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Abstract
Background and Objectives
Injured pericytes in the neurovascular unit release platelet-derived growth factor β (PDGFRβ)
into the CSF. However, it is not clear how pericyte injury contributes to Alzheimer disease
(AD)–related changes and blood-brain barrier (BBB) damage. We aimed to test whether CSF
PDGFRβ was associated with different AD-associated and age-associated pathologic changes
leading to dementia.

Methods
PDGFRβ was measured in the CSF of 771 participants with cognitively unimpaired (CU, n =
408), mild cognitive impairment (MCI, n = 175), and dementia (n = 188) from the Swedish
BioFINDER-2 cohort. We then checked association with β-amyloid (Aβ)-PET and tau-PET
standardized uptake value ratio, APOE e4 genotype and MRI measurements of cortical
thickness, white matter lesions (WMLs), and cerebral blood flow. We also analyzed the role of
CSF PDGFRβ in the relationship between aging, BBB dysfunction (measured by CSF/plasma
albumin ratio, QAlb), and neuroinflammation (i.e., CSF levels of YKL-40 and glial fibrillary
acidic protein [GFAP], preferentially expressed in reactive astrocytes).

Results
The cohort had a mean age of 67 years (CU = 62.8, MCI = 69.9, dementia = 70.4), and 50.1%
were male (CU = 46.6%, MCI = 53.7%, dementia = 54.3%). Higher CSF PDGFRβ concen-
trations were related to higher age (b = 19.1, β = 0.5, 95%CI 16–22.2, p < 0.001), increased CSF
neuroinflammatory markers of glial activation YKL-40 (b = 3.4, β = 0.5, 95% CI 2.8–3.9, p <
0.001), GFAP (b = 27.4, β = 0.4, 95% CI 20.9–33.9, p < 0.001), and worse BBB integrity
measured by QAlb (b = 37.4, β = 0.2, 95% CI 24.9–49.9, p < 0.001). Age was also associated
with worse BBB integrity, and this was partly mediated by PDGFRβ and neuroinflammatory
markers (16%–33% of total effect). However, PDGFRβ showed no associations with APOE e4
genotype, PET imaging of Aβ and tau pathology, or MRI measures of brain atrophy andWMLs
(p > 0.05).

Discussion
In summary, pericyte damage, reflected by CSF PDGFRβ, may be involved in age-related BBB
disruption together with neuroinflammation, but is not related to Alzheimer-related pathologic
changes.
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The neurovascular unit (NVU) is an anatomic and functional
complex that includes neurons, glial cells (astrocytes, oligo-
dendrocytes, microglia), and vascular cells (endothelium, peri-
cytes, and vascular smooth muscle cells).1 All these structures,
and especially the vascular cells, concur in maintaining the in-
tegrity of the blood-brain barrier (BBB), a selective diffusion
barrier responsible for the homeostasis of the CNS, which al-
lows optimal synaptic and neuronal function.1 According to the
“two-hit” hypothesis of Alzheimer disease (AD) pathogenesis,
midlife cardiovascular and metabolic risk factors (e.g., hyper-
tension and diabetes) trigger the pathologic disease cascade by
causing damage to the NVU.1,2 It has been hypothesized that
this damage to the NVU causes disruption of the BBB and
reduction of cerebral blood flow (CBF, first hit), which ulti-
mately leads to reduced β-amyloid (Aβ) clearance and forma-
tion of Aβ-containing plaques (second hit).1 One of the key
structural and functional elements of the NVU are pericytes,
which are cells that adhere to the endothelium and are involved
inmaintaining the BBB, while regulating CBF in the brain.1 The
platelet-derived growth factor receptor β (PDGFRβ) is
expressed in brain pericytes during cell migration and angio-
genesis, and it has also been found in minor part on the surface
of vascular smooth muscle cells, but not on neurons, astrocytes,
endothelium, microglia, or oligodendroglia.3 When the BBB is
damaged, PDGFRβ is released in CSF from pericytes, but not
from vascular smooth muscle cells, making it a CSF marker–
specific for pericyte injury.4 In studies where AD was diagnosed
not only based on clinical symptoms but also with support of
CSF biomarkers, higher levels of CSF PDGFRβwere associated
with the severity of clinical symptoms and brain vascular
damage.3,5 Furthermore, it has been proposed that CSF
PDGFRβ predicts subsequent cognitive decline in APOE e4
carriers.5,6 We also know that BBB damage increases with age
and that aging is the strongest risk factor for AD dementia.7,8

