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ABSTRACT Machine learning-based methodologies have recently been adapted to solve control problems.
The Neural Lyapunov Control (NLC)method is one such example. This approach combines Artificial Neural
Networks (ANNs) with Satisfiability Modulo Theories (SMT) solvers to synthesise stabilising control laws
and to prove their formal correctness. The ANNs are trained over a dataset of state-space samples to generate
candidate control and Lyapunov functions, while the SMT solvers are tasked with certifying the correctness
of the Lyapunov function over a continuous domain or by returning a counterexample. Despite the approach’s
attractiveness, issues can occur due to subsequent calls of the SMT module at times returning similar
counterexamples, which can turn out to be uninformative and may lead to dataset overfitting. Additionally,
the control network weights are usually initialised with pre-computed gains from state-feedback controllers,
e.g. Linear-Quadratic Regulators. To properly perform the initialisation requires user time and control
expertise. In this work, we present an Augmented NLC method that mitigates these drawbacks, removes the
need for the control initialisation and further improves counterexample generation. As a result, the proposed
method allows the synthesis of nonlinear (as well as linear) control laws with the sole requirement being the
knowledge of the system dynamics. The ANLC is tested over challenging benchmarks such as the Lorenz
attractor and outperformed existing methods in terms of successful synthesis rate. The developed framework
is released open-source at: https://github.com/grande-dev/Augmented-Neural-Lyapunov-Control.

INDEX TERMS Computer-aided control design, Lyapunov methods, neural networks.

I. INTRODUCTION
One of the most common techniques used to analyse the
stability of a dynamical system is Lyapunov’s theory [1], [2].
Formally, an n-dimensional time-invariant dynamical system
can be described as ẋ = f (x, u), with x ∈ Rn and u ∈
Rm representing the states and the control input respectively,
with f (x, u) denoting a continuous vector field defined over
Rn
×Rm

→ Rn. The stability of an equilibrium point x⋆ can
be inferred by means of a pseudo-energy function, known as
a Lyapunov function (LF), that decreases as the state-space
trajectories approach x⋆. When a LF is associated with a
dynamical system with exogenous inputs, it is referred to
as a Control Lyapunov function (CLF) [3]. Given a domain
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D ⊆ Rn, by defining a (C)LF as a function V (x) : D → R,
the stability of x⋆ can be assessed satisfying:

V (x⋆) = 0, V (x) > 0, V̇ (x, u) ≤ 0, (1)

where V̇ (x, u) = ∇V (x) · f (x, u) represents the Lie derivative
of V , and where the two inequalities must hold ∀x ∈ D \{x⋆

}.
Additionally, if V̇ (x, u) < 0 ∀x ∈ D \{x⋆

}, the equilibrium is
asymptotically stable. Without loss of generality, we consider
x⋆
= 0.
(C)LFs are notoriously difficult to design and no general

method is known to synthesise them for nonlinear sys-
tems [1]. Several numerical methods have been proposed in
the literature: notably, piecewise (linear or quadratic) and
Sum-of-Squares LFs [4], [5], along with Genetic Algorithms
[6], [7], or Artificial Neural Networks (ANNs) [2], [8], [9].
In the latter, the concept of Lyapunov Neural Networks
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takes shape, representing the use of a Feedforward ANN
as a function approximator for LFs. However, sole use of
numerical methods cannot guarantee the correctness of the
(C)LFs that are generated. As a result, recent focus has
been placed on providing a formal certification of (C)LFs’
correctness [10], [11], [12]. These methods are based on a
loop between a Learner and a Falsifier. The former, using a
finite set of samples, trains a neural network that represents
a candidate CLF; the latter checks whether the candidate
CLF satisfies the conditions in (1) over D . Advancements
in formal techniques allow the verification of candidate
CLFs as certificate functions [13], thanks to, e.g., Satisfia-
bility Modulo Theories (SMT) solvers, capable of evaluating
the correctness of a symbolic expression and of assessing
whether a formula holds with respect to a set of con-
straints [14]. This class of solvers guarantees the soundness
of the solution: when a logic expression is evaluated as True,
the result is valid over the entire search domain [15]. SMTs
guarantee that even if the training relies on a finite number
of data points, the existence of a correct CLF can be formally
certified, providing results equivalent to those of analytical
proofs [11]. In this work we employ dReal for its capa-
bility to handle polynomials, trigonometric and exponential
expressions [16]. Furthermore, when the SMT solvers verify
that an expression does not hold true, a point violating the
expression is returned. These points, referred to as coun-
terexamples (CEs), are added to the training set to further
assist the scouting of CLFs. The approach is therefore based
on a learning-verifying paradigm with successive addition of
CEs, known as CounterExample-Guided Inductive Synthesis
(CEGIS) [11].

