperforms the typical LookAhead method,
IL LookAhead (IL-LA), in the experiments. As shown in Fig. 3, we compare the convergence of
gradient decent IL, Extragradient, LookAhead and MATRL in toy differential game3 with strong
rotational force, where MATRL has faster convergence to the stable fixed point.
Theorem 2 (Local Convergence of MATRL). Let the objectives ηi(πi, π−i) of agents are twice
continuously differentiable and step size α is sufficiently small, MATRL converges locally to a stable
fixed point with ε error in Euclidean distance.
Proof. See Appendix D.

2.5 Discussions

Computation Cost. Compared to pure ILs, there are two extra cost sources in common meta-game
analysis: approximating and solving the meta-game [21]. In our case, the meta-game is restricted
to a local two-action game, where two actions, πi and π̂i, are close to each other. Reusing the
IID trajectories will some estimation errors [41], but this issue can be eased by large batch size.
Then, we can enjoy this proximity property and reduce the meta-game approximation cost (without
extra sampling) by reusing the collected trajectories in the IID step. The next crucial problem is
how to solve the n-agent two-action meta-game, which consists of the 2n entries of each of the n
payoff matrices. Solving this meta-game is much simpler than solving the whole underlying game,
which increases exponentially with state size, action size, agent number, and time horizons. As the
general-sum matrix-form game has no fully polynomial time approximation for computing Nash
equilibria [50], it usually costs a great deal to solve the game [51]. However, as shown in Remark 2,
there always exists at least one pure Nash equilibrium in the meta-game, which can be computed
in polynomial time [52]. Therefore, if we only require an approximated Nash equilibrium, then
when n is small, for example, n ≤ 5, it is affordable to find a meta-game Nash equilibrium with
subexponential complexity [53]. But this problem still exists when n is large. In this case, we can
try a mean field approximation [54] or utilize special payoff structure assumptions (e.g., graphical
game [55, 51]) in the meta-game to reduce computational complexity.

Connections to Existing Methods. MATRL generalizes many existing methods with the best re-
sponse. In extreme cases, where the meta-game Nash equilibrium is (ρi, ρ−i) = (1, 1), which
means that the Nash aggregated policies always maintain the current policies, MATRL degen-
erates to ILs. Here, we always best respond to other agents’ current policy πi and π′i =
arg maxπi ηi(πi, π−i) following Eq. (6). The LookAhead [43, 44, 45], extragradient [56] and
exploitability descent [57, 58] methods are also special instances of MATRL when meta-game Nash
is (ρi, ρ−i) = (0, 0), which means that the best response to the most aggressive predicted policy π̂−i
and π′i = arg maxπi ηi(πi, π̂−i). More specifically, let ξ denotes the game’s simultaneous gradient,

3A two-agent differential game adopted from [36]. The loss functions: ηi(πi, π−i) = 1
2
π2
i +

10πiπ−i, η−i(πi, π−i) =
1
2
π2
−i − 10πiπ−i.
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Ho is the matrix of anti-diagonal blocks of H (Hessian of the game), and α is step-size. Then we
can have the updating gradient for LookAhead methods as (I − αHo) ξ. Similarly, for MATRL,
we have the updating gradient (I − ραHo) ξ, where ρ is a ratio determined by meta-game Nash to
dynamically adjust the step-size at each iteration.

In summary, independent trust region learners’ learning in MATRL will be constrained by a weak
stable fixed point. By analyzing the relatively simpler meta-game, we can easily approximate
this weak stable fixed point without extra rollouts or simulation. Although MATRL’s training is
centralized, its execution is fully decentralized, and it also does not require any extra centralized
parameters or higher-order gradient computation. Fig. 2 presents an overview of MATRL. We also
give the pseudocode of MATRL in Algo. 1, which is compatible with any policy-based IL.

3 Related Work
The study of gradient-based methods in multi-agent learning is quite extensive [17, 11]. Some
works on learning in games have mostly focused on adjusting the step size, which attempts to use
a multitimescale learning scheme [59, 60, 46] to achieve convergence. [36, 61, 45] tried to utilize
second-order methods to shape the step size. However, the computational cost for second-order
methods is very limiting in many cases. Other approaches include recursive reasoning techniques
[62, 63] where agents explicitly take into account how their behaviors are going to affect their
opponents during the gradient updates. Alternatively, MATRL approximates the second-order fixed-
point information via a small meta-game with less cost compared to real Hessian computation.
An alternative augments the gradient-based algorithms with the best response to the predicted
polices [56, 43, 64, 44, 57, 58], which targets the challenge of instability caused by agents’ change
policies. Instead of taking the best response to the approximated opponent’s policy, MATRL exploits
the ideas from both streams and introduces an improvement over the weak stable fixed point.

The research also focuses on the EGTA [38, 65, 41], which creates a policy-space meta-game for
modeling multi-agent interactions. Using various evaluation metrics, this work then updates and
extends the policies based on the analysis of meta policies [20, 21, 22, 23, 24]. Although these
methods are broad with respect to multi-agent tasks, they require extensive computing resources to
estimate the empirical meta-game and solve it with its increasing size [22, 24]. In our method, we
adopt the idea of a policy-space meta-game to approximate the fixed point. Unlike previous works,
we only maintain current and predicted policies to construct the meta-game, which is computationally
achievable in most cases. The payoff entry in MATRL’s meta-game is the expected advantage, which
has a lower estimation variance compared to the commonly used empirically estimated return in
EGTAs. Regardless, we can reuse the trajectories in the IID step to estimate the payoffs without
incurring additional sampling costs.

