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Abstract
Background: Recent work has shown that cluster-randomised trials can estimate two distinct estimands: the
participant-average and cluster-average treatment effects. These can differ when participant outcomes or the treatment
effect depends on the cluster size (termed informative cluster size). In this case, estimators that target one estimand
(such as the analysis of unweighted cluster-level summaries, which targets the cluster-average effect) may be biased for
the other. Furthermore, commonly used estimators such as mixed-effects models or generalised estimating equations
with an exchangeable correlation structure can be biased for both estimands. However, there has been little empirical
research into whether informative cluster size is likely to occur in practice.
Method: We re-analysed a cluster-randomised trial comparing two different thresholds for red blood cell transfusion in
patients with acute upper gastrointestinal bleeding to explore whether estimates for the participant- and cluster-average
effects differed, to provide empirical evidence for whether informative cluster size may be present. For each outcome,
we first estimated a participant-average effect using independence estimating equations, which are unbiased under infor-
mative cluster size. We then compared this to two further methods: (1) a cluster-average effect estimated using either
weighted independence estimating equations or unweighted cluster-level summaries, and (2) estimates from a mixed-
effects model or generalised estimating equations with an exchangeable correlation structure. We then performed a
small simulation study to evaluate whether observed differences between cluster- and participant-average estimates were
likely to occur even if no informative cluster size was present.
Results: For most outcomes, treatment effect estimates from different methods were similar. However, differences of
.10% occurred between participant- and cluster-average estimates for 5 of 17 outcomes (29%). We also observed sev-
eral notable differences between estimates from mixed-effects models or generalised estimating equations with an
exchangeable correlation structure and those based on independence estimating equations. For example, for the EQ-5D
VAS score, the independence estimating equation estimate of the participant-average difference was 4.15 (95% confi-
dence interval: 23.37 to 11.66), compared with 2.84 (95% confidence interval: 27.37 to 13.04) for the cluster-average
independence estimating equation estimate, and 3.23 (95% confidence interval: 26.70 to 13.16) from a mixed-effects
model. Similarly, for thromboembolic/ischaemic events, the independence estimating equation estimate for the
participant-average odds ratio was 0.43 (95% confidence interval: 0.07 to 2.48), compared with 0.33 (95% confidence
interval: 0.06 to 1.77) from the cluster-average estimator.
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Conclusion: In this re-analysis, we found that estimates from the various approaches could differ, which may be due to
the presence of informative cluster size. Careful consideration of the estimand and the plausibility of assumptions under-
pinning each estimator can help ensure an appropriate analysis methods are used. Independence estimating equations
and the analysis of cluster-level summaries (with appropriate weighting for each to correspond to either the participant-
average or cluster-average treatment effect) are a desirable choice when informative cluster size is deemed possible, due
to their unbiasedness in this setting.

Keywords
Cluster-randomised trial, estimand, informative cluster size, participant-average treatment effect,
cluster-average treatment effect

Background

Cluster-randomised trials (CRTs) involve randomising
groups of participants (such as hospitals or schools) to
different treatment arms.1–4 Participants from the same
cluster tend to be correlated (i.e. their outcomes are
more similar to participants in the same cluster than to
outcomes from participants in different clusters), and
this correlation must be taken into account during
analysis to obtain valid standard errors.1–5 Standard
methods for analysing CRTs include mixed-effects
models and generalised estimating equations (GEEs),
while the analysis of cluster-level summaries (where the
mean outcome is calculated for each cluster and the
analysis is performed on these summaries) is often rec-
ommended when the number of clusters is small.1–7

