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A B S T R A C T   

The prediction and behavioural analysis of travel mode choice and purpose are critical for transport planning and 
have attracted increasing interest in research. Traditionally, the prediction of travel mode choice and trip pur
pose has been tackled separately, which fail to fully leverage the shared information between travel mode and 
purpose. This study addresses this gap by proposing a multitask learning deep neural network framework 
(MTLDNN) to jointly predict mode choice and purpose. We empirically evaluate and validate this framework 
using the household travel survey data in Greater London, UK. The results show that this framework has 
significantly lower cross-entropy loss than multinomial logit models (MNL) and single-task-learning deep neural 
network models (STLDNN). On the other hand, the predictive accuracy of MTLDNN is similar to STLDNN and is 
significantly higher than MNL. Moreover, in terms of behaviour analysis, the substitution pattern and choice 
probability of MTLDNN regarding input variables largely agree with MNL and STLDNN. This work demonstrates 
that MTLDNN is efficient in utilising the information shared by travel mode choice and purpose, and is capable of 
producing behaviourally reasonable substitution patterns across travel modes. Future research would develop 
more advanced MTLDNN frameworks for travel behaviour analysis and generalise MTLDNN to other travel 
behaviour topics.   

1. Introduction 

The analysis and prediction of travel mode choice are of pronounced 
importance for transport planning and travel demand forecast. Tradi
tionally, the predominant approach used for modelling travel mode 
choice is random utility models (DCM), which rely on predefined utility 
specifications for each alternative in the choice set (Domencich and 
McFadden, 1975). Recently, researchers have been increasingly inter
ested in applying machine learning (ML) techniques such as deep neural 
networks (DNN) to analyse travel mode choices. Rather than relying on 
predefined utility functions and pre-selected input variables, ML 
methods are capable of automatically identifying the non-linear rela
tionship between input features and mode choice. Therefore, ML 
methods have demonstrated considerable predictive power and 

interpretability in mode choice analysis. 
On the other hand, trip purpose prediction has also received 

increasing attention in transport planning and research. Trip purpose 
refers to the purpose of a trip and why people travel, such as education, 
work, recreation, and business. The methods for predicting trip purpose 
are classified into three categories, namely rule-based models (using 
predefined heuristic rules), statistical methods (using logistic models), 
and ML methods (Gong et al., 2014). Similar to mode choice analysis, 
ML methods are proved to outperform rule-based and statistical 
methods in terms of predictive accuracy for trip purposes. 

Until now, the prediction of travel mode choice and trip purpose are 
two separate research fields and no previous attempts have been intro
duced to simultaneously predict these two trip characteristics. The joint 
predicting of travel mode and trip purpose is made possible by two 
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aspects. First, empirical studies show a considerable dependence be
tween travel mode (“how people travel”) and trip purpose (“why people 
travel”). Second, the recent development in multitask learning (MTL) 
and DNNs provides an opportunity to address the problem of jointly 
predicting travel mode and trip purpose, as an alternative to separate 
prediction of mode or trip purpose. 

This study proposes a framework of using multitask learning deep 
neural networks (MTLDNNs) to analyse and predict travel mode and trip 
purpose based on travel surveys. This framework starts with several 
shared hidden layers that capture the shared information between two 
tasks and ends with some task-specific layers that model each task, as 
shown in Fig. 1. We first describe the structure and components of this 
framework and then apply this framework to a travel survey dataset 
collected in London, England, which is a household survey designed to 
monitor long-term trends in personal travel and to inform the develop
ment of transport policy. In the experiments, we demonstrate the pre
dictive performance of this MTLDNN framework in comparison with the 
classical DNN and multi-nomial logit models. To demonstrate the 
behavioural interpretability of this framework, we illustrate the rela
tionship between choice probabilities and key input variables and the 
substitution patterns between mode alternatives. Overall, this study 
shows that the MTLDNN framework is appropriate for jointly analysing 
and predicting travel mode and trip purpose due to the theoretical 
flexibility and predictive performance. 

The paper is organised as follows. Section 2 reviews the dependence 
between travel mode and trip purpose, as well as the existing studies that 
use multitask learning for travel behaviour and choice models. Section 3 
introduces the test of independence between mode and purpose and the 
MTLDNN for analysing mode and purpose. Section 4 presents data and 
experiment settings, and then Section 5 discusses model performance 
and the behavioural information in MTLDNN. Finally, Section 6 sum
marises the key findings and proposes future research directions. 

2. Literature review 

2.1. Dependence between travel mode and trip purpose 

Travel mode and trip purpose are among the most crucial charac
teristics for travel surveys and transport behaviour research. Empirical 
studies have shown that these two attributes are correlated and depen
dent on each other and that one attribute plays an important role in 
modelling and predicting the other. 

Multiple studies have adopted travel mode as one of the input vari
ables for predicting trip purpose and reported that travel mode has a 

significant effect on the prediction of trip purpose. In the work by 
Ermagun et al. (2017), travel modes are statistically significant variables 
in the nest logit model for predicting trip purpose, and the mode of “Bus” 
is within the top ten most important variables in the random forest 
model for predicting trip purpose. Likewise, travel mode was considered 
as the second most important variable in a trip-purpose random forest 
model that is developed for large-scale GPS-based travel surveys (Yaz
dizadeh et al., 2019). On the other hand, a body of research has 
confirmed the feasibility and importance of using trip purpose for ac
curate prediction of travel mode in travel surveys. Cheng et al. (2019) 
designed a random forest approach to predicting travel choice, in which 
trip purpose ranked fifth regarding variable importance in the 20 input 
variables. 

Although using trip purpose to predict travel mode (or the other way 
round) leads to improved predictive accuracy, this approach requires 
the presence of one attribute and hence does not apply to datasets where 
both attributes are unavailable. Unlike other trip information (e.g., 
distance, travel time) that can be passively collected by smartphones, 
either travel mode or purpose needs user input and is expensive to 
collect, especially at a large scale. For these reasons, it is of crucial 
importance to jointly predict mode and purpose based on the shared 
information between them. 

