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Abstract
The Material Point Method (MPM) has drawn great attention in the numeri-
cal modelling of large deformation, geotechnical problems. The popularity of
MPM is mainly because its formulation shares significant similarities with the
Finite Element Method. In MPM, the iteration points can move independently
from the mesh, allowing for the resolution of large deformation problems. How-
ever, because of this, the original MPM formulation suffers from the well-known
cell-crossing noise and volumetric-locking instabilities, resulting in a strongly
oscillated stress field. A novel implicit locking-free B-spline MPM that controls
stress oscillations to a negligible level is proposed in this paper. A novel, but
very straightforward B-spline shape function implementation procedure, avoids
the need for a complex material point searching algorithm, providing seamless
transformation from the original MPM to this robust B-spline MPM, aiming at
modelling large-strain geotechnical problems. The newly proposed volumetric
locking mitigation strategy is also very easy to implement, which facilitates the
reproducibility of this research. The proposed method is validated against three
numerical studies: granular column collapse experiment, slope failure and foot-
ing with large penetration. The proposed numerical method agrees well with
experiments reported in the literature and previous numerical studies. Also,
these numerical examples show that the proposed method provides a more
prominent stress field than other available methodologies.
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1 INTRODUCTION AND LITERATURE REVIEW

From the design point of view, civil engineers are often interested in small deformation problems because it is feasible to
undertake the analysis of structures that are not likely to experience high strains. The Finite Element Method (FEM) and
the Finite DifferenceMethod (FDM) are themost commonly used numerical approaches in the civil engineering industry
due to their accuracy for small deformation problems and the ability to describe the history-dependentmaterial behaviour.
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However, geotechnical engineering involves numerous large deformation problems, such as landslides and penetration
of piles during their installation, among others.
Soga et al.1 comprehensively reviewed the available numerical methods for large deformation in geotechnical mod-

elling. The Material Point Method (MPM) is recommended due to the following reasons: (a) it is suitable for large-scale
and large deformation problems; (b) its computational efficiency; (c) it is based on a similar mathematical formulation
as for the FEM; (d) its ability to deal with the history-dependent soil constitutive models and (e) the simplicity for apply-
ing essential boundary conditions.1 Some other comprehensive reviews of numerical modelling for large deformation in
geotechnics can be found in Refs. 2–5
InMPM, thematerial domain is discretised inmaterial points that can be treated as integration points in FEM.6 To solve

the distorted mesh issue in FEM, the mesh is set to its original position in MPM at each time step, and the material points
carry all the permanent information (e.g. stress, displacement and velocity). As a result, the material points (integration
points) can move independently from the mesh.6 In fact, the MPM will yield to FEM if the mesh is not set to its original
position after every time step.7
Aimed for computational efficiency, Sulsky et al.8 use linear FEM shape functions (hat functions) in the original MPM.

The use of these shape functions in MPM causes well-known cell crossing instability when a material point crosses the
cell boundary. The Generalised Interpolation MPM (GIMPM) developed by Bardenhagen and Kober9 is one of the most
commonly used MPM methods in the literature due to its efficiency. However, it cannot fully eliminate the cell crossing
instability10 since for that it is necessary to utilise a higher-order shape function that covers multiple cells.
The available higher-order MPMs are the B-spline MPM (BSMPM)11 and the Local Maximum-Entropy MPM.12 Both

methods can entirely eliminate the cell crossing noise. BSMPM is chosen for this research due to its better efficiency. The
latter approach requires a Newton–Raphson loop to construct the Local Maximum-Entropy shape function.13–15 However,
the construction of the B-spline shape function still requires muchmore computational effort than the original MPM and
the GIMPM shape function. Additionally, the conventional implementation of a higher-order shape function requires a
particle-searching algorithm to know where the material points and their neighbours are located.15 Therefore, it is more
appropriate to use an implicit iteration algorithm rather than an explicit one for the MPM with higher-order shape func-
tions, since an implicit solver allows relatively larger time steps and the shape function only needs to be constructed once
for each step. Also, due to this feature, the implicit solver is more preferable for relatively slow simulations, especially for
the quasi-static analysis. Apart from utilising the higher-order shape function, the Moving Least Squares (MLS) shape
function is also usually used to mitigate the cell crossing noise.16–18 In the current literature, the MLS shape function has
only been used in the explicit MPM solver, and the implicit MLS–MPM still needs to be studied.
Volumetric locking is the other source of instability in MPM besides the cell crossing noise. The volumetric locking

will result in over-stiff behaviour and non-physical stress oscillations. In FEM, the volumetric locking instability can be
easily overcome by a reduced quadrature scheme.19 However, utilising the reduced quadrature scheme is not feasible in
MPM for two reasons: (a) a sufficient number of material points per cell is required to ensure the desired quadrature
accuracy; (b) it is difficult to limit the number of material points per cell since they can move freely between them.6 The
available volumetric locking mitigation strategies6,20–27 are mainly suitable for the MPMwith linear shape functions (e.g.
original MPM and GIMPM). The BSMPM shows less volumetric locking than the MPMs with linear shape functions.
However, fully overcoming the volumetric locking for BSMPM is challenging since its shape functions are associated
with adjacent cells.28 Navas et al.29 mitigated the volumetric locking in the Optimal Transportation Meshfree (OTM)
Method, a numerical method based on Local Maximum-Entropy shape functions. This approach relies on the triangular
mesh, however, the rectangular mesh is a more popular choice in the MPM literature. To the best of our knowledge, there
are currently only three available pieces of research28,30,31 related to the mitigation of volumetric locking for a higher-
order MPM. Two of them30,31 are based on the F-bar projection method proposed by Elguedj et al.,32 which was originally
developed for B-spline FEM. However, the application of this method is not straightforward due to the introduction of an
additional background grid with low-order shape functions.28 Also, it is hard to apply to other types of MPM (i.e. GIMPM)
because of this feature. The method proposed by Zhao et al.28 is simple enough, but its performance has not been well
tested by a wide range of large deformation geotechnical problems.
This paper proposes a total locking-free, implicit BSMPM implementation to overcome the previously mentioned

research gaps. This newly proposedmethod is simple, as does not require the implementation of any sophisticated particle
search algorithm. The application of the newly proposed volumetric lockingmigration strategy is also very straightforward
and can be easily implemented. Additionally, the proposed method has been validated with various large deformation
geotechnical problems.
This paper is structured as follows: Section 2 explains the proposed numerical model in detail, including the construc-

tion of B-spline shape functions, large strain formulation of the constitutive model, volumetric locking migration strategy
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and the proposed implicit BSMPM algorithm. Then, we will present some verification numerical examples for large defor-
mation geotechnical problems in Section 3: the granular column collapse, slope failures and the large penetration of strip
footing problem. Finally, we present the conclusions of this research in Section 4.

2 DESCRIPTION OF THE NUMERICALMODEL

2.1 BSMPM shape function: A new efficient searching algorithm

InMPM, the kinematic quantities (e.g. displacement, velocity and acceleration) at anymaterial point can be approximated
by interpolating the nodal quantities of the related grid using the shape functions. For example, the incremental displace-
ment of a material point (Δ𝑢𝑢𝑢𝑝) can be approximated from the incremental nodal displacement of related grid nodes (𝑢𝑢𝑢𝐼)
by

Δ𝑢𝑢𝑢𝑝 =

𝑛𝑛∑
𝐼=1

𝑁𝐼𝑝Δ𝑢𝑢𝑢𝐼, (1)

where 𝑛𝑛 is the number of grid nodes that influences the material point. In this research, the subscript 𝑝 means that the
variables are related to thematerial point. Similarly, the subscript 𝐼 denotes that the variables are related to the grid nodes.
𝑁𝐼𝑝 is the shape function associated with node 𝐼 evaluated at the position of material point 𝑝. In the original MPM, the
employed shape function is the traditional hat function; however, different shape functions are used for improvedMPMs,
such as the B-spline function. Also, the total nodal displacements are equivalent to the incremental nodal displacements
in MPM once a brand-new grid has been used for each time step.
The communication between nodes and material points is not one-way only. The information can also be mapped

from the material points to the related node. For example, the diagonal components of lumped nodal mass (𝑚𝐼) can be
calculated by taking into account the contribution of all the material points related to this node:

𝑚𝐼 =

𝑛𝑝∑
𝑝=1

𝑁𝐼𝑝𝑚𝑝, (2)

where 𝑛𝑝 is the number of material points associated with node 𝐼, and𝑚𝑝 is the mass of the material point 𝑝.
BSMPM follows the exactly same computational procedures as the original MPM except for utilising a different shape

function 𝑁𝐼𝑝.33 Like the other MPM shape functions, we can first construct the B-spline shape functions in 1-D and then
convolute them in multi-dimensions.34–37 A 1-D BSMPM shape function is usually constructed based on a knot vector, Ξ,
which contains a series of knots with non-decreasing order for their spatial coordinates:

