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Abstract: House prices have long been closely related to the built environment of cities, yet whether

the subjective perception (SP) of these environments has a differing effect on prices at multiple urban

scales is unclear. This study sheds light on the impact of people’s SP of the urban environment

on house prices in a multi-scale urban morphology analysis. We trained a machine learning (ML)

model to predict people’s SP of the urban environment around properties across Greater London

with survey response data from an online survey evaluating people’s SP of street view image (SVI)

and linked this to house price data. This information was used to construct a hedonic price model

(HPM) and to evaluate the association between SP and house price data in a series of linear regression

models controlling location information and urban morphological characteristics such as street

network centralities at multiple urban scales, quantified using space syntax (SS) methods. The

findings show that SP influences house prices, but this influence differs depending on the urban

scale of analysis. Particularly, a sense of ‘enclosure’ and ‘comfort’ are important factors influencing

house price variation. This study contributes by introducing SP of the urban environment as a new

dimension into the traditional HPM and by exploring the economic impact of SP on the house price

market at multiple urban scales.

Keywords: house price; subjective perception; space syntax; street view image; machine learning

1. Introduction

House price evaluation models constitute an important tool for informed decision-
making in the housing market, and the physical characteristics of the urban environment
have played a critical role in such models [1]. The assessment and modelling of house
prices commonly include variables on such physical (i.e., objective) characteristics of the
urban environment, and multiple features of the urban environment have been shown to
affect house prices significantly, e.g., location information [2–4], properties of the street
environment [5,6], walkability [7,8], or job and service accessibility [9]. Several studies have
explored the impact of property attributes on house prices based on the hedonic price model
(HPM), which was developed by Rosen [10] including four dimensions, i.e., house struc-
ture [11,12], location [3,13], environmental [14,15] and neighborhood attributes [16,17], the
latter three of which are objective urban elements in a property’s surrounds. In addition,
multi-scalar properties of urban form, operationalized through a spatial network anal-
ysis approach, i.e., space syntax (SS) [18,19], have also been shown to capture location
characteristics that influence house prices [20,21].
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Although house price evaluation models that utilize objective urban features are
widely researched and have a well-documented academic foundation, people’s subjective
perceptions (SP) of the urban environment are often overlooked. Humans perceive the
urban environment, particularly at the neighborhood level (i.e., ‘micro-scale’), which in
turn influences their behavior and can lead to differing social outcomes [22]. For example,
SP of the streetscape environment can influence people’s sense of place [23,24], route
choice [25,26], physical and psychological well-being [27,28], and quality of life [29]. At the
street scale, less visible sky, denser buildings, and narrower streets increase people’s sense
of safety, which in turn affects their perception of the place [23,24]. Because these factors
can influence people’s house choices, people’s SP may play a pivotal role in determining
house prices [30–32]. At the urban design dimension, scholars have emphasised that
aesthetic urban design elements and design thinking based on human urban perception
contribute to the aesthetic image of cities and to the quality of the lived environment [33,34].
Therefore, a better understanding of people’s SP of a place may provide critical insights
into an overlooked influence of local house prices.

While substantial progress has been made in improving the inclusion of objective
characteristics in house price models, research aiming to incorporate SP has been limited,
particularly in the context of a multi-scale urban morphology analysis. This study proposes
a method to add the SP of the urban environment into house price modelling based on
street view image (SVI) analysis, computer vision (CV), machine learning (ML) and space
syntax (SS) techniques to investigate whether people’s SP significantly impacts house prices
at multiple urban scales. It explores the economic impact of SP on the house price market
in Greater London by incorporating SP as a new dimension of urban information into the
traditional HPM. We used SVI data, online SP survey data, as well as CV and ML techniques
to train a SP prediction model to obtain SP scores for all streets in London. The SP data
obtained were formulated as part of the HPM, and ordinary least squares (OLS) regression
models were used to explore the potential impact of SP on house prices. The location
attribute in the traditional HPM (property’s distance to the urban geographical center
or the central business district) is replaced by more sophisticated urban street network
analysis variables supported by SS urban network analysis [18,35], to explore the impact
of SP on house prices at multiple urban scales, and how this potential impact might differ
depending on various scales of analysis.

1.1. Objective Urban Dimensions in Traditional Hedonic Price Models

The hedonic price model (HPM) introduced by Rosen [10], is a commonly used method
for estimating house prices. In HPM, house price is considered to be the value that buyers
evaluate based on the intrinsic and extrinsic attributes of a housing unit, of which extrinsic
attributes comprise physical elements of the urban environment [10,36]. The various
attributes of the product category ‘house’ can be summarized in four dimensions: house
structure, location, environment, and neighborhood characteristics [10]. The house price is
defined as the function of these various attributes as independent variables [36]:

P = f (S1, · · · , Sn, L1, · · · , Lm, E1, · · · , Ez, N1, · · · , Nk) (1)

where the Sn, Lm, Ez, Nk indicate the house structure, location, environment, and neigh-
borhood attributes respectively.