2.2. Discrete choice and machine learning methods for travel behaviour 
analysis 

For decades, DCMs have been used to model and examine individual 
decision making in transportation, including travel modes, trip pur
poses, travel scheduling, travel route, among others (Annaswamy et al., 
2018; Ben-Akiva et al., 1996; Cantarella and de Luca, 2005; De Dioszar 
Ortu and Willumsen, 2011). DCMs consist of a wide range of models, 
including Multinomial Logit (MNL), Nested Logit (NL), Cross-Nested 
Logit (CNL), and Mixed Logit (MXL) models (Ben-Akiva and Lerman, 
2018). These models have been widely used in travel behaviour research 
as they have clear mathematical structures and can provide economic 
information of travel behaviours. In turn, the economic information 
extracted from DCMs can provide insights to guide transport policies. 
For instance, DCMs can compute and derive the market shares of 
different modes that reveal the popularity of mode alternatives. More
over, the substitution pattern of mode alternatives uncovers how the 
choice probability and market share vary with input variables (e.g. 
travel distance). However, each DCM is based on model assumptions, 
such as the independence of irrelevant alternatives for MNL model. If 
these assumptions are violated, the parameter inference and model 

Fig. 1. The MTLDNN architecture for jointly predicting mode choice and trip purpose.  

H. Bei et al.                                                                                                                                                                                                                                      



Travel Behaviour and Society 33 (2023) 100625

3

prediction will be biased and inaccurate. These assumptions limit the 
applicability of DCMs, especially when dealing with panel data. 

ML algorithms have been adopted and applied in different fields of 
quantitative travel behaviour studies, including car ownership predic
tion (Paredes et al., 2017), license plate recognition (Li et al., 2019), and 
traffic flow prediction (Ren et al., 2020). Notably, ML models have been 
used as an alternative to the traditional DCMs for modelling and pre
dicting travel mode (Wang et al., 2020a) and trip purposes (Ermagun 
et al., 2017). The theoretical foundation of this line of research is that 
the modelling of travel mode or purpose can be considered as a general 
classification problem, which can then be addressed by ML classification 
algorithms (or ML classifiers). The main advantage of ML classifiers is 
that it is more flexible than DCMs due to fewer model assumptions, 
which leads to a higher predictive accuracy. Moreover, compared with 
DCMS, machine learning models have more complicated model struc
tures, which makes it possible to model non-linear relationship between 
variables. The ML classifiers that are commonly used for travel mode or 
purpose prediction include support vector machine, classification trees, 
random forest, and DNNs. Notably, comparative studies consistently 
report that DNNs achieved a higher predictive accuracy for travel mode 
and purposes than DCMs (Xia et al., 2023; Zhao et al., 2020). 

A major limitation of ML models for travel behaviour research (and 
also other fields) is that these models are not readily interpretable and it 
is challenging to extract reliable economic information from these 
models, when compared to DCMs. (Wang et al., 2020a) demonstrate the 
feasibility of generating a wide range of economic information regarding 
travel mode choice from DNN models. While the economic information 
extracted from DNNs is mostly reasonable and consistent with DCMs, 
some of the information is unreliable, which is caused by three inherent 
issues of DNNs: high sensitivity to model hyperparameters, model non- 
identification, and local irregularity. Therefore, challenges still exist in 
terms of extracting reliable economic information from DNNs for travel 
behaviours. 

2.3. Multitask learning for travel behaviour research 

As discussed above, most ML classifiers for travel behaviour analysis 
are designed for a single task, such as estimating travel mode or trip 
purpose. In contrast, MTL is a mechanism that improves the general
isation of ML models on a task by sharing the information and repre
sentations between related tasks (Caruana, 1997). To achieve this, 
MTLDNN trains tasks in parallel whilst using a shared representation. In 
comparison with traditional single-task ML, MTLDNN would achieve a 
better prediction performance on different tasks without the loss of 
model interpretability, due to the shared information across different 
tasks. In addition, MTLDNN would greatly reduce the risk of overfitting 
on one task, as the model has to seek a representation that simulta
neously captures all of the given tasks (Ruder, 2017). A summary of the 
advantages and disadvantages of three types of methods (including 
DCM, single-task ML, and MTLDNN) is provided in Table 1. 

MTLDNN has been widely and successfully applied to related tasks of 
different domains. In natural language processing, MTLDNN has been 
used to simultaneously predict semantic components of different levels, 
including part-of-speech tags, chunks, named entity tags (Collobert and 
Weston, 2008; Hashimoto et al., 2016). In image recognition, MTLDNN 
has displayed remarkable performance in two pairs of tasks, semantic 
segmentation and surface normal prediction, and object detection and 
attribute prediction (Misra et al., 2016). In urban analytics, MTLDNN 
has been utilised to learn individual geodemographic attributes 
(including age, gender, income level, and car ownership) from public 
transport travel patterns (Zhang et al., 2020). 

MTLDNN shares similar ideas as the simultaneous estimation of 
choice models in travel behaviour research. Specifically, MTLDNN has 
the potential to jointly model and estimate the household car ownership 
and vehicle kilometre travelled (Zegras, 2010), auto ownership and 
mode choice (Train, 1980), mode choice and psychological or attitu
dinal factors (Lyon, 1984; Morikawa et al., 2002). However, the use of 
MTLDNN for choice models is very limited. The only exception is that 
researchers used MTLDNN to jointly model revealed and stated prefer
ences in travel surveys (Wang et al., 2020b). 

In recent years, various MTLDNN architectures have been developed. 
The first MTLDNN was proposed by Caruana (1997), which contains 
shared hidden layers between all tasks and task-specific layers. The 
MTLDNN architecture was then improved via designing varying regu
larisation mechanisms and adding network components that control the 
differences and similarities of tasks (Argyriou et al., 2007; Evgeniou, 
2005; Long et al., 2015; Misra et al., 2016; Ruder et al., 2019; Yang and 
Hospedales, 2019). A comprehensive overview of the history and 
development of MTL and MTLDNN is provided by Ruder (2017). Despite 
the advanced MTLDNN architectures, this study uses the classical 
MTLDNN architecture, as it is straightforward and efficient for the tasks 
of modelling and predictive mode and purpose. 

Table 1 
A comparison of three types of methods for travel behaviour analysis.  

Method Advantages Disadvantages 

DCM Clear mathematical structure; good 
model interpretability 

Subject to model 
assumptions; not applicable 
to panel data 

Single-task 
ML 

Having few model assumptions and 
good applicability; high predictive 
accuracy; fair model interpretability 

Some model interpretation 
is unreliable 

MTLDNN Having few model assumptions and 
good applicability; better predictive 
performance than single-task ML; fair 
model interpretability; low risk of 
overfitting on a single task 

Some model interpretation 
is unreliable  

Table 2 
Contingency table of mode and purpose and the Chi-square test.  

