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Abstract—Adopting multiband transmission in optical net-
works can cost-effectively increase network capacity without
deploying new fibre. In this paper, we focus on the solutions
explored by the research community to address the problem
of resource allocation in dynamic multiband elastic optical
networks. We start by summarising the main challenges and
contributions of the design of ad-hoc heuristics. Next, we review
the few recent approaches based on deep reinforcement learning
and evaluate the efficacy of different techniques to improve
their performance. We also discuss possible future directions for
research in the area.

Index Terms—Multiband optical networks, elastic optical net-
works, Heuristics, Reinforcement Learning.

I. INTRODUCTION

Dynamic multiband elastic optical networks (MB-EON)
have the potential to make efficient use of network capacity
by flexibly allocating spectrum only where and when required.
In doing so, it might become a promising, cost-effective tech-
nology to increase the capacity of already deployed fibre [1].
Among the many technical challenges to overcome to make
dynamic MB-EON a reality, resource provisioning deals with
the problem of determining - on demand - a route (R), a
band (B), a modulation format (M), and a block of contiguous
spectrum slots (S) for arriving connection requests. This is
known as the dynamic RBMSA problem. Dynamic RBMSA
solvers must achieve a good trade-off between computational
simplicity (for fast resource allocation in a dynamic environ-
ment) and performance (blocking ratio). This paper briefly
reviews previous work on different approaches to solve the
dynamic RBMSA problem and discusses ways forward for
this research area.

II. DYNAMIC RBMSA APPROACHES

To date, the dynamic RBMSA problem has been addressed
by using ad-hoc heuristic methods [2]–[10] and deep rein-
forcement learning approaches [11]–[13]. To the best of our
knowledge, the research community has not yet explored
metaheuristics (such as bio-inspired algorithms) to solve the
dynamic RBMSA problem.
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and 11201024 is gratefully acknowledged.

A. Ad-Hoc Heuristics

To decrease computational complexity, heuristic-based dy-
namic RBMSA approaches address the R, B, M, and SA
sub-problems separately. In principle, almost any order might
be used to solve the sub-problems. However, in practice,
the SA problem is the last to be tackled since the number
of spectrum slots required by a connection can only be
determined after selecting a modulation format. Additionally,
it is computationally simpler to find a block of available slots
for a specific route and band than for all possible combinations
of them. Also for computational complexity reasons, the M
problem is usually solved after the R problem: the most
efficient modulation format given the length of the selected
route is chosen. However, recent works have also explored M
before R [7]. As a result of these considerations, the orders
used to date have been reduced to RMBSA [2], RBMSA [4],
[6], MBRSA [7] and BRMSA [5], [8], [9]. Irrespective of the
order used, we will term them RBMSA solvers.

Dynamic RBMSA solvers can be classified along three di-
mensions affecting computational complexity or performance:

• Route pre-processing: To decrease computational com-
plexity, most proposals pre-compute a set of K routes
between each source and destination node [2], [4]–[7],
[10]. Typically, K does not exceed 5. In this way, the
cost of running Dijkstra’s algorithm for each request
(with a computational complexity ranging from O(N2)
to O(L + NlogN) depending on implementation [14],
where N and L denote the number of network nodes
and links, respectively) is avoided.

• Quality of transmission (QoT) evaluation: Noise figure
variation of optical amplifiers in different bands and
the impact of Inter-channel Stimulated Raman Scattering
(ISRS) become relevant in multiband environments, af-
fecting the QoT of signals. Heuristics have resorted to
evaluating QoT in an online or offline manner. In an
online manner, the QoT of the new lightpath [2] or the
QoT of the new lightpath and the already established
lightpaths [7], [9] is evaluated for each connection request
according to the network state at the moment the new
request is processed. Online QoT evaluation can be
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TABLE I
SUMMARY OF HEURISTIC-BASED DYNAMIC RBMSA APPROACHES

Solver Sub-problem order Routes QoT/VEL Serv. Diff. Computational Complexity
[2] RMBSA Precomputed (K=1) Online/No No O(M ×B ×G× S × L)
[3] RMBSA Dijkstra (online) Offline/No No O(N × log(N) +M × L× S)