Among the four house attribute dimensions, house structure attributes describe the
internal spatial environment of a house property itself [11,37]. The remaining three dimen-
sions of attributes are all descriptive of the external environment of the house and can be
categorized as objective urban elements in the HPM. Location attributes have long been
considered an essential characteristic of a house, traditionally represented by a “distance-
value”-based urban economic model, relating land value to the distance from central
marketplaces [38]. Environmental attributes, concerning the availability of amenities, are
similarly an essential independent functional component in the urban environment [39,40].
Finally, neighborhood attributes depict the social and functional characteristics of a prop-
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erty’s surrounding area, such as income, ethnicity, age [41], schools [16,17], metro stations,
and other public infrastructures [42,43].

The role of location attributes in house price models has increasingly shifted from the
traditional “distance-value” model to a calculation of more complex urban morphology-
based variables such as street network centralities [20,44]. The traditional “distance-value”-
based models have been criticized for being an oversimplified representation of property
locations as they are solely based on the distance from the property to the central business
district (CBD). Street network centralities, on the other hand, have been argued to be
able to capture complex relational properties within a city’s road network, which are a
foundational component of the analytical theory called space syntax (SS) [18,35]. Scholars
have utilize SS to capture urban morphological characteristics to describe the location of
properties within the city to explore the impact of urban form on the house price market
and to obtain more accurate house price models [20,44–46].

1.2. Subjective Perception as a New Urban Dimension Using Street View Images

People’s subjective urban perception influences their value judgements on proper-
ties and hence constitutes a critical dimension for our understanding of the house price.
Previous studies have relied primarily on objective urban element indicators to model
house prices, and research on the relationship between subjective urban perceptions and
house prices is at an early stage. For example, recent research on house prices in Shang-
hai [30,31,47] have made essential contributions to our understanding of people’s SP of
streetscapes on house prices, but more studies are needed. This study uses data science
methods in conjunction with SS to add SP data to the traditional HPM multi-factor regres-
sion model to create a new SP factor dimension that will aid in understanding the impact
of SP on house prices, as shown in Figure 1.

In general, SP of urban environments is measured through surveys and interviews [48]
in which participants provide perception ratings to specific urban streetscape environments.
Using such approaches, Ewing and Handy [49] identified five SP indicators, i.e., imageabil-
ity, enclosure, human scale, transparency, and complexity. These SP indicators correlate
with physical elements in street view imagery and are thought to capture people’s SP of
specific urban environment characteristics. In their study, they highlight three SP indicators
that focus on comprehensive and holistic environment feelings, which are sense of safety,
sense of comfort, and level of interest (see Table 1 for detailed definitions of these eight
perceptual indicators). Research on house prices in Shanghai has preliminarily explored
the impact of SP on house prices based on some of these perceptual indicators [30,50,51],
but further validation is needed.

Large-scale surveys of SP in urban studies can be aided by using Google SVI data,
CV and ML techniques. Numerous authors have combined these three computational
technologies in conjunction with SVI data into an urban analysis workflow to evaluate
(i) the quality of street environments [52–58], (ii) calculate the degree of greenery [53,59,60],
(iii) construct a walkability index [53,60], or (iv) detect spatio-temporal evolution of urban
environment [61]. This article builds on these recent developments and proposes a novel
calculation methodology and dataset of city-wide SP outlined below.
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Figure 1. Conceptual framework and key literature [10,11,16–18,20,30,31,37–40,42–44,49,50].

Table 1. Definitions of urban perception variables.

Perception Variable Scholars Variable Definition

S1. Imageability [62]

The potential of the urban
environment to evoke a strong
impression on observers and
whether urban elements help
people to memorize and recognize
them.

S2. Enclosure [63,64]

A sense of closure due to the
blocking of views by vertical
elements in the urban
environment, with walls, trees,
and other vertical elements
creating varying degrees of
boundaries.

S3. Human Scale [63,65]

The extent to which physical
attributes such as the size of
buildings in the urban
environment match the
proportions of human size.

S4. Transparency [66,67]

The extent to which people can
see or perceive things beyond the
edge of the street, such as walls,
windows, landscapes, and other
boundaries.

S5. Complexity [66,67]

The visual diversity of a place,
which depends on the diversity of
the physical environment, such as
the number and type of buildings,
the number and type of landscape
elements, and infrastructural
settings, or the abundance of
human activity.

S6. Sense of Safety [68]
The level of fear people have of
possible crime events within the
urban environment.
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Table 1. Cont.

Perception Variable Scholars Variable Definition

S7. Sense of Comfort [69,70]

Commonly used to describe how
comfortable people are in urban
thermal environments. It is used
to describe how comfortable
people are when they visually
perceive the urban environment
in this study.

S8. Level of Interest [71,72]

Frequently reflected in studies of
urban point of interests describing
how people like a place and how
much they tend to visit it.