Panel 1. Contingency table of mode and purpose      

Commuting Business Education Shopping Personal business Leisure Other mode share 

Walk 259 24 247 471 285 492 537 2315 (11.68%) 
Bicycle 193 23 33 78 46 155 4 532 (2.69%) 
Car or van 2049 590 771 2293 1204 3377 1262 11,546 (58.29%) 
Bus 722 81 221 591 280 601 62 2558 (12.91%) 
Rail 1537 232 177 151 120 607 32 2856 (14.42%) 
Purpose share 4760 (24.03%) 950 (4.80%) 1449 (7.32%) 3584 (18.09%) 1935 (9.77%) 5232 (26.41%) 1897 (9.58%)   

Panel 2. Relationship between mode and purpose (Chi-square test)   

Degree of freedom 24 
Chi-square statistic 3059.947 
p-value 0.00  
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3. Methods 

3.1. Test of independence between mode and purpose 

This study uses Pearson’s chi-square test to test the independence 
between mode and purpose choices in travel survey data. Pearsons’s chi- 
square test is a hypothesis testing method that tests the independence 
between multiple categorical data. This test is based on a contingency 
table between these data, which displays the multivariate frequency 
distribution of the variables (see Table 4 for an example). Assuming that 
the dimensions of mode and purpose choices are Km and Kp, and Oi,j is 
the co-occurrence frequency of mode i and purpose j, then the chi-square 
test statistic is calculated as: 

Table 3 
The selected and fitted models for comparison.  

Model Description 

MTLDNN- 
M 

the selected MTLDNN that has the lowest cross-entropy of predicting 
mode choice 

MTLDNN-P the selected MTLDNN that has the lowest cross-entropy of predicting 
trip purpose 

STLDNN-M the selected STLDNN for predicting mode choice and having the 
lowest cross-entropy 

STLDNN-P the selected STLDNN for predicting trip purpose and having the lowest 
cross-entropy 

MNL-M the fitted MNL for predicting mode choice 
MNL-P the fitted MNL for predicting trip purpose  

Table 4 
Performance comparison of six models.   

MTLDNN-M MTLDNN-P STLDNN-M STLDNN-P MNL-M MNL-P 

Panel 1. Cross-entropy loss 
Mode (Testing)  0.506  0.627  0.720  0.795 0.882 – 
Purpose (Testing)  1.388  1.249  1.500  1.460 – 1.638 
Mode (Training)  0.240  0.115  0.097  0.091 0.871 – 
Purpose (Training)  0.529  0.713  0.514  0.546 – 1.626  

Panel 2. Predictive accuracy 
Mode (Testing)  0.842  0.867  0.860  0.862 0.680 – 
Purpose (Testing)  0.622  0.581  0.605  0.611 – 0.328 
Mode (Training)  0.906  0.956  0.959  0.961 0.688 – 
Purpose (Training)  0.782  0.733  0.786  0.777 – 0.337  

Fig. 2. Choice probability and substitution patterns of all alternatives regarding the trip distance. (a) MNL; (b) STLDNN; (c) MTLDNN.  
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X2 =
∑Km

i=1

∑Kp

j=1

(
Oij − Eij

)2

Eij
(1) 

where Eij is the expected frequency of mode i and purpose j under the 
null hypothesis of independence. 

The p-value is then calculated by comparing the above test statistic 
and the X2 distribution. By comparing the p-value and the predefined 
significance level, one can decide whether the null hypothesis of no 
relationship should be rejected. In this study, the selected significance 
level is 0.01, and a p-value smaller than 0.01 indicates a statistically 
significant dependence between travel mode and purpose. 

3.2. Multitask learning neural network for mode and purpose 

The MTLDNN for analysing mode and purpose is described as fol
lows. We let xi ∈ Rd denote the input variables for mode and purpose, 
where i ∈ {1,2,⋯,N} are the indices of observations, and d represents 
the input dimension. The output choices of mode and purpose are 
denoted by ym,i and yp,i, where m and p stand for mode and purpose, 
respectively, ym,i ∈ {0,1}Km and yp,i ∈ {0,1}Kp ; Km and Kp are the di
mensions of mode and purpose choices, respectively. Both ym,i and yp,i 

are binary vectors. Due to the constraint that exactly one alternative of 
mode (or purpose choice) is true, 

∑Km
k=1ym,i[k] = 1 and 

∑Kp
k=1yp,i[k] = 1. 

As represented by Fig. 1, the feature transformation of mode and pur
pose can be represented as: 

Vm,i =
(
gM2

m ◦gM2 − 1
m ◦⋯◦g1

m

)◦( gM1
0 ◦gM1 − 1

0 ◦⋯◦g1
0

)(
xm,i

)
(2)  

Vp,i =
(

gM2
p ◦gM2 − 1

p ◦⋯◦g1
p

)◦(
gM1

0 ◦gM1 − 1
0 ◦⋯◦g1

0

)(
xp,i

)
(3) 

where M1 denote the depth of shared layers; M2 denotes the depth of 
task-specific (or non-shared) layers for each task; g0 represents the 
transformation of one shared layer; gm and gp represent the trans
formation of one layer in mode and purpose, respectively. Specifically, 

Table A1 
Descriptive statistics of the survey data.  

Panel 1. Numerical Variables 

Variable mean std min 25% 50% 75% max 

Trip_distance (miles) 7.67 18.17 0.1 1.5 3.5 7.2 600.5 
Trip_time (minutes) 29.16 28.18 1 12 20 35 614 
Household_children 0.73 1.04 0 0 0 1 5 
Household_bike 1.07 1.30 0 0 1 2 5 
Household_car 1.17 0.89 0 1 1 2 4 
Household_licence 1.65 0.88 0 1 2 2 5  

Panel 2. Categorical Variables 

Variable Category Percent (%) 

Purpose Purpose (Commuting) 24.03  
Purpose (Business) 4.80  
Purpose (Education / escort education) 7.32  
Purpose (Shopping) 18.09  
Purpose (Personal business) 9.77  
Purpose (Leisure) 26.41  
Purpose (Other) 9.58 

Mode Mode (Walk) 11.69  
Mode (Bicycle) 2.69  
Mode (Car or van) 58.29  
Mode (Bus) 12.91  
Mode (Rail) 14.42 

Household employed None 70.85  
1 part time or full time 0.00  
2 part time or full time 25.08  
3 or more part time or full time 4.07 

Individual employment Full-time 80.48  
Part-time 19.52 

Individual age 0 - 16 years 0.63  
17 - 20 years 4.10  
21 - 29 years 17.31  
30 - 39 years 24.91  
40 - 49 years 23.70  
50 - 59 years 14.99  
60 years + 14.36 

Individual education Degree level or above 44.08  
Other types of qualification 55.92 

Individual income Less than £25,000 66.45  
£25,000 to £49,999 24.10  
£50,000 and over 9.45 

Individual gender Male 45.80  
Female 54.20 

Household settlement Urban 99.94  
Rural 0.06  

Table A2 
Performance of the MNL models.   

