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M. Zumalacárregui4,5

1Institut für Theoretische Physik, Heidelberg Universität, Philosophenweg 12, D-69120 Heidelberg, Germany
2Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
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ABSTRACT
Cosmic shear is one of the primary probes to test gravity with current and future surveys.
There are two main techniques to analyse a cosmic shear survey: a tomographic method,
where correlations between the lensing signals in different redshift bins are used to recover
redshift information, and a 3D approach, where the full redshift information is carried through
the entire analysis. Here we compare the two methods, by forecasting cosmological constraints
for future surveys like Euclid. We extend the 3D formalism for the first time to theories beyond
the standard model, belonging to the Horndeski class. This includes the majority of universally
coupled extensions to �CDM with one scalar degree of freedom in addition to the metric,
still in agreement with current observations. Given a fixed background, the evolution of linear
perturbations in Horndeski gravity is described by a set of four functions of time only. We
model their time evolution assuming proportionality to the dark energy density fraction and
place Fisher matrix constraints on the proportionality coefficients. We find that a 3D analysis
can constrain Horndeski theories better than a tomographic one, in particular with a decrease
in the errors of the order of 20 per cent. This paper shows for the first time a quantitative
comparison on an equal footing between Fisher matrix forecasts for both a fully 3D and a
tomographic analysis of cosmic shear surveys. The increased sensitivity of the 3D formalism
comes from its ability to retain information on the source redshifts along the entire analysis.
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1 IN T RO D U C T I O N

The observed acceleration of the Universe (Riess et al. 1998; Perl-
mutter et al. 1999) can be ascribed to a dark energy component
accounting for approximately 70 per cent of the energy budget of
the Universe. From a theoretical point of view, identifying the dark
energy with a cosmological constant term � fits well the observa-
tions, but has been questioned in terms of naturalness and interpre-
tation in terms of energy density of the vacuum (see Martin 2012
for a recent review). Alternatives to the cosmological constant can
be generally grouped into two main categories. Either dark energy
is a modification of gravity on the largest scales (‘modified gravity’
theories), or it is given by a scalar field that effectively behaves as
a fluid with negative pressure (usually referred to as proper ‘dark
energy’ models). The distinction between these two classes can at
times be feeble (see Joyce, Lombriser & Schmidt 2016 for a recent

� E-mail: spuriomancini@thphys.uni-heidelberg.de

discussion) and the vast amount of proposed theories (see Clifton
et al. 2012 for a review) urgently calls for methods to be developed,
aiming at distinguishing among the large number of theoretical op-
tions with advanced statistical methods and efficient computational
effort. This is particularly relevant in light of the unprecedented
amount of data that will come from many space- and ground-based
experiments, such as Euclid,1 SKA2 (Maartens et al. 2015), LSST3

(LSST Science Collaboration 2009), and WFIRST4 (Spergel et al.
2013), whose launch in the next few years is planned with the goal
of unveiling the true nature of the cosmic acceleration.

The Horndeski class of modified gravity theories represent an ex-
ample of a remarkably large set of extensions to General Relativity.
First discussed in 1974 by Horndeski (Horndeski 1974) and sub-
sequently rediscovered in Nicolis, Rattazzi, and Trincherini (2009)

1https://www.euclid-ec.org/
2https://www.skatelescope.org/
3https://www.lsst.org/
4https://wfirst.gsfc.nasa.gov/
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and Deffayet et al. (2011), the Horndeski Lagrange density is the
most general gravitational theory with one scalar degree of freedom,
in addition to the metric tensor, with derivatives in the equations of
motion not higher than second order; this guarantees safety from
ghost-like degrees of freedom. This set of theories collects under
its name many different models of dark energy/modified gravity
(see Section 2 for a list of some of these). Theories that contain
higher order derivatives but are still free from ghost degrees of free-
dom, belong to the ‘Beyond Horndeski’ category (Zumalacárregui
& Garcı́a-Bellido 2014; Gleyzes et al. 2015; Crisostomi & Koyama
2017; Langlois et al. 2017).

On the observational side, many different probes have been pro-
posed to investigate dark energy/modified gravity models. These in-
clude type Ia Supernovae, baryon acoustic oscillations, galaxy clus-
tering, and weak gravitational lensing, to name a few (see e.g. Wein-
berg et al. 2013 for an exhaustive review of the different probes). In
this paper we focus on the weak gravitational lensing caused by the
large-scale structure of the Universe, or cosmic shear. Since the first
detections in early 2000s (e.g. Bacon, Refregier & Ellis 2000; Van
Waerbeke et al. 2000; Brown et al. 2003), this field has developed
within a well-established theoretical and experimental framework.
Cosmic shear is particularly appealing as one of the most promising
probes of dark energy (Jain & Taylor 2003; Bernstein & Jain 2004;
Hannestad, Tu & Wong 2006; Amendola, Kunz & Sapone 2008;
Huterer 2010); the differential deflection in light bundles from dis-
tant galaxies caused by variations of the gravitational fields of the
large-scale structure result in a coherent distortion of galaxy im-
ages as we observe them on the sky (see Bartelmann & Schneider
2001; Hoekstra & Jain 2008; Kilbinger et al. 2013, for reviews on
the topic). Thus cosmic shear is sensitive to the growth rate of the
perturbations of the gravitational potential and to the geometry of
the Universe through the distance–redshift relation. These features
are crucial for dark energy studies, as they allow us to measure
how the expansion rate and growth of structure change with time:
It follows that the sensitivity of cosmic shear to dark energy can be
fully exploited if the analysis performed is able to recover informa-
tion on the evolution in redshift of the large-scale structure. This
is only to a little extent achieved in a 2D analysis: galaxy shapes
are observed on the 2D celestial sphere and the shear components
are line-of-sight projected quantities, with the projection causing
loss of information on the redshift evolution (Jain & Seljak 1997;
Takada & Jain 2003a,b; Munshi & Kilbinger 2006; Jee et al. 2013;
Kilbinger et al. 2013). For this reason, as an alternative to a pure 2D
projection, a tomographic analysis based on a binning in redshift of
the sources has been first proposed in Hu (1999) and has since be-
come the standard technique for cosmological weak lensing studies
(Simon, King & Schneider 2004; Takada & Jain 2004; Takada &
White 2004; Hollenstein et al. 2009; Kilbinger et al. 2009; Schäfer
& Heisenberg 2012; Heymans et al. 2013). Galaxies are assigned
to different bins according to their redshifts, so that intra and in-
terbin correlations of the binned shear field can be computed. This
reduces the range of the projection to the width of the bins and
allows for some gain in redshift information through the interbin
correlations. Despite its success in providing some sensitivity to the
growth of structure with its ‘2D 1

2 ’ nature, as it has sometimes been
relabelled, tomography has still the disadvantage of representing a
compression of data: The 2D analysis performed within a single bin
is such that the range of the projection is smaller than in the pure
2D case, being restricted to the width of the bin, however, this does
not represent yet a fully 3D treatment of the shear field.

