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ABSTRACT
BACKGROUND: Natural language processing (NLP) holds promise to transform psychiatric research and practice. A
pertinent example is the success of NLP in the automatic detection of speech disorganization in formal thought
disorder (FTD). However, we lack an understanding of precisely what common NLP metrics measure and how they
relate to theoretical accounts of FTD. We propose tackling these questions by using deep generative language
models to simulate FTD-like narratives by perturbing computational parameters instantiating theory-based
mechanisms of FTD.
METHODS: We simulated FTD-like narratives using Generative-Pretrained-Transformer-2 by either increasing word
selection stochasticity or limiting the model’s memory span. We then examined the sensitivity of common NLP
measures of derailment (semantic distance between consecutive words or sentences) and tangentiality (how
quickly meaning drifts away from the topic) in detecting and dissociating the 2 underlying impairments.
RESULTS: Both parameters led to narratives characterized by greater semantic distance between consecutive
sentences. Conversely, semantic distance between words was increased by increasing stochasticity, but decreased
by limiting memory span. An NLP measure of tangentiality was uniquely predicted by limited memory span. The
effects of limited memory span were nonmonotonic in that forgetting the global context resulted in sentences that
were semantically closer to their local, intermediate context. Finally, different methods for encoding the meaning of
sentences varied dramatically in performance.
CONCLUSIONS: This work validates a simulation-based approach as a valuable tool for hypothesis generation and
mechanistic analysis of NLP markers in psychiatry. To facilitate dissemination of this approach, we accompany the
paper with a hands-on Python tutorial.

https://doi.org/10.1016/j.bpsc.2023.05.005
Psychiatric research has seen a surge in the use of natural
language processing (NLP) methods for extracting clinically
meaningful features from speech transcripts (e.g., clinical in-
terviews) (1,2). Such features include both the content (3,4) and
the form or organization of speech (5–11). Disruptions in the
organization of speech, known as formal thought disorder
(FTD), are particularly linked to psychotic disorders such as
schizophrenia (12,13). Prototypical manifestations of FTD
include a loosening of associative relationships between
adjacent words or phrases [henceforth called derailment, as
defined in (14)] and a tendency to drift away from the original
focus of a narrative [henceforth called tangentiality, as defined
in (14)].

Studies have shown that NLP methods can be used to
capture such loosening of associations in patients’ speech
(6–8,15,16), predict conversion to psychosis in at-risk pop-
ulations (10,11), and contribute to identifying underlying neural
mechanisms (17–21). Many of these studies have used
semantic space models (e.g., latent semantic analysis,
Word2Vec) (22–24) to quantify the semantic distance between
ª 2023 Society of Biological Psychiatry. Pu
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words or phrases. These models represent individual words as
vectors (i.e., word embeddings) in a multidimensional space
trained (on large text corpora) to capture the statistical struc-
ture of natural language (see Figure 1 for a reduced, 2-
dimensional illustration). Intuitively, FTD is predicted to result
in greater distances among vector representations of words
(Figure 1A, B) or sentences (Figure 1C–E) emitted during
naturalistic speech.

Crucially, whereas previous studies have revealed the
promise of NLP methods, they are nevertheless characterized
by considerable heterogeneity in analytic pipelines and results
(3,6,10,11,15,18,20,25–32). For example, as shown in Figure 2,
some studies have focused on semantic distances between
words (see also Figure 1A, B), whereas others have focused on
distances between sentences measured in a variety of ways
(Figure 1C–E). Moreover, evidence for greater semantic dis-
tances in FTD has often been lacking, with some studies even
showing an opposite effect (highlighted in Figure 2). These
inconsistencies have rarely been scrutinized in a theory-driven
manner, with greater attention being devoted to diagnostic or
blished by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. The representation of words in a semantic space and methods
for calculating distance between words (A, B) and sentences (C–E). Se-
mantic space models yield straightforward embeddings for individual words,
and the researcher is left to decide whether to calculate the distance be-
tween all words in a sentence (B), or the entire narrative, rather than dis-
tances between consecutive words (A). The computation of sentence-level
semantic distances requires further analytic choices. The most common
method generates a sentence vector as the mean of the (static) embedding
vectors corresponding to each word in the sentence and then calculates the
distance between these vectors (C). More recently, a method quantifying the
distance between sentences as the aggregate minimum amount of distance
that each word in one group has to move to reach its closest word in the
second group has been suggested (D). Finally, methods relying on
contextualized embeddings (E) account for how the same word can have a
different meaning based on its context (e.g., the word jam in the current
example). After deciding on the type of semantic distance, a researcher also
must decide how to aggregate semantic distances across all word pairs or
sentence pairs [see gold-colored illustration adjacent to (A)]. The semantic
spaces depicted here correspond with a reduced, 2-dimensional repre-
sentation (derived using principal component analysis) of popular semantic
space models [GloVe in (A–D) and all-distilroberta-v1 in (E)].
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prognostic predictive accuracy, wherein the magnitude or even
direction of effects receives little attention. Overall, this het-
erogeneity highlights the limits of our current understanding of
what different NLP metrics actually measure.