MNL-M MNL-P 

Null Loglikelihood − 22314.9 − 26980.0 
Final Loglikelihood − 12077.0 − 22545.5 
Number of parameters 36 39 
Rho Square 0.459 0.164  
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except for the output layer, the transformation functions (including gm, 
gp, and g0) comprise ReLU and linear transformation: gl(x) =

max
{
Wlx,0

}
, ∀l ∕= M2. Overall, equations (2) and (3) depict the multi

task learning deep neural networks (MTLDNN) architecture as shown in 
Fig. 1: 

(
gM1

0 ◦gM1 − 1
0 ◦⋯◦g1

0
)

represent the shared layers, while 
(
gM2

m ◦gM2 − 1
m ◦

⋯◦g1
m
)

and 
(

gM2
p ◦gM2 − 1

p ◦⋯◦g1
p

)
represent task-specific layers for mode 

analysis and purpose analysis, respectively. The choice probability 
functions in mode and purpose are calculated by a standard softmax 
activation function, which is commonly used in multi-class classifica
tion, as follows: 

P
(
ym,i[k];wm,w0

)
=

eVm,i [k]

∑Km
j=1eVm,i [j]

(4)  

P
(
yp,i[k];wp,w0

)
=

eVp,i [k]

∑Kp
j=1eVp,i [j]

(5) 

in which wm and wp represent the task-specific parameters in gm and 
gp; w0 represent the shared parameters in g0. Equation (4) computes the 
choice probability for each of the Km mode alternatives, and Equation 
(5) computes the probability of each of the Kp trip purposes, given the 
input data. 

The MTLDNN model is trained by empirical risk minimisation 
(ERM), which contains classification errors and regularisation terms: 

Equation (5) consists of four parts. The first two parts 

L̂M (wm,w0) = −
1
N

∑Nx

i=1

∑Km

j=1
ym,i[j]logP

(
ym,i[j];wm,w0; cH

)
(6)  

L̂P
(
wp,w0

)
= −

1
N

∑Nx

i=1

∑Kp

j=1
yp,i[j]logP

(
yp,i[j];wp,w0; cH

)
(7) 

are the empirical risk of predicting mode and purpose, respectively, 
which take the form of cross-entropy loss. The third part, 
λ1
(
‖w0‖ + ‖wm‖ + ‖wp‖

)
is the L1-class regularisation term with λ1 

weight, where ‖w0‖ =
∑

j

⃒
⃒w0,j

⃒
⃒ and so forth. The fourth part 

λ2
(
‖w0‖

2
2 +‖wm‖

2
2 +‖wp‖

2
2

)
is the L2-class regularisation term with λ2 

weight, where ‖w0‖
2
2 =

∑
jw2

0,j and so forth. Equation (5) incorporates 
four hyperparameters (θm, θp, λ1, λ2) with a constraint that θm + θp = 1. 
Specifically, θm and θp adjust the relative importance of mode and pur
pose prediction, while λ1 and λ2 adjust the absolute magnitudes of layer 
weights. The larger λ1 or λ2, the larger weight decay in the training of 
DNN models. 

3.3. Multinomial logit models for mode and purpose 

This study compares the DNNs for analysing mode and purpose 
against two baseline MNL models that analyses mode and purpose, 
respectively. For convenience, the MNL models that predict mode and 
purpose are called MNL-M and MNL-P, respectively. The utility function 
of MNL-M follows a linear structure: 

Um,i = Vm,i + εm,i = wT
mxm,i + εm,i (8) 

where wm is the parameters for travel mode analysis; εm,i is the 
random utility term; xm,i is the independent variables for mode choice. 

Then, the choice probability function of each of the Km mode alter
natives in DCMs is computed as follows: 

P
(
ym,i[k];wm

)
=

e[w
T
mxm,i][k]

∑Km
k=1e[w

T
mxm,i][k]

(9) 

Similar to MNL-M, the utility function of MNL-P follows a linear 
structure, as follows: 

Up,i = Vp,i + εp,i = wT
p xp,i + εp,i (10) 

where wp is the parameters for trip purpose; εp,i is the random utility 
term; xp,i is the independent variables for analysing trip purpose. 

The probability function of each of the Kp trip purposes in DCMs is as 
follows: 

P
(
yp,i[k];wp

)
=

e[w
T
p xp,i][k]

∑Kp
k=1e[w

T
p xp,i][k]

(11) 

In the specification of the utility functions (9) and (11), we included 
all theoretically relevant independent variables. We used the maximum 
likelihood estimation method to estimate the parameters. 

4. Data 

4.1. Data summary 

We utilised the annual National Travel Survey (NTS) data of the UK 
from 2005 to 2016, which are publicly provided by the Department for 
Transport (Department for Transport, 2020). Respondents are divided 
into nine regions according to the household address they provided, 
namely North East, North West, Yorkshire and the Humber, East Mid
lands, West Midlands, East of England, London, South East, and South 
West. The NTS data is collected through a combination of face-to-face 
interviews and 7-day self-reported written travel diaries. The NTS data 
also provides individual socio-demographic information about re
spondents and their households, including gender, income, and car 
ownership. This dataset enables researchers to connect travel patterns 
with individual characteristics. Each year, the survey encompasses in
dividuals from all age groups and involves around 16,000 participants 
from 7,000 households in England. From 2005 to 2016, a total of 
121,765 respondents from 69,208 households participated in this sur
vey. After simple data cleaning, the database contains a total of 
2,100,492 observations with detailed travel information, including 
participant ID, mode, purpose, date and time of start and end point, 
location of the start and end point (government office region level, 
coarse-grained), travel duration, and travel distance. As the specific start 
and end location of each trip is not available and the home/work loca
tion of volunteers are not available, constructing the trip chain of a 
participant is challenging. Therefore, we consider each trip as an 
instance in the NTS data without constructing trip chains. In the future, 

min
wm ,wp ,w0

R
(
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)
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)
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(
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if more details of the trips and the home/work locations of the volun
teers are available, we can construct the trip chains to achieve more 
accurate prediction of travel behaviours. 

To demonstrate the utility of the proposed framework, in this case 
study, we focus on the subset of travel survey data of London in the year 
2005. 

4.2. Experiment setup 

This study compares the performance of MTLDNNs to STLDNNs and 
two baseline MNLs. The utility specification and estimation results of the 
MNLs are presented in Table A3 and Table A4. When training DNN 
models, the model hyperparameters that define the architecture and 
regularisation should be carefully selected, as the model performance 
largely depends on the hyperparameters. Therefore, we predefined the 
hyperparameter space (see Table A5) and used a grid search approach to 
select the optimal hyperparameters. The model performance is evalu
ated by the hold-out method, in which the original survey data is divided 
into training and testing sets with the ratio of 7:3. The training set is used 
for model training while the testing set is used for model evaluation. 