As an alternative to tomography, a method to retain information
on the redshift of each source galaxy along the entire weak lensing

analysis has been first proposed in Heavens (2003) and subsequently
refined in Castro, Heavens, and Kitching (2005); Heavens, Kitch-
ing, and Taylor (2006); Kitching, Heavens, and Miller (2011). Based
on a spherical Fourier–Bessel decomposition of the shear field, it
is immune from the aforementioned approximations presented in
(Kitching et al. 2016a). In addition to avoiding any binning and av-
eraging in redshift, the spherical Fourier–Bessel formalism allows
for a separation of angular (�) and radial (k) modes (Kitching et al.
2014); the fact that they can be treated independently makes it eas-
ier than in tomography to reduce the impact of problematic small
scales, where models for the non-linear growth of structure (Smith
et al. 2003; Takahashi et al. 2012; Mead et al. 2015), or baryon feed-
back (Semboloni et al. 2011; van Daalen et al. 2011; Semboloni,
Hoekstra & Schaye 2013) do not yet provide a fully reliable descrip-
tion. These advantages compensate for the extra computational time
required by the more complicated integrations in the covariance of
the shear modes. To date, the 3D weak lensing approach has been
applied to real data only in Kitching et al. (2007, 2014, 2016b)
for a �CDM model. Grassi and Schäfer (2014) investigated the
possibility of detecting baryon acoustic oscillation features in the
cosmic matter distribution by 3D weak lensing; Zieser and Merkel
(2016) studied the cross-correlation between the 3D weak lensing
signal and the integrated Sachs–Wolfe effect; Camera et al. (2011)
investigated the constraining power of 3D cosmic shear on a class
of unified dark matter models, where a single scalar field mimics
both dark matter and dark energy, whereas Ayaita, Schäfer, and We-
ber (2012) employed 3D cosmic shear to explore the capability of
future surveys to constrain dark energy clustering. While 3D weak
lensing has been partially studied in the context of modified gravity
theories in Pratten et al. (2016) to constrain f(R) chameleon models
and environmentally dependent dilation models, showing that for
an all-sky spectroscopic survey the f(R) parameter fR0 can be con-
strained in the range fR0 < 5 × 10−6(9 × 10−6) for n = 1(2) with a
3σ confidence level, there has not been any application to a larger
class of modified gravity theories. Alonso et al. (2016) forecast the
sensitivity of future surveys to Horndeski theories using different
probes, among which there is tomographic weak lensing.

In this paper we propose for the first time the 3D cosmic shear as
a probe of Horndeski theories of modified gravity. We analyse in de-
tail the expected performance of a Euclid-like experiment, with the
aim of forecasting the precision with which future stage IV surveys
will be able to constrain this class of alternatives to general relativ-
ity using cosmic shear data sets. We choose the parametrization of
linear perturbations in Horndeski gravity first proposed by Bellini
and Sawicki (2014) and based on four functions of time only, which
completely describe the evolution of linear perturbations once the
background evolution is fixed. We model their time evolution as-
suming proportionality to the density fraction of dark energy and
constrain the proportionality coefficients under the assumption of
Gaussian likelihood. We simultaneously also place constraints on
a set of standard cosmological parameters describing the evolution
of the background, including the sum of the neutrino masses.

We produce our forecasts for both a fully 3D and a tomographic
analysis of the measurements with the aim of comparing the perfor-
mances of the two methods on both modified gravity and standard
cosmological parameters. Kitching et al. (2011) showed the re-
lationship between weak lensing tomography and the 3D cosmic
shear field, connected by the Limber approximation, a harmonic-
space transform and a discretization in wavenumber. Our work
presents for the first time a quantitative comparison on an equal
footing between 3D and tomographic techniques for cosmic shear
in terms of Fisher forecasts, showing that the 3D approach has more
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sensitivity than tomography to both standard and modified gravity
cosmological parameters. We vary both the background cosmolog-
ical parameters and those describing Horndeski theories, and con-
sider only weak gravitational lensing as a cosmological observable,
to test its power in constraining modified gravity theories without
other probes and compare 3D and tomographic methodologies.

This article is structured as follows: in Section 2 we review
the Horndeski Lagrangian and introduce the Bellini and Sawicki
(2014) parametrization; in Section 3 we present both the spherical
Fourier–Bessel formalism for 3D weak lensing and the tomographic
approach in a modified gravity context; in Section 4 we explain our
Fisher matrix analysis and report the specifications of the Euclid-
like survey we consider; in Section 5 we present our Fisher forecasts
for both 3D and tomographic cosmic shear; in Section 6 we draw
conclusions from our analysis.

2 H O R N D E S K I TH E O R I E S

The Horndeski Lagrange density (Horndeski 1974) is the most gen-
eral way of writing the Lagrangian of a scalar–tensor theory of
gravity that is 4D, Lorentz-invariant, local, and has equations of
motion with derivatives not higher than second order. This ensures
the safety of the theory against Ostrogradski instabilities and sub-
sequent ghost degrees of freedom (Woodard 2007). The Horndeski
action can be written as follows:

S[gμν, φ] =
∫

d4x
√−g

[
5∑

i=2

1

8πGN

Li[gμν, φ] + Lm[gμν, ψM ]

]
,

L2 = G2(φ,X),

L3 = −G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X(φ,X)
[
(�φ)2 − φ;μνφ

;μν
]
,

L5 = G5(φ,X)Gμνφ
;μν

− 1

6
G5X(φ,X)

[
(�φ)3 + 2φ;μ

νφ;ν
αφ;α

μ

− 3φ;μνφ
;μν�φ

]
. (1)

The four contributions Li of the gravitational sector depend on
arbitrary functions of the metric gμν and the kinetic term K =
− 1

2 ∂μφ∂μφ of the additional scalar degree of freedom φ. The sub-
scripts φ, X denote partial derivatives, e.g. GiX = ∂Gi