2. Materials and Method

Figure 2 illustrates the methodological framework of this study. First, using an on-
line survey, this research collected information from 265 participants in London on their
perception of 300 random SVIs based on eight SP indicators. Second, a semantic deep
learning framework was used as the CV technique to extract the respective pixel ratios
of over 30 physical streetscape elements in the SVIs. Third, ML models were trained to
predict people’s SP scores of London streets, using the pixel ratios of physical elements
extracted from SVIs as the explanatory variables. In the fourth step, this study applied the
best-performing ML model to predict SP scores for all streets in London. Subsequently, an
HPM incorporated SP scores and quantified the extent to which SP influences house prices
using OLS analyses. The impacts of SP on house prices were compared with the effects of
multi-scale urban morphology and functional properties.
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Figure 2. Research framework and workflow.
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2.1. SVI, CV, and ML-Based Subjective Perception Data Collection

From an urban design perspective [49], people’s experience of five design quali-
ties of the street environment (imageability, enclosure, human scale, transparency, and
complexity) and three types of people’s overall perception of the streetscape (sense of
safety, sense of comfort, and level of interest) were selected as quantitative indicators
to represent people’s SP of the urban environment. This study builds on eight parame-
ters of [49] urban perception metrics, which constitutes a more comprehensive picture of
the urban environment than previous studies incorporated—they used five [30] and six
parameters [50] respectively.

Google SVI data provides a consistent data source for image-based descriptions of
the urban environment and enables large-scale studies while requiring significantly low
resources [73]. This data source has been proven to be consistent and reliable when com-
pared against extensive empirical on-site surveys [73–75]. CV techniques allow researchers
to extract and evaluate physical features in urban environments from SVI data, such as the
sky, trees, or buildings. Coupled with ML techniques relatively small samples of such data
can be used to predict global data [76], enabling indicator prediction for an entire city.

Using a geographic information system, this study sampled streetscape image points
at 100 m intervals throughout London to obtain 70,059 streetscape images across Greater
London from the Google Street View Static API. Figure 3 shows that each SVI is oriented
directly towards the road to reflect the walking conditions on the street. Inspired by
previous research on SP [31,77], an online questionnaire was designed to investigate and
quantify people’s SP of the street environment. The survey design is classified as exempt
from ethics approval due to the use of non-sensitive information and the completely
anonymous data-gathering process. Participants were provided with information on the
type of data gathered and its research use and were asked to provide informed consent by
accepting the survey terms prior to participation. Furthermore, participants could exit the
survey at any time resulting in the deletion of their responses. Participants were asked to
make a two-by-two comparison of images among 300 SVIs based on eight SP indicators.
Participants were asked a total of eight questions corresponding to the SP indicators, as
shown in Figure 4. Under each question, the online survey asked participants to perform
five rounds of image comparison with two images in each round randomly selected from the
pre-determined 300 SVIs. Participants would choose which of the two shown images best
represents their perceptual experience. The TrueSkill algorithm [78] was used to convert
participants’ survey responses into a score ranging from 1–5 for each SVI, calculated based
on the pairwise image comparison. Combined with the information from SVI segmentation
by CV techniques, these scores are used as the training set for ML predicting the SP scores
of streets, which were used to predict the SP scores of all other SVIs.

Participants numbering 265 took part in the survey, with a gender ratio of 1.17:1
(142 males, 123 females, and 12 others) and a predominant age distribution of 16–34 years.
However, the sample does not constitute a representative sample of the London population.
Young (16–24) participants are overrepresented, which constitutes a limitation of the study,
and interpretations need to consider these limitations.

All participants had experiences of living in London, and approximately 80% were
undergraduate and postgraduate students from a range of disciplines. The survey was
more extensive and more diverse than previous studies, e.g., Ewing and Handy [49] who
interviewed 10 planning experts, and Qiu et al. [30] who questioned 43 urban designers.
The questionnaire avoids technical jargon, allowing participants to relate to the relevant SP
variables without prior domain knowledge.
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Figure 4. Survey website design and questions.

A deep convolutional neural network model, Pyramid Scene Parsing Network
(PSPNet), was used to extract physical elements from SVIs. This model structure has
been shown to be effective and accurate in SVI segmentation [79]. This method of quan-
tifying the physical elements in the streetscape has begun to be used in a range of urban
studies [32,80–82]. In this study, the PSPNet model was pre-trained based on the ADE20K
database, a dataset of SVI data from 50 cities [83], and resulted in ratios of different physical
elements in streetscapes in each image to the whole image, termed the view index [31].
The view index of a physical element i in each image is obtained through the following
function:

Vi = ∑
Pi

P
, P = {Pi|i ∈ {sky, building, tree, etc.}} (2)

where P stands for the total number of pixel points in the SVIs, while Pi represents the
pixel number of certain physical element i. The set of visual indices of different physical
elements is used to reflect the quantified objective reality of the streetscape through images.