Much previous psychometric work in the field has focused on
measuring correlations between NLP metrics and clinician-rated
measures of FTD (30). Despite the value of this approach, it
does not explain the success of NLP in capturing subtle
2 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
linguistic markers of psychosis that are not readily identified by
clinician-rated measures (15). Furthermore, this data-driven
approach is limited in its ability to advance an understanding
of how theoretical cognitive mechanisms of FTD manifest in
altered NLP metrics. For example, one prominent theory sug-
gests that FTD is caused by an impairment in maintaining global
conversational context, thereby leading to excessive reliance on
local context (33–36). Whereas this theory may relate to afore-
mentioned reports of smaller semantic distances between
words in schizophrenia (Figure 2), these studies have often
conflated local and global context by mixing proximal and distal
word pairs (20,29) [but see (3)]. Furthermore, predictions relating
to more complex, yet common, summary NLP metrics (e.g., the
range or variance of semantic distances) (Figures 1 and 2) are
even more difficult to make using intuition alone.

In computational psychiatry, theoretical predictions are
usually evaluated by formalizing generative models, which are
used to simulate data and generate quantitative predictions
(37–40). To date, notable attempts to simulate FTD have been
informative but limited. For example, Hoffman et al. (41)
examined predictions of different theory-based perturbations
to an artificial neural network trained to generate stories, but
these stories were markedly limited in structure, length, and
lexicon (159 words). More recently, Bedi et al. (10) examined
whether specific NLP metrics could recover disorganization
generated by shuffling sentences in naturalistic texts. This
manipulation is reminiscent of theories linking FTD to sto-
chastic retrieval (42,43), but it remains incomplete because it
only affects the order (but not the selection) of topics.

Here, we extended the work in these early reports by
exploiting modern generative language models (e.g., generative
pretrained transformer) (GPT) (44), which can generate human-
like text (45,46) by optimizing next word prediction based on
context. Whereas the architecture and training process of these
models do not correspondwith human language acquisition (47–
49), recent studies have shown that the output (i.e., predictions)
and internal representation of these models resemble some as-
pects of human linguistic processing (50–52), especially linguistic
form (47). Crucially, regardless of how these models learn or
represent language, the parameters that govern how text is
generated (text-generation parameters) can be experimentally
perturbed inmultiple ways, some of which bear a resemblance to
cognitive mechanisms previously hypothesized to underpin
some aspects of FTD. This allows scrutiny of the construct val-
idity of popular NLPmetrics as their sensitivity to theory-based, a
priori perturbations on realistic, human-like narratives.