∂X
. We write the

normalization of the Gi functions following the convention imple-
mented in the HI CLASS code (Zumalacárregui et al. 2016). We will
consider only universal coupling between the metric and the matter
fields (collectively described by ψm and contained in the matter
Lagrangian Lm), which are therefore uncoupled to the scalar field.
Most of the universally coupled models with one scalar degree of
freedom belong to the Horndeski class. These include for exam-
ple quintessence (Ratra & Peebles 1988; Wetterich 2009), Brans–
Dicke models (Brans & Dicke 1961), k-essence (Armendáriz-
Picón, Damour & Mukhanov 1999; Armendariz-Picon, Mukhanov
& Steinhardt 2001), kinetic gravity braiding (Deffayet et al. 2010;
Kobayashi, Yamaguchi & Yokoyama 2010; Pujolàs, Sawicki &
Vikman 2011), covariant galileons (Deffayet, Esposito-Farèse &
Vikman 2009; Nicolis et al. 2009), disformal and Dirac–Born–
Infeld gravity (de Rham & Tolley 2010; Bettoni & Liberati 2013;
Zumalacárregui, Koivisto & Mota 2013), Chameleons (Khoury &
Weltman 2004a; Khoury & Weltman 2004b), symmetrons (Hinter-
bichler & Khoury 2010; Hinterbichler et al. 2011), Gauss–Bonnet
couplings (Ezquiaga, Garcı́a-Bellido & Zumalacárregui 2016) and
models screening the cosmological constant (Charmousis et al.
2012; Martı́n-Moruno, Nunes & Lobo 2015). Archetypal modified

gravity-models such as all variants of f(R) (Carroll et al. 2004) and
f(G) (Carroll et al. 2005) theories are also included. Models that are
not within this broad class are those that contain higher derivatives
in the equations of motion (Zumalacárregui & Garcı́a-Bellido 2014;
Gleyzes et al. 2015), and modifications of gravity with non-scalar
degrees of freedom, e.g. Einstein–Aether models (Jacobson & Mat-
tingly 2001) or ghost-free massive gravity (de Rham & Gabadadze
2010; de Rham, Gabadadze & Tolley 2011; Hassan & Rosen 2012).
The choice of the Gi(gμν , K) functions completely specifies the
single modified gravity model that one considers.

When dealing with linear perturbations acting on a Friedmann–
Robertson–Walker metric in modified gravity, one can assume spa-
tial flatness, and considering only scalar perturbations (see Adamek,
Durrer & Tansella 2016; Durrer & Tansella 2016, for vector and ten-
sor perturbations), write the line element in Newtonian gauge as

ds2 = −
(

1 + 2
�

c2

)
c2dt2 + a2 (t)

(
1 − 2



c2

)
dx2, (2)

with the Bardeen potentials � and . In General Relativity � = 

in absence of anisotropic stress, while this is in general not true in
modified gravity. In Gleyzes et al. (2013) and Bellini AND Sawicki
(2014), it has been shown that one can parametrize the evolution of
linear cosmological perturbations in Horndeski theories by means of
four functions of (conformal) time only, which we will collectively
refer to here as α functions. Each of them carries a physical meaning,
which we describe briefly here, referring to Bellini and Sawicki
(2014) and references therein for a more complete description:

(i) αK is the kineticity term, i.e. the kinetic energy of the scalar
perturbations arising directly from the action. Increasing this term
suppresses the sound speed of scalar perturbations. This makes the
sound horizon smaller than the cosmological horizon, allowing the
scalar field to enter a quasi-static configuration on smaller scales,
below the sound horizon (Sawicki & Bellini 2015). In the quasi-
static approximation where time derivatives are considered to be
sub-dominant with respect to space derivatives, αK does not enter
the equations of motion, and is therefore largely unconstrained by
cosmic shear (Alonso et al. 2016; Bellini et al. 2016, although see
Kreisch and Komatsu 2017).

(ii) αB is the braiding term which describes mixing of the scalar
field with the metric kinetic term, leading to what is typically inter-
preted as a fifth force between massive particles.

(iii) αM is the Planck-mass run rate, defined by

αM ≡ d lnM2
∗

d ln a
, (3)

where M2
∗ is the dimensionless product of the normalization of

the kinetic term for gravitons and 8πGN measured on Earth. This
function describes the rate of evolution of the effective Planck mass.

(iv) αT is the tensor speed excess, indicating deviations from the
speed of light in the propagation speed of gravitational waves. This
can lead to anisotropic stress even in the absence of scalar field
perturbations, as a result of a change in the response of the Newto-
nian potential to matter sources. Recently, very strong constraints
have been placed on αT by the measurement of the gravitational
waves speed derived by the detection of the binary neutron star
merger GW170817 and the gamma ray burst GRB170817A (Ab-
bott et al. 2017a,b; Baker et al. 2017; Bettoni et al. 2017; Crem-
inelli & Vernizzi 2017; Ezquiaga & Zumalacárregui 2017; Lom-
briser & Lima 2017; Sakstein & Jain 2017). Since the speed has
been found to be very close to the speed of light, αT has been
consequently constrained to be very close to zero at the present
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time. We remark that the other three functions (as well as αT’s past
value), are instead still free to vary. Ezquiaga and Zumalacárregui
(2017) identify the models within the Horndeski classes that are still
viable after GW170817; Peirone et al. (2018) show that even with
the strict bound on the present-day gravitational wave speed, there
is still room within Horndeski theories for non-trivial signatures
of modified gravity, which can be measured at the level of linear
perturbations.

The specific model considered within the Horndeski class is de-
fined by the choice of the αi functions. The �CDM model corre-
sponds to the choice αK = αB = αM = αT = 0. Once the α functions
are set, Bellini and Sawicki (2014) show that it is sufficient to solve
the equations of motion for the background and perturbations to
fully determine the evolution of linear perturbations at the linear
level.

In this paper, we aim at forecasting constraints on the α functions
with a Fisher matrix analysis for a cosmic shear survey. In doing so,
we need to choose a parametrization for the time evolution of the α

functions. Following a common procedure, already implemented in
HI CLASS, we choose to parametrize these functions, such that they
trace the evolution of the dark energy component to which they are
proportional,

αi = α̂i �DE(τ ). (4)

This choice, first suggested in Bellini and Sawicki (2014), is the
simplest and the most common in the literature (as used e.g. in
Planck Collaboration XIV 2016) and, despite not being the only one,
can already provide a lot of information on Horndeski gravity, as
remarked by Gleyzes (2017), who showed that simple parametriza-
tions are sufficient to describe the theory space in effective field
theory of dark energy (Gubitosi, Piazza & Vernizzi 2013; Gleyzes
et al. 2015), which the Bellini and Sawicki (2014) parametrization
belongs to. The forecasts we present in Section 5 will therefore be
on the proportionality coefficients α̂i .

3 C O S M I C SH E A R

3.1 3D cosmic shear

Weak gravitational lensing of the large-scale structure in the Uni-
verse is the deflection of light rays coming from distant sources due
to the distortion of the cross-sectional shape of light bundles (see
Bartelmann & Schneider 2001; Hoekstra & Jain 2008; Kilbinger
2015, for reviews on the topic). The typical lensing signal is a dis-
tortion or shear of the source image due to the gravitational potential
generated by the mass distribution between the source and the ob-
server. Cosmic shear measurements are of statistical nature, as the
lensing effect is not associated with a particular intervening lens, but
rather corresponds to small distortions (of the order of 1 per cent)
by all density fluctuations along the line of sight. The statistical
properties of the shear reflect those of the underlying density field
and a particularly informative insight is given in configuration space
by the two-point statistics or correlation function of the shear field.