In line with [10], [11], [17], the twofold goal of this work
lies in both finding a control policy and a stability certificate
for nonlinear time-invariant systems, for which CLFs are
notoriously difficult to obtain by analytical means. Following
the seminal Neural Lyapunov Control (NLC) [10], several
works synthesise (C)LFs employing neural architectures;
from shallow [11], [12] to deep networks [17], [18], [19].
Further, activation functions vary significantly; e.g. ReLU,
polynomial, tanh [10], [12], and softplus [17], [18].

There is rising interest in this method, as it finds applica-
tions in a wide range of applications: from guiding vehicles to
their target destinations, e.g. boat motion, robotic and satellite
tracking, to studying the stability of hybrid and switched
systems. However, common drawbacks persist. Usually, the
method exploits a pre-initialisation of the control law, nor-
mally through pre-computed Linear Quadratic Regulator
(LQR) solutions, and the control gain is updated during
the training to expand the Region Of Attraction (ROA).
This initialisation limits the generality of the approach as
it requires expert knowledge. Further, the neural training
at times reaches a deadlock, and a periodic re-initialisation
of the networks is necessary. The CEGIS paradigm can
also suffer from overfitting subsets of sampled states
when subsequent CEs are returned in a narrow state-space

subset. This can lead to remarkable fluctuations of the
loss function and in noticeably significant violations of the
Lyapunov conditions [19]. This paper aims to address these
three issues, namely the necessity for control weight ini-
tialisation, the periodic training deadlock and the dataset
overfitting. The work specifically focuses on extending the
learning abilities of the NLC algorithm through reduc-
ing the number of human inputs and pre-computations
required.
Contributions: In this work, we propose novel solutions

for the drawbacks identifiedwhen employingNLCmethodol-
ogy. Five significant elements are addressed: CEs generation
logic, dataset composition and overfitting, algorithmic ineffi-
ciencies and sensitivity to learning rate. An upgraded Falsifier
module mitigating the issues linked to the overfitting of
clustered CEs and rendering their generation more efficient
is proposed. Next, a sliding window to selectively disregard
previously targeted old dataset points is devised, reducing the
required computational burden. Finally, algorithmic refine-
ments are introduced.

These improvements to the learning scheme help
to overcome critical limitations, such as the need to
pre-initialise the control gains and the periodic re-start of
the neural network training. The architecture offers the
possibility to design nonlinear control laws, and in so
doing presenting another element of novelty. A modular
framework that allows the testing of different ANN archi-
tectures and activation functions is designed and released
open-source at: https://github.com/grande-dev/Augmented-
Neural-Lyapunov-Control.

The remainder of this manuscript is structured as follows:
Section II presents the CEGIS loop and its two components,
i.e. the Learner and Falsifier, and Section III introduces
the improvements to the state-of-the-art methods. Numerical
tests are provided in Section IV, where our method is com-
pared against the NLC. Finally, conclusions are outlined in
Section V.

II. SYNTHESIS OF CONTROL LYAPUNOV FUNCTIONS
The following framework is built upon related literature, e.g.
[10], [11], while the improvements are detailed in Section III.
This method employs sequential iterations of the Learner
and the Falsifier in order to i) tune the control gains while
computing a candidate CLF, and ii) formally verify the sta-
bility of the resulting closed-loop system. While the Learner
trains the ANNs, the Falsifier oversees the formal verification
of the candidate CLF and returns possible counterexamples
to the Learner. The overall procedure is illustrated in Fig. 1,
where θ embeds the network parameters, VC (x) and uC (x)
represent the candidate CLF and the candidate control law,
respectively, and X the training dataset, initially populated
with points generated from a Uniform distribution. Addi-
tionally, CESMT and CEDF denote the CEs returned by the
two verification modules that comprise the (Augmented)
Falsifier.
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FIGURE 1. CEGIS learning method with Augmented Falsifier.

A. LEARNER
The Learner is the module tasked with training the ANNs to
tune the control gains and to propose candidate CLFs. In this
section, we discuss the ANNs architecture, the loss function
and the tuning of the learning parameters.