However, it is still unclear howCSF PDGFRβ relates to aging in
general and aging and key pathologic changes of AD in par-
ticular: Different studies show varying associations of CSF
PDGFRβ with age and Aβ and tau CSF biomarkers.3,5,9,10

Large-scale clinical studies are needed to determine its associ-
ation with aging, fibrillar Aβ and tau aggregates, brain atrophy,
blood flow, as well as neuroinflammation and BBB integrity.

The aim of this article was to determine whether CSF
PDGFRβ is indeed associated with aging and key AD path-
ologic changes (measured with Aβ-PET and tau-PET) and
APOE e4 genotype in the deeply phenotyped BioFINDER-2

cohort. Furthermore, the relationship of CSF PDGFRβ to
MRI measurements of cortical thickness, white matter lesions
(WML), and CBF were studied. Finally, we analyzed the role
of CSF PDGFRβ in the relationship between aging, BBB
dysfunction (measured by CSF/plasma albumin ratio,
QAlb11) and neuroinflammation (i.e., CSF levels of YKL-40
and glial fibrillary acidic protein [GFAP], preferentially
expressed in reactive astrocytes).

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
All participants gave written informed consent. Ethical ap-
proval was given by the Regional Ethical Committee in Lund,
Sweden.

Study Cohort
The cohort included participants from the Swedish
BioFINDER-2 study (NCT03174938). All participants were
recruited at Skåne University Hospital and the Hospital of
Ängelholm, Sweden. The cohort covers the full spectrum of
AD, ranging from adults with intact cognition or subjective
cognitive decline, mild cognitive impairment (MCI), to de-
mentia. The main inclusion criteria, as described previously,12

were to be 40 years and older, being fluent in Swedish, having
Mini-Mental State Examination (MMSE) scores between 27
and 30 for cognitively unimpaired (CU) participants, between
24 and 30 for MCI, and equal to or above 12 for patients with
AD dementia. MCI diagnosis was established if participants
performed below 1.5 SD from norms on at least 1 cognitive
domain from an extensive neuropsychological battery exam-
ining verbal fluency, episodic memory, visuospatial ability, and
attention/executive domains. Patients with AD dementia,
vascular dementia (VaD), behavioral variant of fronto-
temporal dementia (bvFTD), and dementia with Lewy bodies
(DLB) fulfilled the respective criteria of the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition.13 Se-
mantic and nonfluent variants of primary progressive aphasia
(svPPA, nfvPPA) were defined according to the Gorno-
Tempini criteria.14 All patients were genotyped for APOE.
Exclusion criteria included severe somatic disease and current
alcohol/substance misuse. CSF sampling and imaging inves-
tigations were performed at the time of enrollment, in con-
junction with the clinical examination and cognitive tests. The
study was approved by the Regional Ethics Committee in

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; BBB = blood-brain barrier; bvFTD = behavioral variant of frontotemporal dementia;
CBF = cerebral blood flow; CU = cognitively unimpaired; DLB = dementia with Lewy bodies; GFAP = glial fibrillary acidic
protein; MBq = megabecquerel; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; nfvPPA =
nonfluent variant primary progressive aphasia; NVU = neurovascular unit; PBS = phosphate-buffered saline; PDGFRβ =
platelet-derived growth factor β; ROI = region of interest; QAlb = CSF/plasma albumin ratio; SUVR = standardized uptake
value ratio; svPPA = semantic variant primary progressive aphasia; VaD = vascular dementia; WML = white matter lesion.
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Lund, Sweden. All participants gave written informed consent
to participate.