We present here a general formalism for a fully 3D expansion
of the shear field that does not perform any binning in redshift.
This is based on a spherical Fourier–Bessel decomposition of the
shear, first introduced in lensing studies by Heavens (2003). Here
we follow the notation and conventions of Zieser and Merkel (2016)
and extend the presentation given there to a general modified gravity
scenario characterized by the Bardeen potentials � and  defined
in (2).

Information on the gravitational potential is encoded in a
weighted projection along the line of sight, the lensing potential. In
a modified gravity context, considering perturbations at the linear
level, the lensing potential φ is related to the Bardeen potentials 

and � by

φ(χ, n̂) =
∫ χ

0
dχ ′ χ − χ ′

χχ ′
�(χ, n̂) + (χ, n̂)

c2
, (5)

where χ is a comoving distance, and the normalized vector n̂ se-
lects a direction on the sky. Here and throughout the paper, spatial
flatness will be assumed and the integration in (5) is carried out
in Born approximation, i.e. along the unperturbed light path. The
shear tensor γ (χ, n̂) is defined as the second ∂/-derivative (New-
man & Penrose 1962; Goldberg et al. 1967) of the lensing potential
(Heavens 2003; Castro et al. 2005)

γ (χ, n̂) = 1

2
∂/∂/φ(χ, n̂). (6)

The ∂/-derivative acts as a covariant differentiation operator on the
celestial sphere and relates quantities of different spin, raising the
spin s of a function, a number which characterizes its transformation
properties under rotations. Acting twice on φ, the ∂/ operator relates
the scalar (spin-0) lensing potential to the spin-2 shear field γ . The
shear γ can be expanded with a choice of basis functions given
by a combination of spherical Bessel functions j�(z) (Abramowitz,
Stegun & Romer 1988) and spin 2-weighted spherical harmonics
2Y�m(n̂)

γ (χ, n̂) =
√

2

π

∑
�m

∫
k2 dk γ�m(k) 2Y�m(n̂) j�(kχ ), (7)

where the coefficients γ �m(k) are given by

γ�m(k) =
√

2

π

∫
χ2dχ

∫
d�γ (χ, n̂) j�(kχ ) 2Y

∗
�m(n̂). (8)

Inserting (5) and (6) in (8), and applying a spherical Fourier–Bessel
expansion to the Bardeen potentials � and , we can rewrite γ as

γ (χ, n̂) =
√

2

π

1

c2

∫ χ

0
dχ ′ χ − χ ′

χχ ′

∫
k2dk

∑
�m

√
(� + 2)!

(� − 2)!

×
[

��m(k, χ ′) + �m(k, χ ′)
2

]
j�(kχ ′) 2Y�m(n̂), (9)

where the division by 2 comes from the pre-factor in (6).
Poisson’s equation can be used to link the coefficients in the

spherical Fourier–Bessel decomposition of the lensing potential to
those of the overdensity field δ�m(k, χ ),

��m(k, χ )

c2
= −3

2

�m

(kχH )2

δ�m(k, χ )

a(χ )
μ(k, a(χ )), (10)

with the Hubble radius χH ≡ c/H0. Here the function μ(k, a(χ ))
describes the mapping from the potential fluctuations to the density
fluctuations. Equation (10) can also be used as a parametrization
of modified gravity theories (e.g. Planck Collaboration XIV 2016).
The latter approach, however, only holds in the quasi-static regime,
where one neglects terms involving time derivatives in the Ein-
stein equations for perturbations and keeps only spatial derivatives
(Sawicki & Bellini 2015; Baker & Bull 2015). For the Euclid sur-
vey, it could be questionable if this approximation holds, given the
large scales in principle accessible by the survey. The validity of
the quasi-static approximation depends also on the single modified
gravity model considered and its predictions for the sound speed of
the additional scalar degree of freedom. That said, we stress that
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we are not using this parametrization, but rather take the potential
and density statistics directly from HI CLASS, which does not use
the quasi-static approximation.

The density field is statistically homogeneous and isotropic, char-
acterized by a power spectrum which is diagonal in harmonic space,

〈
δlm(k, z)δ∗

�′m′ (k′, z′)
〉 = Pδ(k, z, z′)

k2
δD(k − k′)δK

��′δK
mm′ . (11)

Using this, we can relate the covariance of shear modes to the
matter power spectrum by

〈
γ̄lm(k)γ̄ ∗

�′m′ (k′)
〉 = 9�2

m

16π4χ4
H

(� + 2)!

(� − 2)!

×
∫

dk̃

k̃2
G�(k, k̃) G�(k′, k̃) δK

��′ δK
mm′ , (12)

where

G�(k, k′) =
∫

dz nz(z) F�(z, k) U�(z, k′), (13)

F�(z, k) =
∫

dzp p(zp|z) j�[kχ0(zp)], (14)

U�(z, k) = 1

2

∫ χ(z)

0

dχ ′

a(χ ′)
χ − χ ′

χχ ′ j�(kχ ′) P
1/2
δ (k, z (χ ))

×μ(k, a(χ ))

[
1 + 1

η(k, a(χ ′))

]
. (15)

γ̄ are estimates of the shear modes that, in addition to the pure lens-
ing effect, keep into account the redshift distribution of galaxies and
the redshift estimation error (see Section 4.2 for details on obser-
vational effects), as evidenced by the definition of the quantities in
(13), (14), and (15), which contain the redshift distribution nz(z) of
the lensed galaxies and the conditional probability p(zp|z) of esti-
mating the redshift zp, given the true redshift z. These two elements
and the lensing kernel contained in the function U�(z, k) introduce
correlations between the amplitudes of the signal on different scales;
the covariance matrix then acquires off-diagonal terms, the calcula-
tion of which is numerically involved. The basis of spherical Bessel
functions leads to integrals with rapidly oscillatory kernels, which
have to be solved for a large number of parameter combinations.
η(k, a(χ

′
)) is defined as the ratio between the Bardeen potentials,

η(k, a(χ )) = �(k, a(χ ))

(k, a(χ ))
. (16)

The P
1/2
δ (k, z (χ )) term comes from an approximation, introduced

and justified in Castro et al. (2005) to calculate unequal-time corre-
lators appearing in the comoving distance integrations by means of a
geometric mean P

(
k, z, z′) � √

P (k, z) P (k, z′) (see also Kitch-
ing & Heavens 2017). This expression simplifies considerably in the
linear regime of structure formation, retrieving the one presented in
the seminal paper of Heavens (2003), where a product of the linear
growth factors at different redshifts is present, acting on the matter
power spectrum evaluated at the present time.