[4], [6] RBMSA Precomputed (K=1) Offline/Yes Yes O(M ×B × S × L)
[5] BRMSA Precomputed (K=10) Online/Yes No O(M ×B ×K ×G× S × L)
[7] MBRSA Precomputed (K=3) Online/Yes Yes O(M ×B ×K × L× S)
[8] BRMSA Dijkstra (online) Online/No No O(N × log(N) +M × L2 × S2)
[9] BRMSA Dijkstra (online) Online/Yes No O(N × log(N) +M × L2 × S)

[10] RM(B)SA* Precomputed (K=3) Offline/No Yes O(K ×M × S × L)

performed either by using a numerical module based on
the GNPy library [2], [7] or ad-hoc numerical evalua-
tors [8], [9]. To avoid the high computational complexity
of online QoT calculation - quadratic or linear with the
number of channels, depending on the computational
implementation [2], offline approaches have resorted to
deep learning-based QoT estimation [10] or worst-case
scenarios where all channels are assumed to be active
and the optical reach of different modulation formats and
bands, defined by the spectrum slot with the lowest QoT,
is pre-computed and stored in a table [4], [6]. If the QoT
is not good enough, another solution is explored (e.g., a
different modulation format or transmission band) or the
connection request is rejected. Online evaluation leads to
increased computational complexity, but it might result
in a lower blocking probability by considering the exact
network state rather than the worst-case scenario or the
estimation of the offline evaluation [10].

• Service differentiation: Some heuristics apply different
band allocation strategies depending on the characteristics
of the request being served [4], [6], [7], [10]. For exam-
ple, higher bitrate requests on short routes are first at-
tempted in higher-capacity bands with lower QoT perfor-
mance, such as the E band [4]. This service differentiation
idea has also been proposed as a network management
option where each band can be considered a different
virtual network slice for different traffic categories and
services [15]. Others treat all connection requests in the
same way, exploring the bands in the same order every
time a new connection must be processed [2], [3], [5], [8],
[9]. Service differentiation has the potential to outperform
strategies without this feature [4], [6], [10].

Table I summarises the heuristics proposed to date to solve
the dynamic RBMSA problem (considering fully dynamic or
incremental traffic). For each, we describe: a) the order used
to solve the sub-problems, b) whether they use pre-computed
routes or not, c) the type of QoT evaluation used (offline or
online), and whether the QoT of already established lightpath
(VEL: Verification of Established Lightpaths) is carried out,
d) whether service differentiation is offered and e) their
computational complexity. For the computational complexity,
K,M,B, S, and L represent the number of alternative paths,
modulation formats, bands, spectrum slots, and links. G rep-

resents the computational complexity of evaluating the QoT
of signals online (O(S) or O(S2), depending on the compu-
tational implementation [2]). Algorithms with an asterisk in
the second column only work for C+L scenarios. The static
RBMSA problem (all demands are known beforehand by the
RMSA solver) is out of the scope of this paper. An example
of a static RMSA solver can be found in [16].

Currently, heuristics offer the best performance to solve
the dynamic RBMSA problem. Further work is required to
benchmark different heuristics to identify the best-performing
ones or those with a good trade-off between computational
complexity and performance. Until now, only an evaluation of
different spectrum allocation approaches in the C+L scenario
has been carried out in [17]. For dynamic RMSA solvers,
the different assumptions and evaluation scenarios considered
in the reported simulation experiments hamper a comprehen-
sive comparison of heuristics in terms of performance and
computational complexity. Additionally, although some initial
work has focused on evaluating the energy consumption of
progressive band exploitation [18], further work is still needed
in this area as well as migration strategies beyond the C+L
band scenario.

B. Deep Reinforcement Learning

Despite the increasing number of works reporting on apply-
ing deep reinforcement learning (DRL) algorithms to different
dynamic provisioning problems in optical networks, there
have been just a few works reporting results for dynamic
MB-EONs [11]–[13]. In [12] a new multiband environment
developed in the Optical RL-Gym [19] was reported with-
out any comparison with heuristic approaches. In [11], the
performance of a DQN agent in a multiband environment
was reported, but it did not outperform a simple KSP-FF-FF
heuristic. In both cases, the agent solved the R, B, and SA sub-
problems by selecting a route (out of K precomputed routes),
a band, and a spectrum block, respectively. The agent did
not select the modulation format (the environment identified
the most efficient modulation format for the selected route
using the optical reach values available in [20]). Recently, a
DRL-assisted solution, where the agent only solves the R sub-
problem was proposed [13]. Unlike [11], [12], the agent in [13]
does not select a route out of a set of pre-computed routes but
selects a sequence of links. Simulation results show that the



DRL-assisted approach outperformed the KSP-FF-FF heuristic
in the studied topology.