Recently, due to the use of neural networks as a function approximation for policies and values, many
works have emerged on deep reinforcement learning (DRL) [66, 67]. TRPO [14, 35, 13] is one of the
most successful DRL methods in the single-agent setting, which places constraints on the step size of
policy updates, monotonically preserving any improvements. Based on the monotonic improvement in
single-agent TRPO [35], MATRL extends the improvement guarantee to the multi-agent level towards
a weak stable fixed point. Some works have directly applied fully decentralized single-agent DRL
methods [10], which can be unstable during learning due to the issue of nonstationarity. However,
[25, 68, 69] added an extra communication channel during the training and execution in a centralized
way to avoid this nonstationarity issue. [30, 29, 27, 26] further exploit the setting of centralized
learning decentralized execution (CTDE). These methods provide solutions for training agents in
complex multi-agent environments, and the experimental results show their effectiveness compared
with ILs. Similar to the CTDE setting, MATRL also enjoys fully decentralized execution. Although
MATRL still needs knowledge about other agents’ policies in adjusting the step size during training,
it does not need centralized critics or any communication channels. Besides, [70, 71] attempted to
apply trust-region methods in networked multi-agent settings by conducting consensus optimization
with their neighbors. Instead takes a game-theoretical approach to compute the meta-game Nash to
find policy improvement directions without networked assumption.

4 Experiments
We design experiments to answer the following questions: 1) Can the MATRL method empiri-
cally contribute to convergence in general game settings, including cooperative/competitive and
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(b) Four-agent switch.
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Figure 4: Learning curves in discrete and continuous tasks. The solid lines are average episode
returns with 10 random seeds for each model, and the light color areas are the error bars.

continuous/discrete games? 2) How is the performance of MATRL compared to ILs with the same
hyperparameters and other strong MARL baselines in discrete and continuous games with various
agent numbers? 3) Do the meta-game and best response to the weak stable fixed point bring about
benefits? We first evaluate the convergence performance of MATRL in matrix form games to answer
the first question and validate the effectiveness of convergence. For Question 2, we show that MATRL
largely outperforms ILs (PPO [13]) and other centralized baselines (QMIX [29], QTRAN [72] and
VDN [30]) in discrete grid world games that have coordination problems. MATRL also outper-
forms DDPG [67], MADDPG [26] and COMIX [31] for continuous multi-agent MuJoCo games.
In addition, we test the algorithms with a 2-agent Atari Pong game to investigate whether MATRL
can mitigate unstable cyclic behaviors [23] in zero-sum games. In these tasks, MATRL uses the
same PPO configurations as ILs to examine the effectiveness of the trust region gradient-update
mechanism, and we use official implementations for the other baselines. The step-by-step PPO-based
MATRL algorithm is given in Appendix A. Finally, ablation studies are conducted by: 1. removing
the best response, called the “MATRL w/o BR”; 2. skipping the SIP estimation, named “IL-LA”,
which has similar procedures as those of LOLA [44, 43], which approximates the best response to
the predicted policies via Taylor expansion, but IL-LA takes the best response gradient steps for
the predicted policies. These configurations provide insights into how much, if at all, the SIP and
the best response contribute to the MATRL’s performance. We also provide more environmental
details and extra experimental results, in Appendices E and F, with detailed experimental settings
and hyperparameters used for the algorithms. The code and experiment scripts are also anonymously
available at https://github.com/matrl-project/matrl.

Table 1: Convergence rate and average convergence step in 1, 000 random
2 × 2 matrix games. MATRL shows slightly better convergence rate and
speed compared to IGA-LA.

CONVERGENCE RATE (IN %) / AVERAGE CONVERGENCE STEP

ALGO. COORDINATION ANTICOORDINATION CYCLIC

IGA 99 ± 0.1 / 140.67 ± 105 97.5 ± 0.13 / 88.95 ± 130 78.0 ± 0.45 / 452.92 ± 202
IGA-LA 99 ± 0.1 / 138.56 ± 105 97.5 ± 0.08 / 83.11 ± 129 80.9 ± 0.43 / 432.98 ± 206
MATRL 99 ± 0.1 / 86.54 ± 77 98.3 ± 0.08 / 75.52 ± 119 84.6 ± 0.36 / 369.40 ± 200

Random 2× 2 Ma-
trix Games. To
adequately examine
MATRL in matrix
games, we randomly
generate three thou-
sand 2 × 2 games of
three types: coordina-
tion, anticoordination,
and cyclic [73]. We
choose the IGA and IGA-LA [43] as baselines and use IGA [74] as the ILs of MATRL. The results in
Table 1 show that MATRL has a higher convergence rate, fewer steps for convergence and more
stable performance in all types of games. More details about game generation and the effects of the
learning dynamics are provided in Appendix E.

Grid Worlds. We evaluated MATRL in two grid world games from MA-Gym [75], two-agent
checker, and four-agent switch, which are similar to the games in [30] but with more agents to
examine if MATRL can handle the games that have more than two agents. In the checker game, two
agents cooperate in collecting fruit on the map; the sensitive agent obtains 5 for an apple and −5 for
a lemon, while the other agent obtains 1 and −1, respectively. Therefore, the optimal solution is to
let the sensitive agent obtain the apple and the less sensitive agent obtain the lemon. In the four-agent
switch game, two rooms are connected by a corridor, each room has two agents, and the four agents
try to go through one corridor to the target in the opposite room. Only one agent can pass through
the corridor at one time, and agents obtain −0.1 for each step and 5 for reaching the target, so they
need to cooperate to obtain optimal scores. In both games, agents can move in four directions and
only partially observe their position. Although our formulation uses a fully observable setting, in
this game, the methods are adapted to the partially observable setting by pretending the observation
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(a) Two-agent checker. (b) Four-agent switch. (c) Three-agent MuJoCo hopper.

Figure 5: Learning curves in discrete and continuous tasks, each with 5 random seeds.