1) CONTROL ARCHITECTURE
The control architecture proposed in this work is composed
of three networks embodying the CLF, the linear and the
nonlinear control laws. A user-defined, Boolean parameter,
denoted control-branch training selector (φ), is employed
to train either one of the two control ANNs. The resulting
architecture is illustrated in Fig. 2. Naturally, a wider and
deeper network ensures more flexibility and approximation
power. On the other hand, this increases the computational
training time and convolutes the symbolic expression of the
CLF, typically representing a challenge for the Falsifier.
Hence, the network architecture must be carefully selected,
balancing generalisation power against simple expressions.
To this end, we employ networks composed of two hidden
layers that deliver CLFs consistently and rapidly, as shown in
Section IV, following previous findings [11], [17], [18], [19].

2) LOSS FUNCTIONS
The loss function embodies a twofold objective; it drives the
candidate CLF to satisfy the Lyapunov constraints, whilst
maximising the ROA. As such, we devise the Empirical
Lyapunov Risk Loss as:

LELR = α1

N∑
i=1

R(−V (xi))+ α2

N∑
i=1

R(V̇ (xi, ui))

+ α3V (0)2 + α4
1
N

N∑
i=1

(∥xi∥2 − αROA V (xi))2 (2)

where R(a) = ReLU (a) = max(0, a) for a general input a,
and where α1, . . . , α4, αROA are tuning parameters and N is
the cardinality of the dataset X (containing samples xi). The
first three terms account for the theoretical Lyapunov condi-
tions in (1), while the final term’s function is maximising the
size of the ROA [10].

FIGURE 2. Augmented Neural Lyapunov Control architecture with
Lyapunov ANN (blue box), nonlinear control ANN (green box) and linear
control ANN (orange box). The red line represents the loss function back
propagation, and φφφ the control-branch training selector.

By weighting the first three terms of the loss function
higher than the fourth, the ROA tuning term can be considered
as an additional side feature. Moreover, the fourth compo-
nent induces a parabolic V shape, while αROA controls its
steepness, with lower values of the latter tuning term corre-
sponding to steeper CLFs, i.e. more aggressive tuning. When
the fourth term in not employed, namely when maximising
the ROA is not a priority, the values of α1, α2 and α3 can be
set up to 1.0, and α4 = 0.0, without any loss of generality
(as shown in the case studies of Sec. IV). Additionally, when
V (0) = 0 holds by construction, such as when the Lyapunov
ANN has no bias and the activation function is zero in zero,
α3 can also be set to zero. To monitor whether the Lyapunov
constraints alone are satisfied, we introduce the Strict Lya-
punov Risk Loss (LSLR):

LSLR =
N∑
i=1

R(−V (xi))+
N∑
i=1

R(V̇ (xi, ui))+ V (0)2 (3)

which returns a positive value whenever any point in the
dataset X violates (1). With the logic further detailed in
Section III-A, this function is used to reduce the computa-
tional burden of the procedure by executing callbacks to the
Falsifier only when the LSRL is equal to zero.
The quantities V (xi) and V̇ (xi, ui) in (2)-(3) can be readily

evaluated. Let us define the output of the i-th layer as:

zi = σi(Wi zi−1 + bi), i = 1, . . . , k (4)

where zi−1 represents the input to the i-th layer, andWi, bi, σi
are the corresponding weight, bias and activation function,
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respectively. A simple forward pass of the Lyapunov network
returns V (xi), as:

V (x) = σk (Wk zk−1 + bk) (5)

where k denotes the total number of layers of the network.
The value of V̇ (xi, ui) can be computed as:

V̇ =

(
k∏
i=1

diag
[
σ ′k−i+1(zk−i)

]
Wk−i+1

)
· f (x, u) (6)

see [11] for a full derivation of (6). Conventionally, the ele-
ment tasked with interfacing the numerical Learner and the
Falsifier is referred to as Translator [12].