Ξ = {𝑥1, 𝑥2, … , 𝑥𝑛+𝑞, 𝑥𝑛+𝑞+1}, (3)

where 𝑛 is the total number of B-spline shape functions; 𝑞 denotes the polynomial order and 𝑥𝑖(𝑖 = 1, 2, … , 𝑛 + 𝑞 + 1) is
the 𝑖th knot.36 These knots can be treated as grid nodes in the FEM orMPM.However, in the case of a boundary grid node,
the corresponding boundary knot needs to be repeated 𝑞 times. As we can see from the definition of the knot vector, at
least 𝑞 + 2 knots are required to construct a B-spline shape function. In this research, we use a quadratic (𝑞 = 2) B-spline
shape function; therefore, at least four knots are needed to construct a B-spline shape function. In the case of a boundary
grid, only two grid nodes are available. To have four knots, its boundary knot needs to be repeated twice.
Figure 1 graphically illustrates the 2-D discretisation of quadratic BSMPM. Figure 1A shows a discretisation of a rectan-

gular continuum body using 16 material points. This continuum body moves in a domain (parametric grid) uniformly
discretised into 12 patches (four patches in the x-direction and three patches in the y-direction) with a constant unit
spacing. The entire parametric grid can be represented by two open global knot vectors: Ξ𝑥 = {0, 0, 0, 1, 2, 3, 4, 4, 4} and
Ξ𝑦 = {0, 0, 0, 1, 2, 3, 3, 3} in x- and y-directions, respectively. The knot vectors are open because their first and last knot
appear 𝑞 + 1 times. As shown in Figure 1A, these knots appear three times for a quadratic B-spline, and these repeated
knots are the boundary knots. Figure 1B shows a 2-D tensor product grid formed by the tensor product of the knot vec-
tors in the x- and y-directions. In BSMPM, the information is mapped from the material points to the tensor product
grid nodes.37 Then, the partial differential equations are solved in the tensor product grid. Finally, all the permanent
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2744 XIE et al.

(A) (B)

F IGURE 1 Graphical illustration of 2-D quadratic B-spline MPM discretisation: (A) parametric grid, (B) tensor product grid.

information is mapped back to the material points, and the tensor product grid is set to its original position. As shown in
Figure 1, the parametric grid and the tensor product grid only coincide at the boundary grid nodes where the Dirichlet
boundary conditions apply.36
We use an internal patch (blue hatched in Figure 1) which contains four material points, as an example to illustrate

the construction of the BSMPM shape function. To construct shape functions for each material point inside this patch,
we need to obtain sub-knot vectors from the global knot vectors Ξ𝑥 and Ξ𝑦 . As shown in Figure 1A, this internal patch
sits on the second span of the parametric grid in both directions. Therefore, we need to obtain sub-knot vectors from the
second knot in the global knot vectors Ξ𝑥 and Ξ𝑦 . For each patch, there are 𝑞 + 1 shape functions in each direction, and
𝑞 + 2 knots are required to construct a shape function. As a result, the sub-knot vectors {0, 0, 1, 2}{0, 1, 2, 3}{1, 2, 3, 4} in the
x-direction and {0, 0, 1, 2}{0, 1, 2, 3}{1, 2, 3, 3} in the y-direction are obtained by reading four knots three times one by one
from the second knot in the global knot vectors.
Given the coordinate of a material point (𝑥) and a knot vector (Ξ = {𝑥1, 𝑥2, … , 𝑥𝑛+𝑞, 𝑥𝑛+𝑞+1}), we can use the Cox-de

Boor formula38 to determine the shape functions recursively starting from polynomial order zero (𝑞 = 0):

𝑁𝑖,0(𝑥) =

{
1 𝑖𝑓 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (4)

In the case of polynomial order larger than zeros (𝑞 > 0):

𝑁𝑖,𝑞(𝑥) =
𝑥 − 𝑥𝑖

𝑥𝑖+𝑞 − 𝑥𝑖
𝑁𝑖,𝑞−1(𝑥) +

𝑥𝑖+𝑞+1 − 𝑥

𝑥𝑖+𝑞+1 − 𝑥𝑖+1
𝑁𝑖+1,𝑞−1(𝑥). (5)

The shape function derivatives can be obtained using the following:

d𝑁𝑖,𝑞(𝑥)

d𝑥
=

𝑞

𝑥𝑖+𝑞 − 𝑥𝑖
𝑁𝑖,𝑞−1(𝑥) −

𝑞

𝑥𝑖+𝑞+1 − 𝑥𝑖+1
𝑁𝑖+1,𝑞−1(𝑥). (6)

Note that the above Cox-de Boor recursion formula assumes 0∕0 = 0.
As a result, there are three shape functions (i.e. 𝑖 = 3) for eachmaterial point in each direction. After the tensor product,

there are nine (three times three) shape functions evaluated at the tensor product grid nodes for each material point. In
other words, one material point is governed by nine tensor product grid nodes. These four material points in the hatched
internal patch are governed by the same tensor product grid nodes (i.e. grid nodes number 7, 8, 9, 12, 13, 14, 17, 18 and
19), as shown in Figure 1B. Therefore, their material point (𝑝) to tensor product grid nodes (𝑁) connectivity matrix (𝑝2𝑁
matrix) is [7, 8, 9, 12, 13, 14, 17, 18, 19]. Similarly, if a material point moves to the hatched external patch, its 𝑝2𝑁 matrix
will be [18, 19, 20, 23, 24, 25, 28, 29, 30], as shown in Figure 1B. This 𝑝2𝑁matrix is crucial inMPM during the communica-
tion between thematerial points and their related grid nodes (in BSMPM, they are tensor product grid nodes). Summations
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XIE et al. 2745

over the grid nodes andmaterial points require this 𝑝2𝑁matrix to know the relationship between the material points and
grid nodes, as shown in Equations (1) and (2). The conventional method constructs the BSMPM shape functions patch
by patch. Utilising a particle search algorithm, we can determine the material point (𝑝) to patch/element (𝑒) connectivity
matrix (𝑝2𝑒). Since the patch (𝑒) to tensor product grid nodes (𝑁) connectivity matrix (𝑒2𝑁) is an inherent property of a
tensor product grid, we can obtain the 𝑝2𝑁 matrix through 𝑝2𝑒 and 𝑒2𝑁 (i.e. material point to patch to tensor product
grid nodes).
This research proposes a new implementation to avoid the searching algorithm. The basic idea is constructing shape

functions for the entire parametric grid instead of patches. As shown inFigure 1A, for eachmaterial point,we can construct
its B-spline shape functions for the entire background mesh instead of each patch using only two global knot vectors Ξ𝑥
and Ξ𝑦 . Using the Cox-de Boor formula, we can obtain the shape functions evaluated at every tensor product grid node for
each material point. However, these shape functions are non-zero only at the patch where the interested material point
locates. Because of this property, we can eliminate the zero shape functions to obtain the exact same shape functions as
constructing them patch by patch. Also, we can find and record the locations (indices) of these non-zero shape functions.
These indices are the components of the 𝑝2𝑁 matrix for this material point. Finally, this method yields the same shape
functions and 𝑝2𝑁matrix as the conventional patch-by-patch method with a particle searching algorithm. The algorithm
of the proposed method for a 2-D problem is shown in Appendix A.
A quadratic B-spline is used in this research because of its efficiency and capability of fully overcoming the cell crossing

noise.11 Although a cubic B-spline shape function results in a more accurate result,37 it is more cumbersome compared
with the quadratic one because of the larger matrix size. The construction of a cubic B-spline shape function follows the
same recursion procedure (Equations 4–6) and the proposed methodology can be easily extended to the employment of
such a higher-order shape function.
In the computer graphics community,39,40 the explicitly defined B-spline shape function is usually used. This type of

B-spline shape function is derived recursively assuming a uniform grid space and internal zero-centred material point.11
The employment of this type of B-spline shape function is very efficient because the recursion procedure is avoided during
construction. However, implementing this explicitly defined B-spline shape function requires ghost nodes (i.e. additional
nodes) outside the boundary to ensure the partition of unity.41 The presence of these ghost nodes introduces massive
numerical errors around the boundaries. In the case of MPM application in computer graphics,39,40 the material body is
usually not placed against the boundaries. However, the massive numerical errors around the boundaries are not accept-
able for an engineering problem because the symmetric boundary is frequently used to reduce the computational effort,
for example, the strip footing problem in geotechnical engineering (Section 3.3). Therefore, it is more appropriate to use
a knot vector to construct the B-spline shape functions recursively (Equations 4–6) to avoid introducing ghost nodes.