We examined 2 text-generation parameters. First, as noted
above, FTD has been proposed to reflect a specific impairment in
the use of global linguistic context (33,34,53,54). This can be
formalized by limiting the size of a memory buffer used to guide
next-word selection. Given such limited memory span, the
generated text is expected to lose the ability to maintain a single,
coherent topic, yet maintain preserved (or even increased) local
associations (33,34,53,54). In contrast, loosening of local (word-
to-word) semantic associations has been repeatedly reported in
schizophrenia, especially in more structured tasks (e.g., single-
word associations, or category fluency tasks) (6,55,56). Thus,
rather than a disruption in the balance between local and global
context, FTD can result from a generalized impairment in using
(any) context to constrain word selection. This may reflect
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Figure 2. Methods and results of previous studies using semantic distance measures in formal thought disorder. Positive effect sizes denote greater (semantic
distance) values in patients or high-risk individuals vs. control participants, in converters vs. nonconverters to psychosis, or a positive correlation with clinical formal
thought disorder ratings. The top headings of each column show whether semantic distances were calculated between words or sentences and whether sentences
were calculated by simply averaging the word embeddings included in that sentence or rather by using what is referred to as contextualized embeddings (Figure 1).
The bottom heading shows whether distances were calculated between all pairs of words/sentences, consecutive pairs alone, or between a patient’s responses and
an interviewer’s question. The heading on the right indicates how semantic distances were aggregated. Themeaning of different types of semantic distance and their
aggregation are illustrated in Figure 1. Question marks denote a metric that has been used but where the corresponding effect size was not reported (or could not be
extracted; trends of an unclear effect size are denoted by small arrows). Additional details concerning the included studies and effect sizes are provided in the
Supplement. Note that study (3) presented in the figure used a more complex measure (semantic density) that was simplified here for consistency with the other
studies. BERT, bidirectional encoder representations from transformers; GloVe, global vectors for word representation; LSA, latent semantic analysis.
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abnormalities in semantic representation (i.e., over-inclusive se-
mantic networks) (42,57,58) or more noisy retrieval from (intact)
semantic memory (56,59–61). For simplicity (and without taking
sides on the representation vs. access debate), we formalized
such generalized underconstraint by increasing the temperature
(i.e., stochasticity) of word selection.

We do not argue that these 2 text-generation parameters
represent an exhaustive set of the mechanisms that are at play
in FTD (e.g., they are not designed to capture phenomena such
as perseverative speech, neologisms, echolalia), nor do we
argue that their theoretical plausibility implies (or depends
upon) any biological plausibility to the transformer architecture
itself. Instead, we view GPT solely as a tool for simulating
realistic narratives that can be perturbed using theoretically
informed parameters, which may reflect a variety of biologically
plausible mechanisms [e.g., limited contextual span may result
from NMDA hypofunction (62,63), whereas greater stochas-
ticity may reflect synaptic disconnection (42)]. A key motivation
is to use this simulation-based method to scrutinize the
construct validity and failure modes of popular NLP metrics
and to evaluate the predictions of these mechanisms in relation
to previous NLP findings. To further encourage extending this
approach to additional theories and future metrics, we com-
plemented the paper with a hands-on tutorial for using free
out-of-the-box tools for natural text generation (64).
Biological Psychiatry: Cognitive Neuroscien
METHODS AND MATERIALS

Simulating Narratives

We simulated narratives using GPT-2 (44,65), a transformer-
based artificial neural network, where the input is a body of
text (i.e., prompt), and the output is a probability distribution
over tokens (i.e., words, subwords, and punctuation marks)
used to sample the next token. Each narrative starts with 1 of 6
brief conversational prompts (Figure 3A), and the model iter-
atively generates narratives consisting of 200 tokens.

We modulated 2 key text-generation parameters. First,
underconstrained word selection was formulized by increasing
the temperature parameter (Figure 3B). Second, a limitation in
using global context to guide next-word selection was
formulized by reducing the span of the (memory) context
presented to the model as a prompt at each time step
(Figure 3C). For each prompt, we generated 200 narratives
using temperature parameters in the range 1 to 5 (fixing the
memory span to 200) and an additional 200 narratives
using memory span in the range 3 to 200 (fixing the temper-
ature to 1).