CSF Sampling and Analysis
CSF was collected by lumbar puncture and stored at −80°C in
polypropylene tubes following the Alzheimer’s Association
flow chart for lumbar puncture and CSF sample processing.15

PDGFRβ was measured with the Human Total PDGFRβ
DuoSet IC ELISA (R&D Systems Europe, Abingdon, United
Kingdom) with few adaptations. In brief, the standard curve
followed a 1:3 dilution, starting from 12,000 pg/mL. Capture
antibody was diluted in phosphate-buffered saline (PBS). One
percent MSD Blocker A buffer (cat#R93BA-4; Meso Scale
Diagnostics, Rockville, MD) in PBS was used to dilute stan-
dards and as blocking buffer. Detection antibody and strep-
tavidin were diluted in 20 mMTris, 137 mM sodium chloride,
Tween 0.05%, and 0.1% bovine serum albumin, pH 7.2–7.4.
Interassay variability (coefficient of variation %) measured
over 14 runs was 7.3%. For a detailed description of the
protocol, see supplementary material (eMethods, links.lww.
com/WNL/C795). Aβ42, Aβ40, p-tau181, YKL-40, and
GFAP were measured with NeuroToolKit (Roche Diagnos-
tics International Ltd., Mannheim, Germany). Cutoff for an
Aβ-positive (Aβ+) status was calculated with the Youden in-
dex in the cohort, based on CSF Aβ42/40 (cutoff = 0.08).12

Brain Imaging
Aβ-PET images were acquired on digital GE Discovery MI
scanners 90–110 minutes after the injection of ;185 mega-
becquerel (MBq) [18F]flutemetamol. Standardized uptake
value ratio (SUVR) was calculated with pons as reference
region. For the analysis, Aβ PET measures were considered
both as continuous SUVR and as binarized data using a cutoff
derived from mixture modeling in the BioFINDER-2 cohort
(0.53 SUVR).12 A neocortical meta-region of interest (ROI)
for Aβ-PET (prefrontal, lateral temporal, parietal, anterior
cingulate, and posterior cingulate/precuneus) was calculated,
as previously described.12,16 According to the enrollment
protocol, Aβ-PET was not performed in the dementia group.

Tau-PET images were acquired on digital GE Discovery MI
scanners 70–90 minutes postinjection of ;370 MBq [18F]
RO948. Tau-PET SUVR was created using the inferior cer-
ebellar cortex as the reference region.12 A temporal meta-ROI
for tau-PET (entorhinal cortex, inferior and middle temporal
cortices, fusiform gyrus, parahippocampal cortex, and amyg-
dala) was created, as previously described.17

Structural MRI was performed using a Siemens 3 T MAG-
NETOM Prisma scanner (Siemens Medical Solutions, Erlan-
gen, Germany), with high-resolution T1-weighted anatomic
magnetization-prepared rapid gradient echo images (1-mm
isotropic voxels). T1 images underwent volumetric segmenta-
tion and parcellation using FreeSurfer (version 6.0). Cortical
thickness was measured as the distance from the gray matter-
white matter boundary to the perpendicular pial surface, as
previously described.18 The AD-specific cortical thickness

meta-ROI (AD signature) was measured in regions with
known susceptibility to atrophy in AD (entorhinal, fusiform,
inferior temporal and middle temporal regions), adjusted for
cortical surface area. Automated segmentation of WML using
the LST toolbox implemented in SPM8 generated a total lesion
volume (in milliliters), which was then normalized for in-
tracranial volume, as previously described.19 Total gray matter
CBFwasmeasured in a smaller cohort of participants in the AD
continuum (CU, MCI, AD dementia, n = 392) with arterial
spin labeling, see reference 20 for full method description.

Statistics
Statistical analysis and data visualization were performed with
SPSS version 26 (IBM, Armonk, NY) and R software version
4.2.3. p values <0.05 were considered significant. Group dif-
ferences were assessed in univariate general linear models,
with post hoc least significant difference tests for pairwise
group comparisons. Biomarker values were log10 trans-
formed before this analysis. Linear regression models were
used to determine the associations between aging, bio-
markers, and imaging measures to PDGFRβ and to test for
interaction between variables. For each linear model, partici-
pants were excluded if they had 1 or more missing data in the
variables included in the individual model. Mediation analysis
was performed in SPSS with the PROCESS version 3.5 ex-
tension with a bootstrap method for the CIs of the mediated
effect (n iterations = 5,000). Mediation effect was considered
significant if the 95% CI did not include 0. Unless described
otherwise, analyses were adjusted for age, sex, diagnosis, and
ventricular volume. Numbers after the decimal point were
rounded to the first significant figure.