2.2 Large strain constitutive framework

In MPM, the constitutive model is evaluated at the material point level. Therefore, for the notations in this section, we
omit the subscript 𝑝 for clarity purposes.
In the large strain constitutive model, the left elastic Cauchy–Green strain 𝑏𝑏𝑏

𝑒 is stored as a state variable, and it is
updated every time step from 𝑡 to 𝑡 + d𝑡42:

𝑏𝑏𝑏𝑒(𝑡 + d𝑡) = Δ𝐹𝐹𝐹𝑏𝑏𝑏𝑒(𝑡) Δ𝐹𝐹𝐹𝑇, (7)

where Δ𝐹𝐹𝐹 is the deformation gradient increment. The deformation gradient, 𝐹𝐹𝐹, can be written as

𝐹𝐹𝐹 =
𝜕𝑥𝑥𝑥

𝜕𝑋𝑋𝑋
=
𝜕(𝑋𝑋𝑋 +𝑢𝑢𝑢)

𝜕𝑋𝑋𝑋
= 𝐼𝐼𝐼 +

𝜕𝑢𝑢𝑢

𝜕𝑋𝑋𝑋
. (8)

One of themost commonly used strainmeasurements for the large strain formulation is logarithmic (also calledHencky
strain tensor), and, therefore, the elastic logarithmic strain 𝜖𝜖𝜖𝑒 is defined by42

𝜖𝜖𝜖𝑒 =
1

2
ln 𝑏𝑏𝑏𝑒. (9)

Note that the evaluation of Equation (9) requires polar decomposition since 𝑏𝑏𝑏𝑒 is a matrix. The corresponding stress
measure is the Kirchhoff stress 𝜏𝜏𝜏 defined by

𝜏𝜏𝜏 = 𝐷𝐷𝐷𝑒𝜖𝜖𝜖𝑒, (10)
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2746 XIE et al.

where 𝐷𝐷𝐷𝑒 is the linear elastic consistent tangent in Voigt notation. In the MPM formulation, the Cauchy stress 𝜎𝜎𝜎 is still
used.43 The Kirchhoff stress 𝜏𝜏𝜏 has only been used in the constitutive model. The Cauchy stress 𝜎𝜎𝜎 can be recovered from
the Kirchhoff stress 𝜏𝜏𝜏 by

𝜎𝜎𝜎 =
𝜏𝜏𝜏

det(𝐹𝐹𝐹)
=
𝜏𝜏𝜏

𝐽
, (11)

where 𝐽 = det(𝐹𝐹𝐹) is the Jacobian of the deformation gradient.
With a continuum-basedmethod, such as the FEMor theMPM, the stress needs to be updated alongwith the incremen-

tal displacement. Usually, the elastic predictor return mapping algorithm is used to update the stress in an elastoplastic
constitutive model. Utilising the logarithmic strain and Kirchhoff stress allows us to use the same elastic predictor return
mapping algorithm derived from the small strain theory.42 In this research, we use theMohr–Coulomb constitutivemodel
as documented by de Souza Neto et al.,42 who also report the return mapping algorithm in detail.

2.3 Overcoming volumetric locking: A new F-bar approach

This research employs the F-bar Method to overcome volumetric locking. This method is originally proposed by de Souza
Neto et al.44 to avoid the volumetric locking in FEM. Coombs et al.6 summarised the advantages of the F-bar Method
as: (a) it does not introduce any additional unknown or unphysical parameter; (b) it is possible to apply to any type of
constitutive model andMPM; (c) it does not require additional material points to capture the volumetric behaviour. Same
as the previous section, the subscript 𝑝 is omitted for the notations in this section. The notation with no subsectionmeans
that this value is evaluated at the material point level.
The idea of the F-bar Method is based on the multiplicative split of the deformation gradient 𝐹𝐹𝐹

𝐹𝐹𝐹 = 𝐹𝐹𝐹𝑑𝐹𝐹𝐹𝑣, (12)

where

𝐹𝐹𝐹𝑑 = det(𝐹𝐹𝐹)−1∕𝑑𝑜𝑓𝐹𝐹𝐹 𝑎𝑛𝑑 𝐹𝐹𝐹𝑣 = det(𝐹𝐹𝐹)1∕𝑑𝑜𝑓𝐼𝐼𝐼 (13)

are the deviatoric and volumetric parts of the deformation gradient, respectively.44 𝐼𝐼𝐼 is the identity matrix. 𝑑𝑜𝑓 is the
spatial dimensions of the problem (e.g. 𝑑𝑜𝑓 = 2 for a 2-D problem).
In the F-bar Method, the volumetric locking is resolved by replacing the deformation gradient 𝐹𝐹𝐹 in the constitutive

model with a modified deformation gradient �̄̄��̄�𝐹.44 In this modified deformation gradient, the volumetric part 𝐹𝐹𝐹𝑣 of �̄̄��̄�𝐹 is
replaced by (𝐹𝐹𝐹0)𝑣, a volumetric part of �̄̄��̄�𝐹 that has less volumetric constraint44

�̄̄��̄�𝐹 = 𝐹𝐹𝐹𝑑(𝐹𝐹𝐹0)𝑣 =

[
det(𝐹𝐹𝐹0)
det(𝐹𝐹𝐹)

]1∕𝑑𝑜𝑓
𝐹𝐹𝐹. (14)

In this research, we use the incremental version of the F-bar Method since our constitutive model is driven by the incre-
mental deformation gradient shown in Equation (7). Therefore, the incremental version of the F-bar Method can be
obtained by rewriting Equation (14)6:

Δ�̄̄��̄�𝐹 = Δ𝐹𝐹𝐹𝑑(Δ𝐹𝐹𝐹0)𝑣 =

[
det(Δ𝐹𝐹𝐹0)
det(Δ𝐹𝐹𝐹)

]1∕𝑑𝑜𝑓
Δ𝐹𝐹𝐹 =

(
Δ𝐽

Δ𝐽

)1∕𝑑𝑜𝑓

Δ𝐹𝐹𝐹, (15)

where Δ𝐽 = det(Δ𝐹𝐹𝐹) is the Jacobian of the deformation gradient increment; Δ𝐽 is the averaged Jacobian that has less
volumetric constraint compared to Δ𝐽. By replacing Δ𝐹𝐹𝐹 by Δ�̄�𝐹𝐹 in Equation (7), the volumetric locking can be overcome.6
From the above illustration, the key to the F-bar approach is to determine the averaged Jacobian Δ𝐽 in Equation (15).

Departing from the research conducted by Zhao et al.,28 we calculate the averaged Jacobian Δ𝐽 by mapping the original
one Δ𝐽 to the related grid nodes and then mapping back to the material points. The mathematical formulation of this
mapping and remapping procedure is stated as follows:
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XIE et al. 2747

(1) The nodal mass-weighted Jacobian can be calculated by mapping the product of mass and Δ𝐽 frommaterial points as

(𝑚Δ𝐽)𝐼 =

𝑛𝑝∑
𝑝=1

𝑁𝐼𝑝𝑚𝑝Δ𝐽, (16)

where𝑚𝑝 is the mass of material point 𝑝; (𝑚Δ𝐽)𝐼 is the nodal mass-weighted Jacobian.
(2) Then, the nodal Jacobian can be obtained by

Δ𝐽𝐼 =
(𝑚Δ𝐽)𝐼
𝑚𝐼

, (17)

where𝑚𝐼 =
∑𝑛𝑝

𝑝=1
𝑁𝐼𝑝𝑚𝑝 is the nodal mass.

(3) Finally, the nodal Jacobian is mapped back to the material points via

Δ𝐽 =

𝑛𝑛∑
𝐼=1

𝑁𝐼𝑝Δ𝐽𝐼. (18)

Although the above F-bar Method can overcome the volumetric locking, the spurious stress oscillation cannot be
entirely cured in MPM. In this research, in addition to modifying Δ𝐹𝐹𝐹, we apply the same mapping re-mapping technique
to the last converged left elastic Cauchy–Green strain 𝑏𝑏𝑏𝑒(𝑡). As a result, the specious stress oscillation can be cured by
averaging both Δ𝐹𝐹𝐹 and 𝑏𝑏𝑏𝑒(𝑡). We name this method the modified F-bar Method. In this method, Equation (7) is replaced
by

𝑏𝑏𝑏𝑒(𝑡 + d𝑡) = Δ�̄̄��̄�𝐹�̄�𝑏𝑏
𝑒
(𝑡)(Δ�̄̄��̄�𝐹)𝑇, (19)

where �̄�𝑏𝑏
𝑒
is the averaged left elastic Cauchy–Green strain, which is obtained by

�̄�𝑏𝑏
𝑒
=

𝑛𝑛∑
𝐼=1

𝑁𝐼𝑝

(
1

𝑚𝐼

𝑛𝑝∑
𝑝=1

𝑁𝐼𝑝𝑚𝑝𝑏𝑏𝑏
𝑒

)
. (20)

Note that Equation (20) represents the same mass-weighted mapping and re-mapping procedure as Equations (16)–(18)
but in a compact format. Applying Equation (20) only (i.e. without utilising the F-bar) can also mitigate some form of
volumetric locking. However, similarly to solely applying the F-bar Method, the stress oscillation cannot be controlled at
a satisfactory level.
This mass-weighted mapping and re-mapping technique has been applied in the post-processing stage to smooth the

contour map of stresses in MPM.45,46 The rationale behind using this mapping and re-mapping technique is that the
velocity field of the original MPM is stable despite the highly oscillated stress field because the velocity of a material point
has been mass projected to the grids and mapped back to the material point in an MPM computational circle. However,
applying this technique only in the post-processing stage cannot prevent the un-physical oscillation of the stress field.
The idea of our modified F-bar Method is similar to the method proposed by Zhao et al.,28 but these are different

methods because (a)we use a different incremental version of the F-barMethod; (b)we apply themapping and re-mapping
technique to the term Δ𝐽 instead of 𝐽 and (c) we also smooth the left elastic Cauchy–Green strain. These modifications
improve the algorithm’s performance under extremely large deformation situations, which will be shown in the later
numerical examples. A reader may refer to Zhao et al.28 for a detailed explanation of the original method.