5. Results and discussion 

5.1. Data summary and the dependence between mode and purpose 

The market share of mode and proportion of travel purpose is shown 
in Table 2. The most popular travel mode, Car or Van, takes up 58.29% 
of total trips, as opposed to 2.69% of the least popular mode, Bicycle. Per 
travel purpose, the two most common purposes are Leisure (26.41%) 
and Commuting (24.03%), while the least common purpose is Business 
(4.80%). Moreover, Table 2 cross tabulates the mode and purpose, with 

the most popular travel purpose for each travel mode highlighted in 
bold. It is shown that the distribution of trip purpose varies considerably 
across travel modes, and vice versa. 

In addition, we performed the Chi-square test to test whether mode 
and purpose are independent of each other. As shown in Panel 2 of 
Table 2, the Chi-square statistic is 3059.947, with a degree of freedom of 
24 and a p-value smaller than 0.01. This indicates that there is a sta
tistically significant dependence between mode and purpose, which is 
the foundation for the utility of multitask learning that co-predicts mode 
and purpose. 

5.2. Model performance 

Here, we compare cross-entropy loss and predictive accuracy of 
MTLDNN for predicting mode and purpose, in comparison with the 
baseline STLDNN and MNL. The notation of the selected models is 
detailed in Table 2. The hyperparameter values of the selected DNNs are 
in Table A6. The model performance is detailed in Table 3. 

Generally, MTLDNN models outperform STLDNN and MNL models 
regarding cross-entropy loss in the testing set. When measured by cross- 
entropy loss for predicting mode, MTLDNN-M outperforms STLDNN-M 
and STLDNN-P by 0.214 and 0.289. On the other hand, per the cross- 
entropy loss for predicting purposes, MTLDNN-P outperforms 
STLDNN-M and STLDNN-P by 0.251 and 0.211. In addition, the 
MTLDNNs is less likely to overfit on the training samples than the 
STLDNNs, as MTLDNNs have a smaller difference of cross-entropy loss 
between training and testing set. This demonstrates the advantage of 
MTLDNN that it considerably reduces the risk of overfitting (Baxter, 
1997; Ruder, 2017). On the other hand, the cross-entropy loss of 
MTLDNN or STLDNN is much lower than MNL, which indicates the 
superior predictive power of MTLDNN and STLDNN than MNL. 

Table A3 
Estimated coefficients of the MNL-M model.  

Mode Variable name Value Std Err t-test p-value 

Bike A_bike  − 1.680  0.100  − 16.700  0.000 
Bike B_bike_household_bike  0.732  0.051  14.500  0.000 
Bike B_bike_individual_gender  1.260  0.122  10.400  0.000 
Bike B_bike_trip_time  − 0.910  0.074  − 12.300  0.000 
Bus A_bus  − 0.031  0.070  − 0.450  0.653 
Bus B_bus_age_individual_age_17_20  1.470  0.108  13.600  0.000 
Bus B_bus_household_bike  − 0.175  0.041  − 4.310  0.000 
Bus B_bus_household_car  − 0.028  0.086  − 0.327  0.744 
Bus B_bus_individual_income_less_than_25000  0.832  0.077  10.800  0.000 
Bus B_bus_household_licence  − 0.468  0.044  − 10.700  0.000 
Bus B_bus_purpose_other  − 1.280  0.172  − 7.470  0.000 
Bus B_bus_trip_time  − 0.321  0.034  − 9.540  0.000 
Car or Van A_car  2.610  0.050  52.600  0.000 
Car or Van B_car_individual_age_21_29  − 0.649  0.063  − 10.300  0.000 
Car or Van B_car_household_bike  0.035  0.024  1.470  0.141 
Car or Van B_car_household_car  1.230  0.077  16.000  0.000 
Car or Van B_car_household_licence  − 0.120  0.034  − 3.550  0.000 
Car or Van B_car_purpose_commuting  − 0.640  0.068  − 9.480  0.000 
Car or Van B_car_purpose_leisure  0.355  0.053  6.710  0.000 
Car or Van B_car_trip_time  − 0.717  0.029  − 24.500  0.000 
Rail A_rail  0.508  0.072  7.080  0.000 
Rail B_rail_individual_age_21_29  0.307  0.075  4.070  0.000 
Rail B_rail_household_car  0.422  0.079  5.320  0.000 
Rail B_rail_trip_distance  − 0.499  0.038  − 13.200  0.000 
Rail B_rail_individual_education  0.775  0.061  12.700  0.000 
Rail B_rail_individual_income_less_than_25000  − 0.196  0.064  − 3.080  0.002 
Rail B_rail_purpose_other  − 1.680  0.212  − 7.920  0.000 
Rail B_rail_purpose_commuting  0.555  0.075  7.450  0.000 
Rail B_rail_purpose_shopping  − 0.936  0.117  − 8.030  0.000 
Rail B_rail_trip_time  0.502  0.039  12.900  0.000 
Walk A_walk  − 2.810  0.129  − 21.900  0.000 
Walk B_walk_trip_distance  − 15.300  0.488  − 31.300  0.000 
Walk B_walk_household_car  0.677  0.081  8.380  0.000 
Walk B_walk_purpose_other  0.562  0.087  6.480  0.000 
Walk B_walk_purpose_commuting  − 0.602  0.101  − 5.950  0.000 
Walk B_walk_trip_time  1.450  0.058  25.000  0.000  
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The predictive accuracy of MTLDNN models is close to STLDNN. 
Specifically, per predicting mode in testing data, MTLDNN-P slightly 
outperforms STLDNN, whereas MTLDNN-M performs worse than the 
STL models. Regarding the predictive accuracy of purpose, MTLDNN-M 
performs slightly better than the STL models whilst MTLDNN-P under
performs STLDNN. In addition, the predictive accuracy of MTLDNNs and 
STLDNNs is significantly higher than MNL. 

The model comparison demonstrates the inconsistency between 
cross-entropy loss and predictive accuracy, which can be explained by 
the differing weighting mechanisms (Wang et al., 2020b). On the one 
hand, the predictive accuracy assigns equal weights to all instances 
based on the binary loss. On the other hand, the cross-entropy loss as
signs a large weight to the ‘confident but incorrect predictions’ (Wang 
et al., 2020b), which is shown in Equation (6) and (7). 