The noise term for the covariance matrix of the shear modes
is given by the intrinsic ellipticity dispersion of source galaxies
as a result of the fact that the observed ellipticity ε is assumed
to be the sum of the shear γ and the intrinsic ellipticity εS. The
intrinsic ellipticity dispersion is given by

〈
ε2
S

〉 = σ 2
ε . In the spherical

Fourier–Bessel formalism, this gives

〈
γ�m (k) γ�′m′

(
k′)〉

SN
= σ 2

ε

2π2

∫
dz nz(z)j� [kχ0(z)] j�′

[
k′χ0(z)

]
× δK

��′δK
mm′ , (17)

and we set σ ε = 0.3. This expression for the noise holds only
in absence of intrinsic alignments, i.e. assuming that the intrinsic
ellipticities of galaxies are uncorrelated (see Merkel & Schäfer 2013
for a study of intrinsic alignments in 3D weak lensing).

3.2 Tomography

Instead of keeping track of the photometric redshift error, as done in
the 3D approach, by means of the probability p(zp|z) of estimating
the redshift zp conditional on the true redshift z, another possibility
is to assign every galaxy to a redshift bin. In this case, as opposed
to (12), the flat-sky tomographic cosmic shear power spectrum in
tomographic bins i and j is given by

Cκ
ij (�) =

∫
dχ

χ2
Wi(�/χ, χ )Wj (�/χ, χ ) Pδ(�/χ, χ ), (18)

where we used the Limber projection. The lensing efficiency func-
tion Wi(�/χ , χ ) is defined as

Wi(�/χ, χ ) = 3�m

4χ2
H

∫ ∞

χ

dχ ′ dz

dχ ′
ni(z(χ ′))

a(χ ′)
χ − χ ′

χχ ′

×
(

1 + 1

η(�/χ, χ ′)

)
μ(�/χ, χ ′), (19)

where ni(z(χ )), being the distance distribution of sources in the
i-th bin, which is normalized to one,

∫
dχni(z(χ )) = 1. Observed

spectra suffer from Poissonian noise due to the intrinsic ellipticity
dispersion of galaxies σ ε and their finite number n0. Choosing our
tomographic bins so as to have equal number of galaxies in each of
them, the observed tomographic weak lensing spectrum is given by

Ĉκ
ij (�) = Cκ

ij (�) + σ 2
ε nbins

n0
δij . (20)

It should be noticed that comparing tomographic and 3D lensing
must be done with some care since some approximations enter
in (18). In particular, we made use of the flat-sky approximation
and the Limber projection (Kaiser 1992, 1998; Loverde & Afshordi
2008), neither of which is included in the 3D formalism. For a de-
tailed discussion on this we refer to Kitching et al. 2016a; Kilbinger
et al. 2017; Lemos, Challinor & Efstathiou 2017, for an excellent
discussion of various approximations performed in cosmic shear
analyses.

4 M E T H O D O L O G Y

4.1 Fisher matrix forecasts

In order to present forecasts for a Euclid-like experiment on the pa-
rameters considered, we perform a Fisher matrix analysis (Tegmark,
Taylor & Heavens 1997). Provided that the likelihood surface near
the maximum is well approximated by a multivariate Gaussian, the
Fisher matrix gives a realistic expectation of the foreseen error for
a given experimental setting. The Fisher matrix is defined as the
expectation value of the derivative of the logarithmic likelihood L
with respect to the parameters θα:

Fαβ ≡ −
〈

∂2lnL
∂θα∂θβ

〉
, (21)
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3730 A. Spurio Mancini et al.

evaluated at the maximum of the log-likelihood L, which in a fore-
cast analysis coincides with the reference fiducial model. Once
we have the Fisher matrix, the Cramer-Rao bound �θ2

α ≥ (F−1)αα

gives a lower limit on the expected marginal error on the parameter
θα . If the data are Gaussian distributed and the mean values vanish,
the Fisher matrix can be calculated from the covariance matrix and
its derivatives with respect to the parameters (Tegmark et al. 1997)

Fαβ = 1

2
Tr

[
C−1C ,αC−1C ,β

]
. (22)

where derivatives have been denoted with a comma. Assuming full-
sky coverage this expression can be simplified for a 3D weak lensing
survey, as modes with different � and m are uncorrelated (δK

��′δK
mm′

in 12), leading to

Fαβ = 1

2

∑
�

(2� + 1)Tr
[
C−1

� C�,αC�C�,β

]
, (23)

as there are 2� + 1 statistically independent m modes for each �.
Note that expressions (22) and (23) are only exact if the data, in
this case the modes γ �m(k), follow a Gaussian distribution. This is
not the case for high-� values, where structures due to non-linear
clustering dominate the lensing signal (for a discussion on non-
Gaussian statistics of the weak lensing field see e.g. Taruya et al.
2002; Joachimi, Taylor & Kiessling 2011; Clerkin et al. 2017).
However, for the purpose of this paper this assumption will not be
of any harm since the basic parameter dependencies are captured
well enough within this approximation.

4.2 Observational effects and specifications

A 3D weak lensing analysis depends crucially on redshift estimation
of the source galaxies, which for next generation surveys like Euclid
(Laureijs et al. 2011) will be achieved using photometry, being
the number of sources prohibitively high for spectroscopy. The
estimated shear modes in (12) keep into account two observational
effects, which are inherent in a redshift survey. The first one is
described by the quantity G in (13) and represents the distribution
in redshift of the galaxies, mainly due to the fact that they become
fainter as redshift increases. For the source distribution we follow
(Amendola et al. 2016) and choose in (13)

nz(z) ∝ n0

(√
2

zm

)3

z2 exp

⎡
⎣−

(√
2z

zm

)3/2
⎤
⎦ , (24)

where zm is the median redshift of the survey and n0 is the observed
redshift-integrated source density n0. The second observational ef-
fect, kept into account in the quantity F in (14), is the error associated
to redshift estimation. This is described by the probability of esti-
mating the redshift zp given the measured redshift z. We take this
probability distribution to be a Gaussian

p(zp|z) = 1√
2πσ (z)

exp

[
− (zp − z)2

2σ 2(z)

]
, (25)

with a redshift-dependent dispersion

σ (z) = σz(1 + z). (26)

If the sky coverage is not complete then (23) is not completely
correct, since the spherical basis is no longer orthogonal. None the
less, (23) is a good approximation by just multiplying the right hand
side with the sky-fraction fsky = �survey/�sky. The choice we make
for the specifications used in the analysis is summarized in Table 1.