ML algorithms have been used to study the SP of cities based on SVIs and are con-
sidered to be an effective means of predicting SP [84,85]. Following these examples and
based on the dataset of SVIs, the Back-Propagating (backprop, BP) Neural Network was
used to train a mathematical model that could predict people’s subjective perceptual expe-
rience based on SVI visual index data. The BP neural network model was chosen because
it featured the best predictive performance in pre-experiments compared to other ML
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models. Backpropagation and its application to neural networks were first proposed and
further developed by Rumelhart et al. [86]. This multilayer perceptual model can cope with
arbitrarily complex patterns for classification and provides sufficient multi-dimensional
function mapping. As shown in Figure 5, in this study, the view indexes of 30 physical
elements in a single SVI, e.g., Vsky, Vwall , Vtree, constitute the input layer. After the function
calculation in the hidden layer, the output layer yields the scores of this image on eight
subjective perceptual attributes, e.g., Simageability, Senclosure, Shuman scale. The BP neural net-
work model was used as a classifier to rate each SP variable of each SVI as an integer score
ranging from 1–5 based on the information from the SVI segmentation. The data for the
pre-trained model are derived from the results of the online perception survey based on
300 pre-determined SVIs and view indexes extracted from these images. Eighty percent of
the data are used as a training set to build the BP neural network model, while 20% are
used as a testing set to assess the model’s accuracy.

      ‐                    
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Figure 5. Algorithms diagram of Backprop Neural Network.

Accuracy, Precision, Recall, and F1 Score evaluate the prediction performance of
a model. The best-performing model was then used to predict the SP scores for all
70,059 SVIs. The streetscape perception scores within 1 km of a property were averaged to
represent the quality of the street environment in the property’s neighborhood. However,
it is acknowledged that what constitutes a neighborhood can vary in size and scale based
on individual preferences. Descriptive statistics for the SP scores of the street environment
around each property are presented in Table 2. In Figure 6, one can see that the SVIs are seg-
mented according to physical features to obtain visual indices of different physical features.
Subsequently, the subjective streetscape perception scores are predicted by the ML model.

Table 2. Descriptive statistics of all variables.

Variable Description Count Mean Std.Dev. Min Max Data Source

PRICE £/m2, dependent variable 49,603 6793.59 3427.28 117.77 91,866.95 LR-PPD data

House Structure attribute

H1_FLARA Total floor area (m2) 49,603 91.25 57.15 6.26 4373.00

EPCs data
H2_INSUP

House insulation
performance

49,603 2.58 1.63 1.00 5.00

H3_LIGTP House lighting performance 49,603 3.69 1.52 1.00 5.00
H4_HOTWP House hot water performance 49,603 3.80 0.89 1.00 5.00
H5_CO2EM House CO2 Emission 49,603 2.00 1.62 −1.40 66.00
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Table 2. Cont.

Variable Description Count Mean Std.Dev. Min Max Data Source

Description Values Count Percent Avg.Price Avg.Area Data Source

H6_FLLEV Floor level

1: Low 15,959 32.17% 6908.76 65.03

EPCs data

2: Mid 32,093 64.70% 6698.90 105.08
3: High 1551 3.13% 7571.03 74.85

H7_PROTY
Property
type

1: Detached 3464 6.98% 6123.85 174.60
2: Flat 24,841 50.08% 7539.41 67.13
3: Semi 7961 16.05% 5683.22 113.49
4: Terrace 13,337 26.89% 6244.62 101.24

H8_MENER
Main energy
source

1: Electricity 4626 9.33% 6602.96 63.06
2: Gas/LPG 38,167 76.94% 6409.88 97.83
3: Oil/Coal 101 0.20% 6684.66 100.98
4: Others 6709 13.53% 9111.52 73.11

Subjective urban perception variable Count Mean Std.Dev. Min Max Data Source

S1_IMBLY Perceived imageability 49,603 3.05 0.36 1.00 4.16

SVIs, Investi-
gation data,
ML results

S2_ENCLS Perceived enclosure 49,603 2.86 0.46 1.50 4.65
S3_HMSCL Perceived human scale 49,603 3.06 0.26 1.00 4.29
S4_TRANS Perceived transparency 49,603 2.82 0.20 2.00 4.00
S5_CMPLY Perceived complexity 49,603 3.24 0.27 1.33 4.00
S6_SAFTY Perceived sense of safety 49,603 3.24 0.22 1.00 4.50
S7_COFRT Perceived sense of comfort 49,603 3.03 0.21 2.00 4.00
S8_INTST Perceived level of interest 49,603 3.09 0.17 2.00 4.33

Objective urban perception variable Count Mean Std.Dev. Min Max Data Source

Location Attribute (Urban morphology)

L1_D2CBD Cost network distance to CBD 49,603 0.30 0.15 0.02 0.81

OS data

L2_POSDT Postcode District 49,603 / / / /

M1_INT400
Space syntax-Integration[HH]
(R400)

49,603 23.18 6.63 3.56 68.69

M2_CH400 Space syntax-Choice (R400) 49,603 108.54 59.18 0.00 902.55

M3_INT800
Space syntax-Integration[HH]
(R800)

