
Computer Networks 233 (2023) 109841

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Design, implementation and validation of a receiver-driven
less-than-best-effort transport
Marcelo Bagnulo a,∗, Alberto García-Martínez a, Anna Maria Mandalari b,
Praveen Balasubramanian c, Daniel Havey d, Gabriel Montenegro e

a U. Carlos III de Madrid, Spain
b University College London, UK
c Confluent, USA
d Microsoft, USA
e Samsung Research America, USA

A R T I C L E I N F O

Keywords:
Less-than-best-effort
Congestion control
LEDBAT++
Receiver-based

A B S T R A C T

LEDBAT++ is a congestion-control algorithm that implements a less-than-best-effort transport service. In
this paper we present rLEDBAT, a purely receiver-based mechanism to implement LEDBAT++ for TCP.
rLEDBAT enables a receiver to select some incoming traffic as less-than-best-effort, managing the capacity
of the downlink. We describe the different mechanisms composing rLEDBAT that enable the execution of the
LEDBAT++ congestion control algorithm at the receiver. We have implemented and experimentally tested
rLEDBAT. We validate that the mechanisms incorporated by rLEDBAT at the receiver are indeed effective
to implement a less-than-best-effort transport service at the receiver, as it performs similarly to the original
sender-based LEDBAT++.
1. Introduction

In the context of service classes for Internet traffic, the Best Effort
traffic is the default class used by Internet traffic and the Less-than-best-
effort (LBE) service class is one that obtains smaller bandwidth than
best-effort traffic, when sharing a bottleneck with it. LEDBAT++ [1] is a
Congestion-Control Algorithm (CCA) that implements a Less-Than-Best-
Effort (LBE) service for TCP. By reacting earlier and more aggressively
to congestion onset than Cubic [2], LEDBAT++ yields bandwidth to
competing Cubic-TCP flows, allowing them to use more of the available
capacity. In the absence of competing Cubic-TCP traffic, LEDBAT aims
to make an efficient use of the available capacity, while keeping the
queueing delay within predefined bounds.

LEDBAT++ is the evolution of the original LEDBAT CCA proposed
back in 2012 [3]. Similarly to LEDBAT, LEDBAT++ reacts both to
packet loss and to variations in delay. Regarding to packet loss, both
LEDBAT and LEDBAT++ react with a multiplicative decrease, similar to
commonly used TCP congestion controllers. Regarding delay, both ver-
sions of LEDBAT aim for a target queueing delay. When the measured
current queueing delay is below the target, they increase the sending
rate and when the delay is above the target, they reduce the sending
rate.

∗ Corresponding author.
E-mail address: marcelo@it.uc3m.es (M. Bagnulo).

LEDBAT++ incorporates a number of modifications, designed to
overcome several shortcomings of the original LEDBAT algorithm iden-
tified over the last few years [4]. Notably, LEDBAT++ uses additive
increase/multiplicative decrease (AIMD) instead of the additive in-
crease/additive decrease approach used by LEDBAT in order to address
the late-comer advantage problem that affects LEDBAT [5]. LEDBAT++
uses Round Trip Times (RTTs) instead of one-way delays for its cal-
culations to avoid the difficulties with clock frequency and clock drift
uncertainties.

Widespread use of LBE transports, including LEDBAT++, for trans-
ferring background delay-tolerant traffic is beneficial for competing
traffic that is sensitive to latency. Using Cubic-TCP for large background
traffic transfers results in long queues sustained for long periods, hin-
dering the performance of other applications with more stringent la-
tency requirements (e.g., real-time applications) [6]. When used for
carrying background traffic, LEDBAT++ allows other traffic with more
demanding requirements to complete faster and earlier. Also, when
there is unused capacity available for background traffic, LEDBAT++
limits the additional delay introduced by the background traffic, aiding
latency-sensitive traffic to encounter short queues while transiting.
LEDBAT++ is commonly used to carry delay-insensitive background
vailable online 9 June 2023
389-1286/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.comnet.2023.109841
Received 15 November 2022; Received in revised form 21 April 2023; Accepted 22
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

May 2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:marcelo@it.uc3m.es
https://doi.org/10.1016/j.comnet.2023.109841
https://doi.org/10.1016/j.comnet.2023.109841
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computer Networks 233 (2023) 109841M. Bagnulo et al.

r

1

t
c
T
i
t
l
p
t
t
i
r
t
f
v
c

B
o
N
b
s
t
a
t
L

B
w
L
t
b
d
o
m
u
c
d
t
t
o
f

v
f
L
p
L

t
R
t
m
n
T

𝑞

𝐺

traffic, such as automatic backups and software updates (including
Microsoft’s operating system updates).

While LBE transports are widely supported in the Internet today,
there still exists impediments that prevent its wider adoption. In par-
ticular, as any other CCA used in the Internet today, LEDBAT++ is
implemented at the sender of the traffic. Therefore, LEDBAT++ is not
used when the sender fails to support LEDBAT++.

In this paper we propose rLEDBAT, a receiver-based version of
LEDBAT++. rLEDBAT is a set of mechanisms that enable the full
implementation of the LEDBAT++ CCA in the TCP receiver, without
equiring any form of LEDBAT++ support at the sender-side.

.1. r LEDBAT use cases

rLEDBAT empowers the client to enable LEDBAT++ for incoming
raffic irrespectively of the server’s side support. In many cases, the
lients have stronger incentives for deploying LEDBAT++ than servers.
his is so because it is fairly common that the client’s access link

s the bottleneck of the communication. It is reported that 40% of
he home network users [7] and for between 25% and 70% of cel-
ular users, depending on the cellular technology [8] suffer from this
roblem. In these cases, it is the user’s delay-insensitive background
raffic who is the sole responsible for the long queues and thus for
he long delay penalty to the user’s own latency-sensitive traffic. This
s exacerbated by the excessively large buffers commonly observed in
esidential access links that result in the bufferbloat effect [9]. Fur-
hermore, rLEDBAT allows the client to selectively enable LEDBAT++
or incoming flows irrespectively of the server’s configuration, e.g., the
ideo stream client uses Cubic-TCP/UDP while the software update
lient uses rLEDBAT.

There are also more sophisticated scenarios where server LED-
AT++ does not protect against large queues. One fairly common
f such scenarios involves LEDBAT++-oblivious Content Distributions
etworks (CDNs). Consider the case where the source of a file to
e distributed (e.g., a software developer that wishes to distribute a
oftware update) enables the LEDBAT++ CCA in the servers containing
he source file. However, because the file is being distributed through
CDN which surrogates do not support LEDBAT++,1 the result is that

he file transfers, originated from CDN surrogates will not be using
EDBAT++.

Another frequent scenario where the client is not receiving LED-
AT++ enabled traffic in spite of being enabled at the sender is
hen there is a LEDBAT++-oblivious middlebox sitting between the
EDBAT++ enabled sender and the client. In this case, the leg between
he server and the middlebox is LEDBAT++ enabled while the segment
etween the middlebox and the client is not. Proxies and other mid-
leboxes are a commonplace in the Internet. For instance, in the case
f mobile networks, [10] observes that 25% of the 956 mobile users
easured are behind a non-transparent proxy. Enterprise networks
sually deploy corporate proxies for filtering and firewalling. In the
ase of satellite links, Performance Enhancement Proxies (PEPs) are
eployed to mitigate the effect of the long delay in TCP connection. All
hese proxies terminate the TCP connection on both ends and prevent
he use of LEDBAT++ in the segment between the proxy and the sink
f the content, the client. rLEDBAT enables the use of LBE traffic class
or file distribution in these setups.

1 In our operational experience, the current support for LEDBAT in CDNs is
ery limited, resulting in LEDBAT rarely used for Windows Updates originated
rom CDNs. Moreover, it would not only be necessary that the CDN supports
EDBAT++, but it would also require some protocol to allow the content
rovider to convey to the CDN which content should be delivered using
2

EDBAT++ and which one should be distributed using Cubic-TCP.
1.2. Contributions

We present rLEDBAT, a receiver-based implementation of a LED-
BAT++ congestion control algorithm for TCP. The main contributions
of the paper are the following:

• We design the rLEDBAT mechanisms that enable the execution
of the LEDBAT++ CCA at the receiver-end of a TCP connection.
We implement the proposed rLEBDAT in Linux and make our
implementation available as open-source in github.

• Using our rLEDBAT implementation for Linux, we experimentally
validate that rLEDBAT performs similarly to the sender-based
LEBDAT++ in a wide set of conditions. We test multiple scenarios,
including rLEDBAT flows running solo, multiple rLEDBAT flows
competing against each other, and rLEDBAT flows competing
against TCP using both Cubic and BBR CCA.

• As rLEDBAT behaves similarly than LEDBAT++, they both exhibit
the same pitfalls. Notably, both sender-based LEDBAT++ and
rLEDBAT fail to yield when competing against BBR flows under
certain conditions. We propose a modification of the LEDBAT++
CCA to address the identified shortcoming. We implement the
proposed solution in our rLEDBAT implementation, and we verify
that it solves the identified issue, i.e., the modified rLEDBAT
implementation yields against BBR in all tested conditions.

The rest of this paper is structured as follows. In Section 2 we
present the necessary background information regarding LEDBAT++.
In Section 3 we describe the rationale for the design of the proposed
rLEDBAT mechanism and we describe it in detail. Next , in Section 4
we present our Linux implementation of rLEDBAT. We continue in
Section 6 with a description of the experimental evaluation of the
rLEDBAT mechanism. Sections 7 and 8 describe and validate the pro-
posed modifications for the LEDBAT++ CCA to address the identified
limitations. Finally, Section 10 concludes the paper.