We implemented several conventions to encourage GPT to
produce more realistic text. First, tokens were generated using
beam-search sampling (66), wherein, for each iteration, the
model generated 5 potential 3-token trajectories, choosing the
ce and Neuroimaging - 2023; -:-–- www.sobp.org/BPCNNI 3

http://www.sobp.org/BPCNNI


Most people start the day by

ge ng out of bed

ge ng the kids ready

thinking a number of

running away into the

Most people start the day by

ge ng out of bed

ge ng the kids ready

thinking a number of

running away into the

Hi
ghTe

m
pe

ra
tu

re Lo
w

Most people start the day by

ge ng out of bed

ge ng the kids ready

thinking a number of

running away into the

Most people start the day by

day basis to maintain

the same me.

night a new beginning

hour at any point

Sh
or

t
naps

evitcepsorteR
Lo

ng
A Ini al prompt

B Manipula ng temperature

C Manipula ngMemory span

1. Most people start the day by 4. When I was a li le kid

2. Today I am feeling 5. I had a terrifying dream last night in which

3. The thing that I like most in the world is 6. I worry a lot about

Figure 3. Key text-generation parameters controlling the generation of
simulated free narratives. Each narrative was started by providing an initial
prompt (A). Narratives potentially mimicking those found in formal thought
disorder can be generated either by increasing the temperature (stochas-
ticity) of the sampling [temperature in (B)] or by limiting the model’s ability to
“remember” the global context [memory span in (C)].
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next word based on the joint probability of the entire trajectory
(see Figures S1–S3 for sensitivity analysis). Second, for each
sampling step, we excluded the 1% of words with the lowest
probability estimates (nucleus sampling) (66). Third, to mini-
mize repetitiveness, we prohibited the model from repeating
the same pair of words (e.g., 2-grams). Finally, we prohibited
the model from generating some internet-based tokens (e.g.,
“https://,” new-line characters).

Clinical Ratings of Simulated Narratives

We examined the face validity of the simulated narratives in
terms of how well they mimicked some aspects of FTD. For
this purpose, a subset of 249 narratives were rated by 2 cli-
nicians experienced in clinical assessment of patients with
psychosis (IF and MMN, who were blind to the perturbation
governing each narrative) using the Thought and Language
Disorder Scale (67). Given the nature of perturbations and
narratives, these ratings were restricted to specific dimensions
of disorganized speech (i.e., positive FTD): derailment
(measuring loose associations between adjacent phrases),
dissociation (measuring a complete lack of associations be-
tween adjacent sentences or words), and tangentiality
(measuring how quickly a text deviates from initial meaning)
(see the Supplement for interrater reliability and additional
details).

NLP Measures of Semantic Distance

We analyzed simulated narratives using common NLP mea-
sures of semantic distance. First, we operationalized
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
derailment as greater cosine distance (1-cosine similarity) be-
tween the vector embeddings of consecutive words or sen-
tences (Figure 1). Then, to obtain a single derailment metric for
each narrative, we followed a convention used in previous
studies by calculating either the mean, minimum, maximum, or
variance of these distance measures (Figure 1). Second, we
operationalized tangentiality as the average rate (i.e., slope) at
which the semantic meaning of a sentence diverged from the
initial prompt.

In our analyses, we focused on both the direction and size
of the effects (measured using Spearman correlations) and
their consistency across prompts and models. Statistical sig-
nificance was not examined because it depends heavily on the
number of simulated narratives.

Word-level embeddings were extracted from 3 popular se-
mantic space models: Word2Vec (23), GloVe (22), and fastText
(68). We examined 2 approaches for computing sentence-level
metrics from these word-level embedding models. First, we
encoded a sentence as the mean of the vectors corresponding
to each word in the sentence and then calculated the cosine
distance between such averaged vectors (Figure 1C)
(10,18,32,69). Second, we used the Word Mover’s distance
(70,71) metric, which quantifies the aggregate minimum
amount of distance that each word in 1 sentence has to
“move” to reach its closest word in the second sentence
(Figure 1D). To ensure that these measures focused on se-
mantics rather than simple repetition, words appearing in both
sentences were excluded prior to distance calculations (the
results of relaxing this constraint are presented in Figures S4
and S5).

It should be noted that the above measures of semantic
distance fail to account for how the same word can have a
different meaning based on its context. Thus, we also calcu-
lated semantic distance between sentences using more so-
phisticated contextualized sentence embedding models
(namely, all-MiniLM-L12-v2; all-mpnet-base-v2; all-dis-
tilroberta-v1) (72), which excel at representing the role of each
word in its context (e.g., the word “jam” in Figure 1E).

