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Mutations observed in somatic evolution reveal
underlying gene mechanisms
Michael W. J. Hall 1, David Shorthouse 2, Rachel Alcraft 3, Philip H. Jones 1,4 & Benjamin A. Hall 2✉

Highly sensitive DNA sequencing techniques have allowed the discovery of large numbers of

somatic mutations in normal tissues. Some mutations confer a competitive advantage over

wild-type cells, generating expanding clones that spread through the tissue. Competition

between mutant clones leads to selection. This process can be considered a large scale, in

vivo screen for mutations increasing cell fitness. It follows that somatic missense mutations

may offer new insights into the relationship between protein structure, function and cell

fitness. We present a flexible statistical method for exploring the selection of structural

features in data sets of somatic mutants. We show how this approach can evidence selection

of specific structural features in key drivers in aged tissues. Finally, we show how drivers may

be classified as fitness-enhancing and fitness-suppressing through different patterns of

mutation enrichment. This method offers a route to understanding the mechanism of protein

function through in vivo mutant selection.
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Over the last decade, DNA sequencing has enabled the
detection of vast numbers of somatic mutations in nor-
mal tissues1–6. Many mutations have no effect on cell

behaviour, but may generate large mutant clones by chance,
through ‘neutral drift’7,8. However, a subset of protein altering
mutations change cellular properties, increasing mutant cell ‘fit-
ness’ above that of wild type cells. Such mutants may either
disrupt the function of protein encoded by one allele of a hap-
loinsufficient gene or generate a gain of function mutant8.
Mutants of this type drive clonal expansions and are much more
likely than neutral mutations to generate mutant clones. In
sequencing studies, these mutants are identified as being posi-
tively selected, meaning there is a statistical excess of protein
altering over synonymous mutations in the gene9. Conversely,
protein altering mutations that decrease the fitness of the mutant
cell will be outcompeted by wild type cells, depleted from the
tissue, and negatively selected10.

The normal tissue sequencing studies reported to date have
revealed large numbers of protein altering mutations in positively
selected mutant genes that, in some cases, significantly exceed the
number of mutations in the same gene identified in cancers of the
same tissue8. If mutations in positively selected genes have func-
tional impact, they may drive clonal expansion in vivo. It follows
that normal tissue sequencing data provides a potentially valuable
resource for the study of protein structure/function relationships.

To mine this data, it is essential to classify the functional
impact of mutants. This may be done by aggregating all func-
tional impacts using a single score or categorising mutations into
broad categories, such as missense or nonsense mutations

(Supplementary Note 1). However, mutations can have diverse
impacts - a missense mutation altering the active site may activate
a protein while a missense mutation that destabilises the protein
core may inactivate it. To associate particular changes in protein
function with changes to cell fitness it is essential to test for
selection of individual types of functional changes. This objective
is complicated by the fact that strong or widespread selection of a
particular subset of mutations can obscure the signal from weaker
selection in the same region (Fig. 1). Here, we develop a statistical
technique that can peel back layers of selection to reveal weaker,
but biologically important selection underneath (Fig. 1).

We demonstrate the power of this method using datasets of
mutant clones found through DNA sequencing of normal human
oesophageal epithelium1 and skin6. These studies collected sam-
ples of normal, non-cancerous tissues from individuals of dif-
ferent ages. Due to the large available sample size from these
studies and the known functional impact of the frequently
occurring mutations, we use NOTCH1 to introduce and validate
the method. We also examine mutations in FBXW7 to explore
mutational patterns and generate hypotheses linking protein
function to cell fitness. Between them, these two genes show the
versatility and wide applicability of the method. We conclude by
showing that proteins which enhance or suppress cell fitness
display different patterns of missense mutations.

Results
Patterns of selection in NOTCH1. NOTCH1 is a strong driver of
clonal expansion in normal skin and oesophageal epithelium1,6.

Fig. 1 Detecting multiple selected mutation features. a An example of protein with two types of mutations under selection. b The red mutations are under
strong selection (they occur three times as often in the data than would be expected under neutral evolution), the blue mutations under weak selection
(they occur twice as often as expected under neutral evolution), and the rest of the protein is neutral. c The overall proportion of strongly selected red
mutants is increased compared to the expected proportions. However, the blue mutants appear in the same proportion as the neutral expectation. The
increase in blue mutations is masked by the larger increase in red mutants. The red mutations can be excluded from both the expected model and the
observed data to detect selection of the blue mutants.
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In both tissues, studies of aged, non-cancerous epithelium
detected high dN/dS ratios (an indication of positive selection) for
both missense and nonsense mutations in NOTCH1, and
NOTCH1 mutant clones covered large proportions of the aged
tissues1,6. Studies in mouse oesophagus have also found that loss
of Notch1 function conveys a strong competitive advantage to
clones in normal tissue11,12.