2. LEDBAT++ background

LEDBAT++ [1] is a LBE congestion-control algorithm that reacts
both to packet loss and to delay variations.

2.1. LEDBAT++ overview

LEDBAT++ controls the sending rate through the calculation of a
Congestion Window, 𝐶𝑊 . LEDBAT++ updates the 𝐶𝑊 based on delay
variations and packet loss. With respect to packet loss, LEDBAT++
reacts by reducing the 𝐶𝑊 to half of its value when a loss is detected.

With respect to delay variations, LEDBAT++ aims for a pre-defined
queueing delay target, 𝑇 (defined equal to 60 ms in the specification).
LEDBAT++ continuously estimates the current queueing delay, 𝑞𝑑 . If
the current queueing delay 𝑞𝑑 is larger than the target queueing delay
𝑇 , LEDBAT++ multiplicatively decreases the Congestion Window. Con-
versely, if the delay is smaller than the target, LEDBAT++ additively
increases the Congestion Window.

LEDBAT++ estimates the current queueing delay (𝑞𝑑) by subtracting
he base round-trip-time (𝑅𝑇𝑇𝑏) from the current RTT (𝑅𝑇𝑇𝑐). The base
TT is calculated as the minimum RTT observed in the last 10 min of

he lifetime of the communication. The current delay is the last RTT
easured in the communication. Both values are filtered to eliminate
oise by taking the minimum of the last 𝑛 values, 𝑛 being at least 4.
he current queueing delay is then calculated as:

𝑑 = 𝑅𝑇𝑇𝑐 − 𝑅𝑇𝑇𝑏 (1)

LEDBAT++ defines the GAIN parameter as follows:2

𝐴𝐼𝑁 = 1
𝑚𝑖𝑛16, 𝐶𝐸𝐼𝐿(2 ∗ 𝑇

𝑅𝑇𝑇𝑏
)

(2)

2 CEIL(X) is defined as the smallest integer larger than or equal to X.



Computer Networks 233 (2023) 109841M. Bagnulo et al.

w
𝑛

𝐶
1
o
C
i
s

p
L
B
t
s
a
h

c
i
b
R
𝐺
g
s

b
R
L
t
p

2

o

a
t
d
b
t
h

B
s
s
u
t
s

f
t
s
l

w
c

s
t

For a 𝑇 equal to 60 ms, this means that GAIN is equal to 1 for base
RTTs larger than 120 ms, equal to 0.5 for base RTTs of 60 ms and equal
to 1

16 for RTTs smaller than 7.5 ms. As it will be described later, the
GAIN parameter is used to make LEDBAT++ AIMD less aggressive than
the one used by Cubic-TCP, even in cases where the buffers are small.
The (unstated) assumption is that networks with small base RTTs are
more likely to have shallow buffers (e.g., datacenter networks).

LEDBAT++’s AIMD reacts to changes in the queueing delay by
updating its 𝐶𝑊 as follows: if 𝑞𝑑 < 𝑇 , then

𝐶𝑊𝑛+1 = 𝐶𝑊𝑛 + 𝐺𝐴𝐼𝑁 (3)

and if 𝑞𝑑 > 𝑇 , then

𝐶𝑊𝑛+1 = 𝐶𝑊𝑛 + 𝑚𝑎𝑥(−
𝐶𝑊𝑛
2

, (𝐺𝐴𝐼𝑁 − 𝐶𝑊𝑛.(
𝑞𝑑
𝑇

− 1))) (4)

ith 𝐶𝑊𝑛 being the value of the Congestion Window computed at RTT
and 𝑀𝑆𝑆 being the Maximum Segment Size of the TCP connection.

Eq. (3) defines the Additive Increase part. It basically states that the
𝑊 increases up to 1 𝑀𝑆𝑆 per RTT (being 1 𝑀𝑆𝑆 if the base RTT is
20 ms or larger, and less than that for smaller base RTTs). The purpose
f this is to ensure that LEDBAT++ increases less aggressively than
ubic-TCP when the base RTT is less than 120 ms. This is especially

mportant when the bottleneck link buffer is small and LEDBAT++ is
olely decreasing its 𝐶𝑊 based on losses.

Eq. (4) describes the Multiplicative Decrease part. By using multi-
licative decrease (instead of the additive decrease used in LEDBAT),
EDBAT++ aims to overcome the (un)fairness issues identified in LED-
AT. The multiplicative decrease factor depends on the ratio between
he current queueing delay and the Target 𝑇 , so that LEDBAT++ reacts
oftly to small excesses in the queueing delay, allowing a smooth oper-
tion around the target point. The multiplicative decrease is capped to
alf, to avoid starving LEDBAT++ in cases of spikes in the delays.

LEDBAT++ performs a slow-start increase at the beginning of the
onnection. LEDBAT++’s slow-start is similar to the one of Cubic-TCP,
n the sense that the 𝐶𝑊 increases exponentially. However, in order to
e less aggressive than Cubic-TCP, instead of doubling the 𝐶𝑊 every
TT, LEDBAT++ multiples the 𝐶𝑊 by a factor of 2 ⋅ 𝐺𝐴𝐼𝑁 , with
𝐴𝐼𝑁 being always less or equal to 1. LEDBAT++ exits the exponential
rowth of the initial-slow start when the measured queueing delay
urpasses 3

4 of the Target 𝑇 , in order to avoid overshooting.
In addition, LEDBAT++ performs periodic slow-downs to obtain

more accurate measurements of the base RTT and overcome the late-
comer advantage identified in LEDBAT. This means that periodically
LEDBAT++ sets the 𝐶𝑊 to two 𝑀𝑆𝑆 during two RTTs and then
performs a slow-start increase back to the 𝐶𝑊 value that it was using
efore the periodic decrease. An initial slow-down is performed 2
TTs after exiting the initial slow-start. After that initial slow down,
EDBAT++ performs slow-downs periodically. If we call 𝑇 𝑠𝑠 the time
hat it takes for the slow-start to ramp back up, then LEDBAT++
erforms the next periodic slow down after a period equal to 9 ⋅ 𝑇 𝑠𝑠.

.2. LEDBAT++ performance

In previous work, we have experimentally studied the performance
f LEDBAT++ [6,11] in different conditions.

LEDBAT++ exhibits two different modes of operation, delay-based
nd loss-based. When the bottleneck link buffer has enough capacity
o generate a queueing delay equal or higher than LEDBAT++’s target
elay3 (𝑇 ), then LEDBAT++ runs in delay-based mode, while when the
uffer is smaller, losses are generated before LEDBAT++ can react to
he increase in the queueing delay, so it runs in loss-based mode. We
ave tested both modes of operation in our previous work.

3 We call this buffer larger than 𝑇 for short
3

We have measured the performance of LEDBAT++ when running
solo in a bottleneck link [6]. When the buffer is larger than 𝑇 , LED-

AT++ is able to seize 90% of the available capacity for base RTT
maller than 300 ms. The 10% penalty is caused by the periodic
lowdowns built into LEDBAT++. For larger base RTTs, the achieved
tilization decreases (e.g., about 80% utilization for base RTT equal
o 400 ms). The reason is that, after a periodic slowdown, LEDBAT++
truggles to restore the rate it was sending before the slowdown.

In addition, we measured the fairness between multiple LEDBAT++
lows and we have observed that LEDBAT++ is able to evenly split
he available capacity between multiple LEDBAT++ flows (with the
ame base RTT), irrespectively of when each flow started, solving the
ate-comer advantage problem [5] of the original LEDBAT specification.

We also tested LEDBAT++ when competing against Cubic [6] and
e observed that LEDBAT++ yields in front of Cubic in all tested

onditions, effectively implementing an LBE transport in this case.
Finally, we tested LEDBAT++ when competing against both ver-

ions of BBR, BBRV1 and BBRv2 [11]. For base RTTs larger than
he minimum between the LEDBAT++ target 𝑇 and the buffer size,

LEDBAT++ yields in front of BBR as expected, but for smaller base
RTTs, LEDBAT++ does not yield, and consequently it does not behave
as an LBE transport. For these small base RTTs, when LEDBAT++ is
competing against BBRv1, they evenly split the available capacity, but
when LEDBAT++ competes against BBRv2, it is the BBRv2 flow the one
that yields (instead of LEDBAT++).

3. r LEDBAT mechanism

rLEDBAT enables a TCP receiver to use the LEDBAT++ CCA to
control the sender’s rate. The rLEDBAT mechanisms is fully contained
at the receiver and the sender is agnostic to rLEDBAT/LEDBAT. As
depicted in Fig. 1, rLEDBAT provides the mechanisms that enable
the receiver to gather the input required by the LEDBAT++ CCA to
calculate the Congestion Window. It also provides the means for the re-
ceiver to control the sender’s rate. In terms of input for the LEDBAT++
algorithm, rLEDBAT enables the receiver to estimate the queueing
delay by measuring the RTT. Also, the rLEDBAT mechanisms enable the
receiver to detect packet losses and retransmissions, which also serve
as input to the LEDBAT++ algorithm. Finally, the rLEDBAT receiver
controls the sender’s rate using the Receive Window (𝑅𝑊𝑁𝐷) field of
the TCP header. rLEDBAT defines how to safely convey the Congestion
Window computed by the LEDBAT++ CCA using the Receive Window.