However, there is growing recognition that these dif-
ferent estimators are estimating fundamentally different
treatment effects in certain situations.8,9 We have
recently shown that analyses of CRTs can estimate two
different estimands: the participant-average treatment
effect and the cluster-average treatment effect8 (we also
need to select other aspects of the estimand, such as the
strategies used to handle intercurrent events, whether
the estimand is marginal or cluster-specific, and so on,
but these choices are not the focus of this article). The
key difference between the participant- and cluster-
average estimands is the way the data are weighted.
Specifically, the participant-average effect assigns equal
weight to participants, while the cluster-average effect
assigns equal weight to clusters. Thus, the participant-
average effect provides the average effect across partici-
pants, while the cluster-average effect provides the aver-
age effect across clusters.8 Therefore, participant-
average effects are most useful when interest lies in the
intervention’s effect across participants, whereas
cluster-average effects will be most useful when interest
lies in the intervention’s effect across clusters (for
instance, how the intervention modifies cluster-level
behaviour).8 The value of these two estimands can dif-
fer when there is informative cluster size, which means
that outcomes and/or treatment effects differ according
to the cluster size (i.e. number of participants in the
cluster) (see Table 1).8,10,11 When informative cluster

size is present, estimators which target the cluster-average
effect (such as the analysis of unweighted cluster-level
summaries) will be biased for the participant-average
effect, and vice versa.8 Furthermore, commonly used
estimators such as mixed-effects models or GEEs with
an exchangeable correlation structure may be biased for
both the participant-average and cluster-average treat-
ment effects.8 This is because the weighting used in these
estimators is chosen based on efficiency, and thus corre-
sponds to neither the participant- or cluster-average
effects, but instead depends on both the cluster size and
the intraclass correlation coefficient (the degree of corre-
lation between participants in the same cluster), implying
these models will incorrectly upweight treatment effects
from certain clusters while down weighting effects from
other clusters.8,9

An alternative estimation approach, which is unbiased
even in the presence of informative cluster size, is the use

of independence estimating equations (IEEs).8–11,15–18

IEEs are a class of estimator which use a working inde-

pendence correlation structure in conjunction with

cluster-robust standard errors. The working indepen-

dence correlation structure ensures consistent estimation

of the desired estimand,8 while the cluster-robust stan-

dard error corrects the standard error for the correlation

within clusters.19 IEEs can be used to estimate both the

participant- and cluster-average treatment effects,

depending on how they are weighted (see Table 1).8 In

addition, cluster-level summaries can also provide

unbiased estimation of both effects, provided they are

weighted appropriately (Table 1).8

However, in the absence of informative cluster size,
IEEs and cluster-level summaries are likely to be less
efficient than mixed-effects models and GEEs with an
exchangeable correlation structure due to the working
independence assumption.20 Typically, mixed-effects
models and GEEs are only biased when there is infor-
mative cluster size, and to our knowledge, there have
been no documented cases in the literature of informa-
tive cluster size occurring in CRTs. As such, trialists
may be reluctant to move to potentially less efficient
methods, such as IEEs and cluster-level summaries,
without documented evidence that informative cluster
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size can occur in practice. However, to our knowledge,
the presence of informative cluster size has never been
formally explored in CRTs, which may explain its lack
of documentation. The purpose of this article is to,
therefore, perform a re-analysis of a published CRT to
explore whether informative cluster size may be present.

Methods

The TRIGGER trial

Transfusion in Gastrointestinal Bleeding Trial
(TRIGGER) was a CRT that compared two different

thresholds for red blood cell transfusion (restrictive
threshold versus liberal threshold) in patients with
acute upper gastrointestinal bleeding.21 There were six
hospitals (which acted as clusters), with the number of
participants in each cluster ranging between 91 and
201. In TRIGGER, the scientific interest lay in the
marginal participant-average treatment effect, that is,
the average effect if all patients were assigned to the
restrictive threshold versus if they were assigned to the
liberal threshold. This estimand was of interest because
the marginal participant-average effect provides the
population-level impact of moving from one

Table 1. Summary of key concepts.