NOTCH proteins are membrane-bound cell surface receptors
(Fig. 2) in a pathway that regulates cell fate13. These genes are
critical regulators of differentiation in development and adult
tissues and activating mutations or mutants that block protein
function are found in different cancers14,15. The extracellular
domains of NOTCH proteins contain up to 36 epidermal growth
factor (EGF) repeats (Fig. 2). Many of the EGF repeats bind to
calcium ions, which add rigidity to the structure, help fix the
relative orientation of adjacent EGF repeats16, and are required
for ligand binding17. NOTCH ligands, from the Delta-like and
Jagged families18, are expressed by adjacent cells and bind to a
subset of the EGF repeats13 (Fig. 2), with EGF11 and 12 of
NOTCH1 particularly crucial for ligand binding13,19. This binding
triggers a cascade of proteolytic events, resulting in the cleavage of
the NOTCH transmembrane helix and the release of the NOTCH
intracellular domain (NICD), which travels to the nucleus and
forms part of a transcription factor complex that increases the
expression of NOTCH target genes13 (Fig. 2).

The impact on ligand binding of mutations in NOTCH1 EGF
repeats 11 and 12 (EGF11–12) has previously been described1.
This region contains the highest concentration of missense
mutations in the gene (Fig. 3a and Supplementary Fig. S3a), with
308 and 905 missense mutations detected in normal oesophagus
and normal skin, respectively1,6 (total missense mutations in
NOTCH1: 831 in oesophagus, 2701 in skin). Recurrently mutated
residues in this region (those mutated at least 4 times in the
normal oesophagus data) include cysteines in disulphide bonds,
buried glycines and hydrophobic packing residues1. These would
all be expected to affect the stability of the protein20,21 and could

prevent the structure from folding into the correct shape to bind
with the ligand22,23. We, therefore, use the ligand-binding region
of NOTCH1 to introduce the method and confirm that it can
detect (and assign statistical significance to) the previously
observed patterns of selection in the normal oesophagus. We
also demonstrate how excluding known forms of selection can
help to detect weaker selection or less frequently selected features.

The stability of a protein is determined by the protein folding
free energy, ΔG, which is the difference in Gibbs free energy
between the folded and unfolded form of a protein. A mutation
may alter ΔG (this change is called ΔΔG) and therefore stabilise or
destabilise the protein. We used FoldX24 to calculate the ΔΔG for
each possible single nucleotide missense mutation25 in NOTCH1
EGF11–12 (Fig. 3b, Methods). We constructed a null model of
‘neutral’ selection, which assumes that the distribution of
mutations in the region will depend solely on the mutational
spectrum (Supplementary Fig. S1 and Supplementary Note 2). By
comparing the distribution of ΔΔG values from the observed
mutations with the distribution expected under the null hypothesis
(Supplementary Fig. S1), we found a significant enrichment of
destabilising mutations with high ΔΔG values (expected median=
0.99 kcal/mol, observed median= 3.49 kcal/mol, p < 2e−5,
n= 308, two-tailed Monte Carlo test, Supplementary Note 10
and Fig. 3c). However, we can see that many observed mutations,
including recurrent hotspots, do not appear to be destabilising
(Fig. 3b and Supplementary Note 4). This suggests that some
mutations are selected for reasons other than destabilising the
protein structure.

Another mechanism expected to inactivate NOTCH1 ligand
binding is disruption of the ligand-binding interface. We found
that the observed proportion of missense mutations on the
interface (Methods) was similar to the null model, and therefore
the interface mutations were not significantly selected compared
with the rest of EGF11–12 (Fig. 3d; expected= 35%, observed=
33%, p= 0.72, n= 308, two-tailed binomial test, Supplementary
Note 10). However, this does not indicate that mutations on the
interface are under neutral selection, just that they are not under
stronger selection than the bulk of missense mutations in
EGF11–12. Orthogonal mechanisms may dominate the selection
landscape and make it more difficult to identify enrichment of
interface mutations. As we have already shown that highly
destabilising mutations are positively selected, all mutations with
high ΔΔG values (with ΔΔG > 2 kcal/mol, Methods, results using
a range of thresholds shown in Supplementary Fig. S2e) can be
excluded from both the null model and the observed data and it
can be tested whether, within the non-destabilising mutations in
EGF11–12, there is an enrichment of interface mutations. Under
this null model, there was a highly significant increase in the
proportion of missense mutations on the ligand-binding interface
(Fig. 3e, expected= 43%, observed= 64%, p= 3e−5, n= 107,
two-tailed binomial test, Supplementary Note 10).