3.1. rLEDBAT mechanisms to estimate the base and current RTT

LEDBAT++ estimates the queueing delay by subtracting the base
RTT (i.e., the constant components of the RTT) from the current RTT
and uses it to compute the Congestion Window, as described in Sec-
tion 2. rLEDBAT passively measures the RTT by inspecting the incoming
and outgoing packets and matching them in pairs. We next describe
how rLEDBAT measures the RTT and how it uses the measurements to
estimate the current and the base RTT.

Because TCP is a reliable data transfer protocol, when a TCP sender
sends data, it expects to receive an acknowledgement back. A TCP
sender can naturally leverage on this data-ACK exchange to match
outgoing and incoming packets and measure the RTT. Unfortunately,
this is not always the case for a TCP receiver. In particular, it is possible
for TCP endpoints to behave as pure receivers, meaning that one of the
endpoints of the TCP connection is sending data (pure sender) and the
other one is only receiving it (pure receiver). In this scenario, there
is no data flowing from the rLEDBAT receiver to the sender, making
impossible to match data packets with acknowledgements packets to
measure the RTT. This is expected to be a very common scenario for
rLEDBAT, e.g., downloading an operating system update or any other

form of background download.



Computer Networks 233 (2023) 109841M. Bagnulo et al.
Fig. 1. rLEDBAT architecture at the TCP receiver and interaction with LEDBAT++
CCA.

In order to measure the RTT from a pure receiver side, rLEDBAT
relies on the use the Time Stamp (TS) option. By matching the TSVal
value carried in outgoing packets with the TSecr value observed in
incoming packets, it is possible even for a pure receiver to match
outgoing packets with incoming packets and measure the RTT.

This implies that rLEDBAT can only work if the TimeStamp option
is enabled by both ends. We measured the Alexa top-500k servers4

and queried for TimeStamp Option support. We found that 76% of the
queried servers support Time Stamps. While not universal, the support
is fairly widespread.

There are two reasons why the server may not send a packet imme-
diately back to the rLEDBAT client, artificially increasing the measured
RTT. The first reason is when A has no data to send. The second is when
A has no available window to put more packets in-flight. We describe
next how each of these cases is addressed.

Regarding to the first reason for having an inflated RTT, the lack
of data to send in the sender node, we argue that this is rare in the
expected rLEDBAT use cases. rLEDBAT will be used mostly for back-
ground file transfers, so the sender will have data to send throughout
the lifetime of the communication. We propose to address this situation
by using a minimum filter of the last 𝑘 samples when measuring the
current RTT to discard the (rare) artificially bloated samples.

Concerning the second reason for having an inflated RTT, the lack
of window to send more packets, the limitation can come either from
the Congestion Window in the server or from the announced Receive
Window from the rLEDBAT client. Normally, the Receive Window will
be the one to limit the sender’s transmission rate, since LEDBAT++ is
designed to be more restrictive on the sender’s rate than Cubic-TCP.
In any case, if the limiting factor is the Congestion Window in the
sender, it is irrelevant if rLEDBAT further reduces the Receive Window
due to a bloated RTT measurement, since the rLEDBAT is not actively
controlling the sender’s rate. To address the case in which the limiting
factor is the Receive Window announced by rLEDBAT, the receiver
should discard the RTT measurements done while reducing the window
and avoid including bloated samples in the queueing delay estimation.5

4 https://www.alexa.com/topsites
5 The rLEDBAT receiver is aware whether a given TSVal value was sent

in a packet where the window was reduced, and if so, it can discard the
corresponding RTT measurement.
4

Finally, depending on the frequency of the local clock used to
generate the values included in the TS option, several packets may carry
the same TSVal value. If that happens, the rLEDBAT receiver will be
unable to match the different outgoing packets carrying the same TSVal
value with the different incoming packets carrying also the same TSecr
value. However, it is not necessary for rLEDBAT to use all packets to
estimate the RTT and sampling a subset of in-flight packets per RTT is
enough to properly assess the queueing delay. So, in order to address
this issue, rLEDBAT only measures the RTT matching the first outgoing
packet with a given value in the TSVal and the first incoming packet
with the same value in the TSecr.

Summarizing:

• rLEDBAT relies on TCP timestamps to passively measure the RTT
• rLEDBAT only considers the first incoming and the first outgoing

packet with a given timestamp value
• rLEDBAT dismisses RTT measurements done while shrinking the

LEDBAT++ window
• rLEDBAT estimates the base RTT (𝑅𝑇𝑇𝑏) by taking the minimum

value observed in the measured RTTs over a (long) period of time.
• rLEDBAT computes the current RTT (𝑅𝑇𝑇 𝑐) applying a minimum

filter of the last 𝑘 samples. rLEDBAT feeds both values to the
LEDBAT++ CCA.

3.2. rLEDBAT mechanisms for detecting packet loss and retransmissions

The rLEDBAT receiver is capable of detecting retransmitted packets
in the following way. We call 𝑆1 the highest sequence number corre-
spondent to a received byte of data (not assuming that all bytes with
smaller sequence numbers have been received already, there may be
holes) and we call 𝑇𝑆1 the TSVal value corresponding to the segment
in which that byte was carried. 𝑆2 stands for the sequence number
of a newly received segment, and we call 𝑇𝑆2 the TSVal value of the
newly received segment. If 𝑆2 < 𝑆1 and 𝑇𝑆2 > 𝑇𝑆1 then the newly
received segment is a retransmission. This is so because the newly
received segment was generated later than another already received
segment which contained data with a larger sequence number. Thus,
this segment was lost and was retransmitted.

3.3. rLEDBAT mechanism for controlling the sender through the receive
window

In order to empower the receiver to control the sender’s rate using
the Receive Window, rLEDBAT needs to take into account a number
of constraints. First of all, we need to keep in mind that the 𝑅𝑊𝑁𝐷
is used by TCP for flow control. In order to avoid confusion, we will
call 𝑓𝑐𝑊𝑁𝐷 the value of the window calculated for TCP flow control
purposes.

rLEDBAT uses the LEDBAT++ congestion control algorithm to cal-
culate a Congestion Window which will next convey to the sender using
the 𝑅𝑊𝑁𝐷 field of the TCP header. We call 𝑟𝑙𝑊 𝑁𝐷 the window value
calculated by rLEDBAT. We observe that we now have two different
data to convey to the sender, namely 𝑓𝑐𝑊𝑁𝐷 and 𝑟𝑙𝑊 𝑁𝐷, and only
one TCP field, 𝑅𝑊𝑁𝐷, to send it. In order to honor both of them,
rLEDBAT includes the minimum of these two values in the 𝑅𝑊𝑁𝐷
field of TCP. During the rest of the paper, we focus on the case where
the 𝑓𝑐𝑊𝑁𝐷 is larger than the 𝑟𝑙𝑊 𝑁𝐷, so that rLEDBAT is actively
managing the 𝑅𝑊𝑁𝐷 and flow control is not limiting the connection’s
speed.

When using rLEDBAT, two congestion controllers are in action in
the flow of data from the sender to the receiver, the congestion control
algorithm of TCP in the sender side and the LEDBAT++ congestion
control algorithm executed in the receiver and conveyed to the sender
through the 𝑅𝑊𝑁𝐷. In normal TCP operation, the sender uses the
minimum of the Congestion Window computed by the CCA running at
the sender (𝑠𝐶𝑊𝑁𝐷) and the Receiver Window (𝑅𝑊𝑁𝐷) to calculate

https://www.alexa.com/topsites


Computer Networks 233 (2023) 109841M. Bagnulo et al.

s
e
c
g
s
t
(
d
t
r

𝑆

c

3

o
b
t
t
s
r
(
p

a
T
o
t
a
t
L

3

w

c
W
o
a
a
o

l
s
s
w
c
d

f
b
b
v
h
b
R
F
r
t
v

the sender’s window (𝑆𝑊𝑁𝐷). This is also true for rLEDBAT, as the
ender is a regular TCP sender. Because LEDBAT++ is designed to react
arlier and more aggressively to congestion than Cubic-TCP congestion
ontrol, the 𝑟𝑙𝑊 𝑁𝐷 contained in the 𝑅𝑊𝑁𝐷 field of TCP will be in
eneral smaller than the Congestion Window calculated by the TCP
ender, implying that the LEDBAT++ congestion control algorithm at
he receiver end will be effectively controlling the sender’s window
𝑆𝑊𝑁𝐷). Moreover, this also guarantees that even if the queueing
elay is mis-estimated, the flow will never transmit more aggressively
han a TCP flow, as the sender’s Congestion Window limits the sending
ate.

In summary, the sender’s window is:

𝑊𝑁𝐷 = 𝑚𝑖𝑛(𝑠𝐶𝑊𝑁𝐷, 𝑟𝑙𝑊𝑁𝐷, 𝑓𝑐𝑊𝑁𝐷) (5)

There are a few other considerations to be taken into account when
alculating 𝑟𝑙𝑊 𝑁𝐷 that we describe next.

.3.1. Reducing the window without shrinking it
The LEDBAT++ algorithm increases or decreases the 𝑟𝑙𝑊 𝑁𝐷 based

n whether the last estimations of the queueing delay are above or
elow the target 𝑇 . If the estimated queueing delay is above 𝑇 , then
he new Congestion Window will be smaller than the current one and
here is the possibility that directly announcing in the 𝑅𝑊𝑁𝐷 this
maller value may result in shrinking the window, i.e., moving the
ight window edge to the left. Shrinking the window is discouraged
see [12]), as it may cause unnecessary packet loss and performance
enalty.