2.4 Proposed implicit B-spline MPM algorithm

This research follows the implicit MPM algorithm proposed by Guilkey and Weiss,7 based on the unconditionally sta-
ble Newmark integration. This implicit algorithm was designed for the original MPM. We tailored this implicit MPM
algorithm to fit our proposed methods provided in the previous sections. In the original implicit MPM algorithm,7 the
Newton–Raphson Method is adopted to solve the non-linear equations. However, in this research, the quasi-Newton
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2748 XIE et al.

Method proposed by Broyden47 is used. It allows neglecting the linearisation of the stiffness contribution due to the
proposed F-bar Method. Therefore, quadratic convergence cannot be achieved. Instead, the employment of the afore-
mentioned quasi-Newton Method results in a larger number of iterations but less computational time for each iteration.
The following algorithm describes a loading step from time 𝑡 to 𝑡 + d𝑡 for the proposed implicit locking-free BSMPM.

(1) Shape functions and topology
Given the coordinates of material points 𝑥𝑥𝑥𝑝(𝑡) and the global knot vectors, construct the B-spline shape functions

𝑁𝐼𝑝 and derivatives with respect to global coordinates at the start of a loadstep ∇𝑁𝐼𝑝 using the algorithmmentioned
in Appendix A.

(2) Map information from material point to tensor product grid nodes
(a) The nodal mass𝑚𝐼 can be obtained by

𝑚𝐼 =
∑𝑛𝑝

𝑝=1
𝑁𝐼𝑝𝑚𝑝.

(b) The nodal velocity 𝑣𝑣𝑣𝐼(𝑡) can be obtained by
𝑣𝑣𝑣𝐼(𝑡) =

1

𝑚𝐼

∑𝑛𝑝
𝑝=1

𝑁𝐼𝑝𝑣𝑣𝑣𝑝(𝑡)𝑚𝑝.
(c) The nodal acceleration 𝑎𝑎𝑎𝐼(𝑡) can be obtained by

𝑎𝑎𝑎𝐼(𝑡) =
1

𝑚𝐼

∑𝑛𝑝
𝑝=1

𝑁𝐼𝑝𝑎𝑎𝑎𝑝(𝑡)𝑚𝑝,
where 𝑎𝑎𝑎𝑝(𝑡) is the material point acceleration.

(d) The nodal external force 𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝐼(𝑡 + d𝑡) can be obtained by
𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝐼 =

∑𝑛𝑝
𝑝=1

𝑁𝐼𝑝𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝑝(𝑡 + d𝑡),
where 𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝑝(𝑡 + d𝑡) is the material point external force.

(3) Initilisation of the quasi-Newton iteration
(a) Set the number of iterations 𝑘 = 0.
(b) Use the last converged nodal displacement as the initial guess: 𝑢𝑢𝑢𝑘

𝐼
(𝑡 + d𝑡) = 𝑢𝑢𝑢𝑘

𝐼
(𝑡).

(4) Update the permanent information at each material point
(a) Given 𝑢𝑢𝑢𝑘

𝐼
(𝑡 + d𝑡) calculate the incremental deformation gradient by

Δ𝐹𝐹𝐹𝑘𝑝(𝑡 + d𝑡) = 𝐼𝐼𝐼 +
∑𝑛𝑛

𝐼=1
𝑢𝑢𝑢𝑘
𝐼
(𝑡 + d𝑡) ⊗ ∇𝑁𝐼𝑝,

(b) GivenΔ𝐹𝐹𝐹𝑘𝑝(𝑡 + d𝑡) and last converged deformation gradient from the last time step𝐹𝐹𝐹𝑝(𝑡), update the deformation
gradient using
𝐹𝐹𝐹𝑘𝑝(𝑡 + d𝑡) = Δ𝐹𝐹𝐹𝑘𝑝(𝑡 + d𝑡)𝐹𝐹𝐹𝑝(𝑡).

(c) Compute the determinants of the deformation gradient and incremental deformation gradient by
𝐽𝑘𝑝(𝑡 + d𝑡) = det[𝐹𝐹𝐹𝑘𝑝(𝑡 + d𝑡)] & Δ𝐽𝑘𝑝(𝑡 + d𝑡) = det[Δ𝐹𝐹𝐹𝑘𝑝(𝑡 + d𝑡)].

(d) Update the volume of material point:
𝑉𝑝(𝑡 + d𝑡) = Δ𝐽𝑘𝑝(𝑡 + d𝑡)𝑉𝑝(𝑡)

(e) Compute the averaged Jacobian increment:
Δ𝐽𝑘𝑝(𝑡 + d𝑡) =

∑𝑛𝑛
𝐼=1

𝑁𝐼𝑝[
1

𝑚𝐼

∑𝑛𝑝
𝑝=1

𝑁𝐼𝑝𝑚𝑝Δ𝐽
𝑘
𝑝(𝑡 + d𝑡)].

(f) Compute the incremental F-bar by

Δ�̄̄��̄�𝐹𝑘𝑝(𝑡 + d𝑡) = [
Δ𝐽𝑘𝑝(𝑡+d𝑡)

Δ𝐽𝑘𝑝(𝑡+d𝑡)
]1∕𝑑𝑜𝑓Δ𝐹𝐹𝐹𝑘𝑝(𝑡 + d𝑡).

(g) Given the incremental F-bar Δ�̄̄��̄�𝐹𝑘𝑝(𝑡 + d𝑡) and the last converged averaged left elastic Cauchy–Green strain �̄�𝑏𝑏
𝑒
𝑝(𝑡),

update the left elastic Cauchy–Green strain 𝑏𝑏𝑏𝑒,𝑘𝑝 (𝑡 + d𝑡) by
𝑏𝑏𝑏
𝑒,𝑘
𝑝 (𝑡 + d𝑡) = Δ�̄̄��̄�𝐹𝑘𝑝(𝑡 + d𝑡)�̄�𝑏𝑏

𝑒
𝑝(𝑡)Δ�̄̄��̄�𝐹

𝑘
𝑝(𝑡 + d𝑡)𝑇

(h) Evaluate the elastic logarithmic strain 𝜖𝜖𝜖𝑒,𝑘𝑝 (𝑡 + d𝑡) by
𝜖𝜖𝜖
𝑒,𝑘
𝑝 (𝑡 + d𝑡) = 1

2
ln 𝑏𝑏𝑏𝑒,𝑘𝑝 (𝑡 + d𝑡)

(i) Utilising the return-mapping algorithm, update the Kirchhoff stress 𝜏𝜏𝜏𝑘𝑝(𝑡 + d𝑡) and the left elastic Cauchy–Green
strain 𝑏𝑏𝑏𝑒,𝑘𝑝 (𝑡 + d𝑡) based on 𝜖𝜖𝜖𝑒,𝑘𝑝 (𝑡 + d𝑡). Then, restore the Cauchy stress 𝜎𝜎𝜎𝑘𝑝(𝑡 + d𝑡) by

𝜎𝜎𝜎𝑘𝑝(𝑡 + d𝑡) =
𝜏𝜏𝜏𝑘𝑝(𝑡+d𝑡)

𝐽𝑘𝑝(𝑡+d𝑡)
(5) Obtain global out-of-balance force matrix

(a) The global nodal internal force 𝐹𝑖𝑛𝑡𝐹𝑖𝑛𝑡𝐹𝑖𝑛𝑡𝑘
𝐼
(𝑡 + d𝑡) is obtained by

𝐹𝑖𝑛𝑡𝐹𝑖𝑛𝑡𝐹𝑖𝑛𝑡𝑘
𝐼
(𝑡 + d𝑡) =

∑𝑛𝑝
𝑝=1

𝐺𝐺𝐺𝑇𝜎𝜎𝜎𝑘𝑝(𝑡 + d𝑡)𝑉𝑝(𝑡 + d𝑡),
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XIE et al. 2749

where𝐺𝐺𝐺 = ∇𝑥𝑁𝐼𝑝 = ∇𝑁𝐼𝑝[Δ𝐹𝐹𝐹
𝑘
𝑝(𝑡 + d𝑡)]−1 is the strain–displacement matrix.