After excluding destabilising mutations and those on ligand-
binding sites, there are still some missense mutations remaining
(Fig. 3f). Among these, the most frequent mutation in both skin
and oesophagus is E455K, which forms part of a calcium-binding
site that is known to be crucial for ligand binding17,26. Calcium
binding is critical for the structural integrity of the EGF
repeats16,17, however, FoldX predicts that many mutations
affecting the calcium-binding sites would not be destabilising
(Fig. 3f). This may indicate that ΔΔG, as calculated by FoldX, is not
fully capturing the disruption that mutations on calcium-binding
residues are having on the protein structure. We, therefore, used
MetalPDB26 to define the calcium-binding residues in the structure
of NOTCH1 EGF11–12 (Supplementary Fig. S2b, Methods) and
tested for enrichment of mutations on these sites. Similar to the
results for the interface mutations, testing with all mutations in

Fig. 2 Mechanism of NOTCH activation. 1 NOTCH is activated when a
ligand from an adjacent cell binds with a subset of the NOTCH EGF repeats.
EGF repeats shown in blue, key ligand-binding region EGF11–12 shown in
dark blue; Lin-12/Notch Repeats (LNR) region, orange; transmembrane
region, red; ankyrin repeats, green. 2 Ligand binding triggers a series of
cleavage events, resulting in cleavage of the NOTCH transmembrane
region (red) by γ-secretase. 3 This releases the intracellular domain of
NOTCH (NICD) which travels to the nucleus to form part of a transcription
factor.
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EGF11–12 did not detect a significant enrichment of mutations on
the calcium-binding residues (expected= 16%, observed= 14%,
p= 0.48, n= 308, two-tailed binomial test, Supplementary Note 10,
Fig. 3g). However, by excluding the FoldX-destabilising (ΔΔG > 2
kcal/mol) and ligand-binding interface mutations, we found that
the calcium-binding mutations are highly selected compared to the
remaining mutations in the region (expected= 20%, observed=
59%, p= 8e−8, n= 39, two-tailed binomial test, Supplementary
Note 10 and Fig. 3h). Applying the analysis to mutations in normal
skin reveals similar and highly significant selection of the same
three categories of missense mutations: destabilising mutations,
and mutations on the ligand-binding interface and on calcium-
binding residues (Supplementary Fig. S3, this data previously
analysed with this method in ref. 6).

This example of missense mutations in NOTCH1 EGF11–12
confirms that the statistical method can detect selection of known
functional consequences of mutations, and can separate selection
of different features in the same region (Supplementary Figs. S2d–f,
S3e–g and Table S1). 95% and 89% of observed missense mutations
in oesophagus (Fig. 3f and Supplementary Fig. S2c) and skin
(Supplementary Fig. S3h, i) respectively are within the three
categories of mutational impact examined here. The small
proportion of mutations remaining may be weakly selected or

neutral passenger mutations, may be marginally outside of the
category definitions used here, or may be selected due to a
functional impact not tested here. For example, the most frequent
mutation in NOTCH1 EGF11–12 in skin that is not in the above
categories is P460L (34 mutant clones), which has a ΔΔG value
marginally below the chosen threshold of 2 kcal/mol (Supplemen-
tary Fig. S3i). The next most frequent uncategorised mutation,
D464N (17 mutant clones) does not clearly belong to any of
the three categories (Supplementary Fig. S3h, i), but may affect
ligand-binding through its interaction with post-translational
modifications22,27. The repeating method of testing for selection,
excluding selected categories and testing again for new selected
features may be useful for quickly classifying the majority of
mutations and identifying outliers for further investigation.

Using somatic mutations to generate protein-function
hypotheses. For FBXW7, the interpretation of the selected mis-
sense mutations is less straightforward. FBXW7 is one compo-
nent of the Skp, Cullin, F-box containing E3 ubiquitin ligase
complex28. FBXW7 recognises the substrate to be targeted for
ubiquitination and subsequent degradation28. It has around 90
target substrates, including TP53 and NOTCH129.