We argue that cross-entropy loss is a more appropriate measure than 
predictive accuracy in travel behaviour research, which is also discussed 
by (Train, 2009). On the one hand, the cross-entropy loss is equivalent to 
negative log likelihood in the maximum likelihood estimation, therefore 
it has a clear theoretical interpretation. In fact, log likelihood and the 
derived measures are often used to measure the discrete choice models 
that fit the data. On the other hand, predictive accuracy indicates 
“precent correctly predicted” and “should actually be avoided” in 
practice. The reason is that this measure presumes that the decision- 
maker is expected to choose the alternative with the highest probabil
ity given by the model, which is inconsistent with the meaning of 
probabilities and the objective of specifying choice probabilities. 

5.3. Analysis of substitution patterns of mode choice 

The substitution pattern of the mode alternatives is one of the most 
important economic information extracted from travel mode analysis. It 
reveals how the mode choice probability and market share vary with 
input variables (e.g. travel distance) (Wang et al., 2020a). In practice, it 
provides researchers and transport planners with an understanding of 
how market share of each mode changes with trip attributes. Here, we 

Table A4 
Estimated coefficients of the MNL-P model.  

Purpose Variable name Value Std Err t-test p-value 

Business A_business  − 0.261  0.051  − 5.110  0.000 
Business B_business_individual_income_less_than_25000  − 1.010  0.083  − 12.200  0.000 
Business B_business_trip_time  0.472  0.032  14.900  0.000 
Commuting A_commuting  0.838  0.077  11.000  0.000 
Commuting B_commuting_household_employeed  0.244  0.027  8.920  0.000 
Commuting B_commuting_individual_age_21_29  0.108  0.055  1.940  0.052 
Commuting B_commuting_individual_age_60_or_more  − 1.310  0.097  − 13.600  0.000 
Commuting B_commuting_individual_employment  0.824  0.078  10.600  0.000 
Commuting B_commuting_individual_income_less_than_25000  − 0.315  0.048  − 6.510  0.000 
Commuting B_commuting_mode_car  − 0.488  0.062  − 7.850  0.000 
Commuting B_commuting_mode_rail  0.367  0.074  4.950  0.000 
Commuting B_commuting_mode_walk  − 0.973  0.097  − 10.100  0.000 
Commuting B_commuting_trip_time  0.280  0.025  11.200  0.000 
Education A_education  − 1.560  0.087  − 17.800  0.000 
Education B_education_household_bike  0.121  0.033  3.660  0.000 
Education B_education_household_children  0.470  0.032  14.900  0.000 
Education B_education_individual_age_0_16  2.740  0.224  12.200  0.000 
Education B_education_individual_age_17_20  1.320  0.110  12.000  0.000 
Education B_education_individual_age_60_or_more  − 2.170  0.285  − 7.610  0.000 
Education B_education_individual_income_less_than_25000  1.200  0.108  11.200  0.000 
Education B_education_trip_time  − 0.163  0.047  − 3.440  0.001 
Leisure A_leisure  0.739  0.039  19.200  0.000 
Leisure B_leisure_mode_car  0.283  0.050  5.690  0.000 
Leisure B_leisure_trip_distance  0.344  0.036  9.680  0.000 
Leisure B_leisure_trip_time  0.019  0.032  0.606  0.545 
Personal A_personal_business  − 0.116  0.038  − 3.060  0.002 
Personal B_personal_business_individual_age_60_or_more  0.295  0.075  3.920  0.000 
Personal B_personal_business_mode_rail  − 0.694  0.126  − 5.500  0.000 
Personal B_personal_business_trip_time  − 0.175  0.042  − 4.200  0.000 
Shopping A_shopping  0.440  0.034  12.800  0.000 
Shopping B_shopping_individual_age_60_or_more  0.347  0.060  5.780  0.000 
Shopping B_shopping_mode_rail  − 1.030  0.116  − 8.820  0.000 
Shopping B_shopping_trip_distance  − 0.326  0.095  − 3.450  0.001 
Shopping B_shopping_trip_time  − 0.276  0.046  − 6.050  0.000 
Other A_other  − 0.084  0.042  − 1.980  0.047 
Other B_other_mode_bus  − 1.460  0.159  − 9.180  0.000 
Other B_other_mode_rail  − 2.050  0.225  − 9.090  0.000 
Other B_other_mode_walk  0.790  0.074  10.700  0.000 
Other B_other_trip_time  − 0.157  0.044  − 3.570  0.000  

Table A5 
Hyperparameter space of MTLDNN and STLDNN.  

Hyperparameter Values 

Number of shared layers [2,3,4] 
Number of task-specific layers [1,2] 
λ1 constant 1-20 

λ2 constant 1-10 

θm [0.05,0.5,0.95] 
Learning rate 0.001 
Dropout rate 0.01 
Batch size 200  

Table A6 
The hyperparameters of the selected DNN models.  

Model θm Shared layers Task-specific layers 

MTLDNN-M 0.05 2 1 
MTLDNN-P 0.95 2 1 
STLDNN-M – 2 1 
STLDNN-P – 4 2  
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compute and visualise the substitution patterns of choice alternatives 
regarding travel distance across these models as an example of 
extracting economic information and behavioural insights from 
different mode choice models. In Fig. 2, the x-axis represents the varying 
travel distance, and each line illustrates how the choice probability 
changes with travel distance while the other variables are fixed at the 
sample average. Note that the choice probability of MTLDNN and 
STLDNN is averaged over 50 trainings due to randomness in the model 
training. 

The substitute patterns of MTLDNN and STLDNN are overall 
reasonable and intuitive. As is a common trend in Fig. 2a, 2b, and 2c, 
when the trip distance is smaller than 20 miles, the alternatives are 
substitute to each other, and the probability of Car or van is generally 
increasing while the probability of the other alternatives is decreasing. 
When the trip distance exceeds 20 miles, people are more likely to 
choose Car or van than the other modes. However, the substitute pattern 
of MTLDNN is more flexible than MNL and STLDNN, as when the trip 
distance is less than 10 miles, the choice probability of Car or van de
creases before it rapidly increases, and the choice probability of Walk 
increases before it dramatically declines. This complex pattern is 
possibly due to the model non-identification problem of the DNN models 
(Wang et al., 2020c), which indicates that each training of DNNs can 
lead to very different models, even though conditioned on the fixed 
training data and hyperparameters. Overall, this analysis demonstrates 
that our proposed MTLDNN is interpretable and can derive reasonable 
and intuitive substitution patterns of mode choices. 

6. Conclusions 

This work proposes a multitask learning deep neural network 
(MTLDNN) framework that jointly predicts travel mode choice and trip 
purpose. The main advantage of this framework is its capability of 
automatically capturing and leveraging the shared information between 
travel mode and trip purpose. The case study using the annual travel 
survey data in London reveals that the MTLDNN achieves significantly 
lower cross-entropy loss than multinomial logit (MNL) models and 
single-task deep neural network (MTLDNN) models. Interestingly, in 
terms of predictive accuracy, while MTLDNN significantly outperforms 
MNL, it achieves similar accuracy with STLDNN. In addition, the 
MTLDNN produces reasonable choice probability patterns regarding 
input variables, which largely agrees with MNL and STLDNN. Overall, 
this framework is capable of providing an accurate joint prediction of 
travel mode choice and trip purpose, as well as intuitive behaviour 
analysis of travel behaviours. 