Data Availability
Anonymized data will be shared by request from any qualified
investigator for the sole purpose of replicating procedures and
results presented in the article and as long as data transfer is in
agreement with EU legislation on the general data protection
regulation.

Results
Study Cohort
The study cohort consisted of 771 participants diagnosed as
CU patients (n = 408), patients with MCI (n = 175), or
patients with dementia (n = 188) (Table 1). Disorders in the
dementia group included AD (n = 124), DLB (n = 28),
bvFTD (n = 13), svPPA (n = 6), nfvPPA (n = 3), and VaD
(n = 14). There were, as expected, significant differences in
age, APOE status, MMSE score, Aβ status, and Aβ-PET and
tau-PET SUVR between the CU, MCI, and dementia groups
(p < 0.001) (Table 1). Men had higher CSF levels of
PDGFRβ (p < 0.001, eFigure 1, links.lww.com/WNL/C795).
There were no differences in CSF concentrations of PDGFRβ
between APOE e4 carriers (1 or 2 alleles) and noncarriers
(p > 0.05; Table 1, eFigure 2). CSF PDGFRβ concentra-
tions did not differ between CU, MCI, and dementia groups
(p > 0.05; eFigure 3A).
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Associations Between PDGFRβ and Age
CSF PDGFRβ was overall significantly associated with age (b =
19.1, β = 0.5, 95%CI 16–22.2, p< 0.001; Figure 1). Therewas an
interaction effect between age and diagnosis on CSF PDGFRβ
(b = 5.3, β = 0.6, 95% CI 0.6–10, p = 0.03), but significant
associations between age and CSF PDGFRβ survived in the
diagnostic subgroups (CU: b = 18.7, β = 0.5, 95% CI 15–22.4,
p < 0.001; MCI: b = 22.2, β = 0.4, 95% CI 13.1–31.2, p < 0.001;
dementia: b = 26.5, β = 0.3, 95% CI 15.3–37.7, p < 0.001).

To better understand the relationship between age and
PDGFRβ, we next studied whether this pericyte injury marker
was associated with other age-related pathologic brain
changes including key AD pathologies (Aβ and tau aggre-
gates), small vessel disease expressed as WMLs, neuro-
inflammation, and BBB dysfunction.

Associations Between PDGFRβ and AD-Related
Pathologic Changes
CSF levels of PDGFRβ did not differ within diagnostic groups
divided according to Aβ status or according to type of de-
mentia (AD and non-AD dementias; p > 0.05 for all pairwise
comparisons; eFigure 3B, links.lww.com/WNL/C795). Fur-
thermore, no associations were observed between CSF
PDGFRβ and Aβ-PET SUVR (n = 553, p > 0.05; Figure 2A)
or between CSF PDGFRβ and tau-PET SUVR (n = 743, p >
0.05; Figure 2B). Finally, the association between age and
CSF PDGFRβ was not weakened when adjusting for Aβ-PET
and tau-PET (n = 544; b = 18.9, β = 0.5, 95% CI 15.2–22.1,
p < 0.001). Interaction between diagnosis and Aβ-PET or tau-
PET had no significant effect on CSF PDGFRβ (p > 0.05).

AssociationsBetweenPDGFRβ andMRIMeasures
There were no associations between CSF PDGFRβ and cor-
tical thickness in the temporal AD signature regions (n = 749,

p > 0.05; Figure 2C). The WML volume (n = 693, Figure 2D)
and total gray matter CBF (n = 392) were not associated with the
CSF levels of PDGFRβ (p > 0.05). The group sizes of the smaller
cohort that underwent CBF analysis were consistent with those of
the whole cohort (CU: n = 236 vs 408 in the whole cohort; MCI:
n = 84 vs 175; dementia: n = 72 vs 188). Interaction between
diagnosis and measures of cortical thickness, WML volume, or
CBF had no significant effect on CSF PDGFRβ (p > 0.05).