B. SMT FALSIFIER
The Falsifier module is designed to formally verify that a can-
didate function Vc(x) is a CLF. This statement corresponds to
evaluating the expression:

∀x : (x ∈ D)⇒ (Vc(x⋆) = 0 ∧ Vc(x) > 0 ∧ V̇c(x, u) < 0)
(7)

This expression can be simplified: recall (5), and note that
V (0) = 0 if we choose bi = 0 and activation functions
such that σi(0) = 0 for all i. The falsification step is thus
formulated as the logical negation of Eq. (7), meaning that
the SMT solver searches for a solution of:

∃x : (x ∈ D)⇒ (Vc(x) ≤ 0 ∨ V̇c(x, u) ≥ 0) (8)

If there exists such a point x, the candidate Vc(x) does not
satisfy the constraints (1), hence Vc is discarded and x is
returned to the Learner as a counterexample. dReal is a
δ-complete solver: this ensures that whenever Vc is deemed
valid, then Vc is a CLF. However, it may return spurious
counterexamples within a δ-error. While this may generate
an infinite number of loops between Learner and Falsifier,
it does not impair the correctness of the proposed procedure.
The δ precision is problematic when checking the constraints
(1) within a neighborhood of the origin. The exclusion of a
small neighborhood of the origin from the verification step
is proposed as mitigation [10], [11], introducing a lower
boundary on the solutions domain. In the case of a spherical
domain, the domain is defined as: γ ≤ ∥x∥2 ≤ γ , for given
radii γ and γ . As such, our method guarantees the practical
stability of the underlying model [11], formally guaranteeing
that the state remains bounded within γ upon convergence.

III. AUGMENTED NEURAL LYAPUNOV CONTROL
In this section, specific limitations of the original NLC
method are mitigated. The proposed upgraded procedure is
hereby defined as Augmented NLC (ANLC).

A. AUGMENTED FALSIFIER
At each callback of the SMT Falsifier, one single CE is identi-
fied, and a point cloud in the vicinity of the CE returned. The
SMT callback is generally time-consuming, causing a bottle-
neck in the procedure. To overcome this issue, a numerical

unit, called Discrete Falsifier (DF), numerically (i.e. rapidly)
generates CEs before the SMT call.

The learning loop evolves as follows. The learning iter-
ations, while minimising LELR, cease when LSRL = 0 is
attained. When this occurs, the candidate CLF satisfies the
constraints (1) over all samples. Next the DF is called.
The domain is discretised with a user-defined precision and
the values of V (x) and V̇ (x, u) are evaluated over all the grid
points. If points violating (1) are found, these are stored in the
setCEDF , added to the dataset and the training resumes. If the
cardinality of CEDF exceeds a threshold ζDF , a randomly
selected subset of cardinality ζDF is added to the dataset.
In the case of no CEs being obtained, the SMT is invoked
to formally verify the correctness of the candidate. Finally,
if the SMT locates a CE, a set containing ζSMT new points
are added to the dataset (defined as XCE in Fig. 1), otherwise
Vc(x) is verified to be a CLF.

B. NETWORK-SPECIFIC LEARNING RATE AND
SCHEDULER
The Learning Rate (LR) has a significant impact on the
learning ability of ANNs [20], [21]. Low values of LR often
lead to the loss function getting stuck in local minima, while
high values typically result in unstable training [22]. In [10],
both the Lyapunov and the control ANNs use a single LR, and
at times this leads to training stalls. In this work, the Lyapunov
and control LRs are separated, and referred to as λ and λc,
respectively. Additionally, to resemble the re-initialisation of
the ANNweights, a cosine annealing scheduler is added [23].
This scheduler cyclically oscillates the LR between a min-
imum and maximum value, allowing it to fluctuate over a
range while briefly employing both conservative and aggres-
sive values. This element avoids hard reset of the weight at
pre-defined intervals, mitigating the risk of losing the learn-
ing progress in the midst of the training process.

C. ALGORITHM
The scheme of the ANLC method is reported in Algorithm 1,
where the timeout defines a time threshold for the SMT
Falsifier to compute the CEs.

D. COUNTEREXAMPLE SELECTION
The CEGIS paradigm gives rise to a dynamic dataset that
gradually increases in size as successive CEs are returned
by the Falsifier. As the CEGIS loops progress, the algorithm
slows down, since the computational burden derived from
the training of the ANNs depends, among other parameters,
on the size of the dataset. Note that, experimentally, the SMT
often returns similar CEs at successive iterations, i.e. a sig-
nificant portion of the dataset clusters in a small region of the
state-space. This event is denoted counterexample overfitting,
as illustrated in Fig. 3.
In this work, we introduce a selective sliding window as a

means of mitigation. The initial dataset XI , which contains
samples scattered over the entire domain, is held unchanged.
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Algorithm 1 Augmented Neural Lyapunov Control
1: function Learner(X , f ,ANNθ )
2: repeat
3: Vθ (x), uθ (x)← ANNθ (x) ▷ ANN forward pass
4: V̇ ← Translator
5: Compute loss LELR,LSLR
6: θ ← θ −∇θ LELR ▷ Update weights
7: until (LSLR > 0)
8: return Vθ (x), uθ (x)
9: function Discrete Falsifier(V S

