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Abstract
Objective
To test the utility of longitudinal changes in plasma phosphorylated tau 181 (p-tau181) and
neurofilament light chain (NfL) as surrogate markers for clinical trials targeting cognitively
unimpaired (CU) populations.

Methods
We estimated the sample size needed to test a 25% drug effect with 80% of power at a 0.05 level
on reducing changes in plasma markers in CU participants from Alzheimer’s Disease Neuro-
imaging Initiative database.

Results
We included 257 CU individuals (45.5% males; mean age = 73 [6] years; 32% β-amyloid [Aβ]
positive). Changes in plasma NfL were associated with age, whereas changes in plasma
p-tau181 with progression to amnestic mild cognitive impairment. Clinical trials using p-tau181
and NfL would require 85% and 63% smaller sample sizes, respectively, for a 24-month than a
12-month follow-up. A population enrichment strategy using intermediate levels of Aβ PET
(Centiloid 20–40) further reduced the sample size of the 24-month clinical trial using p-tau181
(73%) and NfL (59%) as a surrogate.

Discussion
Plasma p-tau181/NfL can potentially be used to monitor large-scale population interventions
in CU individuals. The enrollment of CUwith intermediate Aβ levels constitutes the alternative
with the largest effect size and most cost-effective for trials testing drug effect on changes in
plasma p-tau181 and NfL.
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Cognitively unimpaired (CU) individuals with underlying
β-amyloid (Aβ) plaques, tau tangles, and neurodegeneration
have been a target population in recent clinical trials, based on
the assumption that better therapeutic outcomes can be
achieved before cognitive deterioration.1,2 Although these
individuals present an elevated risk for cognitive decline, the
vast majority will remain clinically stable during typical clinical
trial periods (12 to 24 months).3 This limits the use of
changes in cognitive measures as a single primary outcome of
therapeutic trials in this population.

Blood-based biomarkers have been proposed as a simple and
cost-effective alternative to facilitate clinical trials.4-7 Recent
studies investigated the role of plasma markers in selecting
individuals for clinical trials that are most likely to progress
over time.8 Tau pathology and neurodegeneration are key
features of Alzheimer disease (AD) and closely related to
cognitive decline, suggesting that biomarkers representing
these pathologies have the potential to surrogate AD-related
progression.9 Changes in plasma phosphorylated tau (p-tau)
represent early brain accumulation of tau,9-11 whereas changes
in plasma neurofilament light chain (NfL) have been associ-
ated with neurodegeneration in aging.9 Thus, changes in
plasma p-tau and NfL could be an alternative to monitoring
drug effects in preventive trials. Here, we tested whether
longitudinal changes in plasma p-tau and NfL levels can be
used to monitor therapeutic response in clinical trials focusing
on CU elderlies.

Methods
We used participants from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database (eMethods 1, links.lww.
com/WNL/C670). [18F]florbetapir PET standardized up-
take ratio measured Aβ load. Plasma p-tau181 and NfL were
measured using the Simoa platform. The effect size was cal-
culated as the ratio between the mean and SD, and the sample
size was estimated using a well-validated formula.12,13 Further
details about biomarker analyses can be found in eMethods
2–5 and eFigure 1.

Results
We included 257 CU individuals (mean age 72.8 [6.2] years;
45.5% males; 32.3% Aβ+). Demographics are summarized in
eTable 1 and eFigure 2 (links.lww.com/WNL/C670).

Changes in PlasmaBiomarkers as a Function of
Their Baseline Levels
We observed that baseline plasma p-tau181 levels correlated
with a decrease in its slope of change over 24 months
(r =−0.32, p < 0.001, eFigure 3 and eTable 2, links.lww.com/
WNL/C670). By contrast, we found that baseline plasma
NfL levels correlated with an increase in its slope of change
(r = 0.59, p < 0.001, eFigure 3).