Table 1. Specifications used in the Fisher matrix analysis for the Euclid
survey: the median redshift zm; the source density n0; the error in photometric
redshifts, σ (z) = σz(1 + z); the field size �sky. �min, �max, and kmax describe
instead the minimum and maximum radial modes and the maximum angular
mode, respectively, considered in the computation of the shear covariances
(12) and the Fisher matrix (23). nbins is the number of bins considered in the
tomographic analysis.

zm n0[arcmin−2] σz �survey[deg2] �min �max kmax nbins

0.9 30 0.05 15000 10 1000 1.0 10

4.3 Scales considered and non-linear corrections

The cuts in angular and radial scales that we perform, �max = 1000
and kmax = 1.0 h Mpc−1, are such that we avoid the deeply non-
linear regime of structure growth. We demonstrate this point in
Fig. 1, showing the signal and noise parts of the covariance matrices
(12 and 17) for two �-modes, 10 and 1000, which correspond to
the minimum and maximum multipole considered in our analysis,
respectively. We notice how even for the higher � case, the range
of k scales considered justifies our choice to use the linear power
spectrum for our analysis, since the higher k part of the spectrum
is dominated by the noise (notice the different orders of magnitude
between the signal and noise contributions). In Fig. 2 we plot only
the diagonal contributions to the covariance matrices, distinguishing
between the signal and noise parts, for � = 10 and � = 1000, our
minimum and maximum angular multipoles. One can see how the
orders of magnitude of the covariance matrices between different
multipoles change and also how the dominance of the signal over
the noise part gets inverted going from low- to high-� values.

We compare forecasts obtained with a linear matter power spec-
trum in the calculation of the shear covariances to those obtained
with a non-linear power spectrum. The current lack of solid under-
standing for non-linear corrections, in �CDM and even more in a
modified gravity context, implies that any non-linear prescription
should be employed with caution. The matter power spectra are
produced using the HI CLASS code (Zumalacárregui et al. 2016), a
modification of the CLASS Boltzmann solver (Lesgourgues 2011)
for Horndeski theories of gravity. In particular, hi class allows
the user to choose the parametrization for the α(τ ) functions which
traces the evolution of the dark energy component, and the code
then takes as input the proportionality coefficients α̂ (4). The choice
for the fiducial values of α̂B and α̂M , reported in Table 2, is close
enough to �CDM to represent General Relativity with an additional
cosmological constant, without incurring in numerical difficulties
in HI CLASS, if the α̂ coefficients are all set to zero exactly. Since
HI CLASS is a linear code it produces linearly evolved power spectra
only. Non-linear corrections can however be incorporated by apply-
ing a non-linear transfer function using HALOFIT (Smith et al. 2003;
Bird, Viel & Haehnelt 2012; Takahashi et al. 2012) as implemented
in HI CLASS or a more state-of-the-art version, HMCODE, developed
by Mead et al. (2015), which we employ for our non-linear fore-
casts. Both HALOFIT and HMCODE however deal with non-linearities
only in a setting where standard General Relativity is true. In or-
der to get consistent constraints we therefore follow Alonso et al.
(2016) and introduce a screening mechanism to recover General
Relativity on small scales by a phenomenological modification of
the α(τ ) functions, employing a Gaussian kernel in Fourier space
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Cosmology with 3D cosmic shear and tomography 3731

Figure 1. Signal (left, labelled C�) and noise (right, labelled CSN
� , where the subscript stands for shot noise) parts of the covariance matrix (12 and 17,

respectively) for the minimum and maximum �-mode considered in the analysis, � = 10 (upper panels) and � = 1000 (bottom panels), respectively. Note the
different ranges of the colour bars, in logarithmic scale. See also Fig. 2 for a comparison between the diagonal elements of the matrices, highlighting how
different multipoles have contributions with different orders of magnitude and how the signal and noise parts become dominant for low- and high-� values,
respectively.

with a characteristic scale kV:

α(τ ) → α(τ, k) = α(τ ) exp

(
−1

2

(
k

kV

)2
)

. (27)

We marginalize over the scale kV = 0.1 h Mpc−1 at which the
screening mechanism becomes effective. The fiducial choice for the
screening is important in the sense that non-linear effects become
important at scales smaller than 0.1 h Mpc−1. Additionally, Barreira
et al. (2013) showed that the typical scale of Vainshtein screening
is roughly at 0.1 h Mpc−1. A plot with two different choices of kV

can be found in Appendix B.

5 R ESULTS

In this section we will investigate the signal strength of a weak
lensing analysis carried out using the full photometric redshift in-
formation via the 3D method as well as by using a tomographic
technique. As already mentioned we calculate the tomographic lens-
ing power spectrum using the Limber approximation; for a more
detailed discussion we refer to Kitching et al. (2016a). We then

show the possible constraints on Horndeski cosmological models
with survey specifications given in Table 1.

5.1 Signal to noise for 3D and tomographic weak lensing

Fig. 3 shows the differential signal-to-noise (SNR) curve for a to-
mographic survey relative to a 3D analysis as a function of the
number of tomographic bins. The total signal-to-noise ratio is
calculated as

�2(≤ �) = fsky

�∑
�′=�min

2�′ + 1

2
Tr

[
C−1

�′ S�′ C−1
�′ S�′

]

≡
�∑

�′=�min

��2(�′) , (28)

where S is the signal covariance (12) or (18) only, while C refers
to the sum of signal and noise, i.e. (12) and (17), or (20).

The number of tomographic redshift bins is shown in the colour
bar. Clearly an increase in the number of bins used increases the
SNR, however, the gain in signal saturates for nbins ≈ 15 due to
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3732 A. Spurio Mancini et al.

Figure 2. Comparison between the diagonal elements of the signal (solid line, as given by (12) and labelled C�) and noise (dashed line, as given by (17) and
labelled CSN

� , where the subscript stands for shot noise) contributions to the covariance matrices of the shear modes, for the minimum and maximum angular
multipole considered in this analysis, i.e. � = 10 (blue) and � = 1000 (red), respectively. Note the different orders of magnitude for the different multipoles,
and how the signal prevails on the noise for low multipoles, while the noise dominates for higher � values. Note also the log-scale on the x-axis to help identify
the different k-regions, where most of the contributions come from for different multipoles.

Table 2. Marginalized errors σi = [
(F−1)ii

]1/2
for the survey characteristics from Table 1. We compare a tomographic analysis with the 3D analysis using a

linear power spectrum. Furthermore the influence of the value α̂K is investigated. Lastly the impact of non-linear clustering is quantified. When reporting the
relative percentage error for the α̂ coefficients, we calculate it with respect to their fiducial values increased by one, as they are indeed expected to be O(1) if
one assumes the parametrization tracing the dark energy density fraction to model the time evolution of the α̂(τ ) functions (Bellini et al. 2016).