Prior to calculation of the above NLP measures, narratives
were preprocessed according to conventional practices. First,
simulated narratives were tokenized into sentences (based on
full stops), and common contractions were expanded (e.g.,
“wouldn’t” was changed to “would not”). These sentences
were used for analyses based on contextualized embedding
models. Analyses based on static embedding models were
preceded by the tokenization into words; the removal of stop
words (e.g., determiners, coordinating conjunctions, preposi-
tions), single letters, and non–alpha-numeric characters; and
the conversion of the remaining words into their dictionary
form (i.e., lemmatization; e.g., “going”-changed to “go”).
RESULTS

Perturbations to GPT2 Text-Generation Parameters
Mimic Some Aspects of FTD

Perturbation to both temperature and memory span led to less
coherent narratives - reminiscent of clinical presentations of
FTD (Table 1). This lack of coherence was supported by clinical
ratings indicating that both perturbations increased derailment
023; -:-–- www.sobp.org/BPCNNI
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Table 1. Illustrating the Effect of Potential Mechanisms of Formal Thought Disorder

Condition Quote

Baseline Most people start the day by getting up and going to work, and then they don’t have time to do anything else. But if you have a lot of
time, you can do other things. You can go to the gym, or go for a walk. If you’re not in the office, then you could do something else,
like go out and play with your kids. It’s not like you need to be at work every day. I think that’s one of the things that really makes it
work for me. When I’m at home, I can spend time with my family. That’s a big part of my life. And then I have the time in between to
just do whatever I want. So it’s nice to have that flexibility. For me, it works out really well. Not having to worry about work is a huge
benefit. There’s no pressure to get up at the crack of dawn. No one’s trying to wake you up.

Increased
Temperature

Most people start the day by reading some of those old books you brought home in the past, they’re still there. It is the way our
ancestors always taught us a way you have to go in order get a good understanding of the human mind, the universe. So the next day,
you do not do it the same again. In fact your mental life, as is true of our physical bodies we have our mind as we do, a kind of “second
body,” one of several different kinds. If we can use it to learn, we might do more for ourselves then the old habits were able to provide.
As we learn our ways and we use our new body to make it more productive; we don’t lose things. You lose them to other people to
use. They come back. Our bodies may grow in different proportions. And they may also have other qualities as well, maybe some
different reactions to whatever happens, but not necessarily our body will feel or look “the same.”

Decreased Memory
Span

Most people start the day by getting up and going to the bathroom. I didn’t want to be alone, so I thought I’d give it a shot. I don’t know
if it’s true or not, but I don’t think it’s a good idea to make sure that you have a good understanding of how to use it. I don’t know if it’s
because I’m old or because it’s a good idea to do so. If you’re looking for a way to get the most out of it. I’ve been doing this for a long
time, and I think it’s time for a change. I’m going to go back to my room and go to sleep. I was able to get a good night’s sleep. It’s a
great way to get a good night’s sleep. It’s not that I don’t want to do it. I’m not going to sit here and tell you that I don’t think you’re
going to get away with that.
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(temperature: rs = 0.53, p , .001; memory span: rs = 0.32, p ,

.001; pdifference = .10), and dissociation of thinking (tempera-
ture: rs = 0.52, p , .001; memory span: rs = 0.66, p , .001;
pdifference = .21). Furthermore, whereas tangentiality was
correlated with both parameters (temperature: rs = 0.37, p ,

.001; memory span: rs = 0.68, p , .001), the correlation with
memory span was significantly larger (pdifference = .012).
Importantly, given that GPT is trained on web-based language,
some narratives (19.27%) were more similar to written, web-
based text than to disorganized speech (see the
Supplement). However, although such narratives diverge in
content from what a patient might say, they were not signifi-
cantly different from speech-like narratives in the correlations
with form-based clinical ratings (ps . .189). Overall, these
findings suggest that both parameters of interest covary with
some clinically meaningful aspects of FTD. Next, we turn to the
main aim of the paper, namely examining the theoretical un-
derpinning and construct validity of popular NLP metrics of
FTD.
The Effects of GPT2 Word-Selection Temperature
on NLP Metrics

