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EXPONENTIAL DECAY FOR DAMPED KLEIN-GORDON

EQUATIONS ON ASYMPTOTICALLY CYLINDRICAL AND CONIC

MANIFOLDS

RUOYU P. T. WANG

Abstract. We study the decay of the global energy for the damped Klein-Gordon

equation on non-compact manifolds with finitely many cylindrical and subconic ends

up to bounded perturbation. We prove that under the Geometric Control Condition,

the decay is exponential, and that under the weaker Network Control Condition,

the decay is logarithmic, by developing the global Carleman estimate with multiple

weights.

1. Introduction

In this paper we study the decay of the global energy for the damped Klein-Gordon

equation (1.6), on non-compact manifolds with finitely many ends of a wide class up

to bounded perturbation, described in (1.1), including asymptotically cylindrical and

conic ends. We prove in Theorem 1 that under the Geometric Control Condition given

by Definition 1.2, in which the average of damping along each geodesic is uniformly

bounded from below, the global energy decays exponentially. We prove in Theorem

2, that under the Network Control Condition given by Definition 1.3, in which each

point in the space is within some uniform distance from the sufficient damped region,

the global energy decays logarithmically. These results generalise those in [BJ16]. The

main new tool is the Carleman estimates with multiple weights in Theorem 3.

1.1. Geometric setting. Consider the model manifold (M, g0), a non-compact con-

nected d-dimensional manifold without boundary, with N infinite ends,

M =M0 ∪
(

N
⋃

k=1

Mk

)

, (1.1)

where M0 is a compact, connected manifold with boundary ∂M0 =
⊔N
k=1{1} × ∂Mk.

Denote the interior ofM0 byM0. Each endMk is identified as a cylinder (1,∞)r×∂Mk

endowed with a product metric

dr2 + θ2k(r)hk, (1.2)

where ∂Mk is a (d− 1)-dimensional compact manifold without boundary, hk a smooth

metric on ∂Mk. The scaling functions θk ∈ C∞([1,∞);R>0) satisfy either one of the
1
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following conditions:

lim
r→∞

θk(r) = ∞, |∂mr θk| ≤ Cm <∞, ∀m ≥ 1; or (1.3)

θk ≡ 1. (1.4)

We call ends with the scaling functions θk in (1.3) sub-conic ends, and ends with those

in (1.4) cylindrical ends. Specifically, sub-conic ends with the scaling function θk(r) = r

are called conic ends.

In this paper, we specify and work with bounded perturbations of the model metric

(1.2). Specify a manifold of bounded geometry (M, g) that is a bounded perturbation

of our model manifold (M, g0), in the sense that both the identity map

Φ0 : (M, g) → (M, g0); p 7→ p (1.5)

and its inverse Φ−1
0 : (M, g0) → (M, g) are C∞

b -maps between two manifolds. See

Appendix A for the definition of boundedness on manifolds of bounded geometry.

Note that dΦ0(p) is uniformly bounded at each p ∈ (M, g), from both above and below

as a map from TpM equipped with g to TpM equipped with g0.

We inexhaustively list some examples that are compatible with our setting:

Example 1.1. (1) Euclidean spaces Rd, with M0 being the unit open ball and M1

being the rest of Rd as [1,∞)r×Sd−1 in spherical coordinates. This is a conic end with

θ1(r) = r.

(2) Euclidean spaces Rd as above, but endowed with a bounded perturbed metric,

whose local matrix form in the canonical Euclidean coordinates, g(x), and its inverse

g−1(x), are smooth matrix-valued functions of which components are C∞
b (Rd).

(3) Asymptotically conic manifolds, also as known as Riemannian scattering spaces,

of finitely many ends of the form Mk = [0, 1]x × ∂Mk endowed with scattering metrics

x−4dx2+x−2hk. Here hk’s are smooth symmetric 2-cotensors onMk whose restriction to

∂Mk is positive-definite. In our model we realise the metric as a bounded perturbation

of x−4dx2+x−2h′k = dr2+r2h′k where r = x−1 and h′k’s are metrics on ∂Mk independent

of r. See [Mel95] for further details.

(4) Product cylinders of the form (−∞,∞) × ∂M where ∂M is a closed manifold,

by taking M0 = (−1, 1) × ∂M , [1,∞) ×M1 = ∂M and M2 = (−∞,−1] × ∂M . Or

an one-ended cylinder glued to some closed manifold. More generally, asymptotically

cylindrical manifolds also work with our setting. Those are manifolds with finitely many

ends of the form [0, 1]x × ∂Mk endowed with x−2dx2 + h. Here again h is a smooth

symmetric 2-cotensor on Mk whose restriction to ∂Mk is positive-definite. See [Mel95]

for further details.

(5) Elliptic paraboloid, {(x, y, z) : z = x2 + y2} ⊂ R
3 with M0 being the tip {z ≤ 1}

andM1 be the rest of paraboloid as [1,∞)r×S1
θ equipped with metric (1+r−1/4)dr2+

rdθ2, under the change of coordinates (x, y, z) = (r1/2 cos θ, r1/2 sin θ, r). Here this
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metric onM1 is a bounded perturbation of dr2+rdθ2, whose scaling function is θ1(r) =

r1/2, which is sub-conic.

(6) Boundedly perturbed cylinders. Consider the surface {(x, y, z) : (2 + cos z)2 =

x2+y2} ⊂ R3, which is realised as the bounded perturbation to (−∞,∞)r×S1
θ equipped

with metric dr2 + (2 + cos r)dθ2. Note that, this surface is not an asymptotically

cylindrical manifold, as the cos r cannot be well-defined at the spatial infinity r = ∞.

But we could still cope with this manifold as a bounded perturbation of the product

cylinder.

(7) Any connected sum along balls of finitely many equidimensional ends of the

types above.

In this paper, we prove that in the geometric settings as above, one has exponential

or logarithmic decays of the global energy for the damped Klein-Gordon equations

by assuming suitable dynamical control conditions. It is also noted that, hyperbolic

manifolds do not fit our analysis.

1.2. Damped Klein-Gordon equations. Consider a damping function a ∈ C∞
b (M),

a smooth function on M whose derivatives of all orders are bounded by uniform con-

stants dependent only on the order. The damped Klein-Gordon equation on our man-

ifold (M, g) reads
{

(∆g + Id+∂2t + a∂t) u(t, x) = 0, on Rt≥0 ×Mx

u(0, x) = u0(x) ∈ H2(M), ∂tu(0, x) = u1(x) ∈ H1(M)
, (1.6)

where ∆g is the positive Laplace-Beltrami operator on (M, g). Consider

A =

(

0 Id

− (∆g + Id) −a(x)

)

,

which is a bounded linear operator from D(A) = H2(M) ×H1(M) to X = H1(M) ×
L2(M), which is further dissipative in the sense that

Re 〈A (u, v) , (u, v)〉X = −
∫

M

a(x)|v(x)|2 dg ≤ 0.

By noting that D(A) is dense in X , A is a bounded dissipative operator on Hilbert

space X , and the Lumer-Phillips theorem tells us A generates a strongly continu-

ous semigroup etA on X that is further a contraction semigroup, in the sense that

‖etA‖X→X ≤ 1 for each t ≥ 0. Note we can formulate the equation (1.6) as a Cauchy

problem for U(t, x) = (u(t, x), ∂tu(t, x)), that is

∂tU(t, x) = A(x)U(t, x), U(0, x) = U0(x) = (u0(x), u1(x)) ∈ X,

and the strongly continuous semigroup etA is the solution operator to the Cauchy

problem, where the unique solution is etAU0. As we look into how fast the global
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energy decays, it suffices to look at the decay of the operator norm of the semigroup

etA. Indeed, the energy of the solution to (1.6) is

E(u, t) =
1

2

∫

M

|∇xu(t, x)|2 + |∂tu(t, x)|2 dx ≤ 1

2

∥

∥etA
∥

∥

X→X
‖(u0, u1)‖X .

The semigroup etA weakly decays to 0 when the damping a is smooth and not zero

somewhere onM , as in [Wal77]. In this paper, we are interested in two types of decays

of the semigroup etA: the exponential decay, which is the fastest decay one expects in

the contexts of a smooth and bounded damping, and the logarithmic decay, which is a

kind of non-uniform decay under some weak dynamical hypotheses.

About the damped Klein-Gordon equation and the damped wave equation, there

have been many results known when M is compact and the damping is smooth. It is

known that the exponential decay of the semigroup is equivalent to the Geometric Con-

trol Condition, which is a dynamical hypothesis that all trajectories of the Hamiltonian

flow intersect the support of the damping a(x), as in [RT74, BLR88, BLR92, BG97].

In [Leb93] it was shown that there is a logarithmic decay as long as the damping

is non-trivial. It is also noted that other non-uniform stability properties have been

actively investigated, as in, inexhaustively listed here, [ALN14,BH07,CSVW14,BC15].