α̂K α̂B α̂M α̂T �m σ 8 h ns �b
∑

mν

Fiducial value 0.01 0.05 0.05 0.05 0.314 0.834 0.678 0.968 0.0486 0.05

Error 3DWL linear,
varying α̂K (fiducial value
0.01), varying α̂T (fiducial
value 0.05)

137
(13 564%)

0.82(78%) 2.24 (213%) 5.62(535%) 0.015
(4.78%)

0.045
(5.39%)

0.307
(45.28%)

0.101
(10.43%)

0.027
(55.55%)

0.484
(968%)

Error tomography linear,
α̂K = 0.01, α̂T = 0

– 0.57 (54%) 1.66 (158%) – 0.017
(5.41%)

0.056
(6.71%)

0.257
(37.90%)

0.088
(9.09%)

0.022
(45.27%)

0.472
(944%)

Error 3DWL linear,
α̂K = 0.01, α̂T = 0

– 0.43 (41%) 1.32 (126%) – 0.013
(4.14%)

0.042
(5.03%)

0.239
(35.25%)

0.080
(8.26%)

0.021
(43.21%)

0.408
(816%)

Error 3DWL linear,
α̂K = 10, α̂T = 0

– 0.48 (46%) 1.40 (133%) – 0.014
(4.46%)

0.043
(5.15%)

0.238
(35.10%)

0.080
(8.26%)

0.021
(43.21%)

0.400
(800%)

Error 3DWL non-linear,
α̂K = 0.01, α̂T = 0

– 0.25 (24%) 0.55 (52%) – 0.011
(3.50%)

0.010
(1.20%)

0.134
(19.76%)

0.038
(3.92%)

0.016
(32.92%)

0.229
(458%)

the non-vanishing cross-correlation between the different bins. It
should be noted that there is in principle an additional effect due
to the finite width of the photometric redshift estimation. If the
average bin width in the tomographic case is of the order of the
width of the distribution of redshift estimation error, the correlation
between neighbouring bins will be underestimated, thus artificially
producing signal. This effect is, however, very small as long as σ z

is sufficiently small. In the 3D case this correlation is represented
by the covariance (12).

Fig. 4 displays the impact of non-linear clustering: if one only
considers linear structure growth (dashed line), the shot noise starts
dominating the signal at � ≈ 450. For the non-linear power spec-
trum instead the differential signal-to-noise rises until � ≈ 1000
(solid line) due to the enhancement of small-scale structure by non-
linear clustering. This shows the importance of the inclusion of
high multipoles into the analysis. More specifically, we see that

the non-linear effects become important already at a relatively
low � � 200.

5.2 Cosmological constraints on Horndeski functions

In our forecasts we fix αT very close to zero and do not consider it as
a parameter in our Fisher matrix analysis, reflecting the recent very
strong constraints on the gravitational waves speed set by the detec-
tion of the binary neutron star merger GW170817 and the gamma
ray burst GRB170817A (Abbott et al. 2017a,b; Baker et al. 2017;
Creminelli & Vernizzi 2017; Ezquiaga & Zumalacárregui 2017;
Sakstein & Jain 2017). Furthermore the kineticity αK is largely
unconstrained by cosmological observables ( Alonso et al. 2016;
Bellini et al. 2016), therefore we fix the coefficient α̂K to its fiducial
value. However, we study the impact of the choice of α̂K on the
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Cosmology with 3D cosmic shear and tomography 3733

Figure 3. Differential signal-to-noise ratio of a tomographic analysis rel-
ative to a 3D analysis. The number of tomographic bins is shown in the
colour bar.

Figure 4. Differential signal-to-noise ratio, (28), i.e. �2 gained at each
multipole �: impact of the non-linear power on the 3D lensing signal. The
solid curve shows the differential signal-to-noise with a non-linear power
spectrum, while the dashed curve refers to a linear one.

constraints on the other parameters by choosing two values which
differ by three orders of magnitude.

As already seen in Fig. 3 a lot of signal comes from non-linear
scales, in fact for Euclid one expects that about two thirds of the
total signal to noise, �(< �max) with �max ≈ 2000, originate from
non-linear scales. It is therefore evident that one has to include
non-linear clustering in the analysis in order to get the neces-
sary statistical power to constrain a high-dimensional parameter
space.

As seen before, increasing the number of tomographic bins yields
more signal. In the inference process, however, the sensitivity to
the model parameters plays an important role. For linear model
parameters one expects the sensitivity to be a rescaled version of
the SNR curve. In Fig. 5 we show the marginal and conditional
errors of a tomographic analysis relative to the 3D analysis for a
few parameters. The marginal errors are more strongly affected,
since the contributions from the conditional errors add up during
the marginalization procedure. Furthermore, we see the same trend
as for the SNR: the expected errors tend towards the errors of a 3D
analysis for nbins � 1.

Figure 5. Errors on different parameters from a tomographic analysis rela-
tive to a 3D analysis as a function of the number of tomographic bins, nbins

(in log-scale on the x-axis). The solid lines show the ratio of the marginal er-
rors belonging to the left y-axis, while the dashed lines show the conditional
errors belonging to the right y-axis.

Fig. 6 shows a comparison between cosmological constraints
obtained with 3D cosmic shear and tomography with specifica-
tions from Table 1. Constraints from a 3D analysis are tighter than
those from tomography, due to the increased redshift information.
Furthermore, the degeneracies are in all cases very similar for the
two methods, which is expected since the two methods probe the
same quantity. In particular we find the usual degeneracy in �m

and σ 8, which is slightly reduced in the 3D case. Generally, the
biggest improvement can be seen for parameters carrying informa-
tion about the background evolution and the growth of structures; in
contrast, parameters such as the spectral index ns are not that much
influenced.

In Fig. 7, instead, we study the impact of the choice of α̂K and
compare constraints obtained only with 3D cosmic shear using a
linear matter power spectrum, but with two different choices of fixed
α̂K , namely α̂K = 0.01 and α̂K = 10. We find, in agreement with
Alonso et al. (2016), that the choice of α̂K does not affect the large-
scale structure observables significantly. Since the largest effect on
structure formation of α̂K comes from very large scales beyond
those considered in this work, we do not expect any significant
dependence of the Fisher matrix on this parameter.