Concept Description

Estimand A precise description of the treatment effect investigators aim to estimate from the trial. Complete
specification of the estimand requires defining the five core attributes12,13 (1) population,
(2) treatment conditions, (3) endpoint, (4) summary measure and (5) handling of intercurrent events.
For CRTs, additional elements also need to be specified, including whether the participant-average or
cluster-average treatment effects are of interest (see definition below), as well as whether treatment
effects are marginal or cluster-specific.

Participant- versus
cluster-average treatment
effects

In CRTs, two distinct estimands which may be of interest are the participant-average and cluster-
average treatment effects. The key difference between the two estimands is how they weight the
data: the participant-average effect gives equal weight to each participant (i.e. the average effect
across participants), while the cluster-average effect gives equal weight to each cluster (i.e. the
average effect across clusters).

Informative cluster size Occurs when either outcomes or treatment effects depend on the number of participants in a
cluster (e.g. if larger clusters have better outcomes/larger treatment effects than smaller clusters).
For collapsible effect measures (e.g. a difference), the participant-average and cluster-average effects
will coincide unless the treatment effect varies by cluster size; for noncollapsible measures (e.g. an
OR), the two estimands will coincide unless outcomes or treatment effects vary by cluster size.

Estimator The method used to analyse the data and compute an estimate of the treatment effect. Different
estimators target different estimands, and some estimators are only unbiased if there is no
informative cluster size.

Analysis of cluster-level
summaries

A summary measure is calculated in each cluster (e.g. the mean), and a regression model is applied to
the cluster-level summaries.
Analyses can be either unweighted or weighted. Unweighted analyses estimate the cluster-average
effect; weighted analyses (with weights equal to the number of participants in each cluster) estimate
the participant-average effect.
Analysis of cluster-level summaries is unbiased for both the cluster- and participant-average effects,
regardless of whether there is informative cluster size.

IEEs IEEs are applied to individual participant data and use an independence working correlation structure
in conjunction with cluster-robust standard errors. They can be implemented using GEEs with an
independence working correlation structure or using linear or logistic regression models provided a
cluster-robust standard error is used.
Unweighted IEEs estimate the participant-average effect. IEEs can also be weighted by the inverse of
the cluster size to estimate the cluster-average effect.
IEEs are unbiased for both the cluster- and participant-average effects, regardless of whether there is
informative cluster size.

Mixed-effects models Mixed-effects models are applied to individual participant data and include a random intercept for
cluster.
If there is no informative cluster size, the participant-average and cluster-average effects will coincide,
and mixed-effects models target this common treatment effect.14 However, they can be biased for
both the participant- and cluster-average estimand in the presence of informative cluster size.

GEEs with an
exchangeable correlation
structure

GEEs are applied to individual participant data, and an exchangeable working correlation structure is
specified in conjunction with cluster-robust standard errors.
If there is no informative cluster size, the participant-average and cluster-average effects will coincide,
and GEEs with an exchangeable correlation structure models target this common treatment effect.
However, they can be biased for both the participant- and cluster-average estimand in the presence
of informative cluster size.8,9

CRTs: cluster-randomised trials; IEEs: independence estimating equations; GEEs: generalised estimating equations; OR: odds ratio.
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transfusion strategy to another. Further discussion on
when participant- versus cluster-average effects and
marginal versus cluster-specific effects will be of interest
is available elsewhere.8,22

We re-analysed clinical outcome and adherence mea-
sures to compare to what extent estimates for the parti-
cipant- and cluster-average effects differed. If estimates
for the two effects differ, this may imply the presence of
informative cluster size, which means that choosing an
inappropriate estimator (i.e. one that targets the wrong
estimand, or that relies on the assumption of no infor-
mative cluster size) could lead to bias.