(a) (b) (c)

Figure 6: MATRL/IL versus Random/MATRL/IL in the 2-agent pong game.

lemon. In the four-agent switch game, each side of the corridor has a room, each room has two
agents, and the four agents try to go through one corridor to the target in the opposite room. Only
one agent can pass the corridor at one time, and agents get �0.1 for each step and 5 for reaching
targets, so they need to cooperate to get optimal scores. In both games, The agents can move in four
directions and only partially observe their position. We compare the MATRL with the PPO based
IL and two off-policy centralized training and decentralized execution baselines: VDN (Sunehag
et al., 2018) and QMIX (Rashid et al., 2018). Results are given in Fig. 5a and 5b, where MATRL
has a stable improvement and outperforms other baselines. In two-player checker, using the best
response, our method can achieve a total reward of 18, while the independent learners’ rewards stay
at �2. Besides, although PPO-based MATRL uses on-policy learning, it achieved better final results
in fewer time steps compared to the off-policy baselines. As for the four-player switch, as shown
in Fig. 5b, MATRL can continuously improve the total rewards to 6.5, which is the closest to the
optimal score for this game when compared with other baselines. The result in the four-agent switch
also demonstrates the effectiveness of MATRL in guaranteeing the stable policy improvement for the
games that have more than two agents.

Multi-Agent MuJoCo Hopper. We also examined MATRL in a multi-agent continuous control task
with a three-agent hopper from (de Witt et al., 2020). Here, three agents cooperatively control each
part of a hopper to move forward. The agents are rewarded with distance and the number of steps
they make before falling. Fig. 5c shows that MATRL significantly outperforms IL, MADDPG, and
also the benchmarks in de Witt et al. (2020) within the same amount of time.

Effect and Cost of Trust Stable Region and Best Response to Fixed Point. This section analyzes
the effect of the TSR from meta-game Nash and the best response against the weak stable fixed point.
The ablation settings are obtained by removing the trust stable region (IL-PP) and the best response
(MATRL w/o BR). In Fig. 5, we can observe that in all the tasks, without the best response to the
fixed point, the learning curves of MATRL o/w BR have higher variance and the lowest final scores.
This establishes the importance of the best response to stabilize and improve agents’ performance.
Also, without the TSR to select a fixed point, the MATRL recovers to independent learners with
the policy prediction (IL-PP) (Zhang & Lesser, 2010; Foerster et al., 2018). Similarly, the curves
of IL-PP have lower final scores, and the convergence speed is not as good as the MATRL, which
suggests that the TSR provides benefits. The MATRL w/o BR has lower variance compared to the
IL-PP, which reveals the trust stable region can stabilize the learning via weak stable fixed point
constraints. Finally, when comparing to IL and IL-PP, the time for each training step in MATRL is
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Figure 5: (a): MATRL/IL versus MATRL/IL in the two-agent Pong game. For each setting, the grids
show pairwise performance (average scores) by pitting their ten checkpoints against one another;
yellow indicates a higher score. (b): Run time for 20,000 environment steps (including 50 gradient
steps) for the algorithms in two- to four-agent games.

is a state. We compare the MATRL with the PPO-based IL and two off-policy centralized training
and decentralized execution baselines: VDN [30], QTRAN [72] and QMIX [29]. The results are
given in Figs. 4a and 4b, where MATRL shows stable improvement and outperforms other baselines.
In a two-agent checker game, using the best response, our method can achieve a total reward of
18, while the ILs’ reward stays at −2. In addition, although PPO-based MATRL uses on-policy
learning, it achieves better final results in fewer time steps compared to the off-policy baselines. For
the four-agent switch game, as shown in Fig. 4b, MATRL can continuously improve the total rewards
to 6.5, which is the closest to the optimal score for this game when compared with other baselines.
The result of the four-agent switch also demonstrates the effectiveness of MATRL in guaranteeing
stable policy improvement for games that have more than two agents.

Multi-Agent MuJoCo. We also examined MATRL in a multi-agent continuous control task with
a three-agent hopper from [31]. Here, three agents cooperatively control each part of a hopper to
move forward. The agents are rewarded with the distance traveled and the number of steps they make
before falling. Fig. 4c shows that MATRL significantly outperforms ILs, MADDPG, DDPG, and
the benchmarks like COMIX in [31] within the same amount of time. More results in multi-agent
MuJoCo tasks (2-agent ant and 2-agent swimmer) are available in Appendix E.

Multi-Agent Atari Pong Game. In the 2-agent Pong game experiments, we used raw pixels as
observations and trained the MATRL and IL agents independently. Following training, we compare
the pairwise performance of these models by pitting their ten checkpoints against one another and
recording average scores. We report the results in Fig. 5a, which shows that MATRL outperforms ILs
in MATRL vs. IL settings in most policy pairs. In addition, from the MATRL vs. MATRL and ILs vs.
IL settings’ results, we can see that MATRL has a more transitive learning process than that of ILs,
which means that MATRL can mitigate the common cyclic behaviors in zero-sum games.

Effect and Cost of the SIP and Best Response to a Fixed Point. This section analyzes the effect
of the SIP from the meta-game Nash equilibrium and the best response against the weak stable fixed
point. The ablation settings are obtained by removing the SIP (IL-LA) and the best response (MATRL
w/o BR). In Fig. 4, we can observe that in all the tasks, without the best response to the fixed point, the
learning curves of MATRL w/o BR have higher variance and the lowest final scores. This establishes
the importance of the best response to stabilize and improve agents’ performance and empirically
shows that MATRL has better convergence ability than do the other baselines. Additionally, without
the SIP to select a fixed point, MATRL recovers to ILs with policy prediction (IL-LA) [43, 44].
Similarly, the curves of IL-LA have lower final scores, and the convergence speed is not as good as
that of MATRL, which suggests that the SIP provides benefits. MATRL w/o BR has lower variance
compared to IL-LA, which reveals that the SIP can stabilize the learning via weak stable fixed point
constraints. Finally, when compared to IL and IL-LA, as shown in Fig. 5b, in two- to four-agent games
with 20,000 environment steps and 50 gradient steps, the training time of MATRL is empirically
approximately 1.1-1.2 times slower. Given the significant performance improvement, we believe
such extra computational cost from the SIP and the best response are acceptable.