Multitask learning is theoretically and empirically appealing for a 
wide range of applications relating to transport behaviours and plan
ning. Further studies can apply multitask learning to classical topics in 
transport behaviours, such as auto ownership and mode choice, as well 
as mode choice and psychological factors. On the other hand, further 
studies should improve the MTLDNN performance for transport research 
by using advanced MTLDNN architecture or developing an MTLDNN 
framework specific for transport-related research. 
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Appendix 

Appendix 1. Data Descriptive Statistics 

The key statistics of the survey data are presented in Table A1. 

Appendix 2. Performance and Estimation Results of the MNL models 

The performance of MNL-M and MNL-P is summarised in Table A2. 
The estimated coefficients of the MNL-M and MNL-P models are pre
sented in Table A3 and Table A4, respectively. In Table A3, the first 
column is the mode category, and the second column is the variable, 
where ‘A’ implies mode-specific constant and ‘B’ implies the mode- 
specific variable coefficient. In Table A4, the first column is the pur
pose category, and the second column is similar to Table A3. 

Appendix 3. Hyperparameter space of MTLDNN and STLDNN  

References 

Annaswamy, A.M., Guan, Y., Tseng, H.E., Zhou, H., Phan, T., Yanakiev, D., 2018. 
Transactive Control in Smart Cities. Proc. IEEE 106, 518–537. https://doi.org/ 
10.1109/JPROC.2018.2790841. 

Argyriou, A., Evgeniou, T., Pontil, M., 2007. Multi-task feature learning. Adv. Neural Inf. 
Process. Syst. 41–48 https://doi.org/10.7551/mitpress/7503.003.0010. 

Baxter, J., 1997. A Bayesian/Information Theoretic Model of Learning to Learn via 
Multiple Task Sampling. Mach. Learn. 28, 7–39. https://doi.org/10.1023/A: 
1007327622663. 

Ben-Akiva, M.E., Lerman, S.R., 2018. Discrete choice analysis : theory and application to 
travel demand. MIT press. 

Ben-Akivai, M., Bowman, JohnL., Gopinath, D., 1996. Travel demand model system for 
the information era. Transportation 23 (3). 

Cantarella, G.E., de Luca, S., 2005. Multilayer feedforward networks for transportation 
mode choice analysis: An analysis and a comparison with random utility models. 
Transp. Res. Part C Emerg. Technol. 13, 121–155. https://doi.org/10.1016/j. 
trc.2005.04.002. 

Caruana, R., 1997. Multitask Learning. Mach. Learn. 28, 41–75. https://doi.org/ 
10.1023/A:1007379606734. 

Cheng, L., Chen, X., De Vos, J., Lai, X., Witlox, F., 2019. Applying a random forest 
method approach to model travel mode choice behavior. Travel Behav. Soc. 14, 
1–10. https://doi.org/10.1016/j.tbs.2018.09.002. 

Collobert, R., Weston, J., 2008. A unified architecture for natural language processing, 
in: Proceedings of the 25th International Conference on Machine Learning - ICML 
’08. ACM Press, New York, New York, USA, pp. 160–167. 10.1145/ 
1390156.1390177. 

De Dioszar Ortu, J., Willumsen, L.G., 2011. Modelling transport. John Wiley & sons. 
Department for Transport, 2020. National Travel Survey, 2002-2019. [data collection], 

14th ed. 10.5255/UKDA-SN-5340-11. 
Domencich, T.A., McFadden, D., 1975. Urban Travel Demand - A Behavioral Analysis. 
Ermagun, A., Fan, Y., Wolfson, J., Adomavicius, G., Das, K., 2017. Real-time trip purpose 

prediction using online location-based search and discovery services. Transp. Res. 
Part C Emerg. Technol. 77, 96–112. https://doi.org/10.1016/J.TRC.2017.01.020. 

H. Bei et al.                                                                                                                                                                                                                                      

https://doi.org/10.1109/JPROC.2018.2790841
https://doi.org/10.1109/JPROC.2018.2790841
https://doi.org/10.7551/mitpress/7503.003.0010
https://doi.org/10.1023/A:1007327622663
https://doi.org/10.1023/A:1007327622663
http://refhub.elsevier.com/S2214-367X(23)00076-5/h0020
http://refhub.elsevier.com/S2214-367X(23)00076-5/h0020
http://refhub.elsevier.com/S2214-367X(23)00076-5/h0025
http://refhub.elsevier.com/S2214-367X(23)00076-5/h0025
https://doi.org/10.1016/j.trc.2005.04.002
https://doi.org/10.1016/j.trc.2005.04.002
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1016/j.tbs.2018.09.002
http://refhub.elsevier.com/S2214-367X(23)00076-5/h0050
https://doi.org/10.1016/J.TRC.2017.01.020


Travel Behaviour and Society 33 (2023) 100625

10

Evgeniou, T., 2005. Learning Multiple Tasks with Kernel Methods Charles A. Micchelli 
Massimiliano Pontil. J. Mach. Learn. Res. 6, 615–637. 

Gong, L., Morikawa, T., Yamamoto, T., Sato, H., 2014. Deriving Personal Trip Data from 
GPS Data : A Literature Review on the Existing Methodologies. Procedia - Soc. 
Behav. Sci. 138, 557–565. https://doi.org/10.1016/j.sbspro.2014.07.239. 

Hashimoto, K., Xiong, C., Tsuruoka, Y., Socher, R., 2016. A Joint Many-Task Model: 
Growing a Neural Network for Multiple NLP Tasks. EMNLP 2017 - Conf. Empir. 
Methods Nat. Lang. Process. Proc. 1923–1933. 

Li, H., Wang, P., Shen, C., 2019. Toward End-to-End Car License Plate Detection and 
Recognition with Deep Neural Networks. IEEE Trans. Intell. Transp. Syst. 20, 
1126–1136. https://doi.org/10.1109/TITS.2018.2847291. 

Long, M., Cao, Z., Wang, J., Yu, P.S., 2015. Learning Multiple Tasks with Multilinear 
Relationship Networks. Adv. Neural Inf. Process. Syst. 2017-Decem, 1595–1604. 

Lyon, P.K., 1984. Time-Dependent Structural Equations Modeling: A Methodology for 
Analyzing the Dynamic Attitude-Behavior Relationship. Transp. Sci. 18, 395–414. 
https://doi.org/10.1287/trsc.18.4.395. 