We analysed 17 outcomes in total. Binary outcomes
were further bleeding, thromboembolic or ischaemic
events, and infection (each measured both in-hospital
and up to day 28), as well as mortality, acute transfu-
sion reactions, surgery/radiology, therapeutic endo-
scopy, whether the patient received at least one red
blood cell transfusion, and full adherence to protocol
(each measured in-hospital only). Continuous outcomes
were the number of days spent in hospital, the number
of red blood cell transfusions, average adherence (the
percentage of Hb readings where the protocol was cor-
rectly followed), the EQ-5D score and the EuroQol-5D
Visual Analogue Scale (EQ-5D VAS) score.

We initially planned to analyse mortality both in-
hospital and at day 28, but found that results were identi-
cal between the two, and so only report in-hospital results.

Methods of estimating treatment effects

For continuous outcomes, we estimated a difference in
means, and for binary outcomes, we estimated a mar-
ginal odds ratio (OR). For each outcome, we imple-
mented three different methods of estimation. The first
targeted the participant-average effect using IEEs. The
second targeted the cluster-average effect using either
unweighted cluster-level summaries (for continuous
outcomes) or weighted IEEs (for binary outcomes, to
estimate a marginal OR). The third used mixed-effects
models (for continuous outcomes) or GEEs with an
exchangeable correlation structure (for binary out-
comes, to ensure a marginal OR was estimated). The
first two approaches (IEEs and analysis of cluster-level
summaries) are unbiased for both the participant- and
cluster-average estimands provided they are implemen-
ted using the correct weighting scheme,8 whereas the
latter two models (mixed-effects models/GEEs with
exchangeable correlation) can be biased for both esti-
mands when there is informative cluster size.8 For each
estimator, treatment arm was the only variable included
in the model, and only participants with available
outcome data were included in the model (see Table S1
in the Supplemental Material for the number of partici-
pants excluded for each outcome due to missing data).

We implemented IEEs for the participant-average
effects using GEEs with an independence working

correlation structure with cluster-robust standard
errors and equal weight for each patient. IEEs for the
cluster-average effect were implemented the same way,
except that observations were weighted by 1=ni, where
ni denotes the size of the participant’s cluster. We cal-
culated ni separately for each outcome, based on the
number of participants within each cluster with avail-
able data. Mixed-effects models included a random
intercept for cluster. GEEs with an exchangeable work-
ing correlation structure used cluster-robust standard
errors and had equal weight for each patient.

For all GEE models (for both independence and
exchangeable working correlation structures), we
implemented the small-sample variance correction pro-
posed by Mancl and DeRouen,23 and for mixed-effects
models, we implemented the Kenward–Roger degree of
freedom correction.7,24

To examine the expected variability between the
cluster- and participant-average estimators when there
was no informative cluster size, we conducted a small
simulation study to explore this; details are in the
Supplemental Material.

Results

Continuous outcomes

Results are shown in Table 2 and Figure 1. There were
moderate to large differences (.10% relative difference)
between the participant- and cluster-average estimates
(mean difference) for two of five (40%) outcomes. The
most notable difference was for the EQ-5D VAS score,
where the participant-average estimate was 4.15 (95%
confidence interval (CI): 23.37 to 11.66) but was only
2.84 (95% CI: 27.37 to 13.04) for the cluster-average
estimate, a reduction of 32%. Similarly, the mixed-
effects model estimate for the EQ-5D VAS score
differed by 22% (3.23, 95% CI: 26.70 to 13.16) from
the participant-average effect.

Binary outcomes

Results are shown in Table 3 and Figure 1. There were
moderate to large differences (.10% relative difference)
between the participant- and cluster-average estimates
for 3 of 12 (25%) outcomes.

The most notable difference was for in-hospital
thromboembolic or ischaemic events, where the
participant-average OR was 0.43 (95% CI: 0.07 to
2.48) but was almost 25% lower at 0.33 (95% CI: 0.06
to 1.77) for the cluster-average OR. GEEs with an
exchangeable correlation structure were similar to the
IEE estimate of participant-average effect (odds ratio
(OR): 0.41; 95% CI: 0.07 to 2.36).