49,603 49.09 20.54 3.56 176.85

M4_CH800 Space syntax-Choice (R800) 49,603 788.61 485.01 0.00 6399.87

M5_INT2000
Space syntax-Integration[HH]
(R2000)

49,603 155.50 88.85 3.56 575.72

M6_CH2000 Space syntax-Choice (R2000) 49,603 11,141.62 7914.72 0.00 47,980.45

M7_INT6000
Space syntax-Integration[HH]
(R6000)

49,603 650.86 459.06 3.56 2148.27

M8_CH6000 Space syntax-Choice (R6000) 49,603 272,714.0 249,841.4 0.00 1,552,460

Neighbourhood and Environment Attribute (Urban Functional Property)

F1_DENLS
Density of urban services
(within 1 km)

49,603 341.28 384.77 0.00 5515.00

OS dataF2_DENWK
Density of workplace (within
1 km)

49,603 337.43 463.93 1.00 5880.00

F3_DENAT
Density of attraction (within
1 km)

49,603 27.36 40.80 0.00 572.00

F4_D2UDG Distance to TfL station (km) 49,603 0.75 0.58 0.00 7.26

TfL dataF5_A2UDG
Accessibility to TfL station
(within 3 km)

49,603 15.94 13.04 0.00 70.00

F6_D2SCH
Distance to quality school
(km)

49,603 0.56 0.40 0.00 6.94

Ofsted data
F7_A2SCH

Accessibility to quality school
(within 3 km)

49,603 24.93 14.76 0.00 83.00
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Figure 6. (a) Origin SVIs, (b) image segmentation results, (c) view indices calculated from SVIs,

and (d) predicted SP scores. The radar charts present view indices from 0 to 0.5, while presenting

perceptual scores from 1 to 5.

2.2. Hedonic House Price Model Architecture

2.2.1. Dependent Variable—House Price

We use house price information from two official open-source databases, i.e., the
Land Registry Price Paid Data (LR-PPD) and Domestic Energy Performance Certificates
(EPCs), compiled by Chi et al. [87]. The integrated database has had 18,575,357 property
transaction records in England and Wales since 2011. We filtered the data spatially based
on latitude and longitude coordinates for the Greater London area and temporally based
on the transaction time for house prices since 2017 to remove the effects of time. A total
of 49,603 property transaction data valid for this study were obtained. All independent
variables were summarized to these 49,603 house price points and eventually placed into
the regression equation for analysis (Table 2).

2.2.2. Model Architecture

Two sets of multiple linear regression (MLR) equations with house prices as the
dependent variable were constructed, based on the most widely used Ordinary Least
Squares regression (OLS) model in hedonic house price studies [21,31,50,88]. This model
assumes that the target variable is linearly related to multiple predictor variables [89]. If k
independent variables are selected for regression analysis with the house price variable,
the OLS model can be expressed as follows:

Tprice = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (3)



ISPRS Int. J. Geo-Inf. 2023, 12, 249 11 of 20

where Thp is the house price; xk(1 ≤ i ≤ k) are the k selected features from potential ex-
planatory variables, which stand for factors in HPM, such as subjective attributes and
neighborhood attributes; βi denote the coefficients of the regression and ε denotes the
random error. The standardized coefficients can be derived from the regression analysis
and analyzed as the importance of the attributes in the regression equation. The OLS
regression model can also generate R2 values to assess the model’s overall performance in
terms of the correlation between the dependent variable and explanatory variables.

2.3. Independent Variable Data in HPM

2.3.1. House Structure Variables

Although the house structure is not a traditional element of the urban environment, it
is an essential component of the hedonic house price theory. Information on house structure
was obtained from Domestic Energy Performance Certificates (EPCs), which include house
floor area, number of floors, building type, and a range of energy performance variables
such as energy source and insulation performance. Some of these variables are categorical
and can be converted to continuous variables for regression analysis, as shown in Table 2.

2.3.2. Urban Morphology Variables

The location attribute is based on SS, a theory and method that conceptualizes space
as a relational entity, which in turn can be represented and analyzed as a graph. Such a
graph-based approach allows quantification of the spatial configuration (i.e., the part-to-
whole relationship) of buildings and cities [90]. Previous research has shown that spatial
configuration in buildings and cities has social impacts and drives human movement
patterns and economic activity [91–94]. In the HPM, spatial configuration can be used
to represent the location attributes of a property, while urban functions represent the
neighborhood and environmental attributes of a property (see Figure 1).

Two variables in space syntax theory, i.e., integration and choice, can be generated at
various distance radii allowing the incorporation of locational properties across multiple
scales. Integration (or closeness centrality) measures the extent to which a street is likely to
be chosen as a destination, while choice (or betweenness centrality) captures the likelihood
of a street being chosen along a journey [18]. Both variables can serve as substitutes
for the traditional “distance-value” model in hedonic house price evaluation [44]. This
study calculated integration and choice values at multiple scales, from micro-scale urban
morphological analysis to macro-scale analysis, including radii of 400 m, 800 m, 2000 m,
and 6000 m, to replace the location attribute in traditional HPM. Space syntax-related
urban form calculations were generatd using the space syntax toolkit in QGIS [95] and the
shapefile of London’s roads from Ordnance Survey (OS). Table 2 shows the descriptive
statistics of urban morphology variables at a range of scales.