5 Conclusions
We proposed and analyzed the trust region method for multi-agent learning problems, which considers
the IID and SIP to meet multi-agent learning objectives. In practice, based on independent trust
payoff learners, we provide a convenient way to approximate a further restricted step size within
the SIP via a meta-game. This approach ensures that MATRL is generalized, flexible, and easily
implemented to deal with multi-agent learning problems in general. Our experimental results justify
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the fact that the MATRL method significantly outperforms ILs using the same configurations and
other strong MARL baselines in both continuous and discrete games with varying numbers of agents.
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Appendix for "A Game-Theoretic Approach to Multi-Agent Trust
Region Optimization"
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A MATRL Algorithm Based on PPO

Algorithm 2 Multi-Agent Trust Region Learning Algorithm (PPO Based, Two-Agent Example).
Input: The initial policy parameters θ1, θ2, initial value function parameters φ1, φ2 and ε.

1: for k ∈ {0, 1, 2, · · · } do
2: Using π1(θ1), π2(θ2) to collect trajectories τ1, τ2.
3: Compute GAE reward R̂i for each i.
4: Compute estimated advantages Â1, Â2 based on the current value functions Vφ1

, Vφ2
.

5: for i ∈ {1, 2} do
6: Compute a trust payoff region policy π̂i using Eq. 2.
7: Update the policy by maximizing the PPO-Clip objective:

θ̂i = arg maxθi
1
|τi|T

∑
τ∈τi

∑T
t=0 min

(
πi(at|st;θ)
πi(a1,t|st;θi)A

π1,π2

i (st, a1,t, a2,t) , g (ε, Aπ1,π2

i (st, a1,t, a2,t))
)
,

where g is a clipping function.
8: Fit value function by regression on mean-squared error:

φ′i = arg min
φi

1

|τi|T
∑
τ∈τi

T∑
t=0

(
Vφ (st)− R̂i,t

)2

9: end for
10: Construct the meta-gameM(π1(θ1), π̂1(θ̂1), π2(θ2), π̂2(θ̂2)).
11: SolveM and obtain meta Nash ρ1, ρ2.
12: Compute aggregated weak stable fixed point (π̄1, π̄2).
13: for i ∈ {1, 2} do
14: Compute π(′)

i which best responses to π̄−i using Eq. 6.
15: Estimate the best response by importance sampling:

θ′i =
θ̂i
|τi|T

∑
τ∈τi

T∑
t=0

g (ε, πi/π̄−i)

16: end for
17: θ1 ← θ′1, θ2 ← θ′2 .
18: end for
Output: π1(θ1), π2(θ2).
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B Independent Trust Payoff Region

We use the total variation divergence, which is defined by DTV(p‖q) = 1
2

∑
j |pj − qj | for discrete

probability distributions p, q [35]. Dmax
TV (π, π̃) is defined as:

Dmax
TV (π, π̃) = max

s
DTV(π(·|s)‖π̃(·|s)). (7)

Based on this, we can define α-coupled policy as:

Definition B.1 (α-Coupled Policy [35]). (π, π′) is an α-coupled policy pair if it defines a joint
distribution (a, a′)|s, such that P (a 6= a′|s) ≤ α for all s. π and π′ will denote the marginal
distributions of a and a′, respectively.

When the joint policy pair πi, π−i changes to π′i, π
′
−i and coupled with αi and α−i correspondingly:

ηi(π
′
i, π
′
−i)− ηi(πi, π−i) ≥ Aπi,π−ii (π′i, π

′
−i)−

4γε

(1− γ)2
(αi + α−i − αiα−i)2, (8)

where

ε = max
s,ai,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣.

The proofs are as following:

Lemma B.1. Given that (πi, π
′
i) and (π−i, π′−i) are both α-coupled policies bounded by αi and α−i

respectively, for all s,∣∣Aπi,π−ii (s)
∣∣ ≤ 2(αi + α−i − αiα−i) max

s,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣ (9)

Proof.

A
πi,π−i
i (s) = Ea′i,a′−i∼π′i,π′−i

[
A
πi,π−i
i (s, a′i, a

′
−i)
]

(10)

= E(ai,a′i)∼(πi,π′i),(a−i,a
′
−i)∼(π−i,π′−i)

[
A
πi,π−i
i (s, a′i, a

′
−i)−Aπi,π−ii (s, ai, a−i)

]
(11)

= P (ai 6= a′i ∨ a−i 6= a′−i|s)E(ai,a′i)∼(πi,π′i),(a−i,a
′
−i)∼(π−i,π′−i)

[A
πi,π−i
i (s, a′i, a

′
−i)
(12)

−Aπi,π−ii (s, ai, a−i)]
(13)

≤ (αi + α−i − αiα−i) · 2 max
s,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣, (14)

where P (ai 6= a′i ∨ a−i 6= a′−i|s) = 1− (1− αi)(1− α−i) = αi + α−i − αiα−i.

Lemma B.2. Let (πi, π
′
i) and (π−i, π′−i) are α-coupled policy pairs. Then,∣∣∣Est∼π′i,π′−i[Aπi,π−ii (s)
]
− Est∼πi,π−i

[
A
πi,π−i
i (s)

]∣∣∣
≤ 4(αi + α−i − αiα−i)(1− (1− αi)t(1− α−i)t) max

s,a−i,a−i

∣∣Aπi,π−ii (s, ai, a−i)
∣∣ (15)

Proof. The preceding Lemma bounds the difference in expected advantage at each time step t. When
t′ = 0 indicates that πi, π−i and π′i, π

′
−i both agreed on all time steps less than t. By the definition

of αi, α−i, P (πi, π−i := π′i, π
′
−i|t = i) ≥ (1− αi)(1− α−i), so P (t′ = 0) ≥ (1− αi)t(1− α−i)t

and P (t′ > 0) ≤ 1 − (1 − αi)t(1 − α−i)t. We can sum over time to bind the difference between