Association of Longitudinal Changes in Plasma
Biomarkers With Age and Clinical Progression
Longitudinal changes in plasma NfL, but not p-tau181, sig-
nificantly correlated with participants’ age at baseline (r =
0.49, p < 0.001, eFigure 4, links.lww.com/WNL/C670).
Longitudinal changes in plasma p-tau181, but not NfL, sig-
nificantly associated with an increased risk of clinical pro-
gression to mild cognitive impairment (MCI) (31/257
progressed over 24 months) (hazard ratio 1.57; CI 1.03–2.4,
eFigure 5). Results were not influenced by sex.

Effect Size of Longitudinal Changes in
Plasma Biomarkers
Longitudinal changes in plasma p-tau181 and NfL were not
significantly different from zero at 12 months, whereas sig-
nificant progression and larger effects size were observed at 24
months (Figure 1, A and B and eFigure 6, links.lww.com/
WNL/C670).

Sample Size Required for Clinical Trials
Clinical trials performed over 24 months would require 85%
(n = 8,884) and 63% (n = 3,448) smaller sample sizes than 12-
month trials using plasma p-tau181 and NfL, respectively
(eTable 3, links.lww.com/WNL/C670). Using Aβ+ for
population enrichment reduced the sample size by 43% for
p-tau181 (n = 5,040) and 16% for NfL (n = 2,868). Using
intermediate levels of Aβ (Centiloid 20–40) for enrichment,
the sample size was reduced by 73% for p-tau181 (n = 2,432)
and 59% for NfL (n = 1,396) over 24 months (Figure 2A).
Figure 3 shows a progressive reduction in sample size esti-
mates as a function of progressively higher drug effects.

Cost-EffectivenessAnalysisofPlasmaBiomarkers
for Clinical Trials
Figure 2B demonstrates that the estimated cost of a clinical trial
considering only the biomarker costs is lower using plasma than
neuroimaging as surrogates. However, due to the higher sample
size required using plasma as surrogate biomarkers, the total
estimated trial cost when considering surrogate markers plus
other related costs is higher using plasma (;2-fold at 24
months) than neuroimaging biomarkers (Figure 2C). Of in-
terest, for a trial including only individuals with intermediate Aβ
levels, the total estimated cost was similar using plasma and
neuroimaging for surrogacy. The estimated costs of trials using
other strategies of population enrichment (CSF Aβ42 for Aβ+,
APOE e4 allele) are described in eFigure 7 (links.lww.com/
WNL/C670).

Discussion
We showed that longitudinal plasma p-tau181 changes were
associated with progression to MCI, whereas NfL changes
were more closely related to aging. Plasma p-tau181 and
NfL changes at 24 months, rather than 12 months, showed
the potential to be used as surrogate markers in large-scale
preventive clinical trials focusing on CU individuals.
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Cost-effectiveness analysis suggested that studies on CU Aβ+
will have higher total costs using plasma p-tau181 and NfL for
surrogacy compared with using PET/MRI biomarkers. We
also demonstrated that studies enriched with CU participants
with intermediate Aβ levels would be more cost-effective than
with CU Aβ+.

Longitudinal changes in plasma p-tau181 and NfL can poten-
tially be used in 24-month preventive clinical trials. Recent anti-
Aβ trials targeting symptomatic individuals have used changes
in plasma biomarkers to monitor disease modification.5-7 Our
results suggest that plasma biomarkers can potentially be used

in clinical trials focusing on asymptomatic individuals. Of in-
terest, we demonstrated that population enrichment strategies
based on Aβ burden will have a larger effect on reducing the
required sample size for trials using p-tau181 than NfL as
surrogates. Clinical trials testing 25% drug effects on marker
reduction would require more than 5,000 and 2,800 individuals
using p-tau181 and NfL, respectively, suggesting that these
markers will be more suitable for monitoring large-scale pop-
ulation interventions than for formal randomized controlled
trials. Noteworthy, our analysis supported that this scenario
could be different if we consider medications with larger effect
sizes on reducing biomarker changes.