(b) The out-of-balance force 𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝑘+1
𝐼

(𝑡 + d𝑡) is calculated by
𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝑘+1

𝐼
(𝑡 + d𝑡) = 𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝐼(𝑡 + d𝑡) − 𝐹𝑖𝑛𝑡𝐹𝑖𝑛𝑡𝐹𝑖𝑛𝑡𝑘

𝐼
(𝑡 + d𝑡) −𝑀𝑀𝑀𝐼[

4

d𝑡2
𝑢𝑢𝑢𝑘
𝐼
(𝑡 + d𝑡) − 4

d𝑡
𝑣𝑣𝑣𝐼(𝑡) − 𝑎𝑎𝑎𝐼(𝑡)]

where𝑀𝑀𝑀𝐼 is the nodal mass matrix. The lumped nodal mass𝑀𝑀𝑀𝐼 = diag(𝑚𝐼) is typically used, which is a diagonal
matrix.

(6) Obtain global nodal stiffness matrix
if k = 0, get the initial guess of the global stiffness matrix by
𝐾𝐾𝐾𝑘
𝐼
(𝑡 + d𝑡) = 4

d𝑡2
𝑀𝑀𝑀𝐼 +

∑𝑛𝑝
𝑝=1

𝐺𝐺𝐺𝑇𝐷𝐷𝐷
𝑒,𝑘
𝑝 (𝑡 + d𝑡)𝐺𝐺𝐺 𝑉𝑝(𝑡 + d𝑡)

where,𝐷𝐷𝐷𝑒,𝑘
𝑝 (𝑡 + d𝑡) is the elastic tangent modulus of a material point.

if k > 0, estimate the global stiffness matrix by

𝐾𝐾𝐾𝑘
𝐼
(𝑡 + d𝑡) = 𝐾𝐾𝐾𝑘

𝐼
(𝑡) −

𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝑘+1
𝐼

(𝑡+d𝑡)𝛿𝑢𝑢𝑢𝑘
𝐼

𝑇

𝛿𝑢𝑢𝑢𝑘
𝐼

𝑇
𝛿𝑢𝑢𝑢𝑘

𝐼

where, 𝛿𝑢𝑢𝑢𝑘
𝐼
is the nodal displacement increment from the last quasi-Newton iteration.

(7) Solve the linear equation
At quasi-Newton iteration number 𝑘, the nodal displacement increment 𝛿𝑢𝑢𝑢𝑘+1

𝐼
can be obtained by solving the

following linear equation with Dirichlet boundary conditions
𝐾𝐾𝐾𝑘
𝐼
(𝑡 + d𝑡) ⋅ 𝛿𝑢𝑢𝑢𝑘+1

𝐼
= 𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝑘+1

𝐼
(𝑡 + d𝑡)

(8) Update grid nodal displacement
𝑢𝑢𝑢𝑘+1
𝐼

(𝑡 + d𝑡) = 𝑢𝑢𝑢𝑘
𝐼
(𝑡 + d𝑡) + 𝛿𝑢𝑢𝑢𝑘+1

𝐼

(9) Check convergency

If 𝑓𝑘+1 = ‖𝛿𝑢𝑢𝑢𝑘+1
𝐼

𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝑘+1
𝐼

‖‖𝛿𝑢𝑢𝑢𝑘=1
𝐼

𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝑘=1
𝐼

‖ < 𝑡𝑜𝑙

go to step (10). Otherwise, set 𝑘 = 𝑘 + 1 and go to step (4).
(10) Update the grid kinematics

(a) The nodal acceleration 𝑎𝑎𝑎𝐼(𝑡 + d𝑡) can be updated by
𝑎𝑎𝑎𝐼(𝑡 + d𝑡) = 4

d𝑡2
𝑢𝑢𝑢𝑘+1
𝐼

(𝑡 + d𝑡) − 4

d𝑡
𝑣𝑣𝑣𝐼(𝑡) − 𝑎𝑎𝑎𝐼(𝑡)

(b) The nodal velocity 𝑣𝑣𝑣𝐼(𝑡 + d𝑡) can be updated by
𝑣𝑣𝑣𝐼(𝑡 + d𝑡) = 2

d𝑡
𝑢𝑢𝑢𝑘+1
𝐼

(𝑡 + d𝑡) − 𝑣𝑣𝑣𝐼(𝑡)

(11) Save the converged information into the material points
(a) The spatial coordinates of material points 𝑥𝑥𝑥𝑝(𝑡 + d𝑡) can be updated by

𝑥𝑥𝑥𝑝(𝑡 + d𝑡) = 𝑥𝑥𝑥𝑝(𝑡) +
∑𝑛𝑛

𝐼=1
𝑁𝐼𝑝 𝑢𝑢𝑢

𝑘+1
𝐼

(𝑡 + d𝑡)
(b) The displacement of material points 𝑢𝑢𝑢𝑝(𝑡 + d𝑡) can be updated by

𝑢𝑢𝑢𝑝(𝑡 + d𝑡) = 𝑢𝑢𝑢𝑝(𝑡) +
∑𝑛𝑛

𝐼=1
𝑁𝐼𝑝 𝑢𝑢𝑢

𝑘+1
𝐼

(𝑡 + d𝑡)
(c) The acceleration of material points 𝑎𝑎𝑎𝑝(𝑡 + d𝑡) can be updated by

𝑎𝑎𝑎𝑝(𝑡 + d𝑡) =
∑𝑛𝑛

𝐼=1
𝑁𝐼𝑝 𝑎𝑎𝑎𝐼(𝑡 + d𝑡)

(d) The velocity of material points 𝑣𝑣𝑣𝑝(𝑡 + d𝑡) can be updated by

𝑣𝑣𝑣𝑝(𝑡 + d𝑡) = 𝑣𝑣𝑣𝑝(𝑡) +
𝑎𝑎𝑎𝑝(𝑡)+𝑎𝑎𝑎𝑝(𝑡+d𝑡)

2
d𝑡

(e) Given the updated left elastic Cauchy–Green strain 𝑏𝑏𝑏𝑒,𝑘𝑝 (𝑡 + d𝑡), compute the averaged left elastic Cauchy–Green
strain �̄�𝑏𝑏

𝑒
𝑝(𝑡 + d𝑡) by

�̄�𝑏𝑏
𝑒
𝑝(𝑡 + d𝑡) =

∑𝑛𝑛
𝐼=1

𝑁𝐼𝑝[
1

𝑚𝐼

∑𝑛𝑝
𝑝=1

𝑁𝐼𝑝𝑚𝑝𝑏𝑏𝑏
𝑒,𝑘
𝑝 (𝑡 + d𝑡)]

(f) Finally, save all the converged permanent variables like𝐹𝐹𝐹𝑝(𝑡 + d𝑡) and 𝑉𝑝(𝑡 + d𝑡), then go to the next time step.

3 NUMERICAL EXAMPLES

Both dynamic and quasi-static large deformation numerical examples are included in this research to illustrate the perfor-
mance of the new method proposed in this paper. We set the mass matrix to zero for the quasi-static analysis, and hence
the dynamic implicit algorithm automatically becomes quasi-static.7 As mentioned before, the Mohr–Coulomb constitu-
tivemodel has been applied in this research. The third numerical example is based on the Tresca yield criterion, which is a
special case of Mohr–Coulomb with zero friction and dilation angles. Also, the soil is assumed as weightless for the third
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2750 XIE et al.

TABLE 1 Material properties for three numerical examples.

Numerical example Unit weight Young’s modulus Poisson’s ratio Friction angle Cohesion
Section 𝜸[𝒌𝑵∕𝒎𝟑] 𝑬[𝒌𝑷𝒂] 𝝂 𝝓[◦] 𝒄[𝒌𝑷𝒂]

3.1 20.4 5840 0.3 21.9 0
3.2 20 100,000 0.3 20 10
3.3 0 100 0.495 0 1

F IGURE 2 Graphical illustration of granular
column collapse experiment.

example. The material input parameters for these numerical models are summarised in Table 1. The dilation angle for
these three examples is zero. The simulations are conducted using an in-house developed MATLAB code. The VTK files
are generated during the simulations, and the post-processing of these VTK files is performed using the software ParaView.