However the picture is less complete for exponential results on non-compact man-

ifolds without boundary. The fundamental result in [BJ16] generalises the Geomet-

ric Control Condition to Rd, with a uniform lower bound of the average of damping

along the Hamiltonian flow. It was also shown that the Geometric Control Condi-

tion gives exponential decay of the semigroup, and that there is logarithmic decay

when another dynamical hypothesis, called the Network Control Condition, is im-

posed. In [Wun17] a polynomial decay was shown via Schrödinger observability for a

periodic damping on Rd under no further dynamical assumptions. In [JR18], the sharp

polynomial global energy decay for the damped wave equation on Rd with an asymp-

totically periodic damping was shown. In [Roy18] the results of [BJ16,Wun17] were

extended to highly oscillatory periodic dampings. See also, inexhaustively listed here,

[MR18,MS20,GJM22,Gre20,CPS+19] for recent development on Euclidean spaces.

The purpose of this paper is to extend the results of [BJ16] to a wider class of open

manifolds, namely (M, g) prespecified in (1.5). In [BJ16], the results have been shown

for the Euclidean cases (1), (2) of Example 1.1. The possibility of proving such results

on product cylinders as in (4) was also hinted. Our paper generalises their results to

manifolds with cylindrical and sub-conic ends. Here we define the Geometric Control

Condition on the prespecified manifold (M, g):

Definition 1.2 (Geometric Control Condition). We say the damping a satisfies the

Geometric Control Condition (T, α) on (M, g), for T, α > 0, if for (x, ξ) ∈ Σ, where
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Σ = {(x, ξ) ∈ T ∗M : |ξ|2 = 1}, one has

〈a〉T (x, ξ) =
1

T

∫ T

0

((Πx ◦ ϕt)∗ a) (x, ξ) dt ≥ α > 0,

where ϕt is the Hamiltonian flow associated with |ξ|2g, and Πx is the projection from

fibres of T ∗M to the base variable.

We claim the first main result that Geometric Control Condition gives exponential

decay of the semigroup etA:

Theorem 1 (Exponential decay of energy). Assume a ∈ C∞
b (M) where a ≥ 0 every-

where, satisfies the Geometric Control Condition (T, α), then the semigroup etA decays

exponentially in the sense that ‖etA‖X→X ≤Me−λt, for each t ≥ 0, for some M,λ > 0.

It is then implied that the solution u to the damped Klein-Gordon equation with initial

datum (u0, u1) ∈ H2(M)×H1(M),
{

(∆g + Id+∂2t + a∂t) u(t, x) = 0, on Rt≥0 ×Mx

u(0, x) = u0(x) ∈ H2(M), ∂tu(0, x) = u1(x) ∈ H1(M)
.

decays exponentially, in the sense that there exists C, λ > 0,

E(u, t) ≤ 1

2
Ce−λt

(

‖u0‖2H1(M) + ‖u1‖2L2(M)

)1/2

.

The decay of the global energy for the damped Klein-Gordon equation is determined

by how fast the high frequency waves and the low frequency waves decay. The energy

of the high frequency waves semiclassically concentrates near the Hamiltonian flow.

This phenomenon hints at why the Geometric Control Condition plays an important

role here. On the other hand, the low frequency waves do not concentrate. But as a

result of their long wavelengths, they can see the damping from a distance even if many

trajectories do not encounter the damping. However, the sparser the damping is, the

weaker the decay gets. Therefore to obtain a uniform rate of decay we do not want to

be too far away from the damping. This inspires the following dynamical hypothesis.

Definition 1.3 (Network Control Condition). We say the damping a satisfies the

Network Control Condition (L, ω, 2β, {xn}) on M , for L, ω, 2β > 0, and {xn} a set of

points on M , if at each x ∈ M ,

d(x,
⋃

n

{xn}) ≤ L,

and a(x) ≥ 2β > 0 on
⋃

nB(xn, ω).

This hypothesis has been introduced in [BJ16], and gives logarithmic decay on R
d.

The logarithmic decay on compact manifolds has also been considered in [Leb93,LR97].

Here is our second result:
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Theorem 2 (Logarithmic decay of energy). Assume a ∈ C∞
b (M) where a ≥ 0 every-

where, satisfies the Network Control Condition (L, r, 2β, {xn}), then for each k ≥ 1,

the solution u to the damped Klein-Gordon equation with initial datum (u0, u1) ∈
Hk+1(M)×Hk(M),

{

(∆g + Id+∂2t + a∂t) u = 0, on Rt≥0 ×Mx

u|t=0 = u0 ∈ Hk+1(M), ∂tu|t=0 = u1 ∈ Hk(M)

decays logarithmically, in the sense that there exists Ck > 0,

E(u) =
(

‖∇gu(t)‖2 + ‖∂tu(t)‖2
)

1
2 ≤ Ck

log (2 + t)k
‖(u0, u1)‖Hk+1×Hk . (1.7)

Though the idea of the proof is similar to that of [BJ16], we need new tools because

of we are leaving Rd. In [BJ16], they used the fact that
∏d

i=1 cos(πxi) ∈ C∞
b (Rd)

has critical points exactly at Z
d ⊂ R

d. On our (M, g), neither the function nor the

Zd-structure remains. We manage to get this fixed on cylindrical ends, but it remains

unfixable on those sub-conic ends.

To counter such difficulty in dealing with the subconic ends, we develop a novel Car-

leman estimate using a finite family of weight functions on manifolds of bounded ge-

ometry without boundary. The idea is based on that of two-weight Carleman estimates

in bounded domain developed in [Bur98]. The new estimate allows us to construct on

each end a finite family of Carleman weights, possibly very degenerate or even identi-

cally a constant somewhere, to cover the whole manifold and to give a global Carleman

estimate. To our knowledge, this global Carleman estimate using finitely many weight

functions has not been employed previously. This Carleman estimate with multiple

weights might be interesting on its own for other applications.

We note here that the regularity assumptions upon the damping a in these two

theorems can be weakened. In Theorem 1 we only need a ∈ L∞(M) to be uniformly

continuous, and in Theorem 2 we only need a ∈ L∞(M). We choose not to develop

those improvements here but they follow from the strategy described in [BJ16].

We organise our paper in the following order: in Section 2, we introduce our Car-

leman estimate with multiple weights; in Section 3, we show there exists a family of

Carleman weight functions on our prespecified manifold (M, g) compatible with the

Carleman estimate developed in Section 2; in Section 4, we finish the proof of Theorem

1 concluding the exponential decay; in Section 5, we finish the proof of Theorem 2

concluding the logarithmic decay. An appendix on analysis on manifolds of bounded

geometry is attached at the end of the paper.

1.3. Acknowledgement. The author is grateful to Jared Wunsch for numerous dis-

cussions around these results as well as many valuable comments on the manuscript,
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and Nicolas Burq for helpful discussion and pointing out the possibility to use the two-

weight Carleman estimate, and Jeffrey Rauch and Jacob Shapiro for their insightful

comments. The author is grateful to two anonymous referees for kindly reading this

manuscript and providing many valuable remarks.

2. Carleman estimates with multiple weights

Let M be a manifold of bounded geometry, without boundary. See Appendix A for

further details. Let Ω ⊂M be an open set.

Definition 2.1 (Compatibility conditions). We say a finite family of weight functions

{ψ1, . . . , ψn} ⊂ C∞
b (M) is compatible with control from Ω, if there exists an open set

Ω0 ⊂ Ω with the following properties:

(1) We have d(Ω0,M \ Ω) > 0 where d is the distance on M .

(2) There exist constants ρ, τ > 0 such that, at each point x ∈ M \ Ω0, for each k,

if |∇gψk(x)| < 2ρ, then there exists some l that

|∇gψl(x)| ≥ 2ρ, ψl(x) ≥ ψk(x) + τ. (2.1)

It is natural to impose the compatibility condition upon the weight functions. We

aim to control the L2-size of a quasi-mode by merely the L2-size of that inside the region

of control Ω. At x outside the region of control, if we allow some weight functions to

have vanishing gradients, they will not control the size of the quasi-mode locally near

x. Therefore there has to be another weight whose gradient is sufficiently large to

control that locally near x. This explains the first part of (2.1).

On another hand, at such a point x, because we use the exponential weights exp(eλψl/h)

whose control is exponentially weak, we do not want this very weak control to be

cloaked by the large exponential sizes of other non-controlling weights exp(eλψk/h). To

avoid that, we ask for a fixed gap between non-controlling and controlling weights, as

in the second part of (2.1). Then we have exp(eλψk/h) ≤ e−ǫ/h exp(eλψl/h) for some

uniform constant ǫ > 0 depending on τ . Now we note that the control induced by ψl is

observable, in the sense that the non-controlling weight ψk generates an exponentially

weaker term.

Theorem 3 (Global Carleman estimates with multiple weights). For M a manifold of

bounded geometry without boundary, assume there are non-negative Carleman weights

ψ1, . . . , ψn compatible with the control from (Ω,Ω0) in the sense of (2.1). Then, we

have a global Carleman estimate with constant C > 0, independent of semiclassical

parameter h ∈ (0, h0) for small h0, such that

‖u‖L2(M) ≤ eC/h
(

∥

∥

(

h2∆g − V (x; h)
)

u
∥

∥

L2(M)
+ ‖u‖L2(Ω)

)

,

where V ∈ C∞
b (M × [0, h0]) is a semiclassical uniformly bounded real potential.
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Proof. 1. We start by deriving a local estimate via the hypoelliptic arguments. First

note we can write

V (x; h) = V0(x) + hV1(x) + h2V2(x; h),

where V0, V1 ∈ C∞
b (M) and V2 ∈ C∞

b (M × [0, h0]). Fix a cutoff χ ∈ C∞
b (M) such

that χ ≡ 1 on M \ Ω and identically 0 on Ω0. Fix a ψk and denote Uυ
k = {x ∈ M :

|∇gψk(x)| < υ}. For each k, fix a χk ∈ C∞
b (M) such that χk ≡ 1 on M \ U2ρ

k and

identically 0 on Uρ
k . Set Ph = h2∆g − V (x; h). Construct the exponential Carleman

weights by φk = eλψk , where λ is some large number to be determined later, and the

conjugated operator by

Pk,h = eφk/hPhe
−φk/h =

(

h2∆g − |∇gφk|2 − V0(x)− hV1(x)− h2V2(x; h)
)

+ 2h∇jφk∇j − h∆gφk.