As expected, increasing temperature increased the semantic
distance between words (Figure 4A). We predicted a similar
positive correlation between temperature and semantic dis-
tance measured between adjacent sentences. Empirically,
however, the sentence-level results varied in both magnitude
and direction depending on how sentences were encoded
(Figure 4B). More specifically, we found the expected positive
correlation when using contextualized embeddings, wherein
sentence meaning accounted for the relationships between
words within a sentence. Conversely, aggregating the dis-
tances between individual words produced a much weaker
effect (word mover’s distance in Figure 4B). Furthermore, this
relationship was reversed when measuring distance between
consecutive sentences as a simple average of (static) word
embeddings (average of words in Figure 4B).
Biological Psychiatry: Cognitive Neuroscien
A follow-up analysis suggested that the latter, surprising
negative relationship was mediated by the effect of tempera-
ture on increasing sentence length (r = 0.69). Thus, whereas a
sentence consists of words expressing a complete thought,
increased temperature renders such coherent semantic units
harder to enclose (Figure S6). As sentence length increases,
the averaged embedding vector is expected to approach the
zero vector because the orientations of individual word em-
beddings cancel each other out (especially under high tem-
perature). Consistent with this conjecture, controlling for the
average number of words per sentence (i.e., using the re-
siduals of temperature after regressing it on the average
number of words) weakened the negative effect of temperature
on the semantic distance between averaged vectors (see
average number of words in a sentence in Figure 4B). Thus,
whereas the averaging of static word embeddings is the most
common approach for calculating semantic distance between
sentences (Figure 1), it fails to reveal an expected effect of
temperature and was strongly influenced by confounds such
as sentence length.

The autoregressive nature of GPT means that higher tem-
perature does lead not only to the selection of less constrained
words but also to the formation of a less constraining context.
Thus, the weight of the original prompt on the evolving context
will gradually decrease, potentially resulting in tangentiality.
Crucially, however, although increasing the temperature
increased the distance between the prompt and the first sen-
tence, it tended to decrease rather than increase the slope of
the divergence of subsequent sentences, most likely reflecting
a ceiling effect (Figure 4C; see also Figures S7 and S8 for
additional demonstrations).

The Effects of Limited Memory Span on NLP
Metrics

As predicted, a limited memory span increased the semantic
distance between consecutive sentences encoded using
contextualized embeddings (Figure 5B). Conversely, and in
stark contrast to the effects of temperature, decreasing
ce and Neuroimaging - 2023; -:-–- www.sobp.org/BPCNNI 5
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memory span did not consistently increase semantic distance
between words (Figure 5A). Instead, at least in the case of
consecutive words, semantic distances were reduced. These
results confirm an intuitive hypothesis that a limited memory
span shifts the balance between global and local context such
that a word is sampled mostly based on the local context
preceding it, and previous sentences are disregarded.

Critically, our findings extend upon this intuitive prediction
by revealing a pattern of nonmonotonic effects that vary
across metrics (Figure 5B). Thus, an increased semantic dis-
tance between sentences was evident when memory span
was low enough to exclude words of a preceding sentence
(i.e., span of 3–10 words). Conversely, a transition from high
(e.g., 1001) to intermediate (e.g., 11–20) levels of memory
span decreased semantic distance between sentences,
reflecting the fact that such intermediate levels entail that each
sentence is only determined by the preceding sentence (and
thus closely relates to it). This nonmonotonicity means that if,
for example, patients vary in the extent of memory span
impairment, different cohorts (and different patients within a
cohort) may exhibit different (potentially opposing) results. It
6 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
should also be noted that the specific pattern of results varies
between contextualized and static embedding models such
that the transition from maximal to minimal memory span in-
creases semantic distance only in the former.