To avoid window shrinking, the announced window can be reduced
t most in the number of bytes contained in the received packet.
his may not always be enough to honor the new calculated value
f the 𝑟𝑙𝑊 𝑁𝐷. So, in order to reduce the window as dictated by
he LEDBAT++ algorithm, the receiver will progressively reduce the
dvertised 𝑅𝑊𝑁𝐷, always ensuring that the reduction is less or equal
han the received bytes, until the target window determined by the
EDBAT++ algorithm is reached.

.3.2. Window scale option
The Window Scale (WS) option [13] allows increasing the maximum

indow size permitted by the Receive Window.
Regarding rLEDBAT, the use of the WS option implies that the

hanges in the window are expressed in the units resulting of the
S option used in the TCP connection (2 to the power of the value

f the WS option). This means that the rLEDBAT client will have to
ccumulate the increases resulting from the different received packets,
nd only convey a change in the window when the accumulated sum
f increases is equal or higher than one Receive Window unit.

Changes in the Receive Window that are smaller than 1 MSS are un-
ikely to have any immediate impact on the sender’s rate, as usual TCP
egmentation practice results in sending full segments (i.e., segments of
ize equal to the MSS). In case large amounts of data are transferred,
hich is the expected application for rLEDBAT, this requirement of

ompleting a full MSS in the sender or in the receiver makes little
ifference.

Current WS option specification [13] defines that the allowed values
or the WS option are between 0 and 14. Assuming a MSS around 1500
ytes, WS option values between 0 and 11 result in the Receive Window
eing expressed in units that are about 1 MSS or smaller. So, WS option
alues between 0 and 11 have no impact in rLEDBAT. WS option values
igher than 11 can affect the dynamics of rLEDBAT, since control may
ecome too coarse (e.g., with WS of 14, a change in one unit of the
eceive Window implies a change of 10 MSS in the effective window).
or the above reasons, we recommend that when rLEDBAT is used, the
LEDBAT client should set WS option values lower than 12. Note that
he recommendation for rLEDBAT to set the WS option value to lower
alues does not preclude the communication with servers that set the
5

Fig. 2. Procedure executed when a packet is received.

WS option values to larger values, since the WS option value used is
set independently for each direction of the TCP connection.

We performed a survey of WS option values normally used in the
Internet today. We established TCP connections with the top 200k
Alexa servers and observed the WS option values they used. Only 0.18%
of the polled servers use WS option values larger than 11, confirming
that our recommendation does not result in general in a restriction to
current common practices.

3.4. Integrated LEDBAT++ & rLEDBAT algorithm

We next describe how to integrate the proposed rLEDBAT mech-
anisms and the LEDBAT++ CCA. We describe the integrated rLED-
BAT/LEDBAT++ algorithm as two procedures, one that is executed
when a packet is received by a rLEDBAT-enabled endpoint, Algorithm 2
and another, Algorithm 3, that is executed when the rLEDBAT-enabled
endpoint sends a packet. At the beginning, 𝑟𝑙𝑤𝑛𝑑 is set to its maximum
value, so that the sending rate of the sender is governed by the flow
control algorithm of the receiver and the TCP slow start mechanism of
the sender, and 𝑎𝑐𝑘𝑒𝑑𝐵𝑦𝑡𝑒𝑠 is set to 0.

The data structures used in the algorithms are as follows. The
𝑠𝑒𝑛𝑡𝐿𝑖𝑠𝑡 is a list that contains the TSval and the local send time of
each packet sent by the rLEDBAT-enabled endpoint. The TSecr field
of the packets received by the rLEDBAT-enabled endpoint are matched
with the 𝑠𝑒𝑛𝑑𝐿𝑖𝑠𝑡 to compute the RTT. The RTT values computed for
each received packet are stored in the 𝑅𝑇𝑇 𝑙𝑖𝑠𝑡, which contains also the
received TSecr (to avoid using multiple packets with the same TSecr for
RTT calculations, only the first packet received for a given TSecr is used
to compute the RTT). It also contains the local time at which the packet
was received, to allow selecting the RTTs measured in a given period
(e.g., in the last 10 min). 𝑅𝑇𝑇 𝑙𝑖𝑠𝑡 is initialized with all its values to its
maximum.

4. r LEDBAT implementation

We implemented the rLEDBAT mechanism in Linux. We use ipt-
ables to insert two code hooks in the Linux kernel (Linux 3.13.0-24
version), one triggered every time a packet is sent, and the other every
time a packet is received [14]. The packets to process are filtered
according to the destination ports, although other criteria can be used
to identify rLEDBAT flows. The receiver hook calls a module that

computes the RTT value matching the TSecr of the received packet



Computer Networks 233 (2023) 109841M. Bagnulo et al.
Fig. 3. Procedure executed when a packet is sent.

Fig. 4. Experiment setup.

with the TSval of a previously sent one, and it computes the queueing
delay. In order to smooth the value of the queueing delay, we use the
minimum of the value measured for the last 10 packets received. With
this information, it computes the window to be used by the next packet
to be sent.

The sender hook calls the Sender Module that computes the
minimum of the Receive Window computed by TCP’s flow and
the one computed by rLEDBAT and includes this value in the Re-
ceive Window field of the TCP header of the outgoing packet.
The source code for the rLEDBAT implementation is available at
https://github.com/net-research/rledbat_module

5. Experimental setup

We next present the setup used to experimentally evaluate the
performance of rLEDBAT.

In our experiments, we use the virtualised setup depicted in Fig. 4,
which features a dumbbell topology, that allows us to generate LED-
BAT++, rLEDBAT, Cubic and BBR flows that compete for the capacity
of a bottleneck link. It also allows us to easily configure the characteris-
tics of the bottleneck link, including the size of the buffer, the capacity
and the delay. We use this topology for our experiments, because, as ob-
served in the design of model-based congestion control algorithms [15],
any path, no matter how complex it is, can be accurately modelled
from the transport layer perspective as a single link with the RTT of
the overall path and the capacity of the path’s bottleneck link, which
is exactly what this simple topology represents.

C1, C2, R1, R2 and S1 are Linux systems while S2 is a Windows
2019 Server with LEDBAT++ capability. We can configure S1 to use
Cubic or any of the two versions of BBR. Cubic and BBRv1 are already
available in the Linux kernel and BBRv2 is installed using [16]. Traffic
is generated in S1 using the nc tool and in S2 using the ctsTraffic
tool,6 i.e., bulk transfer type of traffic in both cases. C1 and C1 use
Ubuntu 14.04 LTS running our rLEDBAT implementation and will act
as pure receiver. It uses nc for receiving traffic.

The link connecting R2 with R1 is the bottleneck link of the
communications between S1 (S2) and C1 (C2). We set its capacity to
different values using the tbf queueing discipline for the tc traffic
control tool. A drop-tail buffer is configured in the R2-to-R1 link, with
a size that we vary on different experiments, to represent different

6 https://github.com/microsoft/ctsTraffic
6

network setups. Throughout the rest of the paper, we express the size
of the buffer 𝐵 in milliseconds rather than in bytes. The size of the
buffer in bits can be computed as 𝐶⋅𝐵

1,000 , with 𝐶 being the bottleneck
link capacity expressed in bps. For our experiments, we consider two
buffer scenarios: a buffer of 500 ms, to enable delay variations larger
than the delay target for rLEDBAT/LEDBAT++, and 30 ms, below this
target, so that packet losses due to buffer exhaustion may occur even
with rLEDBAT/LEDBAT++. The links between S1 (S2) and R2 and the
ones between C1 and R1 are configured with (much) larger capacities
than the one of the bottleneck. During the experiments, we set the RTT
of the path between S1 (S2) and C1 using tc netem.

In all the experiments, C1 (C2) connects to S1 and S2 nodes to
perform downloads. Each flow is greedy, in the sense that it aims to
transmit as much data as possible. Data is transferred using TCP, S1
using BBR or Cubic and S2 using LEDBAT++. When rLEDBAT is not
used, TCP flow control never limits the communication rate, as we
manually configure a large receiver window. To compute the rates for
each flow, we start a tcpdump capture in C1. The MSS used is 1,390
bytes while the MTU is 1,456 bytes.

The experiments last for 300 s, as this duration is large enough
to accommodate many periodic slow-downs for rLEDBAT/LEDBAT++.
The rates reported as results account for the whole period, i.e., they
include the start of the transmission. For all the experiments, the
maximum buffer occupancy is always reached before 15 s, so that
the largest contribution to the performance figures results from the
congestion-avoidance phase. Unless otherwise stated, we perform 8
executions for each particular experiment configuration (congestion
control mechanism, buffer size, end-to-end RTT value, etc.).

6. Experiments

We perform a number of experiments using the rLEDBAT imple-
mentation described in the previous section to validate that rLEDBAT
performance. We aim to verify that rLEDBAT provides less-than-best-
effort service and that it keeps the delay bounded for a wide range of
situations. Moreover, we would like to verify that rLEDBAT performs
similarly to the sender based implementation of LEDBAT++. To do
that, during the analysis of the results, we compare the results obtained
in these experiments with the ones obtained in previous experimental
studies of the performance of (sender-based) LEDBAT++, namely [6,
11].