2



ηi(π
′
i, π
′
−i) and ηi(πi, π−i).∣∣∣ηi(π′i, π′−i)− Lπi,π−ii (π′i, π

′
−i)
∣∣∣ =

∞∑
t=0

γt
∣∣∣Est∼π′i,π′−i[Aπi,π−ii (s)

]
− Est∼πi,π−i

[
A
πi,π−i
i (s)

]∣∣∣
(16)

≤
∞∑
t=0

γt · 4ε(αi + α−i − αiα−i)(1− (1− αi)t(1− α−i)t)

(17)

= 4ε(αi + α−i − αiα−i)
( 1

1− γ −
1

1− γ(1− αi)(1− α−i)
)

(18)

=
4ε(αi + α−i − αiα−i)2

(1− γ)(1− γ(1− αi)(1− α−i))
(19)

≤ 4ε(αi + α−i − αiα−i)2

(1− γ)2
, (20)

where ε = maxs,ai,a−i
∣∣Aπi,π−ii (s, ai, a−i)

∣∣.
Note that

L
πi,π−i
i (π′i, π

′
−i) = ηi(πi, π−i) +

∑
s

ρπi,π−i(s)
∑
ai

π′i(ai|s)
∑
a−i

π′−i(a−i|s)Aπi,π−ii (s, ai, a−i).

(21)
Then, we can have

ηi(π
′
i, π
′
−i)− ηi(πi, π−i) ≥ Aπi,π−ii (π′i, π

′
−i)−

4γε

(1− γ)2
(αi + α−i − αiα−i)2. (22)

C Proof of Theorem 1

At each iteration, denote ∇igi = ∇πig
πi,π−i
i and ∇i,−igi = ∇πi∇π−ig

πi,π−i
i for each i. Consider

the simultaneous gradient ξ of the expected advantage gains and the corresponding Hessian H:

ξ(πi, π−i) = (∇igi,∇−ig−i) , (23)

H = ∇ξ =

(
∇i,igi ∇i,−igi
∇−i,ig−i ∇−i,−ig−i

)
. (24)

For a restricted underlying game, where policy space is bounded: πi ∈ [πi, π̂i]. Assume πi is the
linear mixture of πi, π̂i, and π̄i = ρiπi + (1− ρi)π̂i, where ρi ∈ [0, 1]. Therefore, we can re-write
the gπi,π−ii (πi, π−i) in the form of:

g
πi,π−i
i (πi, π−i) = g

πi,π−i
i (ρi, ρ−i) = ρi(1−ρ−i)gi,−îi +(1−ρi)ρ−igî,−ii +(1−ρi)(1−ρ−i)gî,−îi .

(25)
Then we have:

∇igi(ρ−i) = (1− ρ−i)gi,−îi − ρ−igî,−ii − (1− ρ−i)gî,−̂ii , (26)

and ξ(πi, π−i) = ξ(ρi, ρ−i). Given a meta Nash policy pair (π̄i, π̄−i), where π̄i = ρ̄iπi+(1− ρ̄i)π̂i,
according to the Nash definition, we have:(

ρ̄i
1− ρ̄i

)T (
gi,−ii gi,−îi

gî,−ii gî,−îi

)(
ρ̄−i

1− ρ̄−i

)
≥
(

ρi
1− ρi

)T (
gi,−ii gi,−îi

gî,−ii gî,−îi

)(
ρ̄−i

1− ρ̄−i

)
, (27)

which implies:

(ρ̄i − ρi)∇igi(ρ̄−i) ≥ 0, ρ̄i,∀ρ−i ∈ [0, 1],

(ρ̄−i − ρ−i)∇−ig−i(ρ̄i) ≥ 0, ρ̄i,∀ρ−i ∈ [0, 1].
(28)
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When ρ̄i, ρ̄−i ∈ (0, 1) in accordance with the Nash condition in Eq. 28,∇igi(ρ̄−i) = ∇−ig−i(ρ̄i) =
0. It shows that (π̄i, π̄−i) is a fixed point due to ξ(π̄i, π̄−i) = ξ(ρ̄i, ρ̄−i) = 0. For the boundary case,
where ρ̄i or ρ̄−i ∈ {0, 1}, because they are constrained to the unit square [0, 1]× [0, 1], the gradients
on the boundaries of the unit square are projected onto the unit square, which means additional points
of zero gradient exist. In other words,∇igi and∇−ig−i are still equal to zero in boundary case, and
the (π̄i, π̄−i) is a fixed point in both cases.

Next, we determine what types of the fixed point that (π̄i, π̄−i) belongs to. According to the Eq. 24,
we have the exact Hessian Matrix for the restricted game:

H = ∇ξ =

(
0 gî,−îi − gi,−îi − gî,−ii

gî,−î−i − gi,−î−i − gî,−i−i 0

)
(29)

The eigenvalue λ of H can be computed:

λ2 − Tr(H)λ+ det(H) = λ2 − (gî,−îi − gi,−îi − gî,−ii )(gî,−î−i − gi,−î−i − gî,−i−i ) = 0 (30)

Denotes ḡi := gî,−îi − gi,−îi − gî,−ii , we have λ = ±√ḡiḡ−i. Therefore, we can have following cases
for the fixed point (ρ̄i, ρ̄−i):

1. Fully cooperative games: ḡi ≤ 0, ḡ−i ≤ 0, then H(ρ̄i, ρ̄−i) � 0, which means (ρ̄i, ρ̄−i) is
a stable fixed point as we are maximizing the objective.

2. Fully competitive games: ḡi > 0, ḡ−i < 0 or ḡi < 0, ḡ−i > 0, all λ have two pure imaginary
eigenvalues with zero real part, where (ρ̄i, ρ̄−i) is a saddle point.

3. General-sum games: they are in-between the cooperative and competitive games, which
means (ρ̄i, ρ̄−i) can be either stable fixed point or saddle point.

