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ABSTRACT This paper proposes a memory-efficient deep neural network (DNN) framework-based sym-
bol level precoding (SLP). We focus on a DNN with realistic finite precision weights and adopt an
unsupervised deep learning (DL) based SLP model (SLP-DNet). We apply a stochastic quantization
(SQ) technique to obtain its corresponding quantized version called SLP-SQDNet. The proposed scheme
offers a scalable performance vs memory trade-off, by quantizing a scalable percentage of the DNN
weights, and we explore binary and ternary quantizations. Our results show that while SLP-DNet pro-
vides near-optimal performance, its quantized versions through SQ yield ∼ 3.46× and ∼ 2.64× model
compression for binary-based and ternary-based SLP-SQDNets, respectively. We also find that our pro-
posals offer ∼ 20× and ∼ 10× computational complexity reductions compared to SLP optimization-based
and SLP-DNet, respectively.

INDEX TERMS Symbol-level-precoding, constructive interference, power minimization, deep neural
networks (DNNs), stochastic quantization (SQ).

I. INTRODUCTION

PRECODING using the known channel state information
(CSI) at the transmitter has been proven to be an

efficient interference management technique in a downlink
multiuser multiple-input-single-output (MU-MISO) commu-
nication system [1], [2]. The precoding also enables many
complex signal processing at the base station (BS), which
simplifies users’ terminals. Classical block-level precoding
(BLP) schemes, where the precoding coefficients are applied
across a block of symbols (codewords), have proven to
be less computationally expensive than the optimal dirty
paper coding (DPC) but suffer performance degradation [3],
[4]. Masouros and Alsusa [5] first proposed a method
for classifying instantaneous interference into construc-
tive and destructive. The suboptimal precoding strategies
that exploit constructive interference (CI) were first intro-
duced [6]. Precoding methods based on optimization are
appealing because of their amenability to achieve various
performance targets. An optimization-based CI precoding

was first introduced using a quadratic optimization strategy
in light of vector perturbation precoding [7].

To further improve the performance, a precoding design
termed symbol-level-precoding (SLP) that exploits the
multiuser interference via CI with the known CSI and trans-
forms it into useful power at the mobile user end has
received a lot of attention [8], [9], [10], [11], [12]. The CI-
based solution is suitable for practical implementation and
has proven that massive multiple-input-multiple-output (m-
MIMO) systems can take advantage of the CI with SLP [13],
[14], [15]. The idea of CI combined with optimization has
been applied in many wireless physical layer designs due
to its performance gains over BLP schemes to achieve dif-
ferent objectives, such as transmit power minimization and
SINR balancing problems [16], [17], [18], [19], [20], [21].
A closed-form precoding design with optimal performance
for a CI exploitation in the MISO downlink for optimization
with both strict and relaxed phase rotations was proposed in
[20], [22]. While CI-based precoding methods offer superior
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performance, computing them online on a symbol-by-symbol
basis can be computationally demanding.
As a result of the proliferation of machine learning

algorithms, the model-driven deep learning (DL) technique
that exploits the expert’s knowledge has been applied in
many wireless communication problems due to its expli-
cability, reliability, and low computational complexity [23],
[24], [25]. Therefore, DL-based precoding designs that use
domain knowledge have been recently proposed for MU-
MISO downlink transmission [26], [27], [28]. However, the
drawback of such methods is that the optimization con-
straints are not directly integrated with the loss function.
Furthermore, their performance is bounded by the assump-
tions and accuracy of the optimal solutions obtained from
the optimization algorithm. An unsupervised deep unfold-
ing precoding design termed “SLP-DNet" [29] that utilizes
the specifics of the optimization objectives of the precoding
problem has been proposed to address these issues and will
be used as our benchmark in this work.
Typically, a DL model contains thousands or even millions

of learnable parameters, usually stored in a 32-bit floating-
point (FP32) numerical presentation, making the model
computationally and memory demanding during inference
and deployment. To facilitate the online training and deploy-
ment of a trained DL model at the device edge, light-weight
deep neural network (DNN) designs with lower-precision
numerical formats have gained significant attention within
the deep learning community, typically applied to image
processing applications [30], [31], [32], [33]. However, this
concept has not been fully explored in wireless commu-
nications. Moreover, the learning technique for traditional
precoding and the SLP designs reported in the literature
assume ideal neural network implementations and have
unquantized weights and activations. Accordingly, those
implementations would not apply to the practical scenar-
ios considered in this work with few-bit representations and
memory constraints. In this work, we propose a DL model’s
structural simplification method through weights quantiza-
tion for SLP design. We present a first attempt to address the
potential application of such learning-based SLP approaches
and consider a low-bit neural network design approach to
the SLP for the power minimization problem. We adopt the
DL-based SLP model (SLP-DNet) introduced in [29]. Our
contributions are summarized below:

• We propose a memory and complexity efficient DNN
approach, applied to the learning-based precoding
framework (SLP-DNet) [29]. Specifically, we propose
an efficient model simplification via weights com-
pression to accelerate both training and inference and
facilitate deployment on the device edge.

• We devise a scalable trade-off between performance and
inference complexity, by allowing a percentage of the
DNN weights to be quantized, while retaining impor-
tant weights in full-precision. By tuning the percentage
of quantised weights, a scalable trade-off between

performance and complexity / memory efficiency is
achieved.

• We further introduce a stochastic quantization (SQ)
technique that uses the quantization error to alleviate
the loss in performance caused by the nonhomoge-
nous quantization errors of the conventional extreme
quantization (binary and ternary). In the SQ technique,
a fraction of the neural network (NN) weight matrix
is quantized to lower resolution while the remain-
ing is retained in its full-precision, resulting in a
hybrid quantized weight matrix. The technique yields
a memory-efficient DL-based SLP model with a good
balance between the performance and the computational
complexity.

It should be emphasized the SLP methods are suitable
in high interference situations, where the communication
standards use lower modulation schemes, such as binary
phase-shift keying (BPSK) and quadrature phase-shift key-
ing (QPSK), to guarantee reliability [34]. However, QPSK
is used in our experimental simulation due to its robustness
to noise, compatibility with higher-order modulations, and
practical applicability compared to BPSK. Additionally, con-
stant envelope modulation, such as phase-shift keying (PSK),
has become increasingly important due to the recent emer-
gence of large-scale MIMO systems [35]. For example, it is
possible to use QPSK to transmit eight bits of information
per symbol using 8PSK.
The remainder of the paper is structured as follows:

System model and the review of the relevant precoding tech-
niques are presented in Section II. We introduce a technique
of designing compressed unsupervised learning-based SLP
schemes in Section IV. Simulations and results are presented
in Section V. Finally, Section VI concludes the paper.
Notations: We use bold uppercase symbols for matrices,

bold lowercase symbols for vectors and lowercase symbols
for scalars. Operators ‖·‖2, ‖·‖1 and | · | denote l2-norm,
l1-norm and absolute values, respectively. The symbol �i

represents the i-th trainable parameter associated with DNN
layers. Re{·} and Im{·} represent real and imaginary parts
of complex vector/matrix, respectively. Finally, notations
L(·) and D(·) are used for the loss and parameter update
functions, respectively.