Fig. 3 Patterns of selection of missense mutations in NOTCH1 EGF11–12 in normal human oesophagus. a Missense mutation frequency across the
domains of NOTCH1. Domain definitions from UniProt56. Where the gap between domains is only a single residue, mutations from this residue are included
in the subsequent domain. EGF repeats, blue; EGF11–12, dark blue; LNR, orange; transmembrane region, red; ankyrin repeats, green; other regions, grey.
b ΔΔG of mutations in NOTCH1 EGF11–12. Single nucleotide missense mutations that occur in the normal oesophagus, red, with marker size proportional to
the number of times that mutation occurs. Single nucleotide missense mutations that do not occur in the dataset shown in grey. c Distributions of ΔΔG
values of missense mutations. Distribution expected under the neutral null hypothesis, light red, and the distribution observed, dark red. d, e Counts of
NOTCH1 EGF11–12 mutations occurring on the ligand-binding interface under the neutral null hypothesis, light blue, and observed, dark blue. Null and
observed counts including all missense mutations (d) or excluding destabilising mutations (ΔΔG > 2 kcal/mol) from both the null model and observed data
(e). f ΔΔG plotted against distance from the NOTCH1 EGF11–12 ligand-binding interface residues. Observed single nucleotide missense mutations shown in
green (calcium binding), blue (ligand binding), red (ΔΔG > 2 kcal/mol) or orange (other). Marker size is proportional to the number of times that mutation
occurs. Single nucleotide missense mutations that do not occur in the data set shown in grey. Regions containing highly destabilising mutations
(ΔΔG > 2 kcal/mol) and mutations on the ligand-binding interface shown with dashed red and blue boxes, respectively. g, h Counts of NOTCH1 EGF11–12
mutations that are on calcium-binding residues under the neutral null hypothesis, light green, and observed, dark green. g Null and observed counts
including all missense mutations (g) and excluding destabilising mutations (ΔΔG > 2 kcal/mol) and ligand-binding interface mutations from both the null
model and observed data (h). P values calculated using a two-tailed Monte Carlo test for c and a two-tailed binomial test for d, e, g, h (Supplementary
Note 10). Error bars in d, e, g, h show 95% confidence intervals (Supplementary Note 10). ****P≤ 0.0001, ns P > 0.05.
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There is some evidence of selection against loss-of-function
mutations in normal skin, where nonsense and splice mutations
are negatively selected (dN/dS= 0.31, p= 0.025, Supplementary
Fig. S96) and there is a significant deficit of destabilising missense
mutations (expected median= 1.17 kcal/mol, observed median=
0.39 kcal/mol, p= 0.0001, n= 62, two-tailed Monte Carlo test,
Supplementary Note 10 and Fig. 4a). However, the observed
missense mutations are located significantly closer to the
substrate binding site30,31 than expected under the neutral null
hypothesis (expected median= 18.7 Å, observed median= 7.3 Å,
p < 2e−5, n= 62, two-tailed Monte Carlo test, Supplementary
Note 10 and Fig. 4b–d), suggesting that there is positive selection
of a change to wild type FBXW7 function. Re-testing the skin data
while excluding mutations near the substrate binding site finds
that there is no significant selection for destabilising mutations
(excluding mutations within 8 Å of the FBXW7 substrate;
expected median= 1.11 kcal/mol, observed median= 0.56 kcal/
mol, p= 0.55, n= 30, two-tailed Monte Carlo test, Supplemen-
tary Note 10 and Fig. 4e). This suggests that the apparently strong
negative selection of destabilising mutations seen when testing
with the full set of missense mutations may, in fact, be partly a
result of positive selection of non-destabilising mutations around
the binding site. The peak of missense mutations in the
oesophagus mirrors that of the skin data (Supplementary Fig. S10a

and Fig. 4b), although the small number of FBXW7 mutations in
the oesophagus data set means the statistical tests are non-
significant (FoldX ΔΔG: expected median= 1.10 kcal/mol,
observed median= 0.73 kcal/mol, p= 0.59, n= 19, Supplemen-
tary Fig. S10b; distance to substrate binding site: expected
median= 18.7 Å, observed median= 13.2 Å, p= 0.096, n= 19,
Supplementary Fig. S10c; two-tailed Monte Carlo test, Supple-
mentary Note 10).

The most common FBXW7 mutation hotspots in cancer –
R465, R479 and R50528 – are also located at the substrate binding
site30 (Fig. 4d). Mutations to these residues abrogate the ability of
FBXW7 to bind to its substrates28,31. Inactivating FBXW7
mutations are common in cancers driven by NOTCH1 activating
mutations, such as T-cell acute lymphoblastic leukaemia (T-ALL)
and chronic lymphocytic leukaemia (CLL)31. The mutant FBXW7
cannot bind to NOTCH1 NICD, leading to an accumulation of
NICD similar to that caused by NOTCH1 activating mutations31.
However, in the normal epithelia, there is strong selection for
NOTCH1 loss-of-function mutations, so selection of mutations
which increase NOTCH1 activity would be surprising. In fact,
despite their similar location in the protein structure, there is no
overlap between the missense mutations that appear in the
normal tissues and those that appear in T-ALL and CLL
(COSMIC v9132, T-ALL n= 89, CLL n= 8, normal skin

Fig. 4 Missense mutations in FBXW7. a Distribution of calculated ΔΔG values of missense mutations in FBXW7 in normal skin. Distribution expected
under the neutral null hypothesis, light red, and the distribution observed, dark red. b Sliding window of missense mutation frequency across FBXW7 in
normal skin. Observed distribution shown with a bold black line, the expected distribution based on the mutational spectrum shown with a thin grey line.
Dimerization domain, blue bar; F-box domain, green bar; WD40 domain, orange bar. c Distribution of distances of missense mutations in skin from the
FBXW7 substrate (in this instance a 12-residue section of Cyclin E in PDB 2OVQ30). Distribution expected under the neutral null hypothesis, light blue, and
the distribution observed, dark blue. d Structure of the FBXW7 WD40 domain (PDB 2OVQ30) bound to Cyclin E (red). Commonly mutated residues are
highlighted. Blue and green residues contain at least four missense mutations in the normal skin dataset. Green residues also contain at least two missense
mutations in normal oesophagus dataset. The three main hotspot residues in cancer (R465, R479 and R505) shown in orange. e Distribution of calculated
ΔΔG values of missense mutations in skin, where all mutations within 8 Å of the FBXW7 substrate have been excluded from both the null model and the
observed data. Distribution expected under the neutral null hypothesis, light red, and the distribution observed, dark red. P values in a, c, e calculated using
the Monte Carlo test (Supplementary Note 10). ****P≤ 0.0001, ns P > 0.05.
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n= 102, normal oesophagus n= 20). This does not appear to be
due to the mutational spectrum, as the most common cancer
hotspot mutations (R465C, R465H, R479Q, R505C, combined
total of zero occurrences in the normal skin) together would be
expected to be mutated at least as often as the most frequently
observed mutation in the normal skin, L559F (11 occurrences)
(Supplementary Fig. S10d). Therefore, in the normal skin, there
does not appear to be selection for loss of FBXW7 binding to
NOTCH1 NICD.