6.1. rLEDBAT and constant bit rate traffic

In this experiment, we measure the delay introduced by an rLEDBAT
flow in a constant bit rate communication, such a VoIP communication.
An explicit design goal of LEDBAT++, that rLEDBAT should preserve,
is that the delay added by a rLEDBAT flow is limited to the target 𝑇 ,
60 ms in our case. For this, we consider a VoIP flow which generates
160-byte packets every 20 ms, for a total rate of 64 kbps. The VOIP
flow carries data from S2 to C1. In addition, there is TCP connection
between C1 and S1. C1 is using rLEDBAT for this TCP connection.
This flow is greedy, in the sense that there is always data from the
application to be sent, and it is only limited by the congestion control.
We configure the bottleneck link (R1-R2) with a capacity of 1 Mbps.
We configure the R1-R2 buffer to accommodate a maximum number of
bytes equivalent to 150 ms. The RTT in absence of queueing is 20 ms.

The flow activation sequence for this experiment is the following: at
time zero, the VOIP flow starts, 10 s later the rLEDBAT flow is initiated
and they both stay for 40 s.

Fig. 5 shows the RTT measured for every VoIP packet exchange.
During the first 10 s that the VOIP flow is the only one in the bottleneck
and the RTT is in the order of the propagation delay of the path (the
transmission delay for these packets is negligible). After the rLEDBAT
flow starts, rLEDBAT introduces a variable additional delay that is
below the target of 60 ms for most of the packets (91.7% of packets

https://github.com/microsoft/ctsTraffic


Computer Networks 233 (2023) 109841M. Bagnulo et al.

p

t
t
t
q
s

W
c
V
o
t

p
R

6

c
e
o
s
m

6

B
t
c
𝑇
b
e
r
c
L
p

t
t
t
s
t
p

t
t
r
o

Fig. 5. RTT measured by a VoIP application in VoIP→rLEDBAT experiment,
ropagation delay=20 ms, buffer=150 ms, capacity 1Mbps.

o be exact). The few packets that appear with a delay higher than
he target delay correspond to the packets sent during the before
he multiplicative decrease caused when rLEDBAT detects that the
ueueing delay exceeded the target. We can also observe the periodic
low-downs performed by rLEDBAT.

We now consider the rate that rLEDBAT can achieve in this scenario.
e observe that rLEDBAT is able to use 890 kbps of the bottleneck link

apacity. Considering that the maximum rate is 954 kbps and that the
OIP flow consumes 64 kbps, rLEDBAT is capable of seizing the whole
f the remaining capacity while keeping the queueing delay below the
arget of 60 ms.

We find similar results when performing experiments using different
arameters, including, capacities ranging between 1Mbps and 40 Mbps,
TTs between 10 ms and 300 ms.

.2. rLEDBAT solo performance

We next measure the performance of rLEDBAT when there is no
ompeting traffic. The buffer for the experiments is large enough to gen-
rate a queueing delay larger than the target 𝑇 . In this case rLEDBAT
perates in delay-based mode. Then we run experiments using a buffer
maller than the target 𝑇 , forcing rLEDBAT to operate in loss-based
ode.

.2.1. Experiments in delay-based mode
We do a set of experiments to measure the rate achieved by rLED-

AT for bottlenecks of different capacity when it is the only traffic in
he link. For this experiment we use a buffer with enough capacity
reate a queueing delay of 500 ms (i.e., larger than rLEDBAT target
of 60 ms) and an RTT of 20 ms. We vary the bottleneck link capacity

etween 1Mbps and 50 Mbps. The server is using Cubic and the client
nables rLEDBAT. The results are presented in Fig. 6. We find that our
LEDBAT implementation is able to seize about 90% of the available
apacity. This is consistent with the results observed for sender based
EDBAT++ [6]. The 10% penalty is due to the waste imposed by the
eriodic slowdowns.

We next measure the rate achieved by rLEDBAT when it is the only
raffic in a link, for different RTT values. For this experiment, we keep
he buffer value fixed to 500 ms, the capacity set to 20 Mbps and vary
he RTT. The results are plotted in Fig. 7. We observe that for base RTTs
maller than 200 ms, rLEDBAT is able to seize 90% of the capacity but
hat for larger base RTTs the utilization decreases. This is similar to the
erformance observed for LEDBAT++ [6].

In order to understand this behaviour, we look into the packet
races of one experiment. In Fig. 8 we plot both the flightsize and
he RTT for a TCP connection between a Cubic sender and a rLEDBAT
eceiver over a 20 Mbps link using a buffer of 500 ms, with base RTT
f 300 ms. We observe that rLEDBAT struggles to restore the rate after
7

Fig. 6. Rate observed for rLEDBAT running solo in a link with different capacities,
propagation delay of 20 ms, buffer set to 500 ms.

Fig. 7. Rate observed for rLEDBAT running solo in a link with different RTTs, link
capacity of 20 Mbps, buffer set to 500 ms.

a periodic slow down. That is, after a periodic slow down, rLEDBAT
tries to restore the window before the slowdown using an exponential
growth, but the queueing delay exceeds rLEDBAT’s target (as observed
in the RTT plot), causing rLEDBAT to reduce its rate immediately after
exiting the slow start. This behaviour prevents rLEDBAT from using
the available capacity. Again, this is not a problem of the rLEDBAT’s
specific mechanisms, but a limitation of the LEDBAT++ algorithm
itself, as reported in [6].

6.2.2. Experiments in loss-based mode
We perform the following experiments using a buffer of 30 ms.

Because the buffer is smaller than the target 𝑇 , rLEDBAT uses packet
loss as congestion signal and reacts accordingly. We perform the ex-
periments using a 20 Mbps bottleneck link and different base RTTs.
The results are presented in Fig. 9. We can see in the plot that the
utilization of the link decreases as the base RTT increases. This is to
be expected because rLEDBAT is functioning as a loss-based AIMD, and
AIMD mechanisms with the multiplicative factor of 0.5 require a buffer
larger than the BDP to be able to seize all the capacity [17]. As the
base RTT increases, the BDP also increases and rLEDBAT is able to seize
less of the available capacity. Similar results were reported for sender-
based LEDBAT++ [6]. However, we can see that rLEDBAT (slightly)
outperforms in this case the LEDBAT++ performance reported in [6].
This is to be expected, since while LEDBAT++ reacts to losses (detected
by DupACKS or timeouts), rLEDBAT reacts to retransmissions, which
naturally occur at least one RTT later, making LEDBAT++ to reduce
slightly more aggressively. So, we can conclude that the rLEDBAT
mechanisms do not affect LEDBAT++ performance in these conditions.



Computer Networks 233 (2023) 109841M. Bagnulo et al.

s

Fig. 8. Flightsize and RTT observed for rLEDBAT running solo in a link with base RTT
et to 300 ms, link capacity of 20 Mbps, buffer set to 500 ms.

Fig. 9. Rate observed for rLEDBAT running solo in a link with different RTTs, link
capacity of 20 Mbps, buffer set to 30 ms.

6.3. Inter-rLEDBAT fairness

Now we analyse the ability of rLEDBAT to achieve fairness when
sharing the available bandwidth with another rLEDBAT flow. We per-
form a series of experiments involving two rLEDBAT flows competing
for the capacity of a bottleneck, starting at the same time, for paths
with different RTTs. In Fig. 10, we plot the Jain’s fairness index [18]
for the different experiments and we observe that the rLEDBAT protocol
is close to the best case fairness (index equal to 1).

Given that it was reported that the original LEDBAT algorithm
suffered from the late-comer-advantage [5], we also perform a series of
experiments involving two competing rLEDBAT flows, only that in this
case one flow starts 40 s after the other one. The resulting Jain’s fairness
indexes are presented in Fig. 11. Even though the observed results are
slightly lower than the previous case of the simultaneous flows, we
confirm that rLEDBAT roughly preserves the fairness achieved by the
LEDBAT++, even in the case of two unsynchronized flows.

6.4. rLEDBAT and cubic

For the analysis of the interaction of rLEDBAT with Cubic, similarly
than before, we first run experiments with buffers larger than the target
𝑇 and then with smaller buffers.
8

Fig. 10. Jain’s fairness index observed for one rLEDBAT flow competing against
another rLEDBAT flow, starting at the same time, using a bottleneck link of 20 Mbps
with a buffer of 500 ms, varying the base RTT.

Fig. 11. Jain’s fairness index observed for two competing rLEDBAT flows, starting 40 s
apart, using a bottleneck link of 20 Mbps with a buffer of 500 ms, varying the base
RTT.

6.4.1. Experiments with buffers larger than 𝑇
We first consider the case of a rLEDBAT flow competing against

a Cubic flow, in a link with 20Mbps of capacity, a buffer capacity
of 500 ms and different RTTs. Both flows start at the same time
and the last for 300 s. Because the capacity of the buffer is enough
to accommodate the amount of packets required to reach the target
of 60 ms of rLEDBAT, in this setup, rLEDBAT is expected to detect
an increase in the RTT higher than its target, and thus leave most
of the bandwidth to Cubic. Results are plotted in Fig. 12. We can
see that rLEDBAT behaves as expected as it yields in front of Cubic
in all experiments. We also performed the same experiments with a
bottleneck link of 500Mbps and we observe similar results.