θ , V̇ S
θ , ζDF )

10: Discretise D
11: Numerically evaluate (V S

θ ≤ 0, V̇ S
θ ≥ 0)

12: CEDF ← Violations points (max size ζDF )
13: return CEDF
14: functionMain()
15: Input: f , X , ζDF , ζSMT , D , γ , γ , θ, λ, λc, φ,

α1, α2, α3, α4, αROA, optional control gains (qLQR)
16: repeat
17: if (size(X ) ≥ Xmax): Apply sliding window
18: Vθ (x), uθ (x)← Learner(X , f ,ANNθ )
19: Compute symbolic values f Sθ , uSθ ,V S

θ , V̇ S
θ

20: if (LSLR == 0) then
21: CEDF ← Discr. Falsifier(V S

θ , V̇ S
θ , ζDF )

22: if CEDF is None then
23: CESMT ← SMT Falsifier(·)
24: XCE ← (CEDF ∪ CESMT )
25: if (not sat): X ← (X ∪ XCE )
26: until not (converged or timeout)

A sliding window is applied to the counterexample dataset
XCE . When a maximum size is attained, the least recent CEs
are deleted in order to keep the dataset cardinality bounded,
as illustrated in Fig. 4. This element limits the risk of CE
overfitting – already known as a possible cause of reduced
algorithm efficiency [19] while the fixed dataset dimension
prevents the training performance from deteriorating over
successive loops.

IV. EXPERIMENTAL EVALUATION
We first compare our procedure against the work of [10]
over an inverted pendulum system and later challenge it over
a Lorenz attractor benchmark. The results reported in the
following section highlight the improvements gained when
compared to the original approach. The software is imple-
mented in Python v3.7, with dReal v4.21.6 and Pytorch
v1.4.0. The runs are executed on a standard office laptop
computer (8 CPUs at 1.90GHz, no GPU).

A. CONTROL SYSTEM WITHOUT INITIALISATION
The problem of the stabilisation of an inverted pendulum,
broadly discussed in [10] and [17], is used as a benchmark
test. In these works, the control ANN is initialised with a
pre-computed LQR law. Hereby, the effect of not initialis-
ing the ANN weights is quantified. The inverted pendulum

FIGURE 3. Dataset with initial points (XI ) and clustered counterexamples.

FIGURE 4. Dataset with selective sliding window logic, with X = XI ∪ XCE .

TABLE 1. ANLC: campaign parameters.

dynamics can be written as follows:{
ẋ1 = x2
ẋ2 = J−1z (mgl sin x1−bx2 + u)

(9)

where x1, x2 represent the angular position and velocity of the
mass respectively, and u the control input. The parameters b,
l,m, Jz denote the drag coefficient, the length of the pendulum
arm, the lumped mass and the moment of inertia respectively.
Table 1 collects the test parameters, as per [10], [17], where
λ, λc are reported in terms of the minimum and maximum
values of the cosine annealing scheduler. In the ANLC tests,
the loss function gains are, intentionally, not finely tuned (i.e.
α1,2,3 = 1 and α4 = 0) and each hidden layer is composed
of 10 neurons. The activation functions are linear, quadratic
and linear for the two hidden and output layers, respectively.

To compare the performance of the NLC and the ANLC
algorithms, a simulation campaign composed of six case
scenarios is designed and the results are reported in Table 2.
For each scenario, 50 tests are run (with different seeds).
The results are presented in terms of iterations required for
the algorithms to converge and reported as per mean value
(µ) and three standard deviation (3σ ). A test is defined as
converged when a stabilising control law and a CLF are
obtained within a prescribed threshold of maximum number
of learning iterations.
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TABLE 2. Sensitivity to control weights initialisation.

FIGURE 5. CLF inverted pendulum.

FIGURE 6. Lie derivative inverted pendulum.

Two initial NLC scenarios are run for a maximum of
2 × 1000 iteration. If the scenario has not converged to a
solution within the first 1000 iterations, the weights of the
ANNs are then re-initialised and the scenario is run once
more for up to 1000 more iterations. When the control net-
work is not initialised with an LQR, the performance of the
algorithm drops from 78% of successful tests to zero. This
clearly highlights the control initialisation as a key part of the
algorithm.