3.1 Granular column collapse

The granular column collapse experiment was initially designed to study natural catastrophe granular flow propagation.48
This research uses a granular column collapse experiment documented byNguyen et al.49 in order to validate the proposed
numerical model. Nguyen et al.49 use a Smoothed Particle Hydrodynamics (SPH) Method with Mohr–Coulomb consti-
tutive model to validate this experiment, where aluminium rods are used to represent the granular soil. The material
properties of these aluminium rods were calibrated using a series of experimental tests,49 summarised in Table 1.
Figure 2 graphically illustrates this granular column collapse experiment. Initially, the granular materials were set to be

rectangular, with 0.1 m in height and 0.2 m in width.49 Then, the granular flow was initialised by suddenly removing the
supporting wall. The evolution of the granular flow was recorded using a high-speed camera. Finally, the granular flow
became stationary at 0.607 s after removing the supporting wall.
The aluminium rods have neglectable movement in the z-direction (in page direction), which allows us to model it

under a 2-D plane strain condition. In the 2-D numerical model, the supporting wall that blocks the aluminium bars
shown in Figure 2 has not been modelled. The gravity acceleration is applied at the initial time step since the wall was
removed quickly during the experiment.49 The width and height of the background mesh (parametric grid) are set to be
550 and 102.5 mm, respectively. Both the width and height for each parametric grid cell (patch) are 2.5 mm. Thirty-six
(62) material points are set in each grid cell to minimise the quadrature error. As a result, the aluminium rods have been
discretised into 115,200 material points. The tensor product grid is formed from the parametric grid. The fixed and roller
boundary conditions are applied on the bottom and sides of the grid, respectively.
Viscous damping was applied by Nguyen et al.49 to stabilise their SPH-based model. In this research, no numerical

damping is applied because the energy loss during the rotation of the aluminium rods is negligible.50 Finally, the time
increment is set as 0.00025 s, resulting in 2428 steps in total. The tolerance for the Newton–Raphson iteration is set to be
10−8.
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XIE et al. 2751

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.05

0.1

Vertical stress (Pa)
-2000 -1500 -1000 -500 0

(C) Case 3: BSMPM + modified F-bar (current research)

(B) Case 2: BSMPM + F-bar (Zhao et al., 2022)

(A) Case 1: BSMPM (no stabilisation)

Numerical instability
Non-physical stress oscillation

t = 0.300 s

Numerical instability
Moderate stress oscillation

Smooth stress profile

F IGURE 3 Simulations of granular column collapse by different methods: (A) BSMPM with no stabilisation; (B) BSMPM with F-bar
Method; (C) BSMPM with modified F-bar Method. BSMPM, B-spline Material Point Method.

In this numerical example, three scenarios have been examined: the BSMPMwith no stabilisationmethod, the BSMPM
with F-bar Method28 and BSMPM with the newly proposed modified F-bar Method. The first two methods experience
numerical instability after the granular flow reaches a relatively long runout distance (around 0.37m). The second one, the
BSMPMwith the F-bar Method,28 cannot have a converged result after 0.351 s due to the significant numerical instability.
The first simulation, the BSMPM with no stabilisation, has a converged result, but the unstable granular flow clashes
with the right boundary (i.e. 0.55 m) at about 0.42 s. These findings are illustrated in Figure 3, which shows the vertical
stress contour maps at 0.300 s given by these three methods. Figure 3A shows that the BSMPM with no stabilisation
experiences severe stress oscillation due to the kinematic locking. The over-stiff behaviour is not observed in the BSMPM
for this granular column collapse problem. However, the non-physical stress oscillation causes kinematic instability and
over-prediction of the runout distance. Figure 3B shows that the F-bar Method28 significantly reduces stress oscillation.
However, we can still observe moderate stress oscillation and amplified kinematic instability, as shown in Figure 3B.
Figure 3C shows that only minimal stress oscillation is observed in our modified F-bar Method, and the stress profile is
smooth. The remaining stress oscillation can be prevented by reducing the time step, resulting in losing computational
efficiency. This research uses the relatively large time step by trading off a limited amount of accuracy.
Figure 4 shows the comparison of quasi-Newton andNewton–RaphsonMethods. A linear convergence can be observed

in this quasi-Newton Method, while the convergence rate for the Newton–Raphson Method is quadratic. However, the
computational effort for each iteration is very small for this quasi-Newton Method. The overall efficiency of the quasi-
NewtonMethod can be higher than the Newton–RaphsonMethod, especially for a highly non-linear large-scale problem.
Figure 5 compares the evolutions of the runout distance. From Figure 5, only our approach has excellent agreement

with the experiment. Figure 6 compares the free surface of granular flow given by our approach and the experiment at
0.109, 0.235 and 0.607 s, respectively. The grey dots in Figure 6 are the digitised experimental results, representing the
free surface of granular flow. Figure 6 shows that the proposed method has a remarkable agreement with the experiment
during the entire propagation process of the granular flow.
There is discontinuity of the stress field on the base of the simulation between 0.2 and 0.25 in Figures 3 and 6. This

discontinuity is caused by the material point moving to the fixed boundary condition on the bottom surface. Modelling a
frictional contact can solve this issue and result in a more realistic result. However, in this research, the fixed boundary
condition is used to represent the rough surface for simplicity.
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2752 XIE et al.

0 2 4 6 8 10 12 14 16
10-10

10-8

10-6

10-4

10-2

100

BSMPM + modified F-bar (quasi-Newton)
BSMPM + no stabilisation (Newton-Raphson)

F IGURE 4 Granular column collapse, load step 10.
Comparison of quasi-Newton and Newton–Raphson
Methods.

0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Experiment
BSMPM (no stabilisation)
BSMPM + F-bar (Zhao et al., 2022)
BSMPM + modified F-bar

F IGURE 5 Evolutions of the runout distance.

3.2 Slope stability

The second numerical example is a static slope stability problem introduced by Griffiths and Lane,51 who used the shear
strength reduction technique to determine the factor of safety (FOS) of the slope. In the strength reduction method, the
FOS of a slope can be represented by the ratio between the actual soil strength and the reduced one. Therefore, the
factored shear strength parameter (i.e. cohesion and friction angle) 𝑐𝑓 and 𝜙𝑓 can be determined by51 𝑐𝑓 = 𝑐∕𝑆𝑅𝐹 and
𝜙𝑓 = arctan( tan𝜙

𝑆𝑅𝐹
), where SRF is the shear strength reduction factor (SRF). The critical value of SRF represents the FOS

of the slope.
The geometry of this slope is shown in Figure 7, and its material properties are summarised in Table 1. As shown in

Figure 7, the height of the slope 𝐻 is 10 m, and the inclination angle is 26.57ž. We keep the dimensionless soil property
𝑐∕(𝛾𝐻) = 0.05 same as the one used by Griffiths and Lane.51 The fixed and roller boundary conditions are applied on the
bottom and sides of the slope, respectively.
Griffiths and Lane51 analysed this slope using small deformation FEM up to SRF = 1.4. They plotted the SRF versus

𝐸𝛿𝑚𝑎𝑥∕(𝛾𝐻
2) (a dimensionless displacement), as shown in Figure 8. 𝛿𝑚𝑎𝑥 is the maximum displacement in this slope.

However, due to the highly distortedmesh, the FEM yields an unconverged solution at SRF= 1.4, and the displacement at

 10969853, 2023, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3599 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [04/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



XIE et al. 2753

t = 0.607 s

t = 0.235 s

t = 0.109 s

Experiment

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.05

0.1

Vertical stress (Pa)
-2000 -1500 -1000 -500 0

F IGURE 6 Comparison between the BSMPM with modified F-bar Method with the experiment. BSMPM, B-spline Material Point
Method.

F IGURE 7 Geometry and boundary conditions of
the slope example.

SRF= 1.4 in Figure 8 results from the unconverged 1000 iterations.51 In FEM, the failure of the slope is defined as the stage
that the algorithm cannot find a converged solution within a user-defined number of iterations, which indicates the FOS
of this slope is between 1.35 and 1.4.51 This FOS is consistent with the FOS= 1.38 determined by Bishop andMorgenstern52
using the Limit Equilibrium Method (LEM).
In this research, we follow the procedure that Griffiths and Lane51 proposed to determine the dimensionless displace-

ment 𝐸𝛿𝑚𝑎𝑥∕(𝛾𝐻2) of this slope up to SRF= 3.0. The size of the parametric grid cell (patch) is 1 m2, which is similar to the
mesh size used in Griffiths and Lane.51 Same as the previous example, thirty-six (62) material points are used in each grid
cell. As a result, the slope is discretised by 21,540 material points. Each SRF represents an independent analysis. For the
BSMPM with F-bar Methods, the gravity load gradually increases from zeros to the maximum value in 10 steps for SRF
< 1.38 and 100 steps for SRF > 1.38, respectively. For the BSMPM without stabilisation, 500 steps of loading are required
after the failure (SRF > 1.38) to ensure numerical stability. In this numerical example, no kinematic instability has been
observed. However, the BSMPM with no stabilisation cannot have a converged solution after SRF = 1.6, and the BSMPM
with the F-bar Method (Zhao et al.28 cannot have a converged result after SRF = 2.5.
Before the slope failure (SRF < 1.38), the results of three BSMPMs closely match the FEM research of Griffiths and

Lane,51 as shown in Figure 8. After the failure, the BSMPM without stabilisation methods generates slightly over-stiff
results due to the volumetric locking. We can observe significant stress oscillation in the contour map generated by
BSMPM, as shown in Figure 9A. Similar to the previous numerical example, the F-bar Method Zhao et al.28 proposed
significantly reduces the volumetric locking and stress oscillation. In contrast, the modified F-bar Method completely
overcomes the volumetric locking and stress oscillation. Figure 8 shows that the BSMPM (no stabilisation) has a similar
result as the FEMwhen SRF= 1.4. However, both results are inaccurate because of either the volumetric locking instabil-
ity in BSMPM (Figure 9A) or the highly distorted FEMmesh.51 Because of the volumetric locking instability, the BSMPM
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2754 XIE et al.

F IGURE 8 Normalised maximum displacement
with different SRFs by different methods. SRFs, strength
reduction factors.