Examining our NLP measure of tangentiality revealed
that in contrast to temperature manipulations, reducing
memory span did increase the rate of the divergence of
sentences from the prompt. As shown in Figure 5C, this
effect is most evident for the fourth sentence onward (see
also Figure S7), which tends to be, on average, approxi-
mately 50 words away from the prompt (assuming an
average of 14 words per sentence). Notably, however,
memory span also had a strong effect on the semantic
distance between the prompt and the first sentence, which
also led to a ceiling effect similar to the one that was re-
ported for the temperature manipulations described above.
This ceiling effect was most evident for very low memory
span (i.e., 3–10) and led to nonmonotonicity (Figure S8) that
diverged from the one that was reported for NLP metrics of
derailment (where the effect was maximal for a memory
span of 3–10).
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Figure 5. Effects of manipulating memory span on
semantic distance measures of derailment (A, B) and
tangentiality (C). Overall effect sizes were calculated
as the average Spearman correlations between (non-
binned) memory span and the respective semantic
distance (R), with a potential control for the average
number of words in a sentence (Rp). The memory span
variable was reversed prior to calculating these cor-
relations because (opposite to temperature) formal
thought disorder is linked to lower memory span.
Accordingly, the memory span axes are presented
here in reverse (i.e., decreasing) order. See the caption
of Figure 4 for further details.
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The Importance of Other Analytic Choices

Our findings suggest that sensitivity for recovering and
dissociating the computational parameters that we examined
here is optimized by combining the semantic distances be-
tween consecutive words and the semantic distances between
sentences (encoded using contextualized embeddings). Of
course, researchers have a variety of other choices. Reassur-
ingly, we found that the choice of which specific static or
contextual embedding model to use had minimal effect
(compare line types in Figures 4 and 5). Conversely, the results
varied to some extent among conversational prompts
(compare colors in Figures 4 and 5). Whereas we found no
evidence that specific prompts or prompt types (e.g., negative
vs. neutral) were consistently advantageous (Figure S9), this
result suggests that researchers should optimally examine the
generalizability of their results across prompts.

Finally, whereas for the above results we calculated
narrative-level derailment by averaging semantic distances
across all word pairs or sentence pairs, previous studies have
used a variety of alternative aggregation methods, focusing on
variability or extreme semantic distances (Figure 1). Critically,
Biological Psychiatry: Cognitive Neuroscien
as shown in Figure 6, the benefit of using such alternative
methods has been small and inconsistent. These results sug-
gest that researchers may prefer to focus on the average (NLP-
measured) derailment of narratives or otherwise choose an
aggregation method based on the hypothesized mechanism
and measure of interest.

DISCUSSION

Here, we argue for the value of a simulation-based approach
for improving the theoretical foundations of NLP-based ana-
lyses in psychiatry. To illustrate the general approach, we first
demonstrated the capacity of generative language models to
generate realistic text that mimics aspects of FTD through
parametric tuning of cognitively meaningful parameters. Next,
we showed how these hypothesized parameters make
different predictions regarding the associative structure of the
generated text. Finally, and most importantly, we demon-
strated marked variability in the ability of common automated
NLP metrics to capture these predictions, thereby providing a
toolkit that we hope will improve the rigor of this burgeoning
research field in the future.
ce and Neuroimaging - 2023; -:-–- www.sobp.org/BPCNNI 7
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Figure 6. Sensitivity of different methods (x-axis) for summarizing
semantic distances within a narrative for the 2 types of perturbation. Error
bars represent consistency across embedding models and probes, calcu-
lated here as the interquartile range. The results of using the average for
aggregation summarize the respective effects presented in Figures 4 and 5.
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In our simulations, we focused on 2 parameters: a) higher
temperature (stochasticity) in word selection reflecting a
generalized impairment in using context to constrain word
selection, and b) limited memory span reflecting a specific
impairment in using global context. We found that both pa-
rameters could explain weakened associations among
consecutive sentences, whereas associations among words
were weakened by higher temperature but strengthened by
limited memory span. These unique predictions of limited
memory span are broadly consistent with previous findings, in
particular with evidence for decreased semantic distances
between single words in FTD (Figure 1). Interestingly, whereas
this result in isolation can also be assumed to reflect negative
FTD symptoms such as perseveration (20,29), this alternative
explanation also predicts smaller distances between senten-
ces (30), which has not been reported in previous studies
(Figure 1).