II. SYSTEM MODEL AND SYMBOL LEVEL PRECODING
A. SYSTEM MODEL
Consider an MU-MISO downlink transmission in a single
cell scenario where an M-antenna base BS serves K single-
antenna users. The data is transmitted to the users over flat-
fading Rayleigh channel denoted by hi ∈ C

M×1, and the
received signal at the i-th user is expressed as

yi = hHi

K∑

k=1

ukej(φk−φi)si + ni, (1)

where hi, uk, ni represent the channel vector, precoding
vector and additive white Gaussian noise of the i-th user.
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FIGURE 1. Generic geometrical optimization regions for interference
exploitation [9].

Therefore, based on the received signal, it can be shown that
an SLP power minimization problem is expressed as [9]

min{ui}

∥∥∥∥∥

K∑

k=1

ukej(φk−φ1)

∥∥∥∥∥

2

2

s.t.

∣∣∣∣∣Im
(
hHi

K∑

k=1

ukej(φk−φi)

)∣∣∣∣∣ ≤
(
Re

(
hHi

K∑

k=1

wke
j(φk−φi)

)
−√

�iv0

)
tanθ, ∀i. (2)

where xIm = Im(hHi
∑K

k=1 uke
j(φk−φi)) and xRe =

Re(hHi
∑K

k=1 uke
j(φk−φi)).

B. SYMBOL LEVEL PRECODING POWER MINIMIZATION
The CI precoding scheme enhances the symbol detection
by pushing the received signals away from the constellation
detection boundaries without consuming extra transmission
power [9]. As an illustration, Fig. 1 shows a symbolic
example representing the constellation point 1 + j in the
QPSK. The green shaded area depicts the constructive region
of the constellation based on the least distance (χ) from
the decision boundaries, whose value is determined by
the SNR constraints. This allows the interfering signals to
align with the symbol of interest constructively through
precoding vectors. We can observe that if the maximum
angle shift in the CI region is zero, the interfering signals
overlap entirely on the signal of interest (θ = 0), then the
problem reduces to a strict phase angle optimization. It is
important to note that the strict phase formulation is not
appealing because it yields an increase in the transmission
power compared to the corresponding relaxed version [21].
For simplicity, the following are defined according to [9];
h̃i = hiej(φ1−φi) ∈ C

M×1, u = ∑K
k=1 uke

j(φk−φ1) ∈ C
M×1,

h̃Ri = Re(h̃i), h̃Ii = Im(h̃i), uR = Re(u) and uI = Im(u).
Similarly, we also let �i = [

h̃Ri; h̃Ii
]
, u1 = [uR − uI]T ;

where ϒ =
[
OM −IM
IM OM

]
∈ R

2M×2M. For the details and

rational of the above definitions, the reader is referred to [6].
The channel matrix can be written as H̃ = [h̃1, . . . , h̃K].
Therefore, for an M-phase shift keying (M-PSK) modulation
scheme, where M is the modulation index, the optimization-
based SLP for a nonrobust multicast power minimization is
given by [9]

min{u1}
‖u1‖2

2

s.t. ā ≤ �T
i ϒu1 ≤ b̄ , ∀i. (3)

where ā = −(�T
i ϒu1 − √

�in0)tanθ and b̄ = (�T
i ϒu1 −√

�in0)tanθ , �i is the target SINR, θ = ± π
M

is the maximum
phase shift in the CI region.
To avoid repetition, we refer the reader to [9], [29] for

details and the description of equivalent robust formulations
under channel uncertainty.

C. LEARNING-BASED SLP FOR POWER
MINIMIZATION (SLP-DNET)
This work is based on the unsupervised deep unfolding
framework that unfolds the interior point method (IPM) ‘log’
barrier function [36] based on the problem (3) by reformulat-
ing it as unconstrained subproblems per user. For simplicity,
we drop the i-th subscript, and the unconstrained problem is

min
u1∈R2M×1

f (u1) + υB(u1), (4)

where f (u1) is the objective function of (3), B(u1) �
−∑t

i=1 ln (gi(u1)) is the logarithmic barrier function, t is
the number of inequality constraints and υ is the Lagrangian
multiplier related to the inequality constraints. Since (3) has
only one inequality constraint, the function, gi(u1) is defined
as g(u1) = (�T

i u1 − √
�in0)tanθ − |�T

i ϒu1|.
To derive the learning architecture based on an IPM, we

define a proximity barrier of (4) as

proxγ υB(u0) = argmin
u1∈R2M×1

1

2
‖u0 − u1‖

2

2
+ γ υB(u1), (5)

u0 is the initial precoding vector and γ > 0 is the training
step size. The precoding vector for every l-th iteration is
obtained from the following learning update rule

u[l+1]
1 = proxγ [l]υ[l]B

(
u[l]

1 − γ [l]	H(u[l]
1 , λ[l])

)
, (6)

where H(u[l]
1 , λ[l]) = ‖u1‖2

2 + λu1, and 	H(u[l]
1 , λ[l]) =

∂H(u[l]
1 ,λ[l])

∂u[l]
1

. The parameter, λ is introduced as an additional

constraint to provide more stability to the learning architec-
ture. Intuitively, NN cascade layers can be formed from (6)
as follows

u[l+1]
1 = proxγ [l]υ[l]B

[(
I2M − 2γ [l]

)
u[r]

1 − γ [l]λ[l]1T
]
, (7)

where 1 ∈ R
1×2M is a vector of ones. By letting Wl = I2M−

2γ [l], bl = −γ [l]λ[l]1T and �l = proxγ [l]υ[l]B, the l-layer
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FIGURE 2. Learning-based symbol level precoding (SLP-DNet) Architecture [29].

network L[l−1] · · ·L[0] will correspond to the following

�0(W0 + b0), . . . ,�l(Wl + bl) (8)

where Wl and bl are described as weight and bias parameters
respectively. The nonlinear activation functions are defined
by �l. The SLP-DNet structure as shown in Fig. 2 is built
based on (7) and the Algorithms 1 and 2 described in [29].