We next perform a set of experiments varying the capacity of the
link. The setup is the same as the previous one, only that the RTT is set
to 20 ms and the capacity varies. Results are presented in Fig. 13. We
verify that rLEDBAT yields in front of Cubic for all capacities tested.

Finally, we measure the impact of a long-lived rLEDBAT background
traffic on the completion time of a shorter Cubic flow. We compare
the results against the case when the shorter Cubic flow is running
alone and also against the case when both the background flow and
the shorter flow are using Cubic. In all experiments, we configure the
background flow to start 15 s (in mean) before the shorter flow and
terminate after its completion. To set a representative value for the
size of the shorter flow, we consider that according to [19], 99.1%
of 4 billion flows analysed in the context of a campus network carry
less than 262 KB. Similarly, we analyse the 1.4 M flow traces from an
Italian nation-wide Internet Service Provider (ISP), collected in [20] in
2017 and we observe that 90% of flows have a size smaller than 50,150
bytes, and 95% of the flows are smaller than 227,500 bytes.



Computer Networks 233 (2023) 109841M. Bagnulo et al.

g
2
C
r
f
s
w
i
a
c
b

6

f
3
y
t
a
b
t

Fig. 12. Rate observed for a rLEDBAT flow competing against a Cubic flow in a 20
Mbps link with buffer set to 500 ms for different RTT values.

Fig. 13. Rate observed for a rLEDBAT flow competing against a Cubic flow with a
base RTT of 20 ms and buffer set to 500 ms for different link capacities.

Table 1
Mean values for interaction with short-lived TCP flows for different Round Trip Times
(RTT), Cubic server.

20 ms 100 ms 200 ms 300 ms

TCP-Cubic short (solo) 0.16 0.62 1.22 1.82
rLEDBAT client, then TCP-Cubic short 0.56 0.95 1.48 1.84
TCP-Cubic long, then TCP-Cubic short 3.26 4.84 4.76 4.99

Based on this, we next investigate how long-lived rLEDBAT back-
round traffic impacts the completion time of a Cubic flow carrying
62 KB. In Table 1 we present the means for the completion time of a
ubic flow carrying 262 KB of data in three different scenarios: (i) when
unning alone in the link, (ii) when competing with a long rLEDBAT
low, and (iii) when competing with a long Cubic flow. As we can
ee there is slight increase in the completion time of the shorter flow
hen it competes against an rLEDBAT flow compared to the case when

t runs solo in the link. However, the completion time when there is
background Cubic flow is between 4 and 20 times larger. We then

onclude that using rLEDBAT for background flows also benefits shorter
est-effort flows in terms of the completion time.

.4.2. Experiments with buffers smaller than 𝑇
In Fig. 14 we plot the rate achieved by a rLEDBAT flow and a Cubic

low competing for the capacity of a 20Mbps link using a buffer of
0 ms for different base RTTs. We see that the rLEDBAT does not fully
ield and it is able to seize about 20% of the available capacity while
he rest is used by the Cubic flow. This is expected, as both rLEDBAT
nd Cubic are reacting to losses, but the rLEDBAT AIMD parameters,
ased on new-Reno, are less aggressive than Cubic ones, allowing Cubic
9

o seize most of the capacity, even when the buffer is smaller than
Fig. 14. Rate observed for a rLEDBAT flow competing against a TCP flow using a link
of 20 Mbps with a buffer of 30 ms for different RTT values.

Fig. 15. Rate observed for a rLEDBAT flow competing against a TCP flow using a link
of 500 Mbps with a buffer of 30 ms for different RTT values.

the target 𝑇 . This is more clearly noted for RTTs larger than 120 ms,
because the GAIN parameter of LEDBAT++ decreases, as described in
Section 2.1. The observed behaviour is similar to the ones reported for
LEDBAT++ and Cubic in [6]. Similarly to the previous experiments
using buffers to 30 ms, rLEDBAT is more aggressive than LEDBAT++,
because of its delayed reaction to losses (as it reacts to retransmissions).

We also perform experiments using a 500Mbps bottleneck link,
shown in Fig. 15. In this case we observe that Cubic seizes significantly
more share than rLEDBAT, compared to the case of 20Mbps. This is
to be expected, as the bandwidth used for the experiment falls further
away from Cubic’s TCP-friendly region [2]. As rLEDBAT implements
the new-Reno AIMD mechanism, it underperforms compared to Cubic
in this scenario.

6.5. rLEDBAT and BBR

We also tested the behaviour of rLEDBAT when competing with
BBR. There are two versions of the BBR protocol, BBRv1 and BBRv2.
BBRv1 is the original protocol defined by Google and currently de-
ployed in all Google and YouTube external servers, as well as in Netflix
and many others. Several BBRv1 shortcomings have been reported,
including that it is overly aggressive when competing against Cubic as
it does not react to packet losses. BBRv2 is an updated version that
addresses the identified limitations. It is less aggressive than BBRv1, it
reacts to losses and tries to impose a shorter queueing delay. We tested
how rLEDBAT performs against both versions of BBR.

6.5.1. rLEDBAT and BBRv1
In Fig. 16 we present the results of a rLEDBAT flow competing
against a BBRv1 flow in a 20 Mbps bottleneck link with a 500 ms buffer



Computer Networks 233 (2023) 109841M. Bagnulo et al.

R

f
f

s
d
L

c
d
f
w
p
T
w
b
a
o
f
b
B
o
b
t
b
w
a
w
a
w

Table 2
Mean values for interaction with short-lived TCP flows for different Round Trip Times
(RTT), BBRv1 server for TCP flows.

20 ms 100 ms 200 ms 300 ms

TCP-BBRv1 short (solo) 0.17 0.68 1.34 2.03

rLEDBAT client,
then TCP-BBRv1 short 0.55 1.04 1.61 2.02

TCP-BBRv1 long,
then TCP-BBRv1 short 0.41 1.23 1.85 2.47

Fig. 16. rLEDBAT and BBRv1 in a 20 Mbps link with 500 ms of buffer, for different
TT values.

or different values of the RTT. We can see that rLEDBAT yields in
ront of BBRv1 for RTTs larger than 60 ms (i.e., rLEDBAT target 𝑇 ),

but that for smaller RTT values, rLEDBAT seizes a significant part of
the available capacity. For instance, when the RTT is 20 ms or smaller,
they split the capacity evenly. This is the same behaviour that has
been reported for LEDBAT++ when competing against BBRv1 [11].
Indeed, when the RTT is smaller than rLEDBAT/LEDBAT++’s target
𝑇 , BBRv1’s cap on the flight size prevents BBR to inject more than
twice the Bandwidth-Delay Product (BDP). Thus, BBRv1 cannot inject
enough packets to generate a queueing delay equal or larger than
rLEDBAT’s target 𝑇 , which in turn allows rLEDBAT/LEDBAT++ to
eize part of the available capacity. As such, this behaviour is not
ue to the rLEDBAT specific mechanisms, but a problem with the
EDBAT++/BBRv1 interaction that has been previously reported [11].

We also quantified the impact of a rLEDBAT background flow on the
ompletion time of a shorter BBRv1 flow. Similarly to the experiments
one for Cubic, we measured the completion time of a 262-KB BBRv1
low in the three scenarios, namely, when running alone in the link,
hen competing against a long-lived rLEDBAT flow and when com-
eting against a long-lived BBRv1 flow. The results are presented in
able 2. We can see that in general, the smallest completion time are
hen the shorter flow is alone, followed by the ones with rLEBDAT
ackground traffic and finally the ones with BBRv1 background traffic,
s in the Cubic experiments. The only exception to this is the case
f RTT of 20 ms, where the experiments with BBRv1 background
low exhibits a shorter completion time than the ones with rLEDBAT
ackground traffic. This is consistent with the explanation that the
BRv1 introduces a queue of an extra BDP, which for the case of RTT
f 20 ms is smaller than the one of 60 ms inflicted by the rLEDBAT
ackground traffic, resulting in a lower completion time overall for
hese cases. The other observation is that the experiments using BBRv1
ackground flows have a much lower completion time than the ones
e measured in the Cubic case (see previous section) and much closer,
lbeit higher, than the rLEDBAT background traffic. This is consistent
ith the design of BBRv1 which aims for short queues. So, while there
re benefits from using rLEDBAT for background traffic, those are less
10

hen compared to BBRv1 than when compared to Cubic.
Fig. 17. rLEDBAT and BBRv1 in a 20 Mbps link with 30 ms of buffer, for different
RTT values.

Fig. 18. rLEDBAT and BBRv2 in a 20 Mbps link with 500 ms of buffer, for different
RTT values.

We next perform another series of experiments with the same
parameters but using a buffer of 30 ms, forcing rLEDBAT to operate in
loss-based mode. The results are plotted in Fig. 17. We observe a similar
behaviour than the case of larger buffer, the main difference being
that rLEDBAT yields for base RTTs larger than the buffer (i.e., 30 ms)
rather than for base RTTs larger than the target 𝑇 (60 ms). This also
occurs for LEDBAT++ competing against BBRv1 in these conditions,
see [11], and it is consistent with the previous experiments. Indeed,
when the base RTT is smaller than the buffer capacity, BBRv1 is limited
by the flightsize cap, which allows the rLEDBAT flow to seize part of
the capacity that the BBRv1 is unable to. When the base RTT is larger
than the buffer, then the flightsize cap does not prevent the BBRv1 flow
to fill in the buffer and seizes all the capacity, forcing rLEDBAT to yield.