Associations Between PDGFRβ and Markers of
BBB Dysfunction and Neuroinflammation
CSF PDGFRβ was overall associated to the CSF/plasma al-
bumin ratio (QAlb) (n = 738, b = 37.4, β = 0.2, 95% CI
24.9–49.9, p < 0.001; Figure 3A). There was a significant
interaction effect between QAlb and diagnosis on the levels of
CSF PDGFRβ (b = −25.2, β = −0.3, 95%CI −48.5 to −1.9, p =
0.002). Association with QAlb was not significant in the de-
mentia subgroup (p > 0.05). CSF PDGFRβ levels also showed
overall strong associations to the neuroinflammatory markers
YKL-40 (n = 729, b = 3.4, β = 0.5, 95% CI 2.8–3.9, p < 0.001;
Figure 3B) and GFAP (n = 732, b = 27.4, β = 0.4, 95% CI
20.9–33.9, p < 0.001; Figure 3C). The effect of the interaction
between inflammatory markers and diagnosis on CSF
PDGFRβ was not significant (p > 0.05).

Analysis of the Effects of Age on BBB
Dysfunction Mediated by PDGFRβ-Related
Changes and Neuroinflammation
Because age, CSF PDGFRβ, and CSF markers reflecting
neuroinflammation (YKL-40, GFAP) were associated with
QAlb (eTable 1, links.lww.com/WNL/C795) and R2 for the
models with combined effects of predictors was higher
than that for individual effects (eTable 2), we performed a
sequential statistical mediation analysis to determine whether
neuroinflammation and pericyte damage affect the relationship

Table 1 Characteristics of the Study Cohort

CU MCI Dementia p Value

N 408 175 188

Mean age (min–max) 62.8 (20–88) 69.9 (43–84) 70.4 (52–87) <0.001a

Sex, % male 46.6 53.7 54.3 0.1b

At least 1 APOE «4 allele, % 42.4 51.4 59 <0.001b

MMSE score, mean 29 26.9 21.1 <0.001a

Aβ-PET (SUVR), mean 0.5 0.7 0.8 <0.001a

Aβ+ status (based on Aβ-PET), % positive 20.3 58.1 75 <0.001b

Aβ+ status (based on CSF Aβ42/40), % positive 21.1 57.5 80 <0.001b

Tau-PET (SUVR), mean 1.2 1.3 1.8 <0.001a

CSF PDGFRβ, pg/mL, mean 1,719.7 1,754.4 1,847.8 0.06a

Abbreviations: Aβ = β-amyloid; ANOVA = analysis of variance; CU = cognitively unimpaired; MCI = mild cognitive impairment; MMSE = Mini-Mental State
Examination; PDGFRβ = platelet-derived growth factor β; SUVR = standardized uptake value ratio.
p Values for differences between diagnostic groups were measured with aANOVA or bχ2 tests.
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between age and QAlb. We observed that CSF PDGFRβ fully
mediated the effect of YKL-40 on QAlb (b = 0.01, β = 0.05,
95% CI 0.01–0.02, p < 0.05; sequential mediation shown by
blue arrows in Figure 4A) because direct effect of YKL-40 on
QAlb was not significant (p > 0.05, red arrows in Figure 4A).
The indirect mediation effect of CSF PDGFRβ accounted for
16.6% of the total effect (b = 0.01, β = 0.02, 95%CI 0.002–0.01,
p < 0.05; green arrows in Figure 4A). The indirect mediation
effect of GFAP on QAlb accounted for 33.3% of the total effect
(b = 0.02; β = 0.08, 95% CI 0.01–0.04, p < 0.05; red arrows in
Figure 4B). In this model, CSF PDGFRβ showed a similar-
sized (16.6%) indirect mediation effect on the total effect of age
onQAlb (b = 0.01, β = 0.04, 95% CI 0.01–0.02, p < 0.05; green
arrows in Figure 4B). When considering the mediators in-
dividually (not corrected for each other in the same model),
they all showed a significant mediation of the effects of age on
QAlb (b = 0.2–0.03, β = 0.1, p < 0.001), accounting for
33%–50% of the total effect (eFigure 4, A–C).