As shown in Fig. 2, SLP-DNet has two main units; the
parameter update module (PUM) and the auxiliary process-
ing module (APM). The PUM has three core components
associated with Lagrangian multiplier (υ), the auxiliary
parameter (λ), and the training step-size (γ ), which are
updated based on (6) are also defined by D(u1,υ, γ, λ). The
structure that is related to the inequality constraint in (3) is
the proximity barrier term. It is constructed with one con-
volutional layer, an average pooling layer, a fully connected
layer, and a Soft-Plus layer to constrain the output to a
positive real value to satisfy the inequality constraint. The
unfolded learning architecture comprises three main param-
eters that form each learning block for computing υ, λ and
γ . These parameters are first initialized randomly such that
υ > 0, λ > 0 and γ > 0, and updated iteratively in each
block simultaneously using gradient descent (GD) according
to the update rule in [29, Algorithm 1].
The loss function over N batch training samples (batch

size or the number of channel realization) is Lagrangian
function expressed as

L(u1,υ1, υ2) = 1

N

N∑

i=1

‖u1‖2
2

+ 1

N

N∑

i=1

(
υ1

(
�T
i ϒu1 − �T

i u1tanθ +√
�in0

))

− 1

N

N∑

i=1

(
υ2

(
�T
i ϒu1 + �T

i u1tanθ −√
�in0

))

+ μ

NL

N∑

i=1

L∑

l=1

‖�l‖2
2, (9)

where �i are the trainable parameters of the l-th layers
associated with the weights and biases, and μ > 0 is the
penalty parameter that controls the bias and variance of the
trainable coefficients. The optimal precoder is obtained from
the Lagrangian function (9) as

u1 =
(
υT1 + υT2

)·�itanθ − (
υT1 − υT2

)·ϒT�i tan θ

2
. (10)

D. ROBUST SLP-DNET
The exact CSI is usually not known in practice. Therefore,
an ellipsoid ξ is often considered to model the user’s actual
channel in the uncertainty region such that the channel error
is within it [37]. By considering the ellipsoid ξ , the actual
channel can be expressed as ĥi = h̃i+ ẽi ∀k, where h̃i is the
known CSI at the BS and ẽi is the channel error. The model
of the uncertainty ellipsoid with the center ĥi is thus [9]

ξ =
{
h̃i + ẽi|‖ẽi≤1‖

}
, (11)

where the channel error is given by {ẽi : ‖ẽi‖2
2 ≤ ς2

i } bounded
by ς2

i . Based on this, the multi-cast CI power minimization
problem for the worst-case CSI error is given by

min{u} ‖u‖2
2

s.t.
∣∣∣Im
(
ĥTi u

)∣∣∣−
(
Re
(
ĥTi u

)
−√

�in0

)
tanθ ≤ 0,

∀‖ẽi‖2
2 ≤ ς2

i , ∀i. (12)
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To guarantee the constraint in (12) is satisfied, it is modified
to yield the robust SLP as follows [9]

min{u2}
‖u2‖2

2

s.t. �TQ1u2 + ς‖Q1u2‖2 +√
�n0tanθ ≤ 0 ∀i (13)

�TQ2u2 + ς‖Q2u2‖2 +√
�n0tanθ ≤ 0 ∀i.

In a similar fashion to the nonrobust SLP-DNet, we can
derive a CSI-robust SLP-DNet from the robust SLP for-
mulation under worst-case CSI-error. For convenience, we
introduce new notations as follows: Q1 = (ϒ−I2Mtanθ) and
Q2 = (ϒ + I2Mtanθ) and ς2 is the CSI error bound. (13)
is a second order cone programming (SOCP) and can be
solved using convex optimization software package.
It is important to note that the structure of the robust SLP-

DNet is obtained by following similar steps from (4)-(6) of
Section II-C by transforming (13) to its equivalent unfolded
IPM ‘log’ barrier form. The loss function is obtained from
the Lagrangian of (13) as

Lrobust(u2, υ1, υ2) = 1

N

N∑

i=1

‖u2‖2
2 +

υ1

N

N∑

i=1

(
ς2‖Q1u2‖2

2 −
(√

�n0tanθ − �TQ1u2

)2
)

+υ2

N

N∑

i=1

(
ς2‖Q2u2‖2

2 −
(√

�n0tanθ − �TQ2u2

)2
)

+ μ

NL

N∑

i=1

L∑

i=1

‖�i‖2
2. (14)

where
[‖Q1‖2

2 ‖Q2‖2
2

] = q̄norm,
[
Q1 Q2

] = Q̃ and[
υ1 υ2

] = υ̃.
The optimal precoder can be easily obtained from (14)

u2 = −�Q̃υ̃TX−1
√

�n0tanθ, (15)

where X = (I2M + q̃normυ̃T(ς2 − �T�)). Note that the
Lagrange multipliers υ1 and υ2 are associated with the
barrier term and are randomly initialized from a uniform
distribution.

III. PRELIMINARIES OF NN WEIGHT QUANTIZATION
Traditionally, DNN is designed with full-precision weights
and activations. This can result in significant memory con-
sumption and computational complexity. For this reason,
there has been a recent drive to reduce the DNN model
size [30]. DNN acceleration techniques can be broadly classi-
fied into three categories: structured simplification [38], opti-
mized implementation [39] and quantization [30]. Among
them, quantization is most appealing because, most multiply-
accumulate (MAC) operations required to compute the
neurons’ weighted sums are replaced by simple binary
operations (bit-wise or XNOR operations). Quantization
improves both training and inference efficiencies; and

reduces hardware requirements during model deployment on
the edged-devices.
Typically, the weights of l-th layer DNN architecture

are represented by Wl = {Wi, . . . , Wm} for ∀ i =
1, . . . ,m, where m is the number of kernels/filters (output
channels) [31].

1) BINARY WEIGHTS

The full-precision weights are converted to (Bw ∈
{+1,−1}n). A full-precision 32-bit weight matrix is bina-
rized as follows [40]

Bw = sign(W) =
{+1 if W ≥ 0

−1 otherwise,
(16)

A more robust binarized weight “BWN" is proposed as
an extension of a straightforward binary network (Binary
Connect) by introducing a real scaling factor β ∈ R

+ such
that W ≈ βBw by solving an optimization problem [31]

J(Bw, β) = argmin
(β)

‖W − βBw‖2
2, (17)

and this yields

β∗ = 1

n
‖W‖1. (18)

2) TERNARY WEIGHTS

A ternary weighted network (TWN) is the one in which an
extra 0 state is introduced into BWN to solve the following
optimization problem [41]

{
β∗,B∗

W = argmin
β, Bw

J(β, Bw ) = ‖W − βBw‖2
2

s.t. β ≥ 0, Bw ∈ {−1, 0, +1}n,
(19)

and solving (19) gives

B∗
w =

⎧
⎨

⎩

+1, if W > δ

0, if |W| ≤ δ

−1, if W < −δ,

(20)

where δ = 0.7
n

n∑
i=1

|W| and β∗ = 1
Iδ

∑
i∈Iδ

|W|, Iδ = {|W| > δ}
is the cardinality of set Iδ .