The next four cases compare the performance of the ANLC
algorithm against that of the NLC algorithm with focus on
the control weight initialisation. Again, the performance of
the NLC algorithm is reduced when the control network is
not initialised (from 52% to 0%). The ANLC method outper-
forms the NLC when the control is initialised (84% vs. 52%),
and even the NLC with re-initialisation of the weights, (84%
vs. 78%), despite being run for half of the iterations and not
initialised (60% vs. 0%). The CLF synthesised in one of the
ANLC tests, obtained by selecting V = W3(W2(W1x))2 as
the architecture, is illustrated in Fig. 5, with the correspond-
ing Lie derivative function in Fig. 6.

FIGURE 7. Open-loop Lorenz system trajectory.

FIGURE 8. Closed-loop Lorenz system trajectories.

B. CONTROLLED LORENZ SYSTEM
To investigate how the framework performs with a more
complex 3-dimensional system and when employing non-
linear control laws, the Lorenz equations are selected. The
former represent a simplified model of highly nonlinear and
coupled phenomena of atmospheric convection [24]. Let us
consider the controlled Lorenz system [25], [26], i.e. the
system described by:

ẋ1 = −σ (x1 − x2)+ u1
ẋ2 = rx1 − x2 − x1x3 + u2
ẋ3 = x1x2−bx3 + u3

(10)

where x = [x1, x2, x3]T represents the state-space vector
and p = [σ, r, b]T the scalar parameters. By selecting
σ = 10, b = 8/3 and r = 28, as in [25] and [26],
the origin can be rendered as an unstable equilibrium and
the characteristic butterfly-like strange attractor (or Lorenz
attractor) obtained, as reported in the open-loop trajectory
of Fig. 7. For this study, a nonlinear control law is selected
by employing softplus activation functions, and two hidden
layers of 8 neurons each, while the Lyapunov ANN is chosen
as V = W3(W2(W1x)2).

Out of ten tests run with different seeds, seven con-
verged within 1000 iterations (maximum computational
time of 352 [s]). The evolution of V̇ (x,u), plotted in the
(x1, x2)-plane (with x3 set to zero), is reported in Fig. 9 and in
Fig. 10, corresponding to the first and last training iterations

67984 VOLUME 11, 2023



D. Grande et al.: Augmented Neural Lyapunov Control

FIGURE 9. Lie derivative Lorenz (x1, x2)-plane, at the first training
iteration.

FIGURE 10. Lie derivative Lorenz (x1, x2)-plane, at the last training
iteration.

FIGURE 11. Lyapunov values along Lorenz system trajectories.

respectively. Note that the Lie derivative is initially
non-negative due to the random ANNs initialisation, and
evolves into a negative-definite function upon convergence.
Figure 8 shows 30 closed-loop trajectories starting from ran-
domly selected initial points, while Fig. 11 highlights the
corresponding fast decreasing Lyapunov values as the solu-
tions approach the equilibrium state. The control function
values over time corresponding to one converged controller
are reported in Fig. 12.
Experimentally, we can note that the synthesis of CLF with

nonlinear control laws is computationally more demanding
and takes longer to terminate, both on the Learner side,

FIGURE 12. Control function values over time.

as more iterations are needed for the convergence of the train-
ing, and on the Falsifier side, as a more complex symbolic
expressionmust be evaluated. Hence, we highlight that a trade
off must be made between the generalisation power of the
network and computational time, in particular when higher
dimensional systems are analysed. This would equate to more
than 10 dimensions, as per previous findings [18].

V. CONCLUSION
In this work a procedure, which is robust to well-known
issues, to inductively synthesise CLFs, by devising an
upgraded Falsifier and careful selection of useful counterex-
amples, has been presented. The Augmented NLC method is
shown to be capable of computing stabilising control laws
without the need to pre-initialise the control gains, further
increasing the generalisation power and overall applicability
of this method. Both linear and nonlinear control laws are
synthesised for unstable dynamics, showing themodularity of
the proposed architecture, while limitations are highlighted.
This method finds applications in a variety of nonlinear con-
trol problems, from guiding unmanned vehicles to robotics
problems, e.g. landing rockets. Future work should focus on
scalability to both higher dimensional and uncertain dynam-
ics, issues that will require dedicated assessment. Application
to the control of robotic systems, such as Autonomous Under-
water Vehicles, is a matter of ongoing research effort.
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