1- Agent Selection

2- Hyperparameter
Tuning

3- Reduced Action
Space

4- Reward Function
Design

Performance Evaluation

Best performing agent

Best performing agent, best 
hyperparameter combination,
reduced/original action space.

Best performing agent, best 
hyperparameter combination,
reduced/original action space.

IMPROVEMENT STAGE

EVALUATION STAGE

5- DRL_assisted
Approach

Fig. 1. Performance tuning process of a DRL framework for the dynamic
RBMSA problem.

Given that no DRL agent solving the R, B, and SA sub-
problems has outperformed the KSP-FF-FF heuristic, we in-
vestigated what improvements to a DRL system could achieve
better results. To do so, we applied agent, and environment-
wise improvements to the original work reported in [12] for
the C+L+S+E multiband scenario. Please, notice that we could
not rely on automatic optimizers to improve the performance
of the DRL system. On the agent side, automatic hyperparam-
eter optimization was not possible (memory exhaustion), and
automatic optimizers are unavailable on the environment side.
Among the many approaches we could have taken, we have
followed the one shown in Figure 1. We do not claim this
approach to be near-optimal or even exhaustive (an exhaustive
approach would have taken a prohibitively long time). It is
just one out of several reasonable alternatives.

1) Agent-wise improvements:
• Learning algorithm: As shown in Figure 1 (step 1),

we trained 6 agents with different learning algorithms.
They were: TRPO, A2C, PPO2, ACKTR, DQN, and
ACER. To do so, the default configuration available in the

Stable Baselines library for each agent was used.
The training scenario is described in Table II. TRPO was
the best-performing learning algorithm in this stage with
an average reward of 40.7, followed by ACER, A2C,
PPO2, DQN, and ACKTR with an average reward of
39.8, 37.2, 37.1, 35.9, and 22.7, respectively.

TABLE II
TRAINING PARAMETERS AND SCENARIO

Parameters Value
AGENT
Connection requests per episode 50 [21]
Simulated requests per training 100,000
Agent’s parameters By-default [19]
ENVIRONMENT
Network Parameters
Topology NSFNet
Number of FSU per band (WB) 344(C), 480(L), 760(S), 1136(E)
Modulation Formats BPSK, QPSK, 8QAM, 16QAM

32QAM, 64QAM, 256QAM
Traffic Parameters
Bit rates [Gb/s] Randomly elected [10, 40, 100, 400, 1000] Gbps
Mean Holding (1/µ) 200 requests per time unit
Mean Interarrival (1/λ) 1/5 time units
Traffic load 1000 Erlang
Reward function (RF0) +1 (request accepted), -1 (request rejected)

• Hyperparameter tuning (neural network): Although
some authors recommend parameter adjustment using
complex deep learning models [22], the computational
effort of such approaches is high. Our experience using
an optimizer (Optuna) led to memory exhaustion after 12
hours of computation. Thus, we manually selected a range
for tuning the neurons and layers of the neural network
that outputs the policy of TRPO (the best-performing
agent in the previous step). We evaluated the accumulated
reward for a number of layers equal to 2, 5, 10, 15,
25, and 50, and a number of neurons equal to 50, 128,
200, and 448. These values were selected taking the
combination of neurons and layers used in [19], [21] (5
layers/28 neurons) as a baseline. The highest reward was
achieved with 2 layers and 200 neurons.

2) Environment-wise improvements:
• Reduced action space: As shown in Figure 1, in par-

allel with hyperparameter tuning, we explored whether
reducing the action space had a significant impact on
the performance of the selected agent (TRPO), since
previous work in single band networks worked with
just 100 slots in the C-band [19], [21], [23]. In this
case, we reduced the number of slots available at each
band: the C-band capacity was reduced to 100 slots, as
in [19], [21], and the capacity of the rest of the bands
was decreased proportionally. This led to 140, 220, and
330 slots for the L, S, and E band, respectively. We
kept the neural network parameters in 5 layers and 128
neurons as suggested in [12], [19], [21]. Results showed
no performance improvement and hence, this technique
was discarded from further experiments.