F IGURE 9 Simulations of the slope stability at SRF = 1.4 by different methods: (A) BSMPM with no stabilisation; (B) BSMPM with
F-bar Method; (c) BSMPM with modified F-bar Method. BSMPM, B-spline Material Point Method; SRF, strength reduction factor.

F IGURE 10 Evolution of failure surface: the accumulated plastic strain at different SRFs: (A) SRF = 1.4; (B) SRF = 2.0; (C) SRF = 3.0.
SRF, strength reduction factor.

cannot have a converged solution after SRF = 1.6, even further reducing the time step. Although the maximum displace-
ments given by the two F-bar Methods are similar, the newly proposed modified F-bar Method results in a slightly larger
displacement for this numerical example, with a completely smooth stress solution, as illustrated in Figure 9C.
Zhang et al.53 investigated the same slope problem using the Smooth Particle Finite Element Method (SPFEM), a large

deformation Finite Element-based Method. The results of BSMPM with F-bar Methods are stiffer than Zhang et al.53
because the small strain constitutive model is used in their research, overestimating the displacement in the large strain
range. This phenomenon is also reported by Borja and Tamagnini54 and Coombs and Crouch.55
Figure 10 shows the evolution of the failure surface at the post-failure stages (SRF> 1.38). The value plotted in Figure 10

is the accumulated plastic strain generated by the BSMPM with the modified F-bar Method. The accumulated plastic
strain is an internal variable that describes the development of shear plasticity and controls the Mohr–Coulomb model’s
hardening behaviour. However, we assume no hardening behaviour (perfectly plastic) in these numerical examples (a
detailed explanation of this accumulated plastic strain and the hardening behaviour is reported by de Souza Neto et al.42).
As shown in Figure 10, the failure surface develops in width as the increasing SRF. Finally, at SRF= 3.0, the failure surface
reaches the bottom of the slope foundation.
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XIE et al. 2755

F IGURE 11 Geometry and boundary conditions of
the strip footing example.

F IGURE 1 2 Normalised maximum displacement
versus normalised pressure underneath the footing by
different methods.

3.3 Large penetration of strip footing

The third example is the large penetration of a rigid strip footing on nearly incompressible Tresca soil. We follow the same
strip footing example carried out through the Particle Finite Element Method (PFEM) by Monforte et al.,56 who report
the mixed stabilised formulation to overcome the volumetric locking. Also, the same large strain constitutive model is
used in their research, ensuring that the results are comparable with current research. The soil parameters are shown
in Table 1. Figure 11 illustrates the geometry and boundary conditions of this example. We model the rigid strip footing
as the prescribed Dirichlet boundary condition in the y-direction (roller) using the penalty method proposed by Cortis
et al.57 The width of the strip footing is 2 m (𝐵 = 2m), and the final penetration reaches 2 m (𝑧 = 2m) in 160 steps. The
internal nodal forces where the Dirichlet boundary condition is prescribed are measured at each time step to represent
the pressure underneath the footing. Due to the symmetry, only the right half of the problem has been modelled. The
parametric grid cell (patch) size is 0.01 m2, and thirty-six (62) material points are used in each grid cell resulting in a total
of 360,000 material points.
Figure 12 shows the normalised penetration versus normalised pressure underneath the footing, and Figure 13 shows

the vertical stress contours given by the three methods. As shown in Figure 12, the result given by the proposed method
is located between the lower bound, (𝜋 + 2)𝑐, and upper bound, (2𝜋 + 2)𝑐, analytical solutions derived by Prandtl58 and
Meyerhof,59 respectively. Themodified F-bar (current research) closelymatches the PFEM56 result, as shown in Figure 12.
We can see a very small amount of fluctuations in the curves because the nodal forces are extracted as the pressure under-
neath the footing. On the contrary, the proposed BSMPM with the modified F-bar Method shows a less fluctuating result
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2756 XIE et al.

(A) (B) (C)

F IGURE 13 Simulations of large penetration of rigid strip footing: (A) BSMPM with no stabilisation; (B) BSMPM with F-bar Method;
(C) BSMPM with modified F-bar Method. BSMPM, B-spline Material Point Method.

than the PFEM. The BSMPM with no stabilisation has an over-stiff behaviour due to the volumetric locking. The F-bar
Method28 has partially solved the volumetric locking issue, but its stress field highly oscillates in the area underneath the
footing and the tensile region where the volume expands, as shown in Figure 13B. On the contrary, the proposed BSMPM
with the modified F-bar Method has a very stable stress field despite some stress oscillation near the corner of the footing,
as shown in Figure 13C. A similar corner issue can be found in the research of Yuan et al.,60 which may be a common
phenomenon for a large deformation strip footing on a nearly incompressible material. We found that slightly reducing
Poisson’s ratio can help with this issue.

4 CONCLUSIONS

In this research, we propose an implicit locking-free BSMPM. The essential ingredients of this BSMPM include: (1) a spe-
cial BSMPM implementation, (2) a large strain constitutive model and (3) an enhancement of the F-bar Method. Thanks
to these features, the proposed BSMPM has the following advantages: (a) no cell crossing noise; (b) no volumetric lock-
ing; (c) no complex material point searching algorithm; (d) no barrier to switching from the original MPM; (e) reasonably
smooth stress profile and (f) easy application of the volumetric locking strategy.
The proposed numericalmodel is validatedwith an experiment and previous numerical studies. These numerical exam-

ples disclose the accuracy of the proposed method for extremely large deformation geotechnical problems. The excellent
agreement with the granular column collapse experiment indicates that the proposed method can accurately simulate
granular flows. The proposed method also shows an accuracy that closely matches the previous FEM slope study in the
small deformation range. Furthermore, it can simulate the post-failure stage of the slope and footing problems that involve
extensive deformation without the error due to highly distorted FEMmesh. The proposed method can always maintain a
smooth and stable stress field, which was a challenge for the previous MPMs.
The over-stiffening behaviour has been observed in the slope and footing problems because of the volumetric lock-

ing. However, in the granular column collapse problem, the stress oscillation due to the volumetric looking leads to an
over-estimated runout distance, and no obvious over-stiffening behaviour is shown for the BSMPMwith no stabilisation.
The volumetric locking instability, found in previous MPMs, results in inaccurate results for all of three numerical exam-
ples. Therefore, removing the volumetric locking is essential for a geotechnical application even if the material is not
nearly incompressible.
In future research, it is necessary to extend this method to a soil–water coupled model in order to enlarge the range

of geotechnical applications to be solved. Additionally, more advanced constitutive modelling is desired to have more
realistic simulations.

NOMENCLATURE

(∙)𝑝 ∶ a notation associated with material point
(∙)𝐼 ∶ a notation associated with grid node
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XIE et al. 2757

(∙)𝑒 ∶ the elastic part of (∙)
(∙)𝑝 ∶ the plastic part of (∙)
(∙)𝑣 ∶ the volumetric part of (∙)
(∙)𝑑 ∶ the deviatoric part of (∙)
(∙)𝑘 ∶ (∙) at 𝑘𝑡ℎ number of Newton-Raphson iteration
𝛿 ∶ the increment of (∙) in the Newton-Raphson iteration
Δ ∶ the increment of (∙)
∇ ∶ the gradient of (∙), which is the gradient in the undeformed configuration.
∇𝑥 ∶ the spatial gradient of (∙), which is the gradient in the deformed configuration.
̄(∙) ∶ the averaged (∙)
𝑎𝑎𝑎 ∶ the acceleration
𝑏𝑏𝑏 ∶ the left Cauchy-Green strain
𝐵 ∶ the width of the footing
𝑐 ∶ the cohesion
𝑐𝑓 ∶ the factored cohesion
𝐷𝐷𝐷 ∶ the consistent tangent matrix
d𝑡 ∶ the time increment

𝑑𝑜𝑓 ∶ the spatial dimension of the
𝐸 ∶ Young’s modulus
𝑓 ∶ the error of Newton-Raphson iteration
𝐹𝐹𝐹 ∶ the deformation gradient

𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡𝐹𝑒𝑥𝑡 ∶ the external force
𝐹𝑖𝑛𝑡𝐹𝑖𝑛𝑡𝐹𝑖𝑛𝑡 ∶ the internal force
𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏𝐹𝑜𝑜𝑏 ∶ the out of balance force

𝐺𝐺𝐺 ∶ the strain-displacement matrix
𝐻 ∶ the height of the slope
𝐼𝐼𝐼 ∶ the identity matrix
𝐽 ∶ the Jacobian of the deformation gradient
𝑘 ∶ the number of Newton-Raphson iteration
𝐾𝐾𝐾 ∶ the global stiffness matrix
𝑚 ∶ the mass
𝑀𝑀𝑀 ∶ the global mass matrix
𝑛 ∶ the total number of B-spline shape functions
𝑛𝑛 ∶ the number of grid nodes that influence the material point
𝑛𝑝 ∶ the number of material points associated with node 𝐼
𝑁𝐼𝑝 ∶ the shape function in the material point method
𝑞 ∶ the polynomial order
𝑡 ∶ the time

𝑡𝑜𝑙 ∶ the tolerance of Newton-Raphson iteration
𝑢𝑢𝑢 ∶ the displacement
𝑣𝑣𝑣 ∶ the velocity
𝑉 ∶ the volume
𝑥𝑥𝑥 ∶ the spatial coordinates
𝑥𝑖 ∶ the 𝑖𝑡ℎ component of knot vector
𝑋𝑋𝑋 ∶ the material coordinates
𝑧 ∶ the penetration depth of the footing
𝛾 ∶ the unit weight

𝛿𝑖𝑗 ∶ the Kronecker delta
𝛿𝑚𝑎𝑥 ∶ the maximum displacement in the slope

𝜖𝜖𝜖 ∶ the logarithmic strain
𝜈 ∶ Poisson’s ratio
Ξ ∶ the knot vector
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2758 XIE et al.