Simulation study

Full results are available in the Supplemental Material.
Briefly, we found the probability of observing a
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difference as extreme as that of the EQ-5D VAS score if
there was no informative cluster size was 19%.
However, we found the probability of observing a
greater than 10% difference between cluster- and
participant-average estimates for 5 or more of the 17
outcomes (as observed in the TRIGGER trial) was only
4.8%.

Discussion

In CRTs, the participant- and cluster-average treatment
effects can differ when there is informative cluster size,
and standard estimators such as mixed-effects models
and GEEs with an exchangeable correlation structure
can be biased. However, until now there has been, to
our knowledge, no empirical assessment of informative
cluster size in the context of a specific CRT. In this re-
analysis of a previously published CRT, we aimed to
explore whether informative cluster size may be present.
For several outcomes, we identified notable differences
between estimates for the participant- and cluster-
average effects, as well as between IEEs and estimates
affected by informative cluster size such as mixed-
effects models or GEEs with an exchangeable correla-
tion structure. For example, the treatment effect for the
EQ-5D VAS score using a cluster-average estimator
was 32% smaller than using a participant-average esti-
mator (2.84 versus 4.15) and was 22% smaller using a
mixed-effects model (3.23 versus 4.15). We hypothesise
these differences may be due to informative cluster size.

These results highlight the need to formally consider
the target estimand at the trial design stage (participant-

versus cluster-average, and other aspects such as han-

dling of intercurrent events, marginal versus cluster-spe-

cific, and so on) and choose an estimator that is aligned

to that estimand. If informative cluster size occurs, then

standard estimators such as mixed-effects models and

GEEs with an exchangeable correlation structure may

be biased, and methods such as IEEs or cluster-level

summaries are required, as these estimators are unaf-

fected by informative cluster size. Determining whether

informative cluster size is likely may depend on various

factors, such as type of population (e.g. how variable

the type of participants and clusters are) and the type of

intervention, variations in cluster size. Therefore, a

case-by-case evaluation is required, which should be

based on both a qualitative assessment using subject

matter knowledge and a quantitative evidence from pre-

vious similar studies. While it is likely that some studies

are not affected by informative cluster size, it should

not be dismissed without careful thought when variable

cluster sizes are anticipated at the study outset.
It should be noted that using IEEs or the analysis of

cluster-level summaries may have implications for sam-
ple size, with potentially larger sample sizes required as
compared with alternative approaches such as mixed-
effects models or GEEs. Alternatively, if mixed-effects
models or GEEs are used, IEEs and cluster-level sum-
maries could be used as sensitivity analyses to explore

(a) (b)

Figure 1. Bland–Altman plot of percent difference between cluster-average versus participant-average effects. (a) shows results for
continuous outcomes and (b) shows results for binary outcomes.
CA: cluster-average. PA: participant-average. OR: odds ratio.
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whether inferences may be affected by informative clus-
ter size. In practice, participant- and cluster-average
effects will also need to be defined as either marginal or
cluster-specific, and an estimator which allows for both
aspects (e.g. marginal participant-average and cluster-
specific cluster-average) will need to be chosen. Further
guidance on choosing estimators which allow for both
aspects of the estimand is available elsewhere.22

It may not in general be easy to identify whether
informative cluster size is likely at the design stage. For
instance, in the TRIGGER trial, there was no reason
to suspect informative cluster size would occur when
designing the trial. Further complicating the task, it
appears that informative cluster size can occur for some
outcomes but not others, requiring investigators to
make this judgement not for the trial as a whole, but
for each outcome separately. One setting where an
impact of informative cluster size can be confidently
ruled out is when there is little to no variation in the
cluster size. In this case, mixed-effects models and
GEEs with an exchangeable correlation structure will
not be biased; however, there will be little gain in effi-
ciency from these models compared with IEEs in this
setting.20,25