2.3.3. Urban Function Variables

The variables related to urban function are the neighborhood attributes in the HPM,
as shown in Table 2. These variables are selected based on their wide use in the field.
The density values of the main urban functions within a 1 km radius of each main house
price point are calculated using OS points of interest data, which include urban services,
workplaces, and attractions. In addition, the proximity of urban public transport and
quality educational facilities has been shown to impact house prices positively [96,97].
Hence, this study obtained geographical data of underground and railway stations from
Transport of London (TfL) and information on schools rated good or above from the
official Ofsted school ratings database. The network distance from each property point
to the nearest TfL station and school was calculated. Finally, the number of TfL stations
and quality schools within a 3 km radius of each property was measured as a proxy for
accessibility to these.



ISPRS Int. J. Geo-Inf. 2023, 12, 249 12 of 20

3. Results

3.1. Subjective Urban Perception Prediction

3.1.1. Accuracy of the Machine Learning Prediction Model

The prediction performance and model evaluation of the BP neural network model
on the SP scores of the urban street environments are shown in Table 3. The model
performed on average moderate or above for all subjective perceptual variables, with
values greater than 0.5 based on a generally accepted rule of thumb evaluation criteria. The
best-performing perceptual prediction models are models of ‘imageability’ (S1), ‘human
scale’ (S3), ‘transparency’ (S4), ‘sense of comfort’ (S7), and ‘level of interest’ (S8), all with
accuracy greater than 0.7, of which ‘human scale’ has the highest accuracy of 0.795. The
prediction models for ‘enclosure’ and ‘sense of safety’ are less accurate at 0.643 and 0.652,
respectively, while the model for ‘complexity’ has the lowest accuracy at 0.579. The accuracy
of the SP model predictions in this study is relatively high, ranging from 0.58 to 0.80, which
is a significant improvement compared to previous studies, with R2 of Verma, et al.’s
prediction model [98] ranging from 0.20 to 0.66, and R2 of Qiu, Zhang, Liu, Li, Li, Xu and
Huang’s perception prediction model [30] ranging from 0.47 to 0.61.

Table 3. Performance of BP Neural Network predictions.

Perception Accuracy Precision Recall F1-Score Criteria

S1. Imageability 0.710 0.731 0.725 0.721 Good
S2. Enclosure 0.643 0.630 0.666 0.629 Moderate
S3. Human Scale 0.795 0.785 0.780 0.779 Good
S4. Transparency 0.722 0.723 0.732 0.724 Good
S5. Complexity 0.579 0.628 0.613 0.613 Moderate
S6. Sense of Safety 0.652 0.657 0.664 0.659 Moderate
S7. Sense of Comfort 0.720 0.726 0.732 0.716 Good
S8. Level of Interest 0.711 0.737 0.724 0.729 Good

Evaluation criteria: >90% very good, 70–90% good, 60–70% moderate, <60% low.

A higher accuracy indicates fewer variations in survey scores, which in turn may imply
that these SP dimensions can be better understood by respondents [5,30]. Imageability (S1),
human scale (S3), transparency (S4), sense of comfort (S7), and level of interest (S8), all
show higher levels of accuracy whereas complexity (S5) showed lower levels of accuracy,
hinting towards a more ambiguous perception of the latter.

3.1.2. Spatial Heterogeneity of Urban Subjective Perception

Figure 7 shows the spatial distribution of SP prediction results, with clear spatial
patterns for some SP variables. For the three SP variables of ‘imageability’ (S1), ‘enclosure’
(S2), and ‘complexity’ (S5), there is a strong tendency for the ratings to cluster geographically
towards the city center, with enclosure being the most pronounced. This phenomenon
can be explained by the high density of buildings in the city center, where the presence of
buildings makes the street space more impressionistic and more enclosed and adds to the
diversity and complexity of the urban space. For the three variables ’human scale’ (S3),
‘transparency’ (S4), and ‘sense of safety’ (S6), the geographical distributions are reversed,
with scores highly concentrated in the periphery of the city. The urban periphery, with
fewer buildings and more greenery, is considered by respondents to have a ‘human scale’
(S3), ‘transparency’ (S4), and a ‘sense of safety’ (S6). The spatial distributions of ‘sense of
comfort’ (S7) and ‘level of interest’ (S8) ratings are scattered across the research region, with
interest scores being the most dispersed, suggesting that people’s perceptions in these two
SP dimensions are more complex.
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Figure 7. Spatial distribution of properties with SP scores.