IV. PROPOSED LOW-BIT SLP-DNET DESIGN
A. LOW-BIT WEIGHTS AND STOCHASTIC DIVISION
The existing works on low-bit DNNs design focus only on
reducing the bit-widths of the weights and activations to
speed up the training and inference times and also improve
memory efficiency. However, in low-bit DNNs designs, the
impact of quantization on the performance of the learning
algorithm has not been fully explored and understood. In this
work, we adopt a quantization technique proposed in [33]
and propose a simple linear probability function of selecting
the filter weights to be quantized for designing a low-bit
scalable learning-based precoder. The weight matrix of each
layer of the DNN can be expressed as: W = {W1, . . . ,Wn}.
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FIGURE 3. Stochastic quantization weight matrix partitioning procedure.

Here, the rows of the weight matrix are partitioned into two
parts according to the following

W = {Wq, Wf }, (21)

where Wq = {Wq1, . . . , WqM} and Wf = {Wf1, . . . , WfN}
represent the quantized and unquantized parts of the
weight respectively, and should satisfy the condition
below

W = Wq ∪ Wf and Wq ∩ Wf = ∅. (22)

As seen from (21), one subset of the weight Wq is quantized
to a low bit while the remaining Wf is kept in its full-
precision form, so that the entire weights matrix is composed
of both binary and floating-point values. It is important to
note that bias is also quantized as the weight, but it is not
related to any input tensor (i.e., it is not used for weight-
input computations). Therefore, the selection of the fraction
of the filter weight to be quantized does not include the bias
because the predominant computation involves a convolution
operation between the filter weight and the input tensor. Note
that a fully quantized DNN can be obtained by setting Wf

to a null set.
Suppose rsq is the quantization ratio (QR) (i.e., the per-

centage of weights quantized as a fraction of the total weights
in the DNN), and n is the length of the weight matrix
(number of elements), the number of elements in the quan-
tization group is Mq = rsqn while that of unquantized part
is Mf = (1 − rsq)n. The QR is gradually increased to 100%
until the entire network is finally quantized. We assign a
probability pr ∈ R

n to each row of the matrix W, where
each value of pri in pr represents the likelihood that the cor-
responding i-th row will be quantized. To select the channel
to be quantized, we adopt a lottery disc algorithm as in [33].
It can be observed in Fig. 3 that each sector of the disc rep-
resents a probability of selecting a channel (row of weight
matrix). The disc is rotated by choosing a value from the
uniform distribution whose magnitude is slightly above the
probability value. After every selection, the probability is
reset (i.e., pri = 0) to ensure that a channel is selected
without replacement as summarized in Algorithm 1.

Algorithm 1 Circular Lottery Algorithm for Weight Matrix
Division
Input: rsq Stochastic Quantization ratio and Weight matrix

(W)

Output: Wq and Wf

1: Initialization:
Wq = Wr = ∅

2: Compute QP function pr ∈ R
n∀i {i = 1, · · · , n} based

on (23)
3: Mq = rsqn
4: for j = 1 to Mq do
5: p̂r = pr

‖pr‖1
(normalized probability)

6: Select a random value ϑj ∈ {0, 1} from a random
uniform distribution

7: Set sj = 0 and i = 0, sj gathers the normalized
probability p̂r

8: while sj < ϑj do
9: i = i+ 1

10: sj = sj + p̂ri; p̂ri is the i-th member in p̂ri
11: end while
12: Compute: Wq = Wq ∪ {W}; shows Wq is the subset

of W
13: Reset pri = 0 {This is to avoid i-th channel weight

from being selected again}
14: Compute: Wr = W \ Wq (complement of Wq)

15: end for

B. QUANTIZATION ERROR AND QUANTIZATION
PROBABILITY
Recall that classical binarized DNNs suffer a significant
performance loss due heterogeneous nature of the quanti-
zation error (QE) over the entire network. The performance
can, however, be improved by stochastically selecting the
filter or channel weight matrix to be quantized using a ran-
dom probability distribution based on the QE between the
full-precision and quantized weights as follows

ej =
∥∥∥Wj − Q∗

j

∥∥∥
1∥∥Wj

∥∥ ; (23)

where Q∗
j could be binary or ternary based on (18) or (20).
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We define the vector of the n-th row weight matrix of a
given layer as e = [e1, . . . , en]. The quantization probabil-
ity is formulated such that a higher probability is assigned
to filter/weights if the quantization error is small because
quantizing these weights does not yield a significant loss
of accuracy or performance. For a given weight matrix,
QR, and quantization probability (QP), a channel is ran-
domly sampled without replacement using a circular lottery
Algorithm 1. From this, we can observe that the QP function
is inversely proportional to QE and is defined as fp = 1

e+δ
,

where δ = 10−6 to avoid possible numerical overflow. The
QP function is monotonically non-increasing to prioritize the
selection of the channels/weights to be quantized. Different
monotonically non-increasing functions are:

• Uniform function: pri = 1
n , n is the number of the

neurons or length of the rows of each layer weight
matrix.

• Linear function: pri = fpi∑
i fpj

.

• Half-Gaussian function: pri =
√

2
σ
√

π
exp

(−f 2
pi

2σ 2

)
.

• Softmax function: pri = exp(fpi )∑
i exp(fpi )

.

The simplest of these QP functions is uniform or constant
function but is not appealing because it is independent of the
QE and therefore ignores the random quantization proposi-
tion. The most intriguing of all is the half-Gaussian function
because of the extra parameter (σ ), which can be learned
but is more complicated. The linear and softmax functions
have been found to yield nearly the same performance, but
the former is simpler to implement. Accordingly, in this
work, we use the linear function because it balances between
performance and simplicity.

C. LOW-BIT ACTIVATION FUNCTION
The inputs to convolutional and fully connected layers are
often the outputs of the previous layers’ activations. In many
low-bit DNNs designs, the activation layer is often left in
its full-precision. However, quantizing the activation layer is
crucial in replacing the floating-point operations with more
efficient binarization. The conventional activation functions
such as “Relu" may not be suitable for low-bit DNNs [42].
Therefore, the activations are quantized from 32-bit(u32) to
k − bit according to the function

Wb = round
(
(W32 − x) · (2k − 1

)
/(y− x)

)
(
2k − 1

) (24)

where W32 is the floating-point activation bounded by the
input dimension (x, y) and k = 2. The activations are
not stochastically quantized because, unlike in weights, the
activations do not have learning parameters.