6.5.2. rLEDBAT and BBRv2
We next repeat the same set of experiments using BBRv2 instead of

BBRv1, see the results in Fig. 18. Similarly to the previous case with
BBRv1, rLEDBAT yields for RTTs larger than the 60 ms of the target 𝑇 ;
but that for smaller RTTs, the situation differs from the BBRv1 case, as
BBRv2 actually yields in front of rLEDBAT in this case. This is consistent
with the results reported for BBRv2 and LEDBAT++ in [11], and it is to
be expected given that the modifications introduced in BBRv1, which
make BBRv2 less aggressive than BBRv1. Specifically, in BBRv2, the
flightsize is not only limited by the 2 ⋅𝐵𝐷𝑃 cap, but also by an explicit
flightsize parameter included in the model used by BBRv2, in order to
explicitly reduce the queueing delay experienced by BBRv2 traffic. As
in the case of BBRv1, rLEDBAT behaves similarly to LEDBAT++ and it
inherits its limitations when competing with BBRv2.

The results of the experiments using a buffer of 30 ms are plotted in

Fig. 19. In this case, we observe that BBRv2 yields in front of rLEDBAT



Computer Networks 233 (2023) 109841M. Bagnulo et al.

c
W
m
t
L

7

s
f
i
r

Fig. 19. rLEDBAT and BBRv2 in a 20 Mbps link with 30 ms of buffer, for different
RTT values.

Table 3
Mean values for interaction with short-lived TCP flows for different Round Trip Times
(RTT), BBRv2 server for TCP flows.

20 ms 100 ms 200 ms 300 ms

TCP-BBRv2 short (solo) 0.17 0.67 1.33 1.99
rLEDBAT client, then TCP-BBRv2 short 0.54 0.96 1.61 2.02
TCP-BBRv2 long, then TCP-BBRv2 short 0.40 1.03 1.66 2.23

for RTTs smaller than the buffer size (30 ms) and for larger RTTs,
the BBRv2 flow is able to seize more capacity. Again, this is the same
behaviour observed for LEDBAT++ when competing with BBRv2 [11]
under these conditions. The rationale for the observed behaviour is
that for base RTTs smaller than the buffer size, the flightsize of the
BBRv2 flow is not enough to fill in the buffer (because of BBRv2 inflight
limitation) and leaves room for the rLEDBAT flow.

Finally, we measure the completion time of a short BBRv2 flow.
Similarly to the experiments with BBRv1 and Cubic, we compare the
completion time of a 262-KB BBRv2 flow in the following three sce-
narios, running solo, competing against a long-lived BBRv2 flow and a
long lived rLEDBAT flow. Results are presented in Table 3. We observe
a similar behaviour than in the case of BBRv1, only that the benefits of
using rLEDBAT diminish. This is expected since BBRv2 is less aggressive
than BBRv1.

7. Enhanced LEDBAT++ congestion control algorithm

Our experiments show that the proposed rLEDBAT mechanisms per-
forms similarly to the original (sender-side) LEDBAT++. This includes
also the pitfalls we have previously identified regarding LEDBAT++
performance when competing against BBR flows. Specifically, we
have verified that neither LEDBAT++ nor rLEDBAT flows yield when
competing against BBR flows if the RTT is smaller than the target 𝑇 .

In this section, we propose simple modifications to the LEDBAT++
ongestion control algorithm that correct the observed shortcomings.
e implement the proposed modification in our rLEDBAT imple-
entation, and we perform a number of experiments to show that

he proposed solution indeed addresses the limitations identified for
EDBAT++ and rLEDBAT when competing against BBR.

.1. Proposed modifications

In our previous analysis, we posit that BBR flows are unable to
eize all the available capacity when competing against (r)LEDBAT(++)
lows due to its self-imposed limitation on the flightsize. This limitation
s set to one additional BDP, and it is in place to limit the size of the
esulting queue. When the RTT is smaller than the target 𝑇 , the queue

generated by the (r)LEDBAT(++) flow is larger than the one BBR is
11

willing to generate, hence BBR yields.
Fig. 20. Modified rLEDBAT and BBRv1 in a 20 Mbps link with different RTTs, buffer
set to 500 ms.

Fig. 21. Modified rLEDBAT and BBRv2 in a 20 Mbps link with different RTTs, buffer
set to 500 ms.

In order to address this issue, we propose to limit the queue gener-
ated by the (r)LEDBAT(++) mechanisms to the minimum of the target
𝑇 and the base RTT. This should solve the problem since this would
result in (r)LEDBAT(++) refraining from generating queues larger than
one BDP, so, it would consequently yield in from of BBR. We believe
this would also positive for (r)LEDBAT(++) itself, as it would prevent
it from bloating the RTT in relative terms compared to the base RTT
for small base RTTs.

8. Experiments with the enhanced LEDBAT++ congestion control
algorithm

We implemented the proposed modifications in our rLEDBAT im-
plementation and we repeated the experiments using the updated
implementation. Our results show that the proposed enhancements
address the identified shortcomings.

Specifically, in Figs. 20, 21, we plot the rate achieved by a rLEDBAT
flow and a BBR flow competing for the capacity of a 20 Mbps bottleneck
using different base RTTs, and we observe that rLEDBAT successfully
yields in all scenarios, against both versions of BBR.

In Fig. 22 we verify that rLEDBAT performance is unaffected by the
modifications when running solo in a bottleneck.

9. Related work

We discuss in this section some proposals that enable the receiver
to control the rate at which data is downloaded.

Spring et al. [21] manipulate the Receive Window to prioritize
flows across bottlenecks at access links. When a new flow starts or

leaves, the size of the Receive Window for the remaining flows can



Computer Networks 233 (2023) 109841M. Bagnulo et al.
Fig. 22. Modified rLEDBAT running solo in a 20 Mbps link with different RTTs, buffer
set to 500 ms.

be changed, either reducing an existing window or increasing it. To
compute the amount of window to allocate, they assume known the
bandwidth of the access link, which is expected to be the bottleneck for
all the communications. The criteria to allocate buffer to applications
is to keep delay low for interactive applications and reduce congestion
loss by ensuring that few packets are queued in-flight. However, the
link bandwidth control mechanism is centralized, as it requires full
information and control over all the flows traversing the bottleneck,
i.e., it is devised to be implemented in a single host. While this may
be a reasonable assumption in certain scenarios, it does not hold when
there are competing flows from different sources. rLEDBAT is capable
of handling competing flows from different sources.

Mehra et al. [22] propose controlling the Receive Window and the
delay of ACK messages to the sender to enforce the rate assigned to
particular flows. This solution is suitable for multimedia streams or
interactive applications. They measure the smallest rate that provides
full link utilization, and distribute the flows to achieve a weighted
bandwidth partition according to user preferences. As occurs for [21],
the mechanism assumes that a single system manages the flows that
traverse the bottleneck, which again is assumed to be close to the
receiver.

Key et al. [23] aims to allocate the spare capacity left by best-
effort traffic to background flows (less-than-best-effort traffic), and
distribute the available capacity fairly between background flows. They
formulate a joint control-estimation dual problem with the objective
to adjust dynamically the Receive Window to the optimal operation
point. Two algorithms are proposed to set Receive Window value, a
binary search in which the window is doubled until a condition holds,
and a stochastic approximation method which takes into account the
presence of noise in the rate measured. The tradeoff between both
is stability vs convergence time: the first approach fluctuates around
a stable scenario, leading to reduced capacity utilization, while the
second takes longer to converge (more than one hundred seconds in
the experimental results shown). The main differences with rLEDBAT
are that rLEDBAT control is built upon LEDBAT a well-known, widely
tested algorithm, allowing to develop rLEDBAT implementation based
on existing LEDBAT code. Besides, in rLEDBAT the requirements of
delay-sensitive applications are considered by using delay as the main
feedback source.

RTAC (Receiver-side TCP Adaptive queue Control, [24]) proposes
the manipulation of the Receive Window to tackle with the bufferbloat
problem in wireless access networks. Similarly to [23], they formulate
a Network Utility Maximization problem. They use the length of the
queue of the access link as the price of the problem. RTAC is imple-
mented on Android devices, and the proponents conduct experiments
over two different wireless access networks to show the feasibility of
a solution based on the control of the Receive Window. The difference
with our work is that they aim to allow the flows controlled by RTAC
12
to compete fairly with existing TCP flows, while we aim to differentiate
rates according to a less-than-best-effort policy.

10. Conclusions

We presented rLEDBAT, a mechanism to provide Less-than-Best-
Effort (LBE) transport services for TCP communications, that is solely
based on the receiver side of the communication. Being a receiver-based
mechanism, rLEDBAT enables new use cases and new deployment
models. In terms of use cases, it allows the client of the communication
to manage its incoming traffic, for instance, a mobile device can select
which of its incoming traffic is best-effort (e.g., video streaming) and
which one is less-than-best-effort (e.g., backup in the cloud of local
files). Regarding alternative deployment models, rLEDBAT can be en-
abled by solely changing the client, allowing for instance to enable
LBE software update distribution through CDN surrogates that do not
implement LBE transport services as long as the client implements
rLEDBAT.

We have implemented rLEDBAT in Linux and we have experi-
mentally tested that the proposed design achieves the aforementioned
design goals. We find that rLEDBAT effectively implements a LBE
transport at the receiver. rLEDBAT performs similarly than the sender-
based LEDBAT++. It exhibits the same performance shortcomings that
have previously reported for LEDBAT++, including its inability to seize
all available bandwidth for large base RTTs (larger than 200 ms), and
to yield when competing against BBR (both BBRv1 and BBRv2) in paths
with base RTT smaller than the target 𝑇 (60 ms).