3.2. Spatial Hedonic Price Model Result

3.2.1. Correlation of Each Attribute Group with House Prices

Table 4 shows the strength of the four attribute dimensions that make up the HPM in
explaining house prices (p < 0.01). Location attributes, i.e., urban morphology attributes,
are the strongest in explaining house prices (R2 = 0.427), followed by SP scores (R2 = 0.342)
and neighborhood attributes (R2 = 0.339). The weakest influencing attribute group is the
set of house structure attributes (R2 = 0.085).

Table 4. Model performance of each attribute group.

OLS Diagnosis House Structure Attributes
Location Attributes
(Urban Morphology)

Neighborhood Attributes
(Urban Function)

Subjective Perception Scores

Adjusted R2 0.085 *** 0.427 *** 0.342 *** 0.342 ***
Pr. (F-statistic) 0.000 *** 0.000 *** 0.000 *** 0.000 ***

*** p < 0.01 level.

3.2.2. Results of Regression Models with Multi-Scale Urban Morphology

The OLS model results are shown in Table 5, and the impact ranking of each of the
five urban scale models is shown in Figure 8 respectively. The baseline model (Model 0)
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uses traditional location attributes, i.e., the property’s network cost distance to the CBD
(L1_D2CBD) and its postcode district (L2_POSDT). The other models (Model 1–4) apply
different scales of integration and choice as location attributes of the HPM. Table 5 shows
the regression model’s performance and diagnostic outcomes. The adjusted R2 indicates
a comparable association with house prices among the five models. When comparing
Model 0 and Model 4, the overall performance of the two models is comparable after
replacing the traditional location attributes with the urban morphology variables of space
syntax (R2 = 0.496, R2 = 0.494). However, the integration variable in Model 4 (M7_INT6000,
M8_CH6000) increases the models standardized coefficients, as shown in Figure 8. Such
a result suggests that integration captures characteristics of the urban environment that
influence house prices that traditional location attributes have been unable to represent.

Table 5. Regression with multi-scale urban morphology: results and diagnosis.

Model 0 Model 1 Model 2 Model 3 Model 4

Location
Attribute

Baseline
(L1, L2)

M1, M2
(R400)

M3, M4
(R800)

M5, M6
(R2000)

M7, M8
(R6000)

Adjusted R2 0.496 *** 0.482 *** 0.484 *** 0.486 *** 0.494 ***
Pr. (F-statistic) 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 ***

Variable Coef. P > t Coef. P > t Coef. P > t Coef. P > t Coef. P > t

CONSTANT *** *** *** *** ***

House Structure attribute
H1_FLARA −0.007 −0.009 ** −0.012 ** −0.014 ** −0.016 ***
H2_INSUP −0.009 ** −0.006 −0.001 −0.001 0.004
H3_LIGTP −0.039 *** −0.037 *** −0.036 *** −0.036 *** −0.035 ***
H4_HOTWP 0.002 0.002 0.001 0.002 0.003
H5_CO2EM 0.054 *** 0.059 *** 0.059 *** 0.06 *** 0.059 ***
H6_FLLEV 0.068 *** 0.062 *** 0.063 *** 0.062 *** 0.066 ***
H7_PROTY −0.026 *** −0.02 *** −0.021 *** −0.021 *** −0.02 ***
H8_MENER 0.122 *** 0.135 *** 0.136 *** 0.134 *** 0.137 ***
Subjective urban perception variable
S1_IMBLY 0.024 *** 0.032 *** 0.031 *** 0.035 *** 0.029 ***
S2_ENCLS 0.135 *** 0.157 *** 0.16 *** 0.164 *** 0.125 ***
S3_HMSCL 0.043 *** 0.037 *** 0.035 *** 0.033 *** 0.027 ***
S4_TRANS −0.022 *** −0.009 *** −0.009 *** −0.01 *** −0.017 ***
S5_CMPLY 0.028 *** 0.034 *** 0.028 *** 0.028 *** 0.026 ***
S6_SAFTY −0.039 *** −0.051 *** −0.051 *** −0.052 *** −0.048 ***
S7_COFRT 0.112 *** 0.124 *** 0.126 *** 0.123 *** 0.112 ***
S8_INTST −0.043 *** −0.044 *** −0.044 *** −0.041 *** −0.037 ***
Objective urban perception variable
Location Attribute (Urban Morphology)
L1_D2CBD −0.098 *** / / / /
L2_POSDT 0.136 *** / / / /
M1_INT400 / 0.115 *** / / /
M2_CH400 / −0.052 *** / / /
M3_INT800 / / 0.217 *** / /
M4_CH800 / / −0.14 *** / /
M5_INT2000 / / / 0.286 *** /
M6_CH2000 / / / −0.185 *** /
M7_INT6000 / / / / 0.324 ***
M8_CH6000 / / / / −0.087 ***
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Table 5. Cont.