Discussion
In this study, we have consistently shown that CSF PDGFRβ, a
pericyte-specific marker, increases with age and is associated to
BBB dysfunction (as measured by QAlb) and glial activation/
neuroinflammation (CSF YKL-40 and GFAP). We also found

that both age and the glial biomarkers are associated withQAlb.
Interestingly, the effects of age on the BBB integrity were
partially mediated by pericyte damage and neuroinflammation.
CSF PDGFRβ was not related to other age-related pathologies
such as AD pathologic changes, as reflected by the lack of
association with APOE e4 genotype or with accumulation Aβ
and tau aggregates as measured with PET imaging. Levels of
CSF PDGFRβ were also not related to presence of WML or
changes in CBF.

Aging is associated with morphological and functional
changes in BBB, and preclinical evidence indicates that age-
related pericyte degeneration and reduced pericyte coverage
could cause BBB breakdown, impairment of protein trans-
cytosis, vascular damage, and alterations in blood flow
(reviewed in references 7, 21). Although a previous study in
living people indicated that BBB integrity loss (measured at
dynamic contrast-enhanced MRI [DCE-MRI]) was age-
dependent and correlated with CSF levels of PDGFRβ levels,
overall investigations in clinical cohorts are few, biased by a
small sample size and often reporting conflicting results.22 For
instance, some (but not all) studies have shown correlations
of PDGFRβ with age as well as with QAlb.3,5,9,10,22,23 Here we
report that in a large cohort of well-characterized participants,
older age was consistently associated with higher CSF levels of
PDGFRβ and that the association was unaffected by clinical
diagnosis and possible concomitant AD pathology. QAlb was
also consistently associated with PDGFRβ in CU and MCI
and at whole cohort level, with the exception of the dementia
subgroup. Taken together, these findings provide support that
age-related pericyte injury is associated with BBB dysfunction
and not with AD pathology.

Aging also increases the neuroinflammatory activity in as-
trocytes, and astrocytic processes directly connect to the BBB
in the NVU (reviewed in references 7, 21, 24). Pericytes
themselves can both respond to and themselves secrete in-
flammatory cytokines, sustaining the local inflammation in the
NVU and contributing to BBB disruption.25-27 Our study
investigated the effect of the complex relationship between
age, neuroinflammation, and pericyte damage on the integrity
of the BBB in a large clinical cohort. Although we cannot
prove causality through statistical mediation analysis, we lift
the hypothesis that both neuroinflammation (as partly
reflected by the astrocytic markers YKL-40 and GFAP) and
pericyte damage mediate the effects of age on the BBB. We
also propose a model where age triggers increase in neuro-
inflammation and pericyte damage, which are both involved in
the disruption of the BBB. Furthermore, we suggest that,
based on their individual and combined effects, neuro-
inflammation and pericyte damage interact in the disruption
of the NVU.

In contrast to our findings, increases in CSF PDGFRβ con-
centrations have been observed in AD defined clinically or by
A/T/N classification.3,9,10,22,28 The lack of association be-
tween CSF PDGFRβ and Aβ status and Aβ or tau biomarkers

Figure 1 Scatter-Dot Plot Representing the Correlation
Between CSF PDGFRβ and Age in the Whole
Sample (n = 771)

CU participants, participants with MCI, and participants with dementia
shown in blue, green, and red, respectively. Regression line with 95% CIs is
not adjusted for covariates. CU = cognitively unimpaired; MCI = mild cog-
nitive impairment; PDGFRβ = platelet-derived growth factor β.
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was observed previously,3,5,9,10,22 although 1 study showed
that Aβ burden modulated the association of PDGFRβ with
tau-PET.29 Other authors also did not find an association
between PDGFRβ and small vessel disease in cerebral amy-
loid angiopathy participants.9 The existing literature has im-
portant differences from our study that need to be considered.
Ours is the largest PDGFRβ clinical study to date and was
conducted in a cohort characterized with not only CSF but
also imagingmeasures. Previously, clinical groups weremostly

defined based on clinical diagnosis, and the only differences in
CSF PDGFRβ in groups defined by biomarkers were between
A+/T+/N+ and A−/T−/N− (i.e., a difference was only seen
when amyloid, tau, and neurodegeneration CSF biomarkers
were pathologic, but not when only core AD biomarkers were
abnormal) or within cohorts defined by A/T/N that only
included preclinical AD.3,5,9,10,22 Most importantly, this is one
of the few and the largest study using PET imaging and not
only CSF biomarkers. PET imaging accurately defines the