It is tempting to speculate that, since FBXW7 loss of function is
a driver alongside NOTCH1 gain-of-function mutations in T-ALL
and CLL, selection of NOTCH1 loss-of-function mutations in the
normal epithelia would be accompanied by selection of gain-of-
function FBXW7 mutations. If FBXW7 mutations lead to an
increase in ubiquitination and degradation of NOTCH1 NICD,
then those mutant clones might have a growth advantage due to a
reduction in NOTCH1 signalling. However, due to the large
number of FBXW7 target substrates, several of which are driver
genes in the normal epithelia, it is hard to narrow down to a
single hypothesis. For example, an accumulation of c-MYC due to
Fbxw7 loss has been found to increase proliferation in
keratinocytes in mice33. However, those cells also differentiate
earlier due to accumulation of NOTCH1 NICD33. If the
mutations in normal skin and oesophagus selectively abrogate
FBXW7–c-MYC binding without disrupting FBXW7–NOTCH1
binding it may lead to clonal expansion.

Distinct patterns of mutation in fitness-suppressing and
fitness-enhancing proteins. The two genes we examined above,
NOTCH1 and FBXW7, have very different relationships with cell
fitness in the normal epithelia, and this is reflected in the patterns
of selected mutations. Reducing NOTCH1 function increases cell
fitness, as demonstrated by the strong positive selection of non-
sense and essential splice (truncating) mutations (Supplementary
Fig. S9a) and the widespread enrichment of missense mutations
which disrupt NOTCH1 function through misfolding or prevent-
ing activation of NOTCH1 by its ligands. In contrast, an overall
reduction of FBXW7 function reduces cell fitness, as shown by the
negative selection of truncating mutations (Supplementary
Fig. S9a). The missense mutations in this protein are highly con-
centrated in a key functional site, with very few mutations that are
likely to cause major disruptions to the protein structure.

We therefore propose that, based on their relationship with cell
fitness in the normal tissue, genes can be categorised in two groups:
fitness-suppressors and fitness-enhancers. In fitness-suppressors,
loss-of-function mutations lead to an increase in cell fitness, whereas
in fitness-enhancers, activating mutations lead to greater cell fitness.
The pattern of mutational selection will depend on which of these
two groups the gene belongs to (Fig. 5a, b). Mutations to functional
sites may increase, alter or decrease the protein function, and,
therefore, may be enriched in both fitness-suppressors and fitness-
enhancers (Fig. 5a, b). In contrast, mutations which cause general
disruption to the protein structure, such as destabilising missense
mutations in the protein core (Supplementary Fig. S14), frequently
cause loss of protein function34 and are therefore enriched in the
fitness-suppressors (Fig. 5a, b).

To test this hypothesis further, we examined the selection of
missense mutations in a few more well characterised proteins at
both ends of the spectrum of truncating mutation selection
(Supplementary Fig. S9a). Like NOTCH1, the genes NOTCH2 and
TP53 are under strong positive selection for loss-of-function
truncating mutations (Supplementary Fig. S9a and Supplemen-
tary Notes 6 and 7), and are therefore fitness-suppressors.
NOTCH2 is a highly similar protein to NOTCH1, with the same
mechanism of activation (Fig. 2). Using our method to analyse

missense mutations in the key ligand-binding EGF repeats of
NOTCH2 reveals the same statistically significant patterns of
selection as found in EGF11–12 of NOTCH1: positive selection of
the structure-disrupting calcium-binding- and destabilising
mutations, along with positive selection of mutations on the
ligand-binding interface (Fig. 5b, Supplementary Note Section 5
and Supplementary Fig. S11). Similarly, in the DNA-binding
domain of the TP53 transcription factor, there is highly
significant selection of destabilising mutations and mutations
close to the interface with the DNA molecule (Fig. 5b,
Supplementary text Section 6 and Supplementary Fig. S12). The
patterns of missense mutations in these two proteins are therefore
consistent with those expected for fitness-suppressor proteins
(Fig. 5a, b).