Model 0 Model 1 Model 2 Model 3 Model 4

Neighborhood Attribute (Urban Functional Property)
F1_DENLS 0.135 *** 0.111 *** 0.088 *** 0.087 *** 0.102 ***
F2_DENWK −0.137 *** −0.177 *** −0.165 *** −0.164 *** −0.181 ***
F3_DENAT 0.419 *** 0.486 *** 0.479 *** 0.456 *** 0.437 ***
F4_D2UDG −0.028 *** −0.019 *** −0.018 *** −0.021 *** −0.02 ***
F5_A2UDG 0.048 *** 0.044 *** 0.046 *** 0.041 *** 0.009 ***
F6_D2SCH 0.041 *** 0.031 *** 0.032 *** 0.03 *** 0.034 ***
F7_A2SCH −0.071 *** −0.039 *** −0.045 *** −0.067 *** −0.126 ***

** p < 0.05 level, *** p < 0.01 level.
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Figure 8. Impact ranking in models based on absolute standardized coefficients.

For models 1–4, while different scales of urban morphology are used as the location
attribute, no significant change in R2 can be observed. Meanwhile, the density of attractions
(F3_DENAT) exhibits the highest standardized coefficient among all models, implying that
being close to functional opportunities has a greater influence on house prices than being
closer to generic opportunities. Other important functional variables include the density of
workplaces (F2_DENWK) and the density of urban services (F1_DENLS).

The models also show that the effect of people’s SP varies depending on varying
urban morphological scales. At a relatively large scale, i.e., a radius of 6 km (Model 4),
the integration variable (M7_INT6000) can better explain house price variation, than the
SP variables ‘enclosure’ and ‘sense of comfort’ (S2_ENCLS, S7_COFRT). The importance
diminishes as the scale decreases (Model 2, Model 3) and eventually falls below some SP
variables (Model 1). The choice variable has a similar trend in Models 1–3 but is not as
noticeable as the integration value.

In terms of SP attributes, ‘enclosure’ and ‘sense of comfort’ can best explain house price
variation, followed by ‘safety’ and ‘interest’, whereas ‘imageability’, ‘transparency’ and
‘complexity’ are the lowest. This result indicates that when holding other conditions equal,
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people’s SP plays a role in shaping the house price market. Particularly areas featuring a
sense of enclosure and which are also comfortable to live in tend to be more valued than
other places.

4. Conclusions

The findings show that SP of the built environment has a significant effect on house
prices. This effect is higher than neighborhood attributes (i.e., urban functions) or house
structure attributes. However, our analysis has shown that location attributes (i.e., urban
morphology) have a higher importance than SP attributes. This suggests that people’s SP
variables of the urban environment have significant impacts on house prices, above some
objective urban environment attributes.

The HPM based on multi-scale urban morphology shows that when comparing urban
morphological attributes with SP attributes, the smaller the scale of urban morphology
(i.e., the more local the measure), the more important is the SP. Moreover, the larger the
scale of urban morphology (i.e., the more global the measure), the more important are the
urban morphological attributes. For the different SP variables, ‘enclosure’ (S2_ENCLS)
and ‘sense of comfort’ (S7_COFRT) have more significant impacts on house prices than
other variables. This study adds the SP dimension to the house price assessment model,
helping to explore the impact of SP on house prices at different scales of urban morphology.
Future related research could refer to such a framework using SVI data and SP surveys
to incorporate people’s SP of the urban streetscape near the property into house price
assessment at multiple urban scales supported by SS techniques.

5. Limitation and Future Work

There are several limitations to this study. First, this study only used visual indices
from SVI segmentation in building an SP prediction model. The prediction accuracy
of this approach may be improved by increasing the quality and precision of SVI data
extraction and expanding the volume of perception survey data: (i) more features, such as
HSL histograms and Blob detection, may be added to complement the physical features
presented by the SVIs; (ii) more field experiences and surveys may be added to the study to
cross-validate the SP predictions and minimize the bias introduced by web image surveys.
Second, in the SP survey, some participants’ understanding of the concepts of SP may not
accurately capture their perception. A better questionnaire design and question setting as
well as a larger sample size could improve this limitation. Future research could involve a
larger more representative sample including urban design professionals to provide a more
accurate and efficient assessment of the street environment in images. In addition, VR
technology and panoramic SVIs can be used in the perception survey sessions to provide
participants with a more realistic environment and more accurate exploration of their SP.
Finally, many studies have shown that spatial dependence and non-stationarity violate the
basic assumptions of OLS regression. Due to spatial correlation effects, OLS regression
models may be biased in their coefficients and report incorrect significance. More tests for
OLS regression may be carried out, such as Moran’s I and robust Lagrange multiplier (LM)
tests, to see if lags and errors due to spatial correlation exist. Given there are spatial lags or
errors in OLS regression models, other regression models that solve for spatial dependence
may be introduced for more accurate multi-factor impact studies, including the Kelejian–
Prucha’s model (SAC) [99] and geographically weighted regression (GWR) [100]. These
models can effectively manage spatial dependence and non-stationarity-related issues and
achieve higher R2 values, thereby enhancing the models’ precision and providing stronger
data support for the paper’s conclusions [51,55].
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