Because we assume π̂i monotonically improved compared to πi, then even in zero-sum case, there is
at least one negative value in ḡi and ḡ−i. Therefore, in all the situations, (ρ̄i, ρ̄−i) is not unstable,
and could be a stable point or saddle point. We define them as a weak stable fixed point. It also has a
tighter lower bound than the independent trust region improvement seen in Remark C.1:

Remark C.1. Let (ρi, ρ−i) be a Nash equilibrium of the policy-space meta-game
M(πi, π̂i, π−i, π̂−i), which is used for computing the linear mixture policies π̄i, π̄−i. For simplicity,
define ρ̄i = 1− ρi, then we have the payoff improvement lower bound for π̄i, π̄−i:

ηi(π̄i, π̄−i)− ηi(πi, π−i) ≥ gπi,π−ii (π̄i, π̄−i)−
4γεi

(1− γ)2
(αiρ̄i + α−iρ̄−i − αiα−iρ̄iρ̄−i)2, (31)

that is a tighter lower bound compared with Theorem 1.

Finally, we obtain MATRL as follows: First, an agent i collects a set of trajectories using its current
policy πi by independent play with other agents. Then a predicted policy π̂i can be estimated
using the single-agent trust region methods, which has a trust payoff improvement against the other
agents’ current policy π−i. However, this trust payoff improvements would not benefit convergence
requirements for the multi-agent system due to other agents adaptive learning. To solve this problem,
we approximate a n-agent two-action meta-game in policy-space by reusing the trajectories from
the last TPR step. In this game, each agent i has two pure strategies: choosing the current policy
πi or predicted policy π̂i and the corresponding payoffs are the expected advantages (defined in
Eq. 3) of the joint policy pairs. By constructing such a meta-game, we transform a complex multi-
agent interactions problem into game-theoretic analysis concerning the underlying game restricted
in [πi, π̂i]. Then we can obtain a weak stable fixed point as TSR within the TPR by solving the
meta-game,. When the fixed point is a saddle point we then take the best response to the weak stable
fixed point to get the next iteration’s policies. This encourages exploration and avoid stagnation at an
unexpected saddle point.

D Proof of Theorem 2

Let the objectives ηi(π1, · · · , πn) of agents are twice continuously differentiable, in which the agents
with parameters θ =

(
θ1, . . . , θn

)
. Denote ξ as the simultaneous gradient of game, we can obtain the
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Figure 6: Multi-agent discrete and continuous action tasks: (a) 2-agent checker (discrete), (b) 4-agent
switch (discrete), (c) 3-agent MuJoCo hopper (continious).

Matching Pennies

Figure 7: Learning the dynamics of MATRL in a matching pennies (MP) game. The blue arrow is
the gradient direction, and the pale blue area is the STR.

corresponding Hession of the game:

H = ∇ξ =

 ∇11η1 · · · ∇1nη1

...
. . .

...
∇n1ηn · · · ∇nnηn

 .

Let Ho is the matrix of anti-diagonal blocks of H (Hessian of the game), and α is step-size. For
MATRL, we have the updating gradient (I − ραHo) ξ, where ρ is a ratio determined by meta-game
Nash to dynamically adjust the step-size at each iteration. Then the iterative procedure:

F (θ) = θ + α(I − ραHo)ξ(θ).

Assume θ̄ is a fixed point if ξ(θ̄) = 0, and denote X := (I − ραHo), then we have:

∇[Xξ](θ̄) = ∇X(θ̄)ξ(θ̄) +X(θ̄)∇ξ(θ̄) = XH(θ̄)

is negative stable (if all its eigenvalues of X have negative real part) according to Theorem 1, namely
has eigenvalues ak + ibk with ak < 0. It means

∇F (x̄) = I + α∇[Xξ](x̄)

has eigenvalues 1 + αak + iαbk in the a small circle with radius ε ≥ 0:

|1 + αak + iαbk|2 < 1⇐⇒ 0 < α <
−2ak
a2
k + b2k

,

which is always possible for ak < 0. Then it is sufficient to prove the converges locally to θ̄ with ε
error for α sufficiently small according to Ostrowski’s Theorem [45].

E Environment Details

Random 2× 2 Matrix Games. We created a generator of 2× 2 matrix games based on the category
provided by [73]. Coordination games have characteristics enabling one agent to improve the payoff
without decreasing the payoff of the other agent. Anti-coordination games are ones where one agent
improves the payoff while the other agent’s payoff decreases. Both coordination and anti-coordination
games can have two pure NEs and one mixed strategy NE. In cyclic games, the action selections of
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(a) 2-Agent Ant.
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(b) 2-Agent Swimmer.

Figure 8: Learning curves of 2-Agent Ant and 2-Agent Swimmer MuJoCo tasks.

agents that is based on their actions will form a cycle, ensuring that there is no pure NE in the game.
Instead only mixed strategy NE will be found.

Grid World Games. In two-player checker, as shown in Fig. 6a, there is one sensitive player who
gets reward 5 when they collect an apple and 5 when they collect a lemon; a less sensitive player
gets 1 for apple and 1 for lemon. The learning goal is to let the sensitive player get apples and the
other one get lemons to have a higher total reward. In four-player switch, as shown in Fig. 6b, to
reach the targets, agents need to figure out a way to go through a narrow corridor. The agent gets
−1 for taking each step and 5 when arriving at a target. Four-player switch uses the same map as
two-player switch, where two agents start from the left side and the others from the right side to go
through the corridor to reach the targets. With more agents in four-player switch, learning becomes
more challenging. MATRL agents achieved higher total rewards compared to baseline algorithms
within the same number of steps.