We propose a modification to the (r)LEDBAT(++) algorithm to
address the identified shortcomings. We implemented the proposed
modifications in our rLEDBAT implementation and we experimen-
tally validated that the modified algorithm does indeed address the
identified pitfalls and yields in front of BBR (both BBRv1 and BBRv2).

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Marcelo Bagnulo reports financial support was provided by European
Commission.

Data availability

Data will be made available on request.

Acknowledgements

This work has been partially supported by the EU EC through the
STANDICT-CCI project, Grant 951972. Funding for APC: Universidad
Carlos III de Madrid (Read Publish Agreement CRUE-CSIC 2022). All
authors approved the version of the manuscript to be published.

References

[1] Praveen Balasubramanian, Osman Ertugay, Daniel Havey, LEDBAT++: Conges-
tion Control for Background Traffic, draft-irtf-iccrg-ledbat-plus-plus-01, Internet
Engineering Task Force, 2020, Work in Progress.

[2] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, R. Scheffenegger, CUBIC for
Fast Long-Distance Networks, 8312 RFC Editor, RFC Editor, 2018.

[3] S. Shalunov, G. Hazel, J. Iyengar, M. Kuhlewind, Low Extra Delay Background
Transport (LEDBAT), Request for Comments 6817, RFC Editor, 2012.

[4] P. Balasubramanian, LEDBAT++: Low priority TCP congestion control in
windows, in: IETF Meeting 100, Singapore, 2017.

[5] G. Carofiglio, L. Muscariello, D. Rossi, S. Valenti, The quest for LEDBAT fairness,
in: Global Communications Conference, 2010, GLOBECOM, 2010, pp. 1–6.

[6] Marcelo Bagnulo, Alberto Garcia-Martinez, An experimental evaluation of
LEDBAT++, Comput. Netw. 212 (2022) 109036.

[7] Srikanth Sundaresan, Nick Feamster, Renata Teixeira, Home network or access
link? Locating last-mile downstream throughput bottlenecks, in: PAM 2016 -

Passive and Active Measurement Conference, 2016, pp. 111–123.

http://refhub.elsevier.com/S1389-1286(23)00286-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb2
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb2
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb2
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb5
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb5
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb5
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb7


Computer Networks 233 (2023) 109841M. Bagnulo et al.
[8] Nimantha Baranasuriya, Vishnu Navda, Venkata N. Padmanabhan, Seth Gilbert,
QProbe: Locating the bottleneck in cellular communication, in: Proceedings of the
11th ACM Conference on Emerging Networking Experiments and Technologies,
in: CoNEXT15, Association for Computing Machinery, New York, NY, USA, 2015.

[9] Jim Gettys, Kathleen Nichols, Bufferbloat: Dark buffers in the internet, Queue 9
(11) (2011).

[10] A.M. Mandalari, M. Bagnulo, A. Lutu, Informing protocol design through crowd-
sourcing: The case of pervasive encryption, in: 2015 ACM SIGCOMM Workshop
on Crowdsourcing and Crowdsharing of Big (Internet) Data, ACM, New York,
NY, USA, 2015, pp. 3–8.

[11] Marcelo Bagnulo, Alberto García Martínez, When less is more: BBR versus
LEDBAT++, Comput. Netw. (2022) 109460.

[12] R.T. Braden, Requirements for Internet Hosts - Communication Layers, Request
for Comments 1122, RFC Editor, 1989.

[13] D. Borman, R.T. Braden, V. Jacobson, R. Scheffenegger, TCP Extensions for High
Performance, Request for Comments 7323, RFC Editor, 2014.

[14] S. Protsenko, Print TCP packet data, 2017, https://stackoverflow.com/questions/
29553990/print-tcp-packet-data/29584449.

[15] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
Van Jacobson, BBR: Congestion-Based Congestion Control: Measuring Bottleneck
Bandwidth and Round-Trip Propagation Time, Queue 14 (5) (2016).

[16] N. Cardwell, BBRv2 Implementation for Linux, 2022.
[17] Neda Beheshti-Zavareh, Tiny Buffers for Electronic and Optical Routers (Ph.D.

thesis), Stanford University, 2009.
[18] Rajendra K. Jain, Dah-Ming W. Chiu, William R. Hawe, et al., A quantitative

measure of fairness and discrimination, 1984, Eastern Research Laboratory,
Digital Equipment Corporation, Hudson, MA, 21.

[19] Piotr Jurkiewicz, Grzegorz Rzym, Piotr Borylo, Flow length and size distributions
in campus internet traffic, 2018, CoRR abs/1809.03486.

[20] Martino Trevisan, Danilo Giordano, Idilio Drago, Maurizio Matteo Munafo,
Marco Mellia, Five years at the edge: Watching internet from the ISP network,
IEEE/ACM Trans. Netw. 28 (2) (2020) 561–574.

[21] N.T. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T. Anderson, B. Bershad,
Receiver based management of low bandwidth access links, in: IEEE INFOCOM
2000, Vol. 1, IEEE, 2000, pp. 245–254.

[22] P. Mehra, A. Zakhor, C. De Vleeschouwer, Receiver-driven bandwidth sharing
for TCP, in: IEEE INFOCOM 2003, Vol. 2, IEEE, 2003, pp. 1145–1155.

[23] P. Key, L. Massoulié, B. Wang, Emulating low-priority transport at the appli-
cation layer: A background transfer service, in: ACM SIGMETRICS Performance
Evaluation Review, Vol. 32, ACM, 2004, pp. 118–129.

[24] H. Im, C. Joo, T. Lee, S. Bahk, Receiver-side TCP countermeasure to bufferbloat
in wireless access networks, IEEE Trans. Mob. Comput. 15 (8) (2016) 2080–2093.

Marcelo Bagnulo
13
Alberto García-Martínez

Anna Maria Mandalari works as Assistant Professor at
University College Ldonod. Before, she was a research
associate in the Dyson School of Design Engineering, at The
Faculty of Engineering at Imperial College London. Over the
last four years Anna was a METRICS Marie Curie Early Stage
Researcher affiliated with the University Carlos III of Madrid
(UC3M). Her research interests are related to IoTs, privacy,
middleboxes, large-scale Internet measurements, Internet
measurements platforms and new Internet protocols.

Praveen Balasubramanian is Director Of Engineering at
Confluent. Previously, he was a Principal Development Lead
in Core Networking for Microsoft. Praveen in active in the
IETF having published an RFC and contributed to many
working groups. Praveen has an MS in Computer Science
from the University of Texas at Austin.

Daniel Mark Havey is the program manager for Windows
networking Data Transports at Microsoft. He attended the
University of California Santa Barbara starting in 2006
studying under Dr. Kevin Almeroth and writing a disser-
tation, "Latency and Bandwidth on the Packet Switched
Internet" graduating with an MS/Ph.D. in 2015. Since
graduation Daniel has been working on Microsoft specific
transport and Web protocols. Daniel’s current research in-
terests are low latency transport protocols, Constant System
Updates, and cooperative data transport.

Gabriel Montenegro is currently a Principal Engineer at
Samsung Research America. Previously, he worked as Prin-
cipal Program Manager in the Core Networking for Windows
group at Microsoft since 2005. Gabriel is active in standards
like IETF (past IAB member and working group chair and
having co-authored several RFCs) and others (e.g., Wi-Fi
Alliance, the USB Implementors Forum, the WiMAX Forum,
IEEE 802). Gabriel obtained a BS in EE-Computers from
Stanford University and an MS in information engineering
from Niigata University in Japan.

http://refhub.elsevier.com/S1389-1286(23)00286-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb9
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb9
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb9
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb10
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb11
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb11
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb11
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb12
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb12
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb12
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb13
https://stackoverflow.com/questions/29553990/print-tcp-packet-data/29584449
https://stackoverflow.com/questions/29553990/print-tcp-packet-data/29584449
https://stackoverflow.com/questions/29553990/print-tcp-packet-data/29584449
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb15
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb16
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00286-4/sb24

	Design, implementation and validation of a receiver-driven less-than-best-effort transport
	Introduction
	r LEDBAT use cases
	Contributions

	LEDBAT++ Background
	LEDBAT++ overview
	LEDBAT++ performance

	r LEDBAT mechanism
	rLEDBAT mechanisms to estimate the base and current RTT
	rLEDBAT mechanisms for detecting packet loss and retransmissions
	rLEDBAT mechanism for controlling the sender through the Receive Window
	Reducing the window without shrinking it
	Window Scale Option

	Integrated LEDBAT++ & rLEDBAT algorithm

	r LEDBAT implementation
	Experimental setup
	Experiments
	rLEDBAT and constant bit rate traffic
	rLEDBAT solo performance
	Experiments in delay-based mode
	Experiments in loss-based mode

	Inter-rLEDBAT fairness
	rLEDBAT and Cubic
	Experiments with buffers larger than T
	Experiments with buffers smaller than T

	rLEDBAT and BBR
	rLEDBAT and BBRv1
	rLEDBAT and BBRv2


	Enhanced LEDBAT++ congestion control algorithm
	Proposed modifications

	Experiments with the enhanced LEDBAT++ congestion control algorithm
	Related Work
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