A key contribution of a simulation-based approach arises
out of an ability to quantitatively compare the sensitivity of
different NLP metrics. Indeed, we found that impairments in
using local and global context were best captured by
measuring semantic distances between consecutive words
and between contextualized sentence embeddings, respec-
tively. Strikingly, common approaches such as measuring the
distances between all words in a narrative (20,29) or repre-
senting sentences by averaging (static) word embeddings
(10,18,32,69) were noisy, confounded, and less able to
dissociate the 2 parameters. Another key finding is that the
effects of limited memory span on NLP-measured derailment
and tangentiality were not monotonic. For example, forgetting
8 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
the last sentence reduced its influence on subsequent word
selection, whereas forgetting the broader context may in fact
increase the influence of this last sentence. This non-
monotonicity means that patients with different levels of global
context insensitivity may show opposite effects, thereby
complicating the interpretation of group effects. Finally,
whereas previous studies attempted to capture more complex
dynamics of speech disorganization by accounting for how
semantic distances vary within a narrative, our simulations
showed that these alternative metrics are, in most cases, less
sensitive than simple averaging. Overall, our results demon-
strate the contribution of a simulation-based approach to
interpreting heterogeneity in previous findings and guiding the
selection of theoretically informed metrics in future studies.

An important question for future studies concerns the
interaction between a generalized underconstraint (42,43) and
an impairment in maintaining global context (33,34,54,73,74).
Interestingly, in a recent paper, it was hypothesized that a
repeated difficulty in maintaining global context (or intent) may
lead to overly inclusive semantic networks through excessive
adaptation of semantic representations (57). Such a combined
mechanism adds another layer of complexity to interpreting
NLP metrics in which the 2 reported mechanisms, with partially
opposing effects, may operate in tandem (Figure S10). One
pathway for examining this question would involve developing
efficient methods to fit text-generation parameters directly to
clinical transcripts.

We acknowledge several limitations of our paper. First,
modern language models are dissimilar to human language not
only in their architecture but also in their training corpus.
Indeed, about one-fifth of the clinically rated narratives were
more similar to blogs or news reports than to natural speech.
Importantly, however, perturbations had a similar effect on
speech-like and non–speech-like narratives.

Second, language models, and thus their suitability for
simulating FTD, are limited by well-known cultural biases (75).
Of course, this problem also affects common NLP metrics,
which were recently shown to have limited generalizability
even across common languages (69). Third, FTD is susceptible
to the influence of affective and interpersonal factors (76–80),
emphasizing another key limitation of language models—that
they are trained on form and are not grounded in the real
world (48,49). Interestingly, the ability to simulate perturbed
narratives at scale (for any possible affective or neutral prompt,
with increasing support for different languages) paves the way
for systematically testing how content (e.g., valence), lan-
guage, and other variables moderate the sensitivity of NLP-
based metrics (Figure S9).

Finally, we did not examine the effects of the simulated
parameters on NLP measures that do not focus on semantic
distance (e.g., speech-graph analysis, referential cohesion)
(16,81). However, the parameters we examined here may affect
these and other metrics, as indicated, for example, by our
secondary finding that higher temperature predicted longer
sentences. Longer sentences may be reminiscent of the
pressured speech seen in some manifestations of schizo-
phrenia and in the manic phase of bipolar disorder.

The limitations that we have outlined show that despite the
promise of large language models, currently, they do not offer
a comprehensive, biologically plausible account of human
023; -:-–- www.sobp.org/BPCNNI
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language or its disruptions (49). Nonetheless, as we demon-
strated here, the flexible and realistic nature of the output of
these models can help develop a more theoretically and psy-
chometrically informed NLP approach to FTD and guide future
hypothesis generation. Indeed, an ability to ascribe mecha-
nisms to specific NLP metrics paves the way for better linkage
of FTD to other symptom dimensions, cognitive phenomena,
and even drug effects (82). For example, NLP predictions of
our temperature parameter may be linked to disorganized
behavior and computational indices of choice stochasticity in
decision making (83,84), whereas the predictions of limited
memory span may be correlated with measures of working
memory and attractor instability (85,86).
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