Multi-Agent MuJoCo Tasks. We used the three-agent Hopper environment described in [31], and
Fig. 6c, where three agents control three joints of the robot and learn to cooperate to move forward as
far as possible. The agent is rewarded by the number of time steps that they move without falling.
Each agent has 3 continuous output values as the action, and all the agents have a full observation of
the states of size 17. We use the same hyper-parameters for MATRL, MATRL w/o BR, and IL-PP.
For MADDPG agent, we use the hyper-parameters described in the paper [31].

Multi-Agent Atari Game. The pong game is a multi-agent Atari version4 of table tennis Two players
must prevent a ball from whizzing past their paddles and allowing their opponent to score. The game
ends when one side earns 21 points.

F Experimental Parameter Settings

For all the tasks, the most important hyper-parameters are learning rate/step size, the number of
update steps, batch size and value, policy loss coefficient. Appropriate learning rate and update steps
plus larger batch size give a more stable learning curve. And for different environments, policy and
value network loss coefficients that keep two losses at the same scale are essential in improving the
learning result and speed. Also, for meta-game construction and best response update where we use
the importance ratio to do estimation, a clipping factor of the ration is vital to achieving a stable and
monotonic improving result. The followings are the detailed parameter settings for each task.

Matrix Game and Random 2 × 2 Matrix Games. The hyper-parameters settings for MATRL,
IGA-PP, and WoLF are listed in Table 2. As shown in Fig. 8, we also listed the additional convergence
analysis in classical Chicken and Prisoners’ Dilemma Games, which demonstrate good convergence
performance of MATRL on both games. For MATRL, we have the KL-divergence coefficient as an
extra hyper-parameter to add the KL-divergence as part of the loss in policy updating. And for the
baseline algorithm WoLF, we give the real NE of the game as part of the parameters. In all the games,
all the algorithms shared the same initial policy values [0.9, 0.1] for player 1 and [0.2, 0.8] for player
2.

4https://github.com/PettingZoo-Team/Multi-Agent-ALE
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Table 2: Hyper-parameter settings in 2× 2 matrix games.
SETTINGS VALUE DESCRIPTION

COMMON SETTINGS
INITIAL POLICIES 1 [0.9, 0.1] THE INITIAL POLICY VALUES FOR PLAYER 1
INITIAL POLICIES 2 [0.2, 0.8] THE INITIAL POLICY VALUES FOR PLAYER 2
MATRL SETTINGS
BEST RESPONSE LEARNING RATE 0.03 THE LEARNING RATE FOR THE BEST RESPONSE STEP
KL COEFFICIENT 100 THE KL-DIVERGENCE COEFFICIENT IN POLICY LOSS
WOLF SETTINGS
LEARNING RATE MAXIMUM 0.06 THE MAXIMUM LEARNING RATE FOR WOLF LEARN FAST AGENT
LEARNING RATE MINIMUM 0.02 THE MINIMUM LEARNING RATE FOR WOLF WIN AGENT

Table 3: MATRL hyper-parameter settings in grid worlds.
COMMON SETTINGS VALUE DESCRIPTION

POLICY LEARNING RATE 0.002 OPTIMIZER LEARNING RATE.
BATCH SIZE 2000 NUMBER OF DATA POINT FOR EACH UPDATE.
GAMMA 0.99 LONG TERM DISCOUNT FACTOR.
HIDDEN DIMENSION 128 SIZE OF HIDDEN STATES.
NUMBER OF HIDDEN LAYERS 2 NUMBER OF HIDDEN LAYERS.
NASH EQUILIBRIUM SOLVER METHOD CMAES THE METHOD FOR FINDING THE NASH EQUILIBRIUM OF META-GAME
NEURAL NETWORK MLP THE NEURAL NETWORK ARCHITECTURE FOR POLICY AND CRITIC
POLICY UPDATE ITERATIONS 10 NUMBER OF GRADIENT STEPS FOR EACH BATCH OF UPDATE.
BEST RESPONSE LEARNING RATE 0.002 THE LEARNING RATE FOR BEST RESPONSE STEP
BEST RESPONSE INTERACTIONS 5 NUMBER OF GRADIENT STEPS FOR BEST RESPONSE STEP
KL COEFFICIENT 0.001 THE KL DIVERGENCE COEFFICIENT IN CALCULATING LOSS
ENTROPY COEFFICIENT 0.05 THE ENTROPY COEFFICIENT IN CALCULATING LOSS
POLICY RATIO CLIP 0.1 THE CLIP VALUE FOR POLICY RATIO
BEST RESPONSE IMPORTANCE RATIO CLIP 0.1 THE CLIP VALUE FOR BEST RESPONSE IMPORTANCE WEIGHT
2 PLAYER SWITCH
VALUE LOSS COEFFICIENT 0.01 THE VALUE LOSS IS LARGER THAN POLICY LOSS
2 PLAYER CHECKER
VALUE LOSS COEFFICIENT 1.0 THE VALUE LOSS IS AT SAME SCALE AS POLICY LOSS
4 PLAYER SWITCH
VALUE LOSS COEFFICIENT 0.01 THE VALUE LOSS IS LARGER THAN POLICY LOSS

Grid World Games and Multi-agent Continuous Control Task. The hyper-parameters settings
for MATRL are given in Table 3. We used the same hyper-parameters for MATRL, MATRL w/o BR,
IL-PP, and IL. The only difference is whether to use Best Response and the meta-game or not. We
used Leaky ReLU as the activation function for both policies and value networks. For the training,
we used paralleled workers to collect experience data and update the network weights separated
then synchronize all the works to have the final updated weights. We used different value loss and
policy loss coefficients to balance the weights of two losses. For the Switch games, we used small
value loss coefficients because the value loss is between [0− 10] while the absolute value policy loss
is smaller than 1e − 2. For the Checker game, the value loss and policy loss are at the same scale
between [1e − 4, 1e − 2]. Also, we added entropy loss and KL loss to encourage exploration and
limit the policy update for each step. We used [76] as the Nash equilibrium solver for finding the
meta-game Nash. The Nash solver is CMAES for all the experiments. If not particularly indicated,
all the baselines use common settings as listed in Table 3. VDN, QMIX use common individual
action-value networks as those used by MATRL; each consists of two 128-width hidden layers. We
includes more experiment result on 4-agent ant task multi-agent MuJoCo task in Fig. 8a, which
also demonstrate the superior performance of MATRL compared to other settings. The specialized
parameter settings for each algorithm are provided in Table 4 and 5:

Multi-agent Atari Pong. The hyper-parameters setting for MATRL are listed in Table 6. We used the
same hyper-parameters for MATRL and IL. We take the raw pixel input from the Atari environment,
and we processed it with a convolution network, which has filter sizes [8,4,3], kernel sizes (3,3,3),
and stride sizes [4,2,1] and "VALID" as padding. Then we pass the processed embedding to a 2 layer
fully connected network to get the policy.
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Table 4: Hyper-parameter settings for baseline algorithms in grid worlds.
SETTINGS VALUE DESCRIPTION

VDN
MONOTONE NETWORK LAYER 2 LAYER NUMBER OF MONOTONE NETWORK.
MONOTONE NETWORK SIZE 128 HIDDEN LAYER SIZE OF MONOTONE NETWORK.
TARGET NETWORK UPDATE INTERVAL 200 NUMBER OF ITERATIONS BETWEEN EACH TARGET NETWORK UPDATE
LEARNER DOUBLE-Q LEARNER THE ALGORITHMS FOR EACH AGENT
QMIX
JOINT ACTION-VALUE NETWORK LAYER 2 LAYER NUMBER OF JOINT ACTION-VALUE NETWORK.
JOINT ACTION-VALUE NETWORK SIZE 128 HIDDEN LAYER SIZE OF JOINT ACTION-VALUE NETWORK.
LEARNER DOUBLE-Q LEARNER THE ALGORITHMS FOR EACH AGENT

Table 5: Hyper-parameter settings in multi-agent MuJoCo hopper.
SETTINGS VALUE DESCRIPTION

MATRL AND ITS VARIANTS
AGENT ALGORITHM PPO THE LEARNING ALGORITHM FOR AGENT
NETWORK 2 LAYER MLP [128, 128] THE NETWORK ARCHITECTURE AND SIZE FOR THE PPO AGENT
LEARNING RATE 0.002 LEARNING RATE FOR AGENTS
BATCH IZE 4000 BATCH SIZE FOR ONE UPDATE
VALUE LOSS COEFFICIENT 0.001 THE VALUE LOSS COEFFICIENT IN TOTAL LOSS
POLICY LOSS COEFFICIENT 100 THE POLICY LOSS COEFFICIENT IN TOTAL LOSS
POLICY UPDATE ITERATIONS 10 NUMBER OF GRADIENT STEPS FOR EACH BATCH OF UPDATE.
BEST RESPONSE LEARNING RATE 0.002 THE LEARNING RATE FOR BEST RESPONSE STEP
BEST RESPONSE INTERACTIONS 5 NUMBER OF GRADIENT STEPS FOR BEST RESPONSE STEP
ENTROPY COEFFICIENT 0.05 THE ENTROPY COEFFICIENT IN TOTAL LOSS
KL-DIVERGENCE COEFFICIENT 0.01 THE KL-DIVERGENCE COEFFICIENT IN TOTAL LOSS
GAMMA 0.99 DISCOUNT FACTOR
MADDPG
NETWORK 2 LAYER MLP [300, 300] THE NETWORK ARCHITECTURE AND SIZE FOR THE PPO AGENT
LEARNING RATE 0.001 LEARNING RATE FOR AGENTS
BATCH SIZE 100 BATCH SIZE FOR ONE UPDATE
UPDATE INTERVAL 100 UPDATE THE NETWORK EVERY 100 TIME STEPS
PRE-TRAIN TIMETEPS 10000 NUMBER OF TIME STEPS BEFORE NETWORK UPDATE
GAMMA 0.99 DISCOUNT FACTOR

COMIX
HYPER-NETWORK LAYER 2 LAYER NUMBER OF HYPER-NETWORK.
HYPER-NETWORK SIZE 64 HIDDEN LAYER SIZE OF HYPER-NETWORK.
ACT NOISE 200 STDDEV FOR GAUSSIAN EXPLORATION NOISE ADDED TO POLICY AT TRAINING TIME.
LEARNER DOUBLE-Q LEARNER THE ALGORITHMS FOR EACH AGENT

Table 6: Hyper-parameter settings in multi-agent pong Atari.
SETTINGS VALUE DESCRIPTION

MATRL AND ITS VARIANTS
AGENT ALGORITHM PPO THE LEARNING ALGORITHM FOR AGENT
NETWORK 3 LAYER CNN, 2 LAYER FC THE NETWORK ARCHITECTURE AND SIZE FOR THE PPO AGENT
LEARNING RATE 0.002 LEARNING RATE FOR AGENTS
BATCH IZE 4000 BATCH SIZE FOR ONE UPDATE
VALUE LOSS COEFFICIENT 0.1 THE VALUE LOSS COEFFICIENT IN TOTAL LOSS
POLICY LOSS COEFFICIENT 10 THE POLICY LOSS COEFFICIENT IN TOTAL LOSS
POLICY UPDATE ITERATIONS 10 NUMBER OF GRADIENT STEPS FOR EACH BATCH OF UPDATE.
BEST RESPONSE LEARNING RATE 0.002 THE LEARNING RATE FOR BEST RESPONSE STEP
BEST RESPONSE INTERACTIONS 5 NUMBER OF GRADIENT STEPS FOR BEST RESPONSE STEP
ENTROPY COEFFICIENT 0.05 THE ENTROPY COEFFICIENT IN TOTAL LOSS
KL-DIVERGENCE COEFFICIENT 0.01 THE KL-DIVERGENCE COEFFICIENT IN TOTAL LOSS
GAMMA 0.99 DISCOUNT FACTOR
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