See (A.1) for the notation ∇jφk∇j . Note

‖Pk,hu‖2L2 =
∥

∥P ∗
k,hu

∥

∥

2

L2 +
〈

[P ∗
k,h, Pk,h]u, u

〉

≥
〈

[P ∗
k,h, Pk,h]u, u

〉

= h
〈

Oph(i
−1{pk,h, pk,h})

〉

+ h2〈R2u, u〉 = 2h
〈

Oph({pRk,h, pIk,h})
〉

+ h2〈R2u, u〉, (2.2)

where R2 ∈ Ψ2
u,h and the real and imaginary parts of the principal symbol are

pRk = |ξ|2 − |∇gφk|2 − V0(x), pIk = 2ξ(∇gφk).

Denote the subset of the cotangent bundle that contains the characteristic set,

Sk =
{

(x, ξ) ∈ T ∗ (M \ (Ω0 ∪ Uρ
k )) :

1

4

(

|∇gφk|2 + V0(x)
)

≤ |ξ|2 ≤ 4
(

|∇gφk|2 + V0(x)
)

}

,

outside of which (pRk )
2 ≥ 9/16. Consider a microlocal cutoff bk(x, ξ) ∈ S0

u(M) that is

supported in Sk and is identically 1 on {(x, ξ) ∈ T ∗(M \ (Ω0 ∪Uρ
k )) : 1/2 ≤ (|∇gφk|2 +

V0)
−1|ξ|2 ≤ 2}. Note Oph(1 − bk) and Oph((1 − bk)p

−1
k,h)Pk,h have the same principal

symbol, so

‖Oph(1− bk)u‖H2
h
≤ C ‖Pk,hu‖+ Ch ‖u‖H1

h
. (2.3)

On another hand, let b′k = bk〈ξ〉2 then Oph(b
′
k) and 〈hD〉2Oph bk are both in Ψ−∞

u and

their principal symbols agree. Thus

‖Oph(bk)u‖H2
h
≤ C‖Oph(b

′
k)u‖+ Ch‖u‖L2. (2.4)

From (2.3) and (2.4) we know that

‖u‖H2
h
≤ C ‖Pk,hu‖+ C‖Oph(b

′
k)u‖. (2.5)
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We claim that
{

pRk , p
I
k

}

is uniformly bounded from below on Sk. Note that at any

(x, ξ) ∈ Sk ⊂ T ∗(M \ Uρ
k ) we have |∇gψk| ≥ ρ from the definition of Uρ

k . Hence on Sk
we have |∇gφk| = λ|∇gψk|eλψk ≥ λρeλψk and therefore

1

4

(

λ2ρ2e2λψk + V0(x)
)

≤ |ξ|2 ≤ 4
(

λ2Cke
2λψk + V0(x)

)

,

where Ck’s are some constants dependent only on the maximal size of first derivatives

of ψk’s. Let (x, ξ) ∈ Sk. In the canonical coordinates induced by the geodesic normal

coordinates around x, we have gij(x) = δij and ∇gij(x) = 0. Compute, by noting that

at x we have ∇g = ∇, the Euclidean gradient,

∂ξp
R
k .∂xp

I
k = 4λ2eλψk |∇ψk|2|ξ|2 + 4λeλψkξt.(∇2ψk).ξ

≥ 0 +O
(

λ3e3λψk
)

+O
(

λeλψk
)

and

− ∂xp
R
k .∂ξp

I
k = 2λ4e3λψk |∇ψk|4 + 2λeλψk∇ψt.∇V0
+ λ3e3λψk

(

∇|∇ψk|2
)t
.∇ψk ≥ 2ρ4λ4e3λψk +O

(

λeλψk
)

+O
(

λ3e3λψk
)

,

from the uniform boundedness of the derivatives of order up to 2 of ψk. Hence on Sk
with a large λ,

{

pRk , p
I
k

}

≥ 2ρ4λ4e3λψk +O
(

λ3e3λψk
)

≥ Cλ3e3λψk ≥ 9/16 > 0.

We conclude that throughout T ∗(M \ (Ω2β ∪ Uρ
k )), we have

η(1− bk)
2 〈ξ〉3 +

{

pRk , p
I
k

}

≥ 9/16 > 0

for some fixed η large, and hence there exists C > 0 such that

η(1− bk)
2 〈ξ〉3 +

{

pRk , p
I
k

}

≥ C〈ξ〉3

Now by invoking the weak Garding inequality in Proposition A.3 on M \ (Ω0 ∪Uρ
k ) we

have for any u ∈ L2(M) with support inside M \ (Ω2β ∪ Uρ
k ),

〈

Oph
(

{pRk , pIk}+ η(1− bk)
2〈ξ〉3

)

u, u
〉

≥ C‖u‖2
H

3/2
h

.

This implies
〈

Oph({pRk , pIk})u, u
〉

≥ C‖u‖2
H

3/2
h

− C‖Oph(1− bk)u‖2H3/2
h

− Ch‖u‖2H2
h
.

From (2.2), we use (2.3) and (2.5) to obtain

‖Pk,hu‖2 ≥ Ch‖u‖2
H

3/2
h

− Ch‖Pk,hu‖2

and absorb the last term: for any u with support inside M \ (Ω2β ∪ Uρ
k ) we have

‖Pk,hu‖ ≥ Ch
1
2‖u‖

H
3/2
h
.
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Apply the above estimate to eφk/hχkχu to obtain the local estimate,
∥

∥eφk/hχkχu
∥

∥

L2 ≤ Ch−
1
2

∥

∥Pk,he
φk/hχkχu

∥

∥

L2 = Ch−
1
2

∥

∥eφk/hPhχkχu
∥

∥

L2 (2.6)

from the claimed hypoellipticity.

2. We want to derive a crude version of the global estimate by just summing up the

local estimates. Let (2.6) be further simplified. Estimate
∥

∥eφk/hχkχu
∥

∥

L2 ≤ Ch−
1
2

(∥

∥eφk/hχkχPhu
∥

∥

L2 +
∥

∥eφk/h [Pk,h, χkχ] u
∥

∥

L2

)

and

[Ph, χkχ] u = h2∇∗
g (χk∇gχ+ χ∇gχk) u− 2h2χk∇jχ∇ju− 2h2χ∇jχk∇ju. (2.7)

Let κ ∈ C∞
b (M) be a cutoff function supported inside Ω\Ω0 and being identically 1 on

the support of ∇gχ, and let κk ∈ C∞
b (M) be cutoff functions supported inside U2ρ

k \Uρ
k

and identically 1 on the support of ∇gχk. We immediately have the estimates of the

first two terms in (2.7),
∥

∥h2∇∗
g (χk∇gχ+ χ∇gχk) u

∥

∥

L2 ≤ Ch2 ‖κu‖L2 + Ch2 ‖κku‖L2 ,

from the uniform boundedness of first two derivatives of χ and χk. Consider the next

term,
∥

∥2h2χk∇jχ∇ju
∥

∥

2

L2 ≤ 4h4 ‖|χk∇gχ||∇gu|‖2L2 = 4h4
〈

|χk∇gχ|2∇gu,∇gu
〉

= 4h4
〈

∇∗
g

(

|χk∇gχ|2∇gu
)

, u
〉

= −4h4 Re
〈

∇j|χk∇gχ|2∇ju, u
〉

+ 4h4Re
〈

|χk∇gχ|2∆gu, u
〉

. (2.8)

The first term of the last line is estimated via an adjoint argument

4h4Re
〈(

∇j |χk∇gχ|2
)

∇ju, u
〉

= 2h4
〈(

∆g|χk∇gχ|2
)

u, u
〉

. (2.9)

Indeed, we have

〈(

∇j |χk∇gχ|2
)

∇ju, u
〉

=
〈

∇gu,
(

∇g|χk∇gχ|2
)

u
〉

=
〈

u,∇∗
g

((

∇g|χk∇gχ|2
)

u
)〉

=
〈

u,
((

∆g|χk∇gχ|2
)

u
)〉

−
〈

u,
(

∇j|χk∇gχ|2
)

∇ju
〉

.