• Reward function: Previous work has shown the impact
of different reward functions on the performance of
DRL agents [23], [24]. Thus, we studied the impact
of 5 reward functions - termed RF0 to RF4 - on the



performance of the DRL system. The baseline reward
function (RF0) is the one described in the bottom row
of Table II. The remaining functions were proposed in
[24] and they consider band utilization (RF1), route/band
slot availability (RF2), spectrum compactness (RF3)
and mixed compactness-availability (RF4) to determine
the reward sent to the agent. Due to space constraints
we cannot ellaborate further on the reward functions (see
[24] for further details).

RF1 =

 2 request accepted in most available band
1 request accepted in any other band
−1 request rejected

(1)

RF2 =

{
Ã(B) , request accepted
−1 , request rejected

(2)

where Ã(B) is average percentage of frequency slots
available in the selected band/route links.

RF3 =

{
1− C̃

WB
, request accepted

−1 , request rejected
(3)

where C̃ is the average compactness of the links of the
selected route, which can be thought of as the chance
of finding available contiguous frequency slots on it, and
WB is the number of slots of the selected band B shown
in Table II [20].

RF4 =

{(
1− C̃

WB

)
+ Ã , request accepted

−2 , request rejected
(4)

where Ã is the availability for all bands on a given path.
RF4 combines RF2 and RF3, rewarding higher those
paths with low compactness and multiple available FSUs.
The TRPO agent was trained with the different rewards
using the original number of slots per band (since reduc-
ing the space action did not lead to better performance)
and the best combination of hyperparameters found (2
layers, 200 neurons). For a fair comparison, reward values
of the different functions were normalised using the
Standard Scaler tool from the SkLearn Python library.
As a result, values between -1 and 1 are obtained. The
difference between different rewards was very small, but
RF1 showed slightly better performance and thus, it was
the reward function selected for the next steps.

• DRL-assisted solver: Finally, we tested the impact of
decreasing the number of sub-problems solved by the
agent. To do so, we made the agent to select one out of
K pre-computed routes (R) and the band (B) whilst the
spectrum allocation (SA) task was solved by the First-Fit
heuristic. A TRPO agent was trained with the original
number of slots per band, the reward function RF1 and
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Fig. 2. Blocking probability versus traffic load for different DRL systems
and KSP-FF-FF heuristic.

the hyperparameters tuned for the original problem (2
layers, 200 neurons).

Figure 2 summarises the results obtained with the different
improvements described above for a C+L+S+E scenario. The
figure shows the network blocking performance for traffic
loads ranging from 1000 to 8000 Erlang in the NSFNet
topology. The colours of the curves represent 3 different
approaches: heuristic (pink), DRL (shades of green) and DRL-
assisted (blue). The heuristic used as a baseline for comparison
was KSP-FF-FF: K-Shortest Path (using the same K routes
made available to the DRL agents) for the routing problem,
and the First Fit algorithm for both, the band and spectrum
allocation problem. K was set 5, and the order of band
selection was C, L, S, and E. The names of the DRL curves
are: DRL-Baseline (TRPO agent with the original training
parameters described in Table II), DRL-HT (TRPO agent with
hyperparameter tuning: number of neurons/layers changed to
200/2); DRL-RAS (TRPO with reduced action space, remain-
ing training parameters and scenario as described in Table II);
DRL-HT+RF1 (TRPO with hyperparameters tuned and reward
RF1, remaining training parameters and scenario as described
in Table III) and DRL-RB+FF+RF1 (DRL assisted approach)
where the agent solves the R and B problems only (TRPO with
hyperparameters tuned and reward RF1, remaining training
parameters and scenario as described in Table III), and FF is
used for spectrum assignment. In all cases, an offline QoT
computation was used. The QoT was obtained using the
ISRS GN-model following the methodology from [4], [20].
Estimations were performed assuming a worst-case scenario:
a fully loaded C+L+S+E transmission line and the channel
with the lowest SNR in each band was used to represent the
band QoT.
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Fig. 3. Results obtained using different strategies: (a) Band usage distribution (b) Path usage distribution.

DRL-RAS exhibits a blocking probability even higher than
DRL-Baseline, making this approach the worst performing
one. It can also be seen that although hyperparameter tuning
decreases the blocking probability (DRL-HT), the best results
are achieved with the combination of hyperparameter tuning
and the reward function RF1 (DRL-HT+RF1). However, none
of the previous strategies outperform the heuristic, especially
at low values of traffic loads (1000-3000 Erlangs). This is an
unexpected result since previous works applying DRL in the
more straightforward single-band problem outperformed the
heuristic approach by either changing the reward function [23]
or simplifying the problem solved by the agent [13]. However,
in the latter case, this was done by making the agent solve a
single problem (R) rather than two problems (R and B) as in
our case.