D. MODEL TRAINING AND INFERENCE
1) SLP-DNET AND CLASSICALLY QUANTIZED SLP-DNET

The SLP-DNet is trained the same way as its corresponding
classically quantized versions based on binary and ternary

bits (SLP-DBNet and SLP-DTNet). Each PUM block con-
tains three main components and is trained block-wise for
k-th number of iterations. Similarly, APM is trained for r-th
iterations, and the number of training iterations of the PUM
and APM may not necessarily be equal. The PUM is trained
for 20 iterations and the APM for 10 iterations. We use a
greedy approach for training the PUM. The first PUM block
(B0) training stops after a fixed number of iterations. The
output is saved and used as an input to train the following
block (B1). When the training of B1 is complete, its output
is used to train the next block, etc. The output of the last
PUM is the input to APM (see Fig. 2), and is trained as
one block for the same or a different number of iterations as
PUM. This training strategy is chosen because it requires low
memory. We observed that training PUM and APM beyond
20 and 10 iterations did not improve the performance fur-
ther. We modify the learning rate by a factor α ∈ R

+ for
every training step to improve the training efficiency using
a stochastic gradient descent (SGD) algorithm with Adam
optimizer [43].

2) STOCHASTIC QUANTIZED SLP-DNET(SLP-DSQNET)

The SLP-DSQNet training is slightly different from that
of SLP-DNet. The training is summarized in four stages:
stochastic weight matrix division, forward propagation, back-
ward propagation, and parameter update. Given QR, the
weight matrix is partitioned into a quantization group and a
full-precision group using Algorithm 1. A hybrid weight is
then formed containing the quantized and the full-precision
weights, and it provides a better gradient direction than pure
quantized weights. If W̃qf is the composite weight matrix,
the weight update with respect to the composite gradients is
given by Wr+1 = Wr − η

∂L(·)
∂W̃r

qf
. We train the network with

different QRs, which are fixed for all the training iterations
and inference.
The back-propagation through the quantization function

results in zero gradients due to the thresholding that sum-
marizes the activations or outputs into binary values. This
lack of gradient results in the network not learning any-
thing. However, a straight-through estimator (STE) [30] is
used in the backward pass to solve this problem. Intuitively,
the STE uses the identity function to approximates quan-
tization in the backprop as if the function was an identity
function expressed as [44]

clip(x,−1, 1) = max(−1,min(1, x)). (25)

The learning is performed in an unsupervised fashion in
which the loss function is the Lagrangian function’s statis-
tical mean over the training batch. During the inference, a
feed-forward pass is performed over the whole layers using
the learned Lagrangian multipliers to compute the precoding
vector using (10) and (15) for nonrobust and robust SLP
formulations. Training can be done with an arbitrary SINR
value, which may not guarantee good learning. However, we
train the model with different SINRs to determine the appro-
priate training SINR to improve learning ability. Therefore,
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the training SINR is drawn from a random uniform dis-
tribution to enable learning across a wide range of SINR
values.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
This subsection presents the analytical evaluations of the
computational costs of the proposed SLP-DSQNet precoding
schemes and compares them with SLP-DNet, the con-
ventional BLP, and the classical SLP optimization-based
methods. The complexities are computed in terms of the
number of real arithmetic operations involved. To derive the
analytical complexity of the optimization-based SLP, we first
convert the second-order cone programming (SOCP) (3) into
standard linear programming (LP) as follows

min{u1}
‖u1‖2

2

s.t. |�T
i ϒu1| ≤ b̄, ∀i. (26)

where b̄ = (�T
i ϒu1 − √

�in0)tanθ . To convert (26) to its
equivalent LP, we introduce new optimization variables

min
{x,d}

dTx

s.t. dTk x ≤ −tanθ
√

�in0, ∀i (27)

where d = [0 uT1 ]T ∈ R
(2M+1)×1, x = [1 u1]T ∈ R

(2M+1)×1,
di = [|�T

i ϒu1| − �T
i tan θ ]T ∈ R

(2M+1)×1.
Given the optimal target accuracy, ε > 0, the complexity

of solving convex optimization via IPM is characterized by
the formation (Cform) and factorization (Cfact) of the matrix
coefficients with n̄ linear equations having n̄ unknowns and
is given by [45]

Ctotal = (Cform + Cfact) × ln

(
1

ε

)
√√√√√

Mlc∑

j=1

Qj + 2Msc (28)

where Q represents the constraint’s dimension, Mlc and Msc
denote the numbers of linear inequality matrix and second
order cone (SOC) constraints, respectively. Therefore, the
overall complexity is

Ctotal =

⎡

⎢⎢⎢⎢⎢⎣
n̄
Mlc∑

j=1

Q3
j + n̄2

Mlc∑

j=1

Q2
j

︸ ︷︷ ︸
due to Mlc

+ n̄
Msc∑

j=1

Q2
j=1

︸ ︷︷ ︸
due toMsc

+n̄3

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Cform+Cfact

×

ln

(
1

ε

)
√√√√√

Mlc∑

j=1

Qj + 2Msc. (29)

It can be observed that (27) has K constraints with dimension
2M + 1. Therefore, using (29), the total computational cost
is obtained as

Ctotal = √
2M + 1[n̄(2M + 1) + n̄(2M + 1)2 + n̄3] ln ( 1

ε
). (30)

By following similar principles and steps above, we
can obtain the complexities of the robust SLP and the
conventional BLP schemes.
On the other hand, to determine the complexities of our

proposed precoders, we first evaluate the complexities of the
learning modules (PUM and APM) in terms of arithmetic
operations involved. For PUM, there are three convolution
blocks. The feature map determines the arithmetic opera-
tions for a convolution layer and is given by the number
of multiplications and additions involved in the convolution
operation. The number of operations in a given convolutional
layer is

Cconv =
(
Cink

2
f + (Cink

2
f − 1) + 1

)
CoutNwNh (31)

where Nh, Nw, kf, Cin and Cout denote the height, width
of the input layer tensor, filter size, number of input and
output channels, respectively. It is important to note that
only the first and second convolutions are quantized, while
the last convolution is not to avoid losing essential features
of the output precoder. Since in our proposed approach,
the layer weight matrix contains both floating points and
quantized entries, then the quantization approximation of
convolution has 1

32 (cink2
fNwNhcout) × QR binary operations

and (cink2
fNwNhcout)×(1−QR) non binary operations based

on (31). Using these expressions, we obtain the generic
complexity of the PUM as

CPUM = 1

32

L∑

l=1

N[l−1]
h N[l−1]

w

[
C[l−1]
in f [l]2

]
C[l]
out(QR)

︸ ︷︷ ︸
binary operations

+

L∑

l=1

N[l−1]
h N[l−1]

w

[
C[l−1]
in f [l]2

]
C[l]
out(1 − QR)

︸ ︷︷ ︸
floating point operations

. (32)

Similarly, the APM’s complexity is determined by the cost
of the feed-forward pass of the shallow CNN, as shown in
Table 3 and the ‘log’ barrier that form the barrier term.