In contrast, truncating mutations in the kinase encoding gene
PIK3CA are under strong negative selection (Supplementary
Fig. S9a and Supplementary Note 8). In the normal skin, dN/dS
analysis finds no significant selection of PIK3CA missense
mutations (Supplementary Fig. S9b). However, applying our
statistical method to PIK3CA reveals a highly significant
enrichment of previously identified activating missense mutations
(Supplementary Note 7 and Supplementary Fig. S13b, c), and
positive selection of mutations in key regions of the protein
known to contain activating mutations, including on the interface
with the inhibitory p85α protein, on the link between the
adaptor-binding domain and the Ras-binding domain, and in the
kinase domain (Supplementary Note 7, Supplementary
Fig. S13d–i and Tables S3, S4)6. This concentration of missense
mutations in a few functional sites is consistent with the pattern
expected for a fitness-enhancer protein.

To further confirm this relationship between patterns of
missense mutation selection and the function the gene plays in
cell fitness, we compared selection for truncating mutations with
selection of protein destabilising mutations. Among the genes
sequenced in the normal skin, there is a strong correlation
between selection of destabilising missense mutations and
selection of truncating mutations (Fig. 5c, Pearson’s correlation
coefficient= 0.89, two-tailed p= 8e−6, n= 15). This pattern is
also seen in mutations in mutagen-treated mouse oesophagus
(Supplementary Fig. S15, Supplementary methods, Pearson’s
correlation coefficient= 0.64, two-tailed p= 6e−11, n= 84). This
would suggest that an analysis of the impact of mutations on
folding can support classification into either fitness-suppressors
or fitness-enhancers.

Discussion
Here, we have adapted a statistical method for cancer driver gene
discovery to look for selected features of mutations in a gene. By
using this method, protein structural and functional information
can be drawn from the increasingly large amount of DNA
sequencing data available. We have found biologically plausible
and statistically significant patterns of selection in several pro-
teins. This approach can associate mutational changes in protein
structure or function with cell fitness, even in the absence of
‘hotspot’ mutations and in the presence of passenger mutations.
For example, in NOTCH2 EGF11−12, no mutations occurred
more than twice in the normal oesophagus dataset. However, by
considering those mutations in bulk, we have identified three
statistically significant features of selected missense mutations
(the same features that are selected for in NOTCH1 EGF11−12).

Manual investigation of hotspot mutations can provide similar
information to our analysis1 but has disadvantages: it can be
time-consuming, does not leverage the information provided by
rarer mutations and does not statistically test the selection of
mutation features. In vitro mutational scanning experiments that
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exhaustively mutate a protein or protein domain and measure the
phenotypic consequences of each mutation35 can provide infor-
mation both about the effects of individual mutations and about
protein function and structure35. However, these experiments are
typically carried out in culture35, an environment which can
substantially alter cell phenotype36,37. In-silico mutational scan-
ning has become increasingly common as computational power
increases and in-silico methods improve25,38–40. This technique
predicts the effects of mutations on protein function, but relating
molecular change to alterations in cell function is not trivial41.
Our analysis method effectively combines in-silico mutational
scanning with in-vivo mutational phenotype assays that are the
DNA-sequencing datasets of normal tissues.

Some caution must be applied when interpreting the results of
the method. Although protein misfolding and ligand binding
are well-known processes that control protein activity24,42,

correlation does not mean causation, and significant selection
may be found for a feature that correlates (coincidentally or
otherwise) with the true selected feature. This is also a test for
selection relative to the rest of the tested region, and does not
necessarily directly translate to positive or negative selection. We
have shown that if there are multiple selected features in a region,
testing for one individual feature at a time may lead to misleading
results, but that this can be corrected by accounting for the other,
confounding selected features.

For proteins that are sufficiently ordered that their structures
can be determined, selection of loss-of-function nonsense and
splice mutations is frequently accompanied by selection of
destabilising missense mutations. A standard workflow for ana-
lysing missense mutations in these genes might start by identi-
fying if destabilising mutations are selected for before searching
for other selected mutation features. Many different mutations in