To attempt an explanation for the poor performance of the
agents, we studied how the selection of routes and bands
was done by the best-performing agent (DRL-HT+RF1) and
the agent that only solves the routing and band allocation
problem (DRL-RB+FF+RF1). The heuristic was also added
for comparison. Figure 3 shows the percentage of usage of
the different bands by the different approaches (left) and
paths (right), respectively. Very different strategies can be
observed. In terms of the band, DRL-HT-RF1 has a clear
preference for band E (the band with a higher number of
slots). However, this band has the worst QoT. Instead, DRL-
RB-FF achieves a well-balanced usage of bands as opposed
to the heuristic that prioritizes the use of band C. In terms of
routes, a similar pattern is observed: DRL-HT-RF1 prioritizes
the longest routes, DRL-RB-FF makes balanced use of them,
whiles KSP-FF-FF prioritizes the usage of the shortest routes.
Clearly, the agents have failed to find novel and effective
strategies to allocate resources.
These results highlight two important facts. First, as the prob-

lem size increases, achieving a DRL agent that outperforms the
best heuristics becomes more challenging. To date, there are
still no reports of DRL agents solving the resource allocation
problem in multiband and multicore elastic optical networks,
where an extra dimension is added to action space (core
selection) with respect to the problem solved here. Based on
our results, achieving a satisfactory performing agent for that
problem will be hard since reinforcement learning requires
significant processing power and memory. Second, identifying
the improvement strategies that most impact the DRL perfor-
mance is essential. Since applying DRL to allocation problems
in optical networks is a recent line of research, we still do
not know what strategies guarantee improvement. Strategies
that work in one environment have proved not to work as
well in others. Further research on identifying generic winning
strategies will shed light on how to design computationally
simple optimization methods that guide the tuning process
with some guarantee of success, a key step for the optical
research community to benefit from the potential of DRL.

III. CONCLUSIONS AND FUTURE REMARKS

This paper reviewed current strategies to address the re-
source allocation problem on dynamic multiband elastic opti-
cal networks (MB-EON): ad-hoc algorithms (heuristics) and
reinforcement learning-based solutions, with the former (still)
outperforming the latter.

Although heuristics proposed to date outperform current
DRL approaches, they are difficult to rank due to the diversity
of assumptions and evaluation scenarios. Further work is
needed in terms of identifying the best-performing heuristic or
developing tools that allow quick performance evaluation of
different approaches for a given network scenario, considering
computational complexity or execution times constraints. Ad-
ditional work is also required in terms of power consumption
and migration strategies for multiband networks.



The best-performing heuristics are usually the ones with
higher computational complexity. Hence, DRL approaches are
attractive since once trained, their execution time is extremely
low (a requirement for dynamic environments). Additionally,
DRL agents might find novel and effective strategies. However,
to date, this has not been the case in MB-EONs. The very
few current DRL approaches proposed so far still lag behind
heuristics, with the exception of DRL-assisted approaches
where the agent is in charge of solving the routing problem
only. While this is a welcome addition to the pool of DRL
approaches for the dynamic RBMSA problem, leaving the
spectrum resource allocation to a heuristic might still be
undesirable, since their execution time increases linearly with
the number of frequency slots.

Further research on improved DRL approaches for the
dynamic RBMSA problem is needed. Such research can be
carried out along different lines: a) Performance tuning. The
many tuning possibilities (agent selection, hyperparameter tun-
ing, reduced action space, reward function design, among oth-
ers) make this a time/processing-consuming endeavor. There-
fore, identifying the set of effective improvement strategies
is key to help researchers find competitive DRL solutions. b)
DRL-assisted approaches. This has been little explored so far
for the dynamic RBMSA problem. Performance evaluation of
different DRL-assisted approaches (e.g. only R with precom-
puted routes; only R from scratch, only RB, etc.) would shed
light on the level of complexity where a DRL agent can bring
significant benefits with respect to heuristics. c) Multi DRL
agents approaches. Having different DRL agents address the
different sub-problems of the dynamic RBMSA might lead to a
competitive performance. This research has not been reported
yet.
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