CAPM =
Lcv∑

l=1

N[l−1]
h N[l−1]

w

[
C[l−1]
in f [l]2

]
C[l]
out +

Lfc∑

j=1

(
2N[j−1]

in + 1
)
N[i]
out +

Clog-barrier (33)

where Lcv and Lfc are the number of convolution and fully
connected layers, respectively. Based on the matrix/vector
multiplications, the square absolute and l2 norm values, the
number of arithmetic operations involved in computing the
terms in the ‘log’ barrier functions for SLP-DNet and robust
SLP-DNet are obtained as 4M2K + 2MK + K and 8M2K +
4MK + 6K, respectively.

Finally, we use the information in Tables 3 and 4
along with (32) and (33) to obtain the complexity of
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TABLE 1. Complexity analysis of proposed SLP-DSQNet and benchmark SLP schemes.

TABLE 2. Simulation settings.

SLP-DSQBNet as follows

CSQB = 2704K2M + 430KM + 4M2K − K

−
[

2577K2M + 423KM + 7

8

]
× QR. (34)

We can obtain SLP-DSQTNet’s complexity from (34) by
introducing additional ‘0’ state, and this additional bit yields

CSQT = 2704K2M + 430KM + 4M2K − K −[
2433K2M + 783

2
KM + 7

8

]
× QR (35)

We observe that by substituting QR = 0 in (34) or (35),
we can obtain the complexity of SLP-DNet. Similarly, the
complexities of SLP-DBNet and SLP-DTNet are also found
by substituting QR = 1 in (34) and (35), respectively.
Table 5 shows the complexities of the proposed and bench-
marks precoding schemes. For illustration, we use the case
of symmetry, where (M = K = n̄), and show that our
proposals have a considerably lower computational complex-
ity of O(n̄3). In contrast, the optimization-based SLP and
conventional BLP methods have O(n̄6.5) and O(n̄7.5) com-
putational complexities, respectively. While our proposed
schemes have the same order of complexity as SLP-DNet
(see Table 1), the number of arithmetic operations involved

TABLE 3. Proximity barrier term NN layout.

TABLE 4. An APM NN architecture.

in their computations is lower than that of the SLP-DNet
due to the presence of binary operations.

V. SIMULATION RESULTS AND DISCUSSION
A. SIMULATION SET-UP
We consider a downlink situation in which the BS is
equipped with four antennas (M = 4) that serve K single
users; and assume a single cell. We obtain the dataset from
the channel realizations randomly generated from a normal
distribution with zero mean and unit variance. The dataset
is reshaped and converted to real number domain using the
following expression � = [

h̃Ri; h̃Ii
]
as depicted in Fig. 4.

The input dataset is normalized by the transmit data symbol
so that data entries are within the nominal range, potentially
aiding the training. We generate 50,000 training samples
and 2000 test samples of channel realizations, respectively.
The transmit data symbols are modulated using QPSK and
8PSK modulation schemes. The training SINR is obtained
from random uniform distribution �train ∼ U(�low, �high).
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TABLE 5. Inference memory utilization.

FIGURE 4. Dataset generating and preprocessing Block.

From the modulated complex base-band symbols of the
i-th user, corresponding real and imaginary channel instan-
tiations are obtained from the relation: H̃i = Hiej(φ1−φk),
H̃Re = Re{H̃i} and H̃Re = Im{H̃i}. Consequently, the input
channel instantiations matrix; � = [

H̃Re H̃Im
]T

is used
to calculate the initial input precoding vectors based on the
optimal precoding functions (10) and (15) that will be used to
train the model in an unsupervised manner, as shown in the
Lagrangian module of Fig. 2. The whole dataset generation
process is summarized in Fig. 4.

For the training, a stochastic gradient descent (SGD) algo-
rithm is used with the Lagrangian function as a loss metric. A
parametric rectified linear unit (PReLu) activation function
is used for both convolutional and fully connected layers in
a full-precision SLP-DNet and the low-bit activation func-
tion (24) for SLP-SQDNet. The learning rate is reduced
by a factor α = 0.65 after every iteration during training to
help the learning algorithm converge faster, thereby allowing
the network to adapt to the complexity of the problem and
enhance its generalization ability. The models are imple-
mented in Pytorch 1.7.1 and Python 3.7.8 on a computer
with the following specifications: Intel(R) Core (TM) i7-
6700 CPU Core, 32.0GB of RAM. Table 1 summarizes the
simulation parameters, while Tables 2 and 3 depict the NN
component settings of the SLP-DNet [29].

B. PERFORMANCE EVALUATION OF QSLP-DNET AND
SLP-DNET
In the following set of results we compare our proposed
quantized DL-based SLP scheme’s performance against its
corresponding full-precision (SLP-DNet) counterpart’s [29]
and other benchmark schemes, such as conventional BLP [4],
[37] and the classical optimization-based SLP [9], [21].

FIGURE 5. Transmit Power vs SINR averaged over 2000 test samples for
Conventional Block Level Precoding, SLP optimization-based and nonrobust
quantized learning-based SLP solutions, M = 4, K = 4 and QR = 50%.