𝜎𝜎𝜎 ∶ the Cauchy stress
𝜏𝜏𝜏 ∶ the Kirchhoff stress
𝜙 ∶ the friction angle
𝜙𝑓 ∶ the factored friction angle
𝜓 ∶ the dilation angle
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APPENDIX A: CONSTRUCT THE B-SPLINE SHAPE FUNCTION
The following scheme illustrates the application of the proposed method for a 2-D problem:

(1) Given the x-coordinates of a material point 𝑥𝑥 and the global knot vector in x-direction Ξ𝑥, construct the 1-D B-
spline shape functions𝑁𝑖,𝑞(𝑥) and derivatives

d𝑁𝑖,𝑞(𝑥)

d𝑥
recursively using Equations (4)–(6). Repeat the same process in

y-direction to obtain 𝑁𝑖,𝑞(𝑦) and
d𝑁𝑖,𝑞(𝑦)

d𝑦
.

(2) Convolute shape functions and derivatives in multi-dimensions through the tensor product operation:
𝑁𝐼𝑝 = kron(𝑁𝑖,𝑞(𝑥), 𝑁𝑖,𝑞(𝑦))

𝜕𝑥𝑁𝐼𝑝 = kron(d𝑁𝑖,𝑞(𝑥)

d𝑥
, 𝑁𝑖,𝑞(𝑦))

𝜕𝑦𝑁𝐼𝑝 = kron(𝑁𝑖,𝑞(𝑥),
d𝑁𝑖,𝑞(𝑦)

d𝑦
)

(3) Obtained the material point to tensor product grid nodes connectivity (𝑝2𝑁) by finding the non-zero indices of the
shape functions:
𝑝2𝑁 = find(𝑁𝐼𝑝 ≠ 0)

(4) Chop off the shape functions and derivatives matrices using 𝑝2𝑁:
𝑁𝐼𝑝 = 𝑁𝐼𝑝[𝑝2𝑁]

∇𝑁𝐼𝑝 = [𝜕𝑥𝑁𝐼𝑝[𝑝2𝑁]; 𝜕𝑦𝑁𝐼𝑝[𝑝2𝑁]]

In this algorithm, the functions kron() and find() represent the native MATLAB functions or the NumPy functions in
Python. The particle searching is achieved by using this find() function. The find(A≠0) function is capable to find the
indices of non-zero elements for an input vector A; the kron(A,B) function returns the Kronecker tensor product of two
input vectors A and B. The proposed method also works on the non-equally spaced structured mesh by simply utilising
non-uniform knot vectors. Moving from 2-D to 3-D is also straightforward by introducing an additional knot vector in the
z-direction. The 3-D shape functions can be constructed following the same tensor product procedure.
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The algorithm mentioned above is not efficient because it involves many non-essential zero multiplications (i.e. zero
times zero) during the tensor product operations. To accelerate this algorithm, we can chop off (i.e. only keep the non-
zero elements) the 1-D shape functions and derivatives before the tensor product operation. Therefore, the matrix size can
be reduced significantly during the execution of kron() function. Following the same concept, we can find the non-zero
indices of the 1-D shape function. Then, we can use this 1-D topology information to calculate the multi-dimensions 𝑝2𝑁
matrix. For 2-D quadratic B-spline MPM, a more efficient algorithm is

(1) Given the x-coordinates of a material point 𝑥𝑥 and the global knot vector in x-direction Ξ𝑥, construct the 1-D B-
spline shape functions𝑁𝑖,𝑞(𝑥) and derivatives

d𝑁𝑖,𝑞(𝑥)

d𝑥
recursively using Equations (4)–(6). Repeat the same process in

y-direction to obtain 𝑁𝑖,𝑞(𝑦) and
d𝑁𝑖,𝑞(𝑦)

d𝑦
.

(2) Obtain the 1-D topology information 𝑖𝑑𝑥 in the x-direction and 𝑖𝑑𝑦 in the y-direction by finding the non-zero indices
of the 1-D shape functions:
𝑖𝑑𝑥 = find(𝑁𝑖,𝑞(𝑥) ≠ 0)

𝑖𝑑𝑦 = find(𝑁𝑖,𝑞(𝑦) ≠ 0)

(3) Given 𝑖𝑑𝑥, 𝑖𝑑𝑦 and the number of shape functions in y-direction 𝑛𝑦 , calculate the material point to tensor product grid
nodes connectivity (𝑝2𝑁):
𝐴 = (𝑖𝑑𝑥[1] − 1) ∗ 𝑛𝑦 + 𝑖𝑑𝑦
𝐵 = 𝐴 + 𝑛𝑦
𝐶 = 𝐵 + 𝑛𝑦
𝑝2𝑁 = [𝐴, 𝐵, 𝐶]

(4) Chop off and convolute shape functions and derivatives in multi-dimensions through the tensor product operation:
𝑁𝐼𝑝 = kron(𝑁𝑖,𝑞(𝑥)[𝑖𝑑𝑥], 𝑁𝑖,𝑞(𝑦)[𝑖𝑑𝑦])

𝜕𝑥𝑁𝐼𝑝 = kron(d𝑁𝑖,𝑞(𝑥)

d𝑥
[𝑖𝑑𝑥], 𝑁𝑖,𝑞(𝑦)[𝑖𝑑𝑦])

𝜕𝑦𝑁𝐼𝑝 = kron(𝑁𝑖,𝑞(𝑥)[𝑖𝑑𝑥],
d𝑁𝑖,𝑞(𝑦)

d𝑦
[𝑖𝑑𝑦])

∇𝑁𝐼𝑝 = [𝜕𝑥𝑁𝐼𝑝; 𝜕𝑦𝑁𝐼𝑝]

In this algorithm, 𝑖𝑑𝑥[1] means the first element of the 𝑖𝑑𝑥 vector. For 2-D cubic B-spline MPM, a more efficient
algorithm is

(1) Given the x-coordinates of a material point 𝑥𝑥 and the global knot vector in x-direction Ξ𝑥, construct the 1-D B-
spline shape functions𝑁𝑖,𝑞(𝑥) and derivatives

d𝑁𝑖,𝑞(𝑥)

d𝑥
recursively using Equations (4)–(6). Repeat the same process in

y-direction to obtain 𝑁𝑖,𝑞(𝑦) and
d𝑁𝑖,𝑞(𝑦)

d𝑦
.

(2) Obtain the 1-D topology information 𝑖𝑑𝑥 in the x-direction and 𝑖𝑑𝑦 in the y-direction by finding the non-zero indices
of the 1-D shape functions:
𝑖𝑑𝑥 = find(𝑁𝑖,𝑞(𝑥) ≠ 0)

𝑖𝑑𝑦 = find(𝑁𝑖,𝑞(𝑦) ≠ 0)

(3) Given 𝑖𝑑𝑥, 𝑖𝑑𝑦 and the number of shape functions in y-direction 𝑛𝑦 , calculate the material point to tensor product grid
nodes connectivity (𝑝2𝑁):
𝐴 = (𝑖𝑑𝑥[1] − 1) ∗ 𝑛𝑦 + 𝑖𝑑𝑦
𝐵 = 𝐴 + 𝑛𝑦
𝐶 = 𝐵 + 𝑛𝑦
𝐷 = 𝐶 + 𝑛𝑦
𝑝2𝑁 = [𝐴, 𝐵, 𝐶, 𝐷]

(4) Chop off and convolute shape functions and derivatives in multi-dimensions through the tensor product operation:
𝑁𝐼𝑝 = kron(𝑁𝑖,𝑞(𝑥)[𝑖𝑑𝑥], 𝑁𝑖,𝑞(𝑦)[𝑖𝑑𝑦])

𝜕𝑥𝑁𝐼𝑝 = kron(d𝑁𝑖,𝑞(𝑥)

d𝑥
[𝑖𝑑𝑥], 𝑁𝑖,𝑞(𝑦)[𝑖𝑑𝑦])

𝜕𝑦𝑁𝐼𝑝 = kron(𝑁𝑖,𝑞(𝑥)[𝑖𝑑𝑥],
d𝑁𝑖,𝑞(𝑦)

d𝑦
[𝑖𝑑𝑦])

∇𝑁𝐼𝑝 = [𝜕𝑥𝑁𝐼𝑝; 𝜕𝑦𝑁𝐼𝑝]
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