Fig. 5 General patterns of mutations in fitness-suppressing and fitness-enhancing proteins. a Common loss-of-function missense mutations disrupt
critical functional sites or cause larger scale destabilisation of the protein structure, while common gain-of-function mutations affect critical functional sites.
b Both fitness-suppressor and fitness-enhancer proteins in normal skin show an enrichment of mutations on functional sites compared to the null model
(excluding structure-disrupting mutations from both the null model and observed data). In fitness-suppressors only, there is an enrichment of mutations
that generally disrupt the protein structure (excluding mutations on functional sites). Functional sites are defined as the ligand-binding interface for
NOTCH1 and NOTCH2, residues within 8 Å of DNA or substrate for TP53 and FBXW7 respectively, and residues in the regions 100–119, 444–473,
962–980 for PIK3CA. Structure-disrupting mutations are defined as mutations with ΔΔG > 2 kcal/mol and mutations on calcium-binding residues in
NOTCH1 and NOTCH2. c Selection of destabilising missense mutations is strongly correlated with selection of nonsense mutations in normal skin.
Selection of destabilising missense mutations is shown as the shift in the distribution of ΔΔG values between the null model and the observed data. CDF
values were used instead of raw ΔΔG values to reduce the influence of extreme outliers (Supplementary Note 10). ΔΔG CDF shift is the difference
between the mean of the null and observed distributions of ΔΔG CDF values. It is a value between −0.5 (all observed mutations have the minimum ΔΔG
possible in the protein structure) and 0.5 (all observed mutations have the maximum ΔΔG possible). A ΔΔG CDF shift of 0 means the mean values of the
null and the observed ΔΔG CDF distributions are equal. Structures of wild type proteins containing at least 50 missense mutations in the skin dataset were
used (Supplementary Note 10), and the average ΔΔG CDF shift of all structures for each gene was calculated. Pearson’s correlation coefficient= 0.89,
two-tailed p= 8e−6, mean ΔΔG CDF shift vs logarithm of truncating dN/dS ratio. Blue line and shaded region show the linear regression and 95%
confidence interval of the regression estimate calculated and plotted using the Python package Seaborn57.
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a gene may disrupt protein function, but only a small proportion
of potential mutations are likely to be gain-of-function43. This
means that selection for gain-of-function mutations in a gene can
lead to hotspots or small clusters of mutations43, such as those
seen in PIK3CA and FBXW7. However, as demonstrated by the
pattern of mutations in NOTCH1, clusters of mutations and
hotspot mutations are also seen in genes where loss-of-function
mutations are selected. Selection for gain-of-function mutations
may be accompanied by selection against loss-of-function
mutations, such as nonsense mutations or missense mutations
that cause misfolding. This may dilute the signs of selection when
analysing missense mutations across the gene as a whole,
meaning the selection on these genes may be harder to detect
using some driver detection methods.

Altogether, the analysis presented here demonstrates a route to
mine the rich vein of information available in large DNA
sequencing data sets through the integration of features from
other domains, such as protein structure. Through combining
diverse datasets, we can infer the selection of functional changes
in proteins, and hence learn about both the protein structure
−function relationship and the role of the protein in the tissue
sequenced. The method can be used as an in-vivo validation of
results of in-vitro studies, and could be a useful method to explore
selection of mutation features in existing data sets prior to con-
ducting further experiments. This is an approach that will be
widely applicable for genes or protein domains that are positively
or negatively selected in somatic contexts, whether in cancer or
normal tissue.

Methods
Data. We analysed mutations detected in normal human oesophagus1, normal
human skin6, and mutagen-treated mouse oesophagus11. All studies used DNA
sequencing to detect mutations in a grid of adjacent tissue samples. Large clones
could spread over multiple samples. To avoid double counting of such clones, we
used the mutations list where mutations that were seen repeatedly in nearby
samples were assumed to be from a single clone and were merged1,6,11.

FoldX. We used FoldX 5 to calculate the ΔΔG values of mutations. For each PDB
file, the FoldX command RepairPDB was run to minimise steric clashes and
optimize residue orientation. Then the FoldX command PositionScan was run for

every residue of the protein chains of interest in the structure. This command
mutates each residue to all other amino acids and calculates the ΔΔG value for each
mutation. Default FoldX settings were used for both the RepairPDB and Posi-
tionScan commands.

Some analyses required a threshold to discriminate destabilising mutations
from non-destabilising mutations. Unless otherwise noted, we used a threshold
ΔΔG value of 2 kcal/mol because this has been used in previous studies to define
mutations which are highly destabilising44–47.

Ligand-binding interface residues. The ligand-binding interface residues in
EGF11 and EGF12 have been identified for the rat NOTCH1 bound to the ligands
JAG1 and DLL422,23. NOTCH genes and ligands are highly conserved between
species meaning that the results from the rat protein can be applied to human
NOTCH148 (Fig. 6). The ligand-binding surface is very similar for both ligands23

and we, therefore, chose to use the union of both sets of ligand-binding residues
(Supplementary Fig. S2a and Table 1). The ligand-binding residues for NOTCH2
are based on conservation with the rat NOTCH1 ligand interface48 (Table 1).

Calcium-binding mutations. The calcium-binding residues in EGF11−12 of
NOTCH1 were defined using MetalPDB26 and the 2VJ3 structure49 (Table 2). The
calcium-binding residues in EGF11−12 of NOTCH2 were defined using
MetalPDB26 and the 5MWB structure48 (Table 2).

Conservation scores. Phylop conservation scores50 for each position were
downloaded via the UCSC genome browser, http://hgdownload.soe.ucsc.edu/
goldenPath/hg19/phyloP100way/51.

Images of protein structures. VMD52 was used to visualise protein structures and
images were rendered using Tachyon53.