Finally we investigate the impact of non-linear clustering in Fig. 8
as outlined before. Constraints are, as expected, tighter with the
addition of the non-linear corrections. In particular, we find a sig-
nificant gain in �m, σ 8, and

∑
mν[eV]. Other parameters such as

the spectral index ns and the Hubble constant h are not that much
affected, since the main characteristics are already captured in the
linear power spectrum. Furthermore we find a gain in sensitivity
in α̂B and α̂M . This reduction of the error for the modified gravity
parameters is mainly due to the marginalization process and the
degeneracies with the other parameters such as �m, which are bet-
ter constrained now. In fact, it should be noted that the conditional
constraints on α̂M and α̂B become slightly worse than in the linear
case, which has a subtle reason: the screening scale is chosen such
that modified gravity effects are suppressed as soon as non-linear
effects set in, on the other hand however, there is loss of power on
intermediate scales. This effectively yields a loss in sensitivity, since
the full effect of modified gravity is only present up to intermediate
scales, whereas the signal gain on small scales does not contribute
to the Fisher matrix. Finally, as a consequence of the screening
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3734 A. Spurio Mancini et al.

Figure 6. 1σ forecast contours for a Euclid-like survey, showing a comparison between a fully 3D (blue) and a tomographic cosmic shear analysis (red). The
fiducial values can be found in Table 2, while α̂K = 0.01 and the survey specifications are given in Table 1. We used the linear matter power spectrum for both.

mechanism, the orientation of the ellipses, for example, in the case
�m − α̂M and σ8 − α̂M , can change; this is due to the increase in
signal at high-� values and the change of the sensitivity to cosmolog-
ical parameters, especially because the sensitivity to the modified
gravity parameters on those scales vanishes by construction.

In order to exploit the full potential of non-linear clustering,
one would need to have a reliable model for non-linear structure
formation in a modified gravity setting. The way it is presented
here effectively assumes that modifications of the gravitational field
equation only play a role at linear order, while higher orders are
treated in the usual framework of perturbation theory in a �CDM
cosmology.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this work we investigated the performance of a 3D analysis
of cosmic shear measurements as a probe of Horndeski theories
of modified gravity. We set constraints by means of a Fisher ma-
trix analysis on a set of parameters that completely describe the
evolution of linear perturbations in Horndeski gravity, using the
specifications of a future Euclid-like experiment. We placed simul-
taneously our constraints on both the modified gravity parameters
and on a set of standard cosmological parameters, including the sum
of neutrino masses. Analogous forecasts for a tomographic analysis

with six bins were produced given the same specifications of the
cosmic shear experiment, with the aim of comparing the two meth-
ods. Our analysis was restricted to angular modes � ≤ 1000 and
k ≤ 1 h Mpc−1, to avoid the deeply non-linear regime of structure
growth. We summarize our results as follows.

The signal-to-noise ratio of both a 3D analysis and a tomographic
one is very similar, since it is mainly driven by the amplitude of the
lensing signal and a tomographic method effectively agrees with a
decomposition into spherical harmonics and radial Bessel functions
if the bin width gets as small as the width of the photometric redshift
errors.

3D cosmic shear provides tighter constraints than 10 bins to-
mography. Even with our conservative cut in angular and radial
scales and using a linear matter power spectrum for the calculation
of the covariance of the shear modes, 3D weak lensing performs
better than tomography for all cosmological parameters, with both
methods showing very similar degeneracies. For the parameters of
Bellini and Sawicki (2014) parametrization describing Horndeski
theories, the gain is of the order of roughly 20 per cent in the errors.

We investigated the impact of the fiducial value chosen for the
kineticity and found that the constraints are largely unaffected by
the choice of α̂K . In particular we used α̂K = 0.01 and αK = 10.

To illustrate the importance of non-linear corrections, we showed
the expected improvement in the size of the constraints obtained
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Figure 7. Impact of the choice of α̂K for a 3D cosmic shear analysis with fiducial values from Table 2 and survey specifications given in Table 1. We used a
linear power spectrum for the analysis and show the difference in the 1σ contours when fixing α̂K = 0.01 (blue) or α̂K = 10 (orange).

employing a non-linear matter power spectrum: the results obtained
in this case serve as an illustrative example of the constraining
power of non-linear scales. In order to obtain a complete and self-
consistent picture, one would need a formalism to construct the
non-linear corrections in a general modified gravity setting (see e.g.
Lombriser 2016; Fasiello & Vlah 2017). Here we introduced an
artificial screening scale, which pushes the deviations from General
Relativity to zero below its value. This is, however, not a fully ex-
haustive ansatz and many more investigations in this direction are
required. The gain in signal if non-linear clustering is considered
clearly shows the importance and calls for the development of ana-
lytic or semi-analytic prescriptions for the treatment of non-linear
scales in �CDM and modified gravity. These will play a crucial role
in allowing cosmic shear measurements to set strong constraints on
parameters describing deviations from General Relativity. Due to
the screening the constraints on modified gravity parameters are
only improved because of the marginalization over the remaining
parameters.

Compared to the analysis of Pratten et al. (2016), our study
extends the scope to the full Horndeski class and we do not
fix all the parameters describing the background to their �CDM
values. This large parameter space and the fact that we only

considered weak gravitational lensing as our observable makes
our constraints less tight than the ones presented in Alonso
et al. (2016), given also that our range in scales is less ex-
tended. Additionally, we present a 3D analysis along with a
tomographic one, showing the increase in sensitivity of the
former.

In our analysis we did not consider spurious contributions to the
pure lensing signal coming from systematics such as the intrin-
sic alignments of source galaxies (Joachimi & Bridle 2010; Man-
delbaum 2017). These are expected to dominate the error budget
for future cosmic shear surveys and need therefore to be carefully
accounted for. These contributions are also expected to influence
mostly the lensing signal on small, non-linear scales. The scales
we considered were also chosen with the purpose of avoiding the
regime of domination of these effects, which we considered neither
in our fully 3D approach nor in the tomographic one, so that the
comparison could remain fair. However, it has been shown that this
kind of systematics can be carefully accounted for in 3D analyses
(Merkel & Schäfer 2013) and we plan to investigate their impact
in future work, together with cross-correlations with other probes
which we envisage as one of the most powerful tools to test gravity
on cosmological scales.
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Figure 8. Impact of non-linear clustering with fiducial values from Table 2 and survey specifications are given in Table 1. We show the constraints obtained
with the linear power spectrum in blue and with the non-linear one in magenta.
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Figure A1. Fiducial values from Table 2 and survey specifications are given in Table 1. We notice that α̂K is unconstrained.

A P P E N D I X A : VA RY I N G α̂K A N D α̂T

We show in Fig. A1 the contour plots that we obtain if we also
vary α̂K and α̂T . We notice in particular that, as expected, α̂K is
unconstrained therefore we decide to fix it at its fiducial value.

A P P E N D I X B: IN F L U E N C E O F k V

In Fig. B1 we show the influence of the screening length on the
constraining power. Clearly, if kV becomes smaller, GR is retained at
larger scales already, thus decreasing the sensitivity on the modified
gravity parameters. For a more complete discussion we refer the
reader to Alonso et al. (2016).

Figure B1. Constraints on α̂B and α̂M for two different choices of the
screening length kV.
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