Figure 2 CSF PDGFRβ and AD Imaging Measures

Scatter-dot plot representing the correlation between CSF PDGFRβ and Aβ-PET SUVR in the neocortical meta-ROI (A), tau-PET SUVR in the temporal meta-ROI
(B), weighted cortical thickness in the AD signature meta-ROI (entorhinal, fusiform, inferior temporal, and middle temporal) (C), and volume of white matter
lesions (D) in the whole sample. CU participants, participants with MCI, and participants with dementia shown in blue, green, and red, respectively. According
to the study protocol, Aβ-PETwas not performed in participants with dementia. Regression lines with 95%CIs are not adjusted for covariates. Aβ = β-amyloid;
AD = Alzheimer disease; CU = cognitively unimpaired; MCI = mild cognitive impairment; PDGFRβ = platelet-derived growth factor β; ROI = region of interest;
SUVR = standardized uptake value ratio.
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load of the core AD pathologic changes, that is, the amount
and spread of insoluble Aβ and tau aggregates, which is not
influenced by possible CSF dynamics that can affect bio-
marker concentration.30,31 Method-wise, some of these
studies used a western blot method for detection of PDGFRβ
in CSF instead of ELISA, which might have led to lower
accuracy in the measurements.5,6,22,29 The studies where
ELISA was used had a smaller sample size than ours.3,9,10,23 In
the only study that compared the Western blot and ELISA
methods in parallel, the authors suggest that the 2 techniques

measure different species of PDGFRβ, which might have led
to discrepancies in the results between different studies.9

Another possible limitation of the study is the use of QAlb to
measure integrity of the BBB, which raised questions on
whether this is the best method.32 QAlb has been shown to
perform satisfactorily in this sense, especially in dementia
studies11,33; however, more sensitive methods for detecting
BBB dysfunction using MRI neuroimaging have been used in
other studies,34 showing that BBB permeability is affected
differently by AD pathology and cardiovascular risk factors.

Figure 3 Scatter-Dot Plot Representing the Correlation Between CSF PDGFRβ and the CSF/Plasma Albumin Ratio (QAlb, A),
YKL-40 (B), and GFAP (C)

CUparticipants, participantswithMCI, and participantswith dementia shown in blue, green, and red, respectively. Regression lineswith 95%CIs are not adjusted
for covariates. CU = cognitively unimpaired; GFAP = glial fibrillary acidic protein; MCI = mild cognitive impairment; PDGFRβ = platelet-derived growth factor β.
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This warrants adjustment for cardiovascular risk scores in
future studies.

Despite convincing evidence of the interplay between age,
pericyte injury, neuroinflammation, and BBB damage, the
actual extent of their role in aging and disease remains unclear.
Targeted longitudinal studies in clinical cohorts and in vivo
models are needed to confirm these observations and in-
vestigate the relationship between microglia, pericytes, and
BBB in the aging brain.

In conclusion, we observed that the levels of CSF PDGFRβ
increase with age and are associated with neuroinflammation
and BBB dysfunction, but not with other age-related pathol-
ogies such as AD pathologic changes or WMLs. We also

propose that pericyte damage partially mediates the disruptive
effects of age on the BBB, together with neuroinflammation.
Further studies are however needed to clarify the role of
pericyte injury in aging, BBB dysfunction, and neurodegen-
erative diseases.
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33. Skillbäck T, Delsing L, Synnergren J, et al. CSF/serum albumin ratio in dementias: a
cross-sectional study on 1861 patients. Neurobiol Aging. 2017;59:1-9.

34. Lin Z, Sur S, Liu P, et al. Blood–brain barrier breakdown in relationship to Alzheimer
and vascular disease. Ann Neurol. 2021;90(2):227-238.

Appendix (continued)

Name Location Contribution

Sebastian
Palmqvist,
MD, PhD

Clinical Memory Research
Unit, Department of Clinical
Sciences, Lund University;
Memory Clinic, Skåne
University Hospital, Malmö,
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