Primarily, we design full low-bit binary and ternary SLP-
DNet models (SLP-DBNet and SLP-DTNet), where the
full-precision weights are constrained to 1-bit. Similarly, the
expressive learning abilities of SLP-DBNet and SLP-DTNet
are further enhanced by designing their corresponding low-
bit hybrid stochastically quantized versions (SLP-DSQBNet
and SLP-DSQTNet), where part of the weight matrix is
quantized to a lower bit, while the remaining is left in its
32-bit floating-point precision. The resulting weight matrix
is a hybrid containing both binary and full-precision entries
with the activations all reduced to 2-bit according to (24).
The performances of SLP-DBNet, SLP-DTNet, SLP-

DSQBNet, SLP-DSQTNet for QR = 0.5 against SLP-DNet
and other benchmark precoding schemes (conventional BLP,
SLP optimization-based) are shown in Fig. 5. It can
be observed that both SLP-DBNet and SLP-DTNet have
higher transmit power than the SLP optimization-based
and SLP-DNet schemes. Therefore, SLP optimization-based
and SLP-DNet solutions require less power to transmit
the same amount of data symbols than SLP-DBNet and
SLP-DTNet. The loss in performance is expected because
some information is lost during feed-forward weight/input
convolutions due to quantization and the inhomogeneous
nature of the quantization errors.
Furthermore, a closer examination of Fig. 5 reveals that the

SLP-DSQBNet and SLP-DSQTNet offer less transmit power
than their corresponding full binary and ternary versions. Our
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FIGURE 6. Performance evaluation of Robust formulation for Conventional BLP, SLP Optimization-based and SLP Learning-based schemes.

simulation also shows that learning by stochastic quantiza-
tion results in the performance close to the full-precision
learning model (SLP-DNet) with a significant model size
reduction (memory savings at the inference), as we shall
see later. We argue that the decrease in the available trans-
mit power at the BS in this scenario is because not all the
weights matrix rows are quantized at once. The quantization
error is used to direct the gradient descent towards the best
local minima during training. Accordingly, we find that at
30dB, the performance of SLP-DBNet and SLP-DTNet falls
by 58% and 35% of the SLP optimization-based solution,
respectively. On the other hand, the performance gaps of
SLP-DSQBNet, SLP-DSQTNet, and SLP-DNet are 22.2%,
9.62%, and 5% of the SLP optimization-based solution,
respectively. Therefore, while the fully quantized model’s
accuracy is significantly low, the stochastically hybrid quan-
tized counterparts and full-precision models’ accuracy is
within 88%−96% of the optimal solution.

C. PERFORMANCE EVALUATION OF ROBUST
SLP-SQDNET
Figs. 6(a) and 6(b) compare the performances of SLP-
SQDNet, the conventional and classical CI-based robust
precoding schemes for the 4 × 4 MISO system evaluated
at ς2 = 2 × 10−4. Fig. 6(a) depicts how the aver-
age transmit power increases with the SNR thresholds,
for CSI error bounds ς2 = 2 × 10−4 and QR = 50%.
The robust SLP optimization-based is observed to show
a significant power savings of more than 60% com-
pared to the robust conventional BLP. Similarly, the
proposed unsupervised learning-based precoders portray sim-
ilar transmit power reduction trend. They show considerable
power savings of 40%−58% against the conventional

robust BLP. While the fully quantized models have
demonstrated substantial performance loss compared to
SLP-based optimal precoder, SLP-DSQBNet and SLP-
DSQTNet offer 90% − 98% striking performance correla-
tion with the SLP optimization-based optimal solutions,
respectively.
Furthermore, we investigate the effect of the CSI error

bounds on the transmit power at 30dB. Fig. 6(b) depicts the
variation of the transmit power with increasing CSI error
bounds. Moreover, a significant increase in transmit power
can be observed where the channel uncertainty lies within the
region of CSI error bounds of ς2 = 1 × 10−3. Interestingly,
like the SLP optimization-based algorithm, by exploiting the
CI, the proposed unsupervised learning methods also show
a descent or moderate increase in transmit power.

D. IMPACT OF QUANTIZATION RATIO
To further understand the impact of the QR on the transmit
power, Fig. 7 compares the performance of the proposed
stochastic quantization learning-based nonrobust precoders
evaluated at 30dB and 15dB. Here, we observe that the
average transmit power available at the BS required to
transmit data symbols increases as more weights and activa-
tions are quantized towards extreme quantization to the right
(QR → 100). Fig. 7(a) and Fig. 7(b) show the effect of the
quantization ratio on the transmit power at 30dB and 15dB
SINR. We observe less power is required to transmit the same
amount of symbols at 15 dB SINR. This could be attributed
to learning sensitivity at higher SINR as more weights are
quantized. As expected, an unquantized SLP-DNet will have
more learning ability than the quantized one and performs
better, accounting for the relatively less transmission power.
We observe that starting with an unquantized SLP-DNet, the
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FIGURE 7. Transmit Power vs Quantization ratio averaged over 2000 test samples
for nonrobust SQ SLP-DNet models and full-precision SLP-DNet model under M = 4,
K = 4 and � = 30 dB and 15 dB.

transmission power increase gradually as more layer weights
are quantized. Fully quantized SLP-DNet models (SLP-
DSBNet and SLP-DSTNet) have much lower computational
costs than their unquantized counterparts. However, stochas-
tic hybrid quantization could improve the performance loss
due to these extreme quantizations, where only a fraction
of the weights is quantized to lower bits. For example, in
Fig. 7(a), 0.25 dB and 0.75 dB performance margins are
observed for 50% binary and ternary stochastic quantizations,
respectively. But for fully quantized SLP-DNet, the margins
increase to 0.51 dB and 2.25 dB. Nonetheless, we note that
even with these trade-offs, SLP-DNet quantized offers more
than 3× less transmit power than the conventional BLP.

Fig. 8(a) shows the average transmit power vs quantiza-
tion ratio (i.e., the proportion of weights that are quantized)
at 30dB SINR. The average power at QR = 0 corresponds
to SLP-DNet while QR = 1 represents the corresponding
fully quantized counterparts (SLP-DBNet and SLP-DTNet).
Moreover, the transmit power gradually increases as more
weights are quantized. It is important to note that for a
unit quantization ratio (QR = 1.0), all the weights are
100% quantized, where the model could be either a typical
binary or ternary. On this note, it is clear that the SLP-
DSQTNet offers less transmit power than SLP-SQDBNet.
We find that quantizing half of the weights (QR = 50%)

could guarantee a good performance within 80% −98%
of the full-precision model for both SLP-SQDBNet and
SLP-DSQTNet, respectively. To investigate the amount of
the memory required at inference with the increase in the
quantization ratio, we plot the model size vs QR as depicted
in Fig. 8(b). We find that less memory is required as the
quantization moves towards extreme binarization to the right
of the QR-axis. It can be seen that the continuous line
represents a full-precision SLP-DNet (i.e., QR = 0), while
QR = 1 represents a fully quantized model.

E. COMPLEXITY AND MEMORY EVALUATION
The proposed learning schemes’ complexities are examined
in two folds: firstly, we compare the number of FLOPs
operations involved in our proposed learning methods and
those of the benchmark precoding schemes’. Secondly, we
evaluate and assess the inference memory requirements of
our proposed learning-based precoding techniques.