Principle of the statistical method. Cells acquire mutations as a result of expo-
sure to mutagens (e.g., tobacco, alcohol or ultraviolet light) or cell-intrinsic
processes54. The pattern of mutations in a sample, known as the mutational
spectrum, will depend on the particular mutational and DNA repair processes
involved54. The chance of acquiring a specific single nucleotide substitution
appears to depend (at least partially) on the adjacent nucleotides54.

The probability of a particular somatic mutation appearing in a sequenced
sample depends on both the rate at which the mutation occurs in cells and the
strength of selection on the mutation once it has occurred (Supplementary Note 3).
In genes where no mutations of any kind convey a growth advantage/disadvantage,
the mutations detected by DNA sequencing will simply be an unbiased sample of
the mutations produced by the spectrum. Mutations which convey a growth
advantage to the cell are more likely to appear in multi-cellular clones that are
detected in the sequencing data, and mutations that convey a disadvantage are less
likely to be observed.

Fig. 6 Alignment of EGF11–12 of human and rat NOTCH1 protein sequences. Residues 412 to 488 of each sequence shown, residues which differ
highlighted in yellow.

Table 1 Ligand-binding interface residues of NOTCH1 EGF11−12 and NOTCH2 EGF11−12.

Ligand-binding interface residues

NOTCH1 EGF11−12 413, 415, 418, 420, 421, 422, 423, 424, 425, 435, 436, 444, 447, 448, 450, 451, 452, 454, 466, 467, 468, 469, 470, 471, 475,
477, 478, 479, 480

NOTCH2 EGF11−12 418, 421, 424, 425, 426, 428, 429, 439, 440, 452, 454, 456, 470, 472, 473, 481

NOTCH1 ligand-binding interface residues based on Supplementary Fig. S3 of ref. 23.
Ligand-binding interface residues of NOTCH2 EGF11−12 from ref. 48.

Table 2 Calcium-binding residues of NOTCH1 EGF11−12 and NOTCH2 EGF11−12.

Calcium-binding residues

NOTCH1 EGF11−12 412, 413, 415, 431, 432, 435, 452, 453, 455, 469, 470
NOTCH2 EGF11−12 415, 416, 418, 435, 436, 439, 456, 457, 459, 473, 474

Based on MetalPDB26 and the structure 2VJ349 for NOTCH1 and structure 5MWB48 for NOTCH2.
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The model of neutral null hypothesis is created by combining the mutational
spectrum for the dataset (Methods 5.8) and assigning an expected probability of
occurrence to each mutation. Those probabilities are then assigned to the mutation
scores (which could be ΔΔG, distance from a substrate site, whether the mutation
sits on an ion-binding site etc.) to construct an expected distribution of those scores
(Supplementary Fig. S1). The observed distribution of scores can then be
statistically compared (Supplementary Note 10) to the expected distribution
(Supplementary Fig. S1).

Mutational spectrum calculation. Firstly, all genes containing an exonic mutation
in the data sets were found using exon locations in GRCh37.p13 downloaded from
Ensembl Biomart55. For each of these genes, the longest transcript was selected and
alternative transcripts discarded. A trinucleotide context was calculated in the
direction of the protein transcription for every nucleotide in the coding sequence of
each transcript and applied to each observed mutation. For each data set, a
mutation rate was calculated for each single nucleotide substitution type in each
trinucleotide context by dividing the total number of observed mutations of that
trinucleotide change by the number of times the trinucleotide context occurs in the
included transcripts. Further information is given in Supplementary Note 2.

Statistics and reproducibility. Throughout this article, Binomial and Monte Carlo
tests have been used to calculate p values, depending on whether the score being
tested is Boolean or not. Analyses on NOTCH1 were performed on either 831 and
2701 missense mutations (normal oesophagus and normal skin, respectively), or
subsets of those mutations as described in the text. A full description about the tests
used and their interpretation is given in Supplementary Note 10, and notes on
rerunning analyses are linked in Supplementary Note 9.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The merged mutation data from normal oesophagus is available in Supplementary
Table 2 of ref. 1 in the sheet named ‘Mutations_collapsed_by_distance’. The merged
mutation data from normal skin is available in Supplementary Table S4 of ref. 6. For both
datasets, we used all exonic single-nucleotide mutations in those tables. In addition, a full
list of dN/dS results for the skin data was created by running the R package dndscv9

(https://github.com/im3sanger/dndscv) on the data in Supplementary Table S4. The
mouse oesophagus mutation data are available in Supplementary Table 2 of ref. 11. We
used the mutations from the three mice treated with the mutagen diethylnitrosamine.
Source data for figures can be found in Supplementary Data 1.

Code availability
The software used to run the statistical analysis and produce plots is available here:
https://doi.org/10.5281/zenodo.8077427 Jupyter Notebooks for generating the figures are
available at https://doi.org/10.5281/zenodo.8077429 Instructions on rerunning the
calculations are given in Supplementary Note 9.
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