We bring (2.8) and (2.9) together to see
∥

∥2h2χk∇jχ∇ju
∥

∥

L2 ≤ Ch2 ‖κu‖L2 + Ch2 ‖κ∆gu‖L2 = Ch2 ‖κu‖L2

+ C‖κPhu‖L2 + C‖κV (x)u‖L2 ≤ C ‖κu‖L2 + C‖Phu‖L2,

since the third order derivatives of χ are uniformly bounded and V (x) is a bounded

potential. Symmetrically we have
∥

∥2h2χ∇jχk∇ju
∥

∥

L2 ≤ C ‖κku‖L2 + C‖Phu‖L2

and a complete estimate of (2.7),

‖[Ph, χkχ] u‖L2 ≤ C‖Phu‖L2 + C ‖κu‖L2 + C ‖κku‖L2 .
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Finally we have for h ∈ (0, h0],

∥

∥eφk/hχkχu
∥

∥

L2 ≤ Ch−
1
2

∥

∥eφk/hPhu
∥

∥

L2 + Ch−
1
2

∥

∥eφk/hκku
∥

∥

L2

+ Ch−
1
2

∥

∥eφk/hκu
∥

∥

L2 . (2.10)

Note that the constants λ, C, h0 > 0 could be chosen uniformly such that (2.10) holds

for each k. Sum up (2.10) over k = 1, . . . , n to get the crude version of the global

estimate,

n
∑

k=1

∥

∥eφk/hχkχu
∥

∥

L2 ≤ Ch−
1
2

n
∑

k=1

∥

∥eφk/hPhu
∥

∥

L2 + Ch−
1
2

n
∑

k=1

∥

∥eφk/hκku
∥

∥

L2

+ Ch−
1
2

n
∑

k=1

∥

∥eφk/hκu
∥

∥

L2 , (2.11)

in which κ is supported inside Ω \ Ω0, and κk is supported inside U2ρ
k \ Uρ

k .

3. Finally we use the compatibility condition (2.1) imposed upon the Carleman

weights to refine the global estimate (2.11). Recall that U2ρ
l = {x ∈ M : |∇gψl| < 2ρ}

stands for the points at which the weight ψl fails to control the quasimode. Given the

assumptions on compatibility (2.1), at each x ∈ U2ρ
l , there exists some m such that

ψl ≤ ψm − τ, φm ≥ φl +
(

eλτ − 1
)

eλψl ≥ φl + ǫ, (2.12)

where

ǫ =
(

eλτ − 1
)

eλminnk=1(infM ψk) > 0.

Note that ǫ does not depend on l, m. We have

eφl/h ≤ e−ǫ/heφm/h. (2.13)

Now at each x ∈ M\Ω0, we can partition {1, . . . , n} into {l1, . . . , ln−q} and {m1, . . . , mq}
with some 0 < q ≤ n, where

|∇gφl∗(x)| < 2ρ, |∇gφm∗
(x)| ≥ 2ρ.

For each i = 1, . . . , n− q, as x ∈ U2ρ
li
, there is some mj such that

φli ≤ φmj
− ǫ, eφli/h ≤ e−ǫ/heφmj /h ≤ e−ǫ/h

q
∑

j=1

eφmj /h,

from (2.12) and (2.13). Then

n−q
∑

i=1

eφli/h ≤ (n− q) e−ǫ/h
q
∑

j=1

eφmj /h.
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As x /∈ U2ρ
mj

, the cutoffs χmj
’s are all 1, and therefore

n
∑

k=1

eφk/hχk ≥
q
∑

j=1

eφmj /h ≥ 1

2

q
∑

j=1

eφmj /h +
1

2(n− q)
eǫ/h

n−q
∑

li

eφli/h

≥ 1

2n

n
∑

k=1

eφk/h, (2.14)

for 0 < q < n. Note that when q = n, (2.14) holds trivially because all χk’s are 1,

and therefore we conclude that (2.14) holds at each x ∈ M \ Ω0. This improves the

estimate (2.11) from the left:

n
∑

k=1

∥

∥eφk/hχkχu
∥

∥

L2 ≥
∥

∥

∥

∥

∥

n
∑

k=1

eφk/hχkχu

∥

∥

∥

∥

∥

L2

≥ 1

2n

∥

∥

∥

∥

∥

(

n
∑

k=1

eφk/h

)

χu

∥

∥

∥

∥

∥

L2

(2.15)

as χ is supported inside M \ Ω0.

Meanwhile, for each l = 1, . . . , n, the cutoff function κl is supported in U2ρ
l . Therefore

at each x ∈ U2ρ
l , we know from (2.12) and (2.13) that

eφl/hκl ≤ e−ǫ/heφm/h ≤ e−ǫ/h
n
∑

k=1

eφk/h. (2.16)

This inequality outside U2ρ
l holds trivially as κl vanishes, and hence holds everywhere

in M \ Ω0. It improves the second term on the right in (2.11),

Ch−
1
2

n
∑

l=1

∥

∥eφl/hκlu
∥

∥

L2 ≤ Ch−
1
2

n
∑

l=1

∥

∥

∥

∥

∥

e−ǫ/h
n
∑

k=1

eφk/hu

∥

∥

∥

∥

∥

L2

= Cnh−
1
2 e−ǫ/h

∥

∥

∥

∥

∥

(

n
∑

k=1

eφk/h

)

u

∥

∥

∥

∥

∥

L2

. (2.17)

Bring (2.15) and (2.17) into (2.11) to observe

1

2n

∥

∥

∥

∥

∥

(

n
∑

k=1

eφk/h

)

χu

∥

∥

∥

∥

∥

L2

≤ Ch−
1
2

n
∑

k=1

∥

∥eφk/hPhu
∥

∥

L2

+ Cnh−
1
2 e−ǫ/h

∥

∥

∥

∥

∥

(

n
∑

k=1

eφk/h

)

u

∥

∥

∥

∥

∥

L2

+ Ch−
1
2

n
∑

k=1

∥

∥eφk/hκu
∥

∥

L2 .

Finally, as 1− χ and κ are both supported inside Ω and are uniformly bounded, we

can bound the L2(M)-norm of terms eφk/h(1− χ)u and eφk/hκu by the L2(Ω)-norm of
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eφk/hu, that is,

∥

∥

∥

∥

∥

(

n
∑

k=1

eφk/h

)

u

∥

∥

∥

∥

∥

L2(M)

≤
∥

∥

∥

∥

∥

(

n
∑

k=1

eφk/h

)

(1− χ) u

∥

∥

∥

∥

∥

L2(M)

+

∥

∥

∥

∥

∥

(

n
∑

k=1

eφk/h

)

χu

∥

∥

∥

∥

∥

L2(M)

≤ Ch−
1
2

n
∑

k=1

∥

∥eφk/hPhu
∥

∥

L2(M)

+ Cnh−
1
2 e−ǫ/h

∥

∥

∥

∥

∥

(

n
∑

k=1

eφk/h

)

u

∥

∥

∥

∥

∥

L2(M)

+ Ch−
1
2

n
∑

k=1

∥

∥eφk/hu
∥

∥

L2(Ω)
(2.18)

As h−
1
2 e−ǫ/h → 0 semiclassically, we can absorb the second term on the right by the

term on the left for small h, that is,

∥

∥

∥

∥

∥

(

n
∑

k=1

eφk/h

)

u

∥

∥

∥

∥

∥

L2(M)

≤ Ch−
1
2

n
∑

k=1

∥

∥eφk/hPhu
∥

∥

L2(M)

+ Ch−
1
2

n
∑

k=1

∥

∥eφk/hu
∥

∥

L2(Ω)
. (2.19)

Denote the global maximum and minimum over all φk’s by

K+ = max
1≤k≤n

(

sup
x∈M

φk(x)

)

, K− = min
1≤k≤n

(

inf
x∈M

φk(x)

)

,

where K+ > K−. Then we have from (2.19),

eK−/h ‖u‖L2(M) ≤ Cnh−
1
2 eK+/h ‖Phu‖L2(M) + Cnh−

1
2 eK+/h ‖u‖L2(Ω) ,

which is reduced to

‖u‖L2(M) ≤ eC/h
(

‖Phu‖L2(M) + ‖u‖L2(Ω)

)

.

This is our claim. �

Remark 2.2. (1) WhenM is a compact manifold without boundary, then one could

control from any open set Ω with arbitrary open subset Ω0 with only one weight. It

suffices to find a Morse function and find a diffeomorphism moving all critical points

into Ω0.

(2) It is observed that the uniform gap ψl ≥ ψk + τ in the compatibility condition is

necessary. By this fixed gap τ , we extracted an e−ε/h-decay in (2.16), further leading

to the absorption argument between (2.18) and (2.19). Without such this uniform gap

we see the inequality (2.18) will not generate any effective bound on L2(M)-norm of
∑n

k=1 e
φk/hu, as this term on the right is now of size h−

1
2 → ∞ semiclassically.
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3. Construction of Carleman weights

In this section, we aim to explicitly construct the weight functions on our prespecified

manifold (M, g) in (1.5) to obtain the global Carleman estimate we developed in the

previous section. Assume throughout this section that the Network Control Condition

(L, ω, 2β, {xm}) defined in Definition 1.3 holds on (M, g). Let Ωυ = {x ∈ M : a(x) >

υ}. Our ultimate target in this section is to control the whole manifold (M, g) from

(Ωβ ,Ω2β).

The strategy is to start by working on the model manifold (M, g0) in (1.1). We con-

struct a family of weights on each end, and another weight on the central compactum,

then show they are compatible with control from (Ωβ ,Ω2β). Eventually we pull back

the weights via Φ0 back to the prespecified (M, g).

Note that Φ0(x) = x for each x ∈ M , and Φ0(Ωυ) = Ωυ. We claim that a Net-

work Control Condition (L, ω, 2β, {xm}) on (M, g) implies another (L′, ω′, 2β, {xm})
on (M, g0). Recall that dΦ

−1
0 is bounded from above and below,

C0 ≤
∥

∥dΦ−1
0

∥

∥ ≤ C1. (3.1)

and therefore

C−1
1 dg(x, y) ≤ dg0(Φ0(x),Φ0(y)) ≤ C−1

0 dg(x, y) (3.2)

for each x, y ∈ M . Let L′ = C−1
0 L and ω′ = C−1

0 ω. At each x ∈M , we have

dg0(x,
⋃

m

{xm}) ≤ C−1
0 dg(x,

⋃

m

{xm}) ≤ C−1
0 L = L′,

the last inequality of which comes from the Network Control Condition (L, ω, 2β, {xm})
on (M, g). We also have a(x) ≥ 2β > 0 on

⋃

mBg0(xm, ω
′) ⊂ ⋃

mBg(xm, ω) as an

immediate result of (3.2). Therefore we could, without loss of generality, assume a

Network Control Condition (L, ω, 2β, {xm}) on (M, g0). Note that
⋃

m

Bg0(xm, ω) ⊂ Ω2β . (3.3)

We begin by constructing weight functions on the cylindrical ends, where the scaling

functions θk’s are identically 1.

Lemma 3.1 (Cylindrical ends). Consider a cylindrical end (Mk, g0), that is ∂Mk ×
(1,∞)r endowed with the metric g0 = dr2 + h, where h is a smooth metric on closed

∂Mk. There exists ψ ∈ C∞
b (Mk), where 1 ≤ ψ ≤ 3 and there is some ρ > 0 such that,

x /∈ Ω2β ⇒ |∇g0ψ(x)| ≥ 2ρ. (3.4)

Proof. In this lemma we Let M =Mk for we here only care what is happening on Mk.

1. We start by constructing a prototype weight based on the periodic structure. On

∂M pick a Morse function ψ0 ∈ C∞(∂M) that is positive on ∂M . As ∂M is compact,
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∂M

p1,0 p′1,0
p2,0 p′2,0

p3,0 p′3,0
p4,0 p′4,0

Figure 1. Φ2 stretches the critical points of ψ2 apart.

ψ0 has N critical points at p1, . . . , pN ∈ ∂M . Fix ǫ > 0 small. Let a periodic function

ψ1(r) ∈ C∞([1,∞)) be given by

ψ1(r) = cos

(

π (r − (1 + 2ǫ))

2 (L+ 4ω) (N + 1)

)

+ 2,

for small ǫ > 0. This is a function with a period of 4 (L+ 4ω) (N + 1). Consider

ψ̃2(y, r) = ψ0(y)ψ1(r), (3.5)

and modify its size to get

ψ2 = 1 + 2
(

max ψ̃2 −min ψ̃2

)−1 (

ψ̃2 −min ψ̃2

)

,

where we note that 1 ≤ ψ2 ≤ 3 and we will later modify ψ2 to move around the critical

points. The critical points of ψ2 are

pk,t = (pk, 1 + 2ǫ+ 2t (L+ 4r) (N + 1)) , t ∈ N0, k = 1, . . . , N,

where N0 = N ∪ {0}.
2. We modify the weight to have critical points of distance uniformly bounded from

below by 2(L + 4ω) from each other. For 1 ≤ k ≤ N , define the flows γk(s) for

s ∈ [0,∞) by

γk(s) : (y, r) 7→ (y, r + 2k (L+ 4ω) s) ,

generated by the constant radial vector fields 2k (L+ 4ω) ∂r. Also denote by the flow

γ(t),

γ(t) : (y, r) 7→ (y, r + 4(N + 1) (L+ 4ω) t) , t ∈ N0

that preserves the periodicity of ψ2, in the sense that γ(t)∗ψ2 = ψ2 for each t ∈ N0.

Note that the flow γk(1) pulls back points

p′k,t = (pk, 1 + 2ǫ+ 2t (L+ 4r) (N + 1) + 2k (L+ 4ω)) , t ∈ N0

to critical points pk,t, that is, γk(1) : pk,t 7→ p′k,t. Let Γk,t = γk ([0, 1]) (pk,t) and Γυk,t to be

the υ-neighbourhood of Γk,t, for υ = ǫ, ǫ/2. Now for t = 0, 1, construct diffeomorphisms

φk,t ∈ C∞(Γǫk,t; Γ
ǫ
k,t) with inverses φ−1

k,t ∈ C∞(Γǫk,t; Γ
ǫ
k,t) such that

{

φk,t : p
′
k,t = γk(1)pk,t 7→ pk,t

φk,t = Id, on Γǫk,t \ Γ
ǫ/2
k,t

.
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Because that all Γǫk,t’s are disjoint and φk,t = Id on Γǫk,t \ Γ
ǫ/2
k,t , we can glue up φk,t’s to

obtain a diffeomorphism Φ1 on ∂M×[1, 1 + 4 (L+ 4r) (N + 1)]. Note that Φ1,Φ
−1
1 have

all derivatives uniformly bounded from above and below, as the domain is compact.

Also note that Φ1 is the identity on ∂M × [1, 1+ ǫ] and ∂M × [1+4 (L+ 4r) (N + 1)−
ǫ, 1+ 4 (L+ 4r) (N + 1)]. This enables us to extend Φ1 periodically to some Φ2 on M ,

by defining on ∂M × [1 + 4t(L + 4r)(N + 1), 1 + 4(t + 1)4t(L + 4r)(N + 1)], for each

t ∈ N0,

Φ2 = γ−1(t)∗Φ1γ(t)
∗.

Let ψ3 = Φ∗
2ψ2, whose critical points are

p′k,t = (pk, 1 + 2ǫ+ 2t (L+ 4ω) (N + 1) + 2k (L+ 4ω)) .

for each t ∈ N0, each k = 1, . . . , N . Renumber those critical points by p′m. We remark

that any two critical points of ψ3 are separated by distance of at least 2 (L+ 4ω). We

also note for each R > 0 one has |∇g0ψ3| ≥ C outside
⋃

mB(p′m, R) for constant C > 0

only depending on R, because ψ3 is still periodic.

3. Finally we modify the weight function in uniform radius balls around critical

points to obtain (3.4). Note that the balls

B̄ (p′m, L+ 3ω) ∩ B̄ (p′m′ , L+ 3ω) = ∅ (3.6)

for any pair of critical points p′m and p′m′ . By the Network Control Condition, in each

ball B(p′m, L+ 2ω) we can find some xm in the network such that

B̄ (xm, ω) ⊂ B (p′m, L+ 2ω) ,

and a ≥ 2β on B̄(xm, ω). Now in each ball B(p′m, L + 3ω), find a diffeomorphism φ′
m

such that
{

φ′
m : xm 7→ p′m

φ′
m = Id, on B (p′m, L+ 3ω) \B (p′m, L+ 2ω)

. (3.7)

Glue up φ′
m’s to get a diffeomorphism Φ3 onM . We remark here that we can make this

construction uniform in the sense that both Φ3,Φ
−1
3 are in C∞

b (M), as in [BJ16,RM16].

Therefore we have B(p′m, R) = B(Φ3 (xm) , R) ⊂ Φ3 (B (xm, ω)) for some R > 0 uniform

in all m. Now set ψ = Φ∗
3ψ3. We know |∇g0ψ3| ≥ C > 0 uniformly for all p /∈

∪mB(p′m, R). Hence for any x /∈ ⋃mB(xm, ω), we have Φ3(x) /∈ ⋃mB(p′m, R), and

again by the boundedness of dΦ−1
3 we have |∇g0ψ| ≥ 2ρ > 0 for some uniform ρ. As in

(3.3),
⋃

mB(xm, ω) ⊂ Ω2β , the claim holds.

�

Remark 3.2. The radial stretch Φ2 is necessary here to pull the critical points suffi-

ciently apart. Otherwise the balls B̄(p′m, L+3ω)’s in (3.6) may not be disjoint and the

construction of the diffeomorphism Φ3 fails in (3.7).
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∂M

p′1 x1
p′2

x2 p′3
x3
p′4 x4

Figure 2. Φ3 moves the critical points of ψ2 into the sufficiently damped balls.

EM

Φ ◦ Φk

Figure 3. Placement of the critical points pulled back to M .

What makes this construction above interesting is that it is global on each cylindrical

end, similar to the flavour of that on R
d in [BJ16]. So it only takes a single weight

function to control the whole end. However, it still relies much on the homogeneity of

the space along the radial direction. Once we allow the scaling functions θk’s to grow as

r → ∞, for example, on conic ends, this construction stops working, technically because

there is no ideal way of constructing a product-type ψ̃2 in (3.5). This constraint on

subconic ends is removed by introducing a finite collection of weights.

Lemma 3.3 (Subconic ends). Consider a sub-conic end (Mk, g0), that is Mk = ∂Mk×
(1,∞)r endowed with the metric g0 = dr2 + θ2k(r)h, where h is a smooth metric on

closed ∂Mk, and θk(r) as described in (1.3). There exists some R ≥ 1 and let MR =

∂Mk × (R,∞)r, and for some finite n ≥ 1 there exist ψ1, . . . , ψn ∈ C∞
b (MR,R) that

each 0 ≤ ψk ≤ 3, with a constant ρ > 0, such that for all k, at each point x ∈MR \Ω2β

with |∇g0ψk(x)| < 2ρ, there is some l depending on x, such that ψl(x) ≥ 1 and

|∇g0ψl(x)| ≥ 2ρ, ψl(x) ≥ ψk(x) + 1/2.

Proof. In this lemma we write M = Mk and θ = θk for we here only care what is

happening on Mk.

1. We start by quasi-isometrically reducing the underlying geometry to an un-

bounded subset of Rd. As ∂M is compact, it possesses a finite cover

∂M ⊂
n
⋃

k=1

(φ0
k)

−1(B(0, 1)),



18 RUOYU P. T. WANG

such that each φ0
k : ∂M ⊃ (φ0

k)
−1(B (0, 1)) → B (0, 1) ⊂ Rd−1 is a C∞

b -diffeomorphism.

For convenience, denote for 0 ≤ υ ≤ 1,

Συ = B(0, 1− υ), Σcυ = B(0, 1) \B(0, 1− υ),

where Συ consists of points of distance more than υ away from the unit sphere, Σcυ is

the υ-neighbourhood of the unit sphere, and Σ0 is the unit open ball. Here, as the

covers are open, one can fix a small ǫ > 0 such that for each k, for each x such that

φ0
k(x) ∈ Σc4ǫ, there is some l such that x ∈ (φ0

l )
−1 (Σ4ǫ). Denote the model space by

(D, gD) where

D = Σ0 × (1,∞)r, gD = θ2(r)dy2 + dr2.

Construct diffeomorphisms Φk = φ0
k ⊗ Idr and observe that {Φ−1

k (D)} covers ∂M ×
(1,∞). Each map Φk is uniformly quasi-isometric with constants C+

1 , C
−
1 > 0 such

that

C−
1 dM (x, x′) ≤ dD (Φk (x) ,Φk (x

′)) ≤ C+
1 dM (x, x′) ,

for any x, x′ ∈M . Consider Φ(y, r) = (θ(r)y, r) for

Φ : (D, gD) → (E, gRd) , E = {(z′, zd = r) : r ≥ 1, |z′| ≤ θ(zd)} ⊂ R
d.

This is a quasi-isometric C∞
b -diffeomorphism, that for any (y, r), (y′, r′) ∈ D we have

C−
2 dD ((y, r), (y′, r′)) ≤ dE (Φ ((y, r)) ,Φ ((y′, r′))) ≤ C+

2 dD ((y, r), (y′, r′)) .

To verify the C∞
b nature of Φ, it suffices to first pull back (D, gD) to (E, g′D), and then

verify that the Christoffel symbols on (E, g′D) are C∞
b on E as a subset of Rd. We

omit the trivial computation here. Note that each Φ◦Φk is a C∞
b -diffeomorphism from

φ−1
k (D) to E quasi-isometric with constants C± = C±

1 C
±
2 .

2. Now we construct on each E ⊂ Rd, a weight function with vanishing gradients

exactly inside the damping balls given in the Network Control Condition. On Rd we

construct for k = 1, . . . , n,

ψ0
k(z

′, zd) = cos

(

πzd − 2π (L+ 4ω) kC+

2n (L+ 4ω)C+

) d−1
∏

j=1

cos

(

πzj
2 (L+ 4ω)C+

)

+ 2,

whose critical points are

pm =
(

2C+(L+ 4ω)m′, 2C+(L+ 4ω)(nmd + k)
)

for all m = (m′, md) ∈ Zd. See Figure 3. Note that any two such critical points are of

distance at least 2C+(L + 4ω), measured in Rd. Set R0 ≥ 1 be the smallest constant

such that for all r ≥ R0, we have θ(r) > C−
1 (L+4ω)/ǫ. This lower bound on the radius

guarantees that any point in Φ−1
k (Σǫ× (R0,∞)) is of distance larger than L+4ω from

the cross-sectional boundary Φ−1
k (∂Σ0 × (R0,∞)), measured in M . By the Network

Control Condition, for all critical points pm’s that are inside Φ(Σǫ×(R0,∞)) ⊂ E there
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∂Σ0
ǫ 2ǫ 3ǫ 4ǫ

1/12
1/6

1

Figure 4. Behaviour of χ(y) near ∂Σ0.

exists at least a xm such that B(xm, ω) ⊂ B((Φ ◦ Φk)−1(pm), (L+ 2ω)) and a ≥ 2β on

B(xm, ω). Here

Φ ◦ Φk (B(xm, ω)) ⊂ Φ ◦ Φk
(

B((Φ ◦ Φk)−1(pm), (L+ 2ω))
)

⊂ B(pm, C
+ (L+ 2ω))

are disjoint balls around pm’s of some uniform radius. Hence via a process similar

to the construction of the diffeomorphism Φ3 in the proof of 3.1, we can find a C∞
b -

diffeomorphism Φ̃k on E, equal to the identity on E \ ⋃mB(pm, C
+(L + 2ω)), such

that Φ̃k : Φk(xm) 7→ pm. Set ψ
1
k = Φ̃∗

kψ
0
k, whose critical points in Φ(Σǫ× (R0,∞)) are a

subset of {Φk(xm)}. Set ψ2
k = Φ∗ψ1

k. This is a function defined on Σ0 × (R0,∞) ⊂ D.

Note that 1 ≤ ψ2
k ≤ 3.

3. We now very carefully cut off the part of ψ2
k within a small neighbourhood

of ∂Σ0 × (R0,∞), and pull back and extend it to weight functions on MR for some

R ≥ R0. Observe that away from Φk(
⋃

nB(xm, ω)) one has |∇gDψ
2
k| ≥ C0 for some

small C0. Set R ≥ R0 to be that for all r ≥ R, θ(r) ≥ 36/C0. Construct a cross-

sectional cutoff χ ∈ C∞
c (Σ0) such that χ(y) = 0 on Σcǫ, greater than 1/12 on Σ2ǫ, less

than 1/6 on Σc2ǫ, and identically 1 on Σ3ǫ. Moreover we ask |∇gDχ| ≤ C0/72. See

Figure 4. Note that we can find such a cutoff because R is taken large enough to give

the cross-section enough space to accommodate the tempered decay. Let the weight

functions on Φ−1
k (Σ0×(R,∞)) ⊂MR be ψk = Φ∗

k(χ(y)ψ
2
k). As χ(y)ψ

2
k is identically zero

near ∂Σ0 × (R,∞), we extend ψk to all of MR by 0. Note that in general 0 ≤ ψk ≤ 3,

and specifically on Φ−1
k (Σ4ǫ × (R,∞)) we have 1 ≤ ψk ≤ 3 .

4. We claim that ψk’s meet our requirement listed in the statement. There is a lower

bound for the pushforward map ‖dΦk‖ ≥ C1. Hence we have

|∇g0ψk| ≥ C1|∇gDχψ
2
k|.
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Fix k and some point x ∈ MR while x /∈ ⋃

nB(xm, ω). Note this means Φk(x) ∈
Σ0 × (R,∞) and Φk(x) /∈ Φk(

⋃

nB(xm, ω)). Now set 2ρ = C0C1/24. There are three

circumstances depending where Φk(x) is.

(a) If Φk(x) ∈ Σ3ǫ × (R,∞), the cross-sectional cutoff χ is identically 1. We have

|∇gDχψ
2
k| = |∇gDψ

2
k| ≥ C0,

and therefore |∇g0ψk| ≥ C0C1 = 48ρ ≥ 2ρ.

(b) If Φk(x) ∈ (Σ2ǫ

⋂

Σc3ǫ)×(R,∞), the cross-sectional cutoff χ > 1/12 is sufficiently

large. We have

|∇gDχψ
2
k| ≥ |χ||∇gDψ

2
k| − |ψ2

k||∇gDχ| ≥ C0/12− 3C0/72 = C0/24.

Here we used the fact that ψk is bounded from above by 3. Therefore |∇g0ψk| ≥
C0C1/24 = 2ρ.

(c) If Φk(x) ∈ Σc2ǫ × (R,∞), there is some l ≤ n such that Φl(x) ∈ Σ4ǫ × (R,∞).

From the circumstance (a), we know that |∇g0ψl(x)| ≥ 2ρ, and

ψk(x) = χψ2
k(φk(x)) ≤ 1/2 = 1− 1/2 ≤ ψl(x)− 1/2.

Here we used the fact that χ ≤ 1/6, ψ2
k ≤ 3 and ψl ≥ 1.

The claim has been concluded as above. �

Remark 3.4. (1) We note that the argument is sharp for conic ends, where θ(r) = r.

If θ′(r) is not uniformly bounded, then Φ loses the quasi-isometric nature, and the

argument needs further modifications.

(2) This argument relies, twice when setting up R0 and R, on the fact that the cross-

sectional space is expanding as r → ∞. Large R0 makes sure that the Φ−1
k (Σǫ×(R0,∞))

is sufficiently apart from Φ−1
k (∂Σ0 × (R0,∞)), so the critical points inside Φ−1

k (Σǫ ×
(R0,∞)) will not be pulled to some xm out of the charted region Φ−1

k (Σ0 × (R0,∞)).

As in the cylindrical case in Lemma 3.1 the cross-sectional space is not expanding, this

argument does not immediately apply to the cylindrical case.

Up to this point, on (M, g0) we have constructed either a weight function on a

cylindrical end, or a finite collection of weight functions on a subconic end, compatible

on the end in the way described in Lemma 3.3. Now our next proposition provides the

final modification of those weights to pull them back to (M, g).

Proposition 3.5 (Construction of Carleman weights). On the prespecified (M, g),

there are Carleman weights ψ0, . . . , ψn ∈ C∞
b (M) compatible with control from (Ωβ,Ω2β),

in the sense of (2.1).

Proof. 1. We start by reviewing what we have learnt from the previous lemmata.

Denote {x ∈ ⋃

k(∂Mk × (a, b)r)} by (a, b), its closure by [a, b], and M0 ∪ (1, b) by

{r < b} as a matter of convenience. Lemma 3.1 and Lemma 3.3 state that we have an
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uniform R ≥ 1 with a finite family of weights ψ′
1, . . . , ψ

′
n on the ends (R,∞), where

0 ≤ ψ′
l ≤ 3 on the end ∂Mkl × (R,∞) where it is defined, and 1 ≤ ψ′

l ≤ 3 specifically

on some Ul ⊂ ∂Mkl × (R,∞), with (R,∞) ∩ Ωc2β ⊂ ⋃n
l=1 Ul. Moreover there exists

ρ1 > 0, such that for each l, at x ∈ Ul \ Ω2β , one has |∇g0ψ
′
l| ≥ ρ1, and if for some k

we have |∇g0ψ
′
k| < ρ1 then ψl ≥ ψk + 1/2.

2. On (M, g0), we start by constructing a weight on the central compactum, to

which the ends on which we have the weights are attached. Set I = 432/ρ1. On

M ′
0 = {r ≤ R+7I} compact, there exists a Morse function ψ1

0 with finitely many non-

degenerate critical points, none of which resides on the boundary {r = R + 7I}. Note
that this can be achieved by finding a Morse function on a small closed neighbourhood

of M ′
0, for example {r ≤ R+8I}, and find a diffeomorphism to move all critical points

not on the new boundary {r = R + 8I} into {r < R + 7I} and then restrict the new

function to {r ≤ R+ 7I}. Apply a diffeomorphism on M ′
0, to get ψ2

0 where all critical

points of ψ1
0 are moved inside some B(x0, ω) given by the Network Control Condition.

Note that we can assume without loss of generality that there is a such B(x0, ω) inside

M ′
0, by increasing R if needed. Now construct

ψ′
0 =

1

3
+

1

3

(

maxψ2
0 −minψ2

0

)−1 (
ψ2
0 −minψ2

0

)

.

Note that ψ′
0 ∈ [1/3, 2/3] on M ′

0, and |∇g0ψ
′
0| ≥ ρ0 for some positive ρ0 away from

B(x0, ω) ⊂ Ω2β . Now set

2ρ = min{ρ0, ρ1/72}.
We have |∇g0ψ

′
0| ≥ 2ρ on M ′

0 \ Ω2β , and ρ1 ≥ 144ρ. These are weight functions on

(M, g0).

3. We now trim the parts of ψ′
0, . . . , ψ

′
n inside [R,R + 6I], where the supports of

those weights could intersect, and extend them to the whole (M, g0) in a compatible

manner. Construct two radial cutoff functions χ0 and χ1 in C∞
b (M). Let χ0(r) be

non-increasing, 1 on {r ≤ R+4I}, and 0 on [R+5I,∞). Let χ1(r) be non-decreasing,

0 on {r ≤ R + I}, and χ1 ≥ 1/36 on [R + 2I,∞), and χ1 ≤ 1/18 on [R,R + 2I], and

constant 1 on [R+3I,∞). Meanwhile we ask |∂rχ1| ≤ ρ1/216 on [R,∞), which makes

sense as I = 432/ρ1 has been taken large enough. See Figure 5. Now set

ψ0 = χ0ψ
′
0, ψk = χ1ψ

′
k,

extended to the whole manifold M by 0. Note ψ0, . . . , ψn are in C∞
b (M).

4. We claim that the ψk’s satisfy the compatibility conditions (2.1) on (M, g0)

with constant τ = 1/72. Keep in mind that ψ0 ∈ [1/3, 2/3] on {r ≤ R + 4I}. Fix

x ∈M ⊂ Ω2β . There are three cases.

(a) If x ∈ {r ≤ R + 2I}, we have χ0 ≡ 1 and χ1 ≤ 1/18. For each k > 0 we have

ψk = χ1ψk ≤ 1/6 ≤ ψ0 − 1/72,
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R R+ I R+ 2I R+ 3I R+ 4I R+ 5I R+ 6I

1/36
1/18

1

R R+ I R+ 2I R+ 3I R+ 4I R+ 5I R+ 6I

1/36
1/18

1

Figure 5. Behaviour of ψ0 (above) and ψ1 (below) in [R,R + 6I].

and |∇g0ψ0| ≥ 2ρ, no matter how small |∇g0ψk| is. Here we used the fact ψk ≤ 3 and

ψ0 ≥ 1/3 on {r ≤ R + 3I}.
(b) If x ∈ (R + 3I, R+ 4I], we have χ0 ≡ 1 and 1/36 ≤ χ1 ≤ 1. At x, for each k, if

|∇g0ψ
′
k| ≥ ρ1, then

|∇g0ψk| ≥ χ1|∇g0ψ
′
k| − ψ′

k|∂rχ1| ≥ ρ1/36− 3ρ1/216 = ρ1/72 ≥ 2ρ. (3.8)

Here we used that ψ′
k ≤ 3 and |∂rχ1| ≤ ρ1/216. Hence if |∇g0ψk| < 2ρ, we have

|∇g0ψ
′
k| < ρ1. This enables us to invoke the compatibility condition summarised in

Step 1. We know now that if |∇g0ψk| < 2ρ, then there is some l such that x ∈ Ul \Ω2β,

and at x we have ψ′
l ≥ ψ′

k + 1/2 and |∇g0ψ
′
l| ≥ ρ1. Moreover |∇g0ψl| ≥ 2ρ and

ψl = χ1ψ
′
l ≥ χ1ψ

′
k + χ1/2 ≥ ψk + 1/72

because χ1 ≥ 1/36 in this region.

(c) If x ∈ (R + 4I,∞), then χ0 ≤ 1 and χ1 ≡ 1. As in this region we have ψk = ψ′
k

for each k > 0, whenever |∇g0ψk| ≤ 2ρ ≤ ρ1, we have x ∈ Ul \ Ω2β for some l and at x

we have |∇g0ψl| ≥ ρ1 ≥ 2ρ and ψl ≥ ψk + 1/2. Note that no matter how small |∇g0ψ0|
is, we have ψ0 ≤ 2/3 ≤ ψl − 1/72. This is because ψl ≥ 1 on Ul.

5. Up to this point the compatibility conditions (2.1) have been verified on (M, g0).

Now pull back ψk’s to (M, g) via Φ0 given in Section 1.1. Note that Φ0(x) = x for each

x ∈ M and therefore one has Φ0(Ωυ) = Ωυ for υ = β, 2β, and for 0 ≤ k ≤ n, we have

Φ∗
0ψk = ψk and some constants C0 > 0 and

|∇gΦ
∗
0ψk| ≥ C0|∇g0ψk|, (3.9)
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as dΦ−1
0 is bounded, as in (3.1). Here we directly verify (2.1), for weights Φ∗

0ψ0, . . . ,Φ
∗
0ψn

with constants 2C0ρ and τ = 1/72. At each x ∈ M \ Ω2β , for each 0 ≤ k ≤ n, if we

have |∇gΦ
∗
0ψk(x)| < 2C0ρ, then by (3.9) we know that |∇g0ψk(x)| < 2ρ. As in Step 4

we have the compatibility conditions on (M, g0) for ψ0, . . . , ψn, there has to be some l

such that |∇g0ψl(x)| ≥ 2ρ and ψl(x) ≥ ψk(x) + 1/72, and therefore by (3.9), we have

|∇gΦ
∗
0ψl| ≥ C0|∇g0ψl| ≥ 2C0ρ, Φ∗

0ψl − Φ∗
0ψk = ψl − ψk ≥ 1/72.

This concludes the proof. �

Remark 3.6. Similar to the construction in Lemma 3.3, we used the fact that we are

on an unbounded manifold. Indeed, we need the end to be infinitely long to find a

suitable cutoff χ1, on a compact but huge chunk of the end [R,R+7I], in Step 3. This

is to make sure that the entering of the weights on the ends is tempered so it does not

dramatically impact the gradient of those weights, as in (3.8).

Since we have the compatible weights on (M, g), Theorem 3 holds immediately.

Proposition 3.7 (Global Carleman estimates). On the prespecified (M, g) in Section

1.1, assume the Network Control Condition (L, ω, 2β, {xm}). Then, there exists a

constant C > 0, independent of semiclassical parameter h > 0 small,

‖u‖L2(M) ≤ eC/h
(

∥

∥

(

h2∆g − V (x; h)
)

u
∥

∥

L2(M)
+ ‖u‖L2(Ωβ)

)

,

where V ∈ C∞
b (M × [0, h0]) is a semiclassical uniformly bounded real potential.

We have two corollaries to use later in the proof of exponential and logarithmic

decays for damped Klein-Gordon equations.

Corollary 3.8 (High frequency estimates). On the prespecified (M, g) in Section 1.1,

assume the Network Control Condition (L, ω, 2β, {xm}). Let

Ph =
(

h2∆g − 1
)

+ iha + h2.

Then, there exists a constant C > 0, independent of semiclassical parameter h > 0

small,

‖u‖L2(M) ≤ eC/h
(

‖Phu‖L2(M) + ‖u‖L2(Ωβ)

)

.

Proof. Let V (x; h) = 1 + h2. From Proposition 3.7 we know

‖u‖L2(M) ≤ eC/h
(

‖Re (Ph)u‖L2(M) + ‖u‖L2(Ωβ)

)

≤ eC/h
(

‖Phu‖L2(M) + ‖u‖L2(Ωβ)

)

,

as ‖Re (Ph)u‖L2(M) ≤ ‖Phu‖L2(M). �
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Corollary 3.9 (Low frequency estimates). On the prespecified (M, g) in Section 1.1,

assume the Network Control Condition (L, ω, 2β, {xm}). For a fixed µ, let

Pµ = ∆g + iµa− (µ2 − 1).

Then, there exists a constant C > 0 such that

‖u‖L2(M) ≤ C
(

‖Pµu‖L2(M) + ‖u‖L2(Ωβ)

)

. (3.10)

Proof. Let V (x) = h2 (1− µ2). From Proposition 3.7 we know

‖u‖L2(M) ≤ eC/h
(

∥

∥Re
(

h2Pµ
)

u
∥

∥

L2(M)
+ ‖u‖L2(Ωβ)

)

≤ eC/h
(

∥

∥h2Pµu
∥

∥

L2(M)
+ ‖u‖L2(Ωβ)

)

,

as ‖Re (h2Pµ)u‖L2(M) ≤ ‖h2Pµu‖L2(M). Fix some h small to see (3.10). �

4. Exponential decay of energy

In this section we aim to show the energy decays exponentially under the Geometric

Control Condition in Definition 1.2. To do this we need to use Corollary 3.9 which

requires the Network Control Condition.

Remark 4.1. By assuming the Geometric Control Condition (T, α) on (M, g) we can

show that the Network Control Condition also holds. Given the Geometric Control

Condition, for each x ∈ M , there is some y ∈ B(x, T ) such that a(y) ≥ α. Cover

(M, g) by {B(xm, T )} and let L = 2T and 2β = α/2, then for each y ∈ M , we have

d(y,
⋃{xm}) ≤ L. Meanwhile, as a ∈ C∞

b (M) is uniformly continuous, there is some

ω > 0 such that a ≥ 2β = α/2 on each B(xm, ω). Therefore we do have the Network

Control Condition (L, ω, 2β, {xm}).

To characterise the exponential decay, we cite a theorem of [Hua85]. See also [Gea78,

Prü84].

Theorem 4 (Gearhart-Prüss-Huang). Let etA be a C0-semigroup in a Hilbert space X,

and assume there is C > 0 such that ‖etA‖X→X ≤ C for all t ≥ 0. Then there is c > 0

for ‖etA‖X→X ≤ e−ct for all t ≥ 0 if and only if iR∩ σ(A) = ∅, that is, the spectrum of

A has no purely imaginary elements, and

sup
µ∈R

∥

∥(A− iµ)−1
∥

∥

X→X
<∞. (4.1)

We now give a full proof of Theorem 1 concerning the exponential decay of energy,

closely following the idea of [BJ16].
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Proof of Theorem 1. 1. We start by setting up a proof by contradiction. Let X =

H1(M)×L2(M). We will dropM and write H1 and L2 whenever there is no confusion.

To show the energy decays exponentially, it suffices to show that the semigroup etA

generated by

A =

(

0 Id

− (∆g + Id) −a(x)

)

is exponentially stable, in the sense that there exists C > 0 such that
∥

∥etA
∥

∥

X→X
≤ e−Ct

for each t ≥ 0. Indeed,

E(u) ≤ ‖(u(t), ∂tu(t))‖X =
∥

∥etA (u0, u1)
∥

∥

X
≤Me−λt ‖(u0, u1)‖X

as claimed. To obtain the exponential stability of etA, it is assumed against (4.1), that

A− iµ is not uniformly bounded from below, that is, there exists a sequence

Un = (un, vn) ∈ H2 ×H1, ‖Un‖2X = ‖un‖2H1 + ‖vn‖2L2 = 1, (4.2)

and {µn} ⊂ R such that (A− iµn)Un = oX(1). That is,
{

vn = iµnun + oH1(1)

Pµnun = (∆g + Id) un + avn + iµnvn = oL2(1),

which reduces to
{

vn = iµnun + oH1(1)

Pµnun = (∆g + Id) un + iµnaun − µ2
nun = oL2(1).

(4.3)

There are two cases: (a) the low frequency case when {µn} is bounded; (b) the high

frequency case when {µn} is unbounded.

2. Consider the low frequency case (a) and we show there is a contradiction via

the low frequency Carleman estimate. As {µn} is bounded, by passing through a

convergent subsequence one has µn → µ ∈ R. By the continuity of the one-parameter

family P∗ we have

Pµun = (∆g + Id) un + iµaun − µ2un = oL2(1). (4.4)

Here {un} forms an oL2(1)-quasimode associated with Pµ. Pair (4.4) with un to see as

n→ ∞,

‖un‖H1 = µ ‖un‖L2 + o(1),
∥

∥

√
aun
∥

∥

L2 = o(1).

From (4.3) we know that ‖vn‖L2 = µ‖un‖L2+o(1) and 1 ≡ ‖Un‖X =
√
2µ‖un‖L2+o(1).

Note that this rules out the possibility that µ = 0. Therefore ‖un‖L2 = 1/
√
2+o(1), as

n→ ∞. On Ωβ we have a ≥ β and then ‖un‖L2(Ωβ) is bounded by β−1/2‖√aun‖L2(Ωβ) =

o(1). The Geometric Control Condition (T, α) implies the Network Control Condition
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(L, ω, 2β, {xm}), as in Remark 4.1. Now invoke Corollary 3.9. There is some C > 0

such that for all n, we have

‖un‖L2(M) ≤ C
(

‖Pµun‖L2(M) + ‖un‖L2(Ωβ)

)

.

Send n to ∞, it becomes

1√
2
≤ C (on (1) + on(1)) + on(1) = on(1), (4.5)

which leads to the desired contradiction in low frequencies.

3. Consider the high frequency case (b). As {µn} is not bounded, by passing through

a subsequence we can assume µn → ±∞. As A is a linear real operator, by symmetry

we could assume without loss of generality that µn = h−1 → ∞. The system (4.3) is

reduced to

Phuh =
(

h2∆g − 1
)

uh + ihauh + h2uh = oL2(h2) + oH1(h) (4.6)

via reparametrisation by h instead of n. We claim that the operator Ph is invertible

on L2 with
∥

∥P−1
h

∥

∥

L2→L2 ≤ C/h, (4.7)
∥

∥P−1
h

∥

∥

H1→H1 ≤ C ′/h, (4.8)

within Step 3.

3a. We set up another proof by contradiction against (4.7), and then establish a

commutator argument. Assume against (4.7) that there is a family of {wh} ⊂ H2 with

‖wh‖ ≡ 1, Phwh = oL2(h).

Consider that

Ph = Oph(|ξ|2 − 1) + ihOph(a) +OH1
h→L2(h).

Pick a symbol b(x, ξ) ∈ S0
u(T

∗M), to be determined later. Compute the commutator

of Oph(b) and Ph,

[Oph (b) , Ph] = ihOph
({

|ξ|2, b
})

+OL2→L2

(

h2
)

, (4.9)

while

〈[Oph (b) , Ph]wh, wh〉 = 〈Oph (b)Phwh, wh〉 − 〈Oph (b)wh, P
∗
hwh〉

= o (h)+〈Oph (b)wh, Phwh〉+〈Oph (b)wh, 2iha(x)wh〉 = −2ih 〈Oph (ab)wh, wh〉+o (h) .
(4.10)

Observe from (4.9) and (4.10) that
〈

Oph
(

2ab+
{

|ξ|2, b
})

wh, wh
〉

= o(1). (4.11)
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3b. Now we show there is a semiclassical concentration phenomenon near the unit

speed Hamiltonian flow, and use the Geometric Control Condition to construct an

explicit counterexample against (4.11), to conclude (4.7). Construct

b(x, ξ) = ec(x,ξ), c(x, ξ) =
2

T

∫ T

0

∫ t

0

ϕ∗
sa (x, ξ) dsdt ≥ 0.

Note that {|ξ|2, ϕ∗
sa} = ∂τϕ

∗
τa|τ=s and we can verify that on (x, ξ) ∈ Σ we have

2ab+
{

|ξ|2, b
}

= 2ec(x,ξ) 〈a〉T (x, ξ) ≥ α > 0.

Now take a smooth microlocal cutoff χ ∈ C∞
b (T ∗M) which is 1 on Σ = {|ξ|2 = 1},

supported inside {1/2 ≤ |