Misra, I., Shrivastava, A., Gupta, A., Hebert, M., 2016. Cross-Stitch Networks for Multi- 
task Learning. In: Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition. IEEE, pp. 3994–4003. https://doi.org/ 
10.1109/CVPR.2016.433. 

Morikawa, T., Ben-Akiva, M., McFadden, D., 2002. Discrete choice models incorporating 
revealed preferences and psychometric data. Adv. Econ 16, 29–55. https://doi.org/ 
10.1016/S0731-9053(02)16003-8/FULL/XML. 

Paredes, M., Hemberg, E., O’Reilly, U.M., Zegras, C., 2017. Machine learning or discrete 
choice models for car ownership demand estimation and prediction? 5th IEEE Int. 
Conf. Model. Technol. Intell. Transp. Syst. MT-ITS 2017 - Proc. 780–785. 10.1109/ 
MTITS.2017.8005618. 

Ren, Y., Chen, H., Han, Y., Cheng, T., Zhang, Y., Chen, G., 2020. A hybrid integrated deep 
learning model for the prediction of citywide spatio-temporal flow volumes. Int. J. 
Geogr. Inf. Sci. 34, 802–823. https://doi.org/10.1080/13658816.2019.1652303. 

Ruder, S., Bingel, J., Augenstein, I., Søgaard, A., 2019. Latent Multi-Task Architecture 
Learning, in: Proceedings of the AAAI Conference on Artificial Intelligence. AAAI 
Press, pp. 4822–4829. 10.1609/aaai.v33i01.33014822. 

Ruder, S., 2017. An Overview of Multi-Task Learning in Deep Neural Networks [WWW 
Document]. URL http://arxiv.org/abs/1706.05098. 

Train, K., 1980. A Structured Logit Model of Auto Ownership and Mode Choice. Rev. 
Econ. Stud. 47, 357. https://doi.org/10.2307/2296997. 

Train, K.E., 2009. Discrete choice methods with simulation, 2nd ed, Discrete Choice 
Methods with Simulation. Cambridge University Press. 10.1017/ 
CBO9780511753930. 

Wang, S., Wang, Q., Zhao, J., 2020. Deep neural networks for choice analysis: Extracting 
complete economic information for interpretation. Transp. Res. Part C: Emerg. 
Technol. 118, 102701. 

Wang, S., Wang, Q., Zhao, J., 2020b. Multitask learning deep neural networks to 
combine revealed and stated preference data. J. Choice Model. 37, 100236 https:// 
doi.org/10.1016/j.jocm.2020.100236. 

Xia, Y., Chen, H., Zimmermann, R., 2023. A Random Effect Bayesian Neural Network 
(RE-BNN) for travel mode choice analysis across multiple regions. Travel Behav. Soc. 
30, 118–134. https://doi.org/10.1016/J.TBS.2022.08.011. 

Yang, Y., Hospedales, T.M., 2019. Trace norm regularised deep multi-task learning. 5th 
Int. Conf. Learn. Represent. ICLR 2017 - Work. Track Proc. 

Yazdizadeh, A., Patterson, Z., Farooq, B., 2019. An automated approach from GPS traces 
to complete trip information. Int. J. Transp. Sci. Technol. 8, 82–100. https://doi.org/ 
10.1016/j.ijtst.2018.08.003. 

Zegras, C., 2010. The Built Environment and Motor Vehicle Ownership and Use: 
Evidence from Santiago de Chile. Urban Stud. 47, 1793–1817. https://doi.org/ 
10.1177/0042098009356125. 

Zhang, Y., Sari Aslam, N., Lai, J., Cheng, T., 2020. You are how you travel: A multi-task 
learning framework for Geodemographic inference using transit smart card data. 
Comput. Environ. Urban Syst. 83, 101517 https://doi.org/10.1016/j. 
compenvurbsys.2020.101517. 

Zhao, X., Yan, X., Yu, A., Van Hentenryck, P., 2020. Prediction and behavioral analysis of 
travel mode choice: A comparison of machine learning and logit models. Travel 
Behav. Soc. 20, 22–35. https://doi.org/10.1016/j.tbs.2020.02.003. 

H. Bei et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S2214-367X(23)00076-5/h0070
http://refhub.elsevier.com/S2214-367X(23)00076-5/h0070
https://doi.org/10.1016/j.sbspro.2014.07.239
https://doi.org/10.1109/TITS.2018.2847291
https://doi.org/10.1287/trsc.18.4.395
https://doi.org/10.1109/CVPR.2016.433
https://doi.org/10.1109/CVPR.2016.433
https://doi.org/10.1016/S0731-9053(02)16003-8/FULL/XML
https://doi.org/10.1016/S0731-9053(02)16003-8/FULL/XML
https://doi.org/10.1080/13658816.2019.1652303
https://doi.org/10.2307/2296997
http://refhub.elsevier.com/S2214-367X(23)00076-5/h0140
http://refhub.elsevier.com/S2214-367X(23)00076-5/h0140
http://refhub.elsevier.com/S2214-367X(23)00076-5/h0140
https://doi.org/10.1016/j.jocm.2020.100236
https://doi.org/10.1016/j.jocm.2020.100236
https://doi.org/10.1016/J.TBS.2022.08.011
https://doi.org/10.1016/j.ijtst.2018.08.003
https://doi.org/10.1016/j.ijtst.2018.08.003
https://doi.org/10.1177/0042098009356125
https://doi.org/10.1177/0042098009356125
https://doi.org/10.1016/j.compenvurbsys.2020.101517
https://doi.org/10.1016/j.compenvurbsys.2020.101517
https://doi.org/10.1016/j.tbs.2020.02.003

	Joint prediction of travel mode choice and purpose from travel surveys: A multitask deep learning approach
	1 Introduction
	2 Literature review
	2.1 Dependence between travel mode and trip purpose
	2.2 Discrete choice and machine learning methods for travel behaviour analysis
	2.3 Multitask learning for travel behaviour research

	3 Methods
	3.1 Test of independence between mode and purpose
	3.2 Multitask learning neural network for mode and purpose
	3.3 Multinomial logit models for mode and purpose

	4 Data
	4.1 Data summary
	4.2 Experiment setup

	5 Results and discussion
	5.1 Data summary and the dependence between mode and purpose
	5.2 Model performance
	5.3 Analysis of substitution patterns of mode choice

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix Acknowledgements
	Appendix 1. Data Descriptive Statistics
	Appendix 2. Performance and Estimation Results of the MNL models
	Appendix 3. Hyperparameter space of MTLDNN and STLDNN

	References