Some investigators may feel that potential bias from
informative cluster size is of less concern than statistical
efficiency, given common problems around the number
of available clusters and challenges in patient recruit-
ment. Thus, they may argue that a small amount of bias
from mixed-effects models or GEEs with an exchange-
able correlation structure is worth it if it leads to a sub-
stantial reduction in the required sample size, or a
corresponding increase in statistical power. While we
acknowledge the logic behind this viewpoint, we argue
that its general application may be challenging for two
reasons. First, both efficiency and potential bias from
informative cluster size will be driven by the size of the
intraclass correlation coefficient, indicating that the
situations where mixed-effects models/GEEs with an
exchangeable correlation structure can provide substan-
tial gains in efficiency may be the same situations where
they are be prone to extreme bias. Second, because the
bias from informative cluster size can be in either direc-
tion, the gains in efficiency from mixed-effects models/
GEEs with an exchangeable correlation structure may
be offset by a possible reduction in the size of estimated
treatment effects (i.e. downwards bias), and so these
methods may not lead to power gains compared with
IEEs. Future simulation studies to compare metrics like
power and precision between mixed-effects models/
GEEs with an exchangeable correlation and IEEs both
under informative cluster size and no informative clus-
ter size are warranted to more thoroughly evaluate the
bias/variance trade-off between these approaches.

A limitation of this study is that there is currently no
formal test to identify informative cluster size. Thus,
we were not able to differentiate to what extent

differences between estimators were due to informative
cluster size compared with random variation. If differ-
ences were simply due to random variation, we would
expect these to occur in either direction. However, large
differences of .10% occurred in only one direction (all
were negative, denoting cluster-average effects were
smaller than participant-average effects), and this con-
sistency of effect lends credence to the theory they may
be due to informative cluster size. A small simulation
study (Supplemental Material) confirmed these results
were unlikely to be due to chance, though could not
rule it out entirely. An alternative approach to evaluate
informative cluster size could be to try and model the
association between cluster size and outcomes/treat-
ment effects as an indicator for informative cluster size;
however, this approach relies on specifying the correct
functional form between cluster size and outcomes,
which is challenging, and gives little indication as to the
impact of potential informative cluster size on results.
As such, in our view, directly comparing the two esti-
mates (participant- versus cluster-average) provides a
simpler indication as to whether informative cluster size
is a concern. Second, for some outcomes, it may be
possible that informative cluster size was actually
induced by missing data (for instance, if a large propor-
tion of participants with good outcomes were missing
in some clusters but not others, this may make smaller
clusters appear to have worse outcomes than larger
clusters). In this case, informative cluster size is actually
a missing data problem, requiring an appropriate miss-
ing data approach. Of the five outcomes with .10%
differences, two had \1% missing data, one had 6%
missing, and two had 46% missing (the two EQ-5D
measures); thus, given the high rate of missingness, we
cannot rule out that informative cluster size for the two
EQ-5D measures was in fact an artefact of the missing
data. Finally, our re-analysis was limited to a single
trial, so although we hypothesise that informative clus-
ter size did occur, we cannot say how frequently it may
be a concern in practice.

Our results suggest several areas for future research.
First, re-analyses of other CRTs would be useful to
determine whether the results found here are unique or
not. Second, establishing empirical evidence of in what
context informative cluster size is likely would be help-
ful to aid in planning of future CRTs. Third, though
sample size calculations are available for IEEs,20,25

these may need to be adapted when informative cluster
size is anticipated.

Conclusion

In this re-analysis, we found that estimates from differ-
ent estimators could differ markedly for some out-
comes, which may be due to the presence of informative
cluster size. Careful consideration of the estimand and
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the plausibility of assumptions underpinning each esti-
mator can help ensure an appropriate analysis method
is used. IEEs and the analysis of cluster-level summaries
(with appropriate weighting for each to correspond to
either the participant-average or cluster-average treat-
ment effect) are a desirable choice when informative
cluster size is deemed possible, due to their unbiased-
ness in this setting.
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