Figure 1 Percentage of Change and Effect Size of Plasma Biomarkers Over 12 and 24 Months

The bar plots show the percentage of changes with their respective 95% CIs for plasma (A) p-tau181 (left side) and (B) NfL (right side) concentrations in CU
older individuals over 12 and 24months in relation to the biomarker value at the baseline visit. The 12- and 24-month follow-ups showed a similar annualized
rate of progression. The effect size at 24monthswas larger due to both a greatermeanof progression and a relativelymore stable change among participants
(smaller SD). The effect size was calculated as the ratio between themean and SD of the percentage of change over time points. The higher the effect size, the
smaller themeasure’s variability, which indicates amore precise populational estimate. (*) indicates that the 95% CI did not cross the zero line; therefore, the
longitudinal change was significantly different from zero. Aβ = β-amyloid; CU = cognitively unimpaired; NfL = neurofilament light chain; p-tau181 = phos-
phorylated tau 181.
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Figure 2 Cost-Effectiveness of Plasma Biomarkers as Surrogate for Preventive Clinical Trials in CU Individuals

(A) Sample sizes required for hypothetical clinical trials powered to use plasma biomarkers tomonitor drug effects in CU older individuals. (B) Estimated cost
with surrogate neuroimaging13 and plasma biomarkers only for clinical trials powered to use changes in these biomarkers to monitor drug effects. (C)
Estimated cost of biomarkers plus the costs with some of the other necessary tests that are influenced by total sample sizes, such as costs with the definition
of Aβ positivity (using PET) for population enrichment and a standard clinical evaluation for each participant. The costs of clinical trials using changes in tau-
PET (18F-flortaucipir uptake in the temporal lobe) or structural MRI (tensor-based morphology cortical volume) as surrogate were estimated based on the
mean and SD of a 12-month change in these biomarkers previously reported.13 For the calculations presented in the figure, we used the following
hypothesized costs: MRI = $500; PET = $3,000; plasma marker = $200; recruitment/consenting/clinical assessment = $1,000. Assessments (except for
biomarker of enrichment) were calculated to 2 time points (baseline and follow-up). Biomarker and procedure costs were estimations based on research
assessments in the United States. These costs are simplified estimations for the sake of analysis and can vary highly depending on several factors. We
estimated an attrition rate of 10% in the calculations.D = longitudinal change. Reduction in the sample size was calculated in relation to the whole population.
Aβ = β-amyloid; CU = cognitively unimpaired; NfL = neurofilament light chain; p-tau181 = phosphorylated tau 181.
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Surprisingly, our results suggest that using longitudinal changes
in plasma p-tau181 and NfL would not reduce the cost of
clinical trials using Aβ+ individuals compared with using
changes in PET or MRI as surrogate outcomes. Although both
tau-PET and plasma p-tau181 are postulated to reflect tau
deposition in the brain,14,15 longitudinal tau-PET changes
reported in previous studies show more robust estimates, with
less intrasubject variably and, consequently, translating into
considerably smaller required sample sizes.13 It is known that
both plasma NfL and MRI reflect nonspecific neuronal dam-
age.15 However, because structural MRI is a relatively in-
expensive examination and has relatively robust longitudinal
estimates, it is more cost-effective. Although it is indisputable
that blood-based markers are more accessible and less expen-
sive than neuroimaging for a single patient, our results dem-
onstrate that plasma markers can be less cost-effective for
preventive trials due to their higher longitudinal variability.

The enrollment of CU individuals with intermediate Aβ levels
(Centiloid 20 -40) can lead to a smaller sample size and cost
for clinical trials using either plasma p-tau181 or NfL as a
surrogate compared with trials enrolling CU Aβ+. In our
study, individuals with higher Aβ levels showed high vari-
ability and low average change in longitudinal plasma esti-
mates, some individuals had elevated longitudinal changes,
and others plateaued. Thus, their exclusion reduced the SD of
biomarker changes and, in turn, increased the effect size,
leading to smaller sample size and cost estimations.

The ADNI database includes a self-selected population
comprising highly educated mostly White participants, which
while generalizable to current clinical trial populations does

not represent the more diverse general world population.
Modifications in p-tau/NfL markers alone may fail to predict
the overall benefit of a treatment. They need to be supported
by clinical end points and/or rigorous postmarketing moni-
toring of clinical benefit. To conclude, our results suggest that
24-month changes in plasma p-tau181/NfL show large
intersubject variability but can potentially be used to monitor
large-scale population interventions in CU elderlies.
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