1) NUMBER OF FLOPS OPERATIONS

The computational costs of the SLP-DNet are obtained from
the PUM and the feed-forward convolutions of the CNN
that makes up an APM. For the PUM, the dominant com-
putational cost comes from computing the proximal barrier
term [29]. It can be seen that both SLP optimization-based
algorithm and the proposed learning schemes are feasible for
all sets of M BS antennas and K mobile users. However, for
conventional BLP, the solution is only feasible for M ≥ K.
Fig. 9(a) shows the number of FLOPs operations of the

proposed unsupervised learning solutions per symbol for
nonrobust formulations. The dominant operations involved in
SLP-DNet at the inference are matrix-matrix or vector-matrix
convolution. The gap in the computational cost between
SLP-DNet and SLP optimization-based methods increases
with the growing number of mobile users. For example,
we find that the complexity of SLP-DNet is ∼ 10× lower
than SLP optimization-based at K = 10, while that of SLP-
DSQBNet and SLP-DSQTNet are ∼ 20× much lower due to
the presence of binary operations. Furthermore, SLP-DBNet
and SLP-DTNet offer an additional computational com-
plexity reduction than SLP-DSQBNet and SLP-DSQTNet
because binary bit-wise operations replace the entire MAC
calculations in the feed-forward pass. It is important to recall
that SLP-DTNet outperforms SLP-DBNet in all scenarios.
However, we observe that SLP-DTNet is slightly slower than
SLP-DBNet, and this is due to the additional ‘0’ binary state
introduced in the former. We also note that the advantages
of the SLP-DBNet and SLP-DTNet are further enhanced via
stochastic quantization but at the expense of small additional
complexity overhead. The same trend is also observed in the
case of a robust channel scenario, as shown in Fig. 9(b).

Accordingly, we can deduce that while fully binarized
DNN could offer significant training and inference acceler-
ations, it could otherwise lead to significant performance
degradation. However, quantizing the weight matrix via
a stochastic channel selection based on the quantization
error leads to the improved performance (lower transmission
power) comparable to the classical SLP optimization-based
solution. Therefore, we can conclude that the results in
Figs. 9(a) and 9(b) demonstrate that the proposed quantized
DL-based SLP solutions offer a good trade-off between the
performance and computational complexity.

2) MODEL SIZE AND MEMORY UTILIZATION

Generally, GPU can speedup the offline training of DNNs.
However, most modern GPUs are memory-constrained (e.g.,
GTX 980: 4GB, Tesla K40: 12GB, Tesla K20: 5GB and
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FIGURE 8. Average power and inference memory requirement vs quantization error of the proposed learning-based precoding schemes.

FIGURE 9. Comparison of FLOPs operations performed for Nonrobust and Robust
precoding schemes, i.e., conventional BLP, SLP optimization-based and SLP
learning-based models using four BS antennas (M = 4) and QR = 50%.

GTX Titan X: 12GB) [46]. Practically, the size of the DNN
is often bounded by the available memory. Therefore, it is
beneficial to estimate the memory requirements of the DNN
at the inference. Likewise, the actual memory utilization
also depends on the implementation. Here, we examine and
analyze the memory utilization of full-precision SLP-DNet
and its corresponding quantized versions at inference. By
memory utilization, we refer to the model size at the testing
phase. For this analysis, we adopt the approach presented
in [47] to calculate the inference memory utilization as the
summation of 32-bit times the number of floating-point
parameters and 1-bit times the number of binary parame-
ters. Mathematically, this can be expressed as 1

32Wb + Wf ,
where Wb and Wf are the binary and floating-point weights,
respectively.

FIGURE 10. Memory requirement at Inference for Full-precision SLP-DNet,
SLP-DBNet, SLP-DTNet, SLP-DSQBNet and SLP-DSQTNet under M = 4, K = 4,
�i = 30dB and QR = 50%.

Furthermore, Fig. 10 shows that SLP-DBNet and SLP-
DBNet provide considerable memory savings up to ∼ 21×
and ∼ 13× compared to the full-precision SLP-DNet
because the extreme quantization reduces the available learn-
ing parameters significantly. This brings about a trade-off
between performance and model size, which is compen-
sated by hybrid quantization as in SLP-DSQBNet and
SLP-DSQTNet.
Fig. 11 shows memory efficiency/computational complex-

ity vs. performance. It can be observed that the computational
complexity is proportional to the size of the network. As
more weights are quantized, the network’s size decreases,
and more power is required for transmission. Interestingly,
SLP-DSQTNet almost matches the performance of the full-
precision SLP-DNet with 2.64× memory savings. Similarly,
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FIGURE 11. Memory requirement, Complexity vs Average transmit Power for
SLP-DNet, SLP-DBNet, SLP-DTNet, SLP-DSQBNet and SLP-DSQTNet under M = 4,
K = 4, �i = 30dB and QR = 50%.

SLP-DSQBNet yields 3.46× memory savings at 0.5 dB
performance loss against the SLP-DNet. Similarly, more
memory is further saved in the case of extreme quantization.
This is particularly important when deploying the trained
model to resource-constrained edge devices, where memory
or space is critical. In such a case, our proposed approach
offers a scalable trade-off between complexity and memory
efficiency. For instance, if power efficiency (PE) in terms of
BS’s power and the processing power of the SLP schemes
is the main priority, our proposed approach could be tuned
to match classical SLP scheme. However, if memory is a
priory, one can observe that the proposed SLP-DSQBNet
and SLP-DSQTNet perform much better than both classi-
cal SLP optimization-based and full-precision SLP-DTNet
techniques. Moreover, SLP-DSQBNet, SLP-DSQTNet, SLP-
DBNet, and SLP-DTNet schemes are much more PE than
BLP method.
Table 5 presents the summary of the inference memory

requirements, MAC, and binary operations of different
proposed learning implementations. For SLP-DSQBNet and
SLP-DSQTNet, the weights are constrained to the following
quantization {−βqf, βqf} and {−βqf, 0, βqf} while the acti-
vations are clipped to {−β2−bit, β2−bit} 2 − bit quantized
values, respectively. This shows that the hybrid quan-
tization enhances the representational capabilities of the
convolutional block.

VI. CONCLUSION
This paper proposed a hybrid quantization DNN-based SLP
scheme termed (SLP-QSDNet) based on binary and ternary
operations for power minimization for a multi-user downlink
MISO system. We proposed various weight quantization
techniques to obtain its corresponding full and partially quan-
tized counterparts. We showed that the proposed approach
resulted in fast online learning and a significant model
size reduction, which could help render the trained model

memory-efficient during deployment on the device’s edge.
Overall, our proposed approaches provide a scalable trade-
off between performance and complexity in learning-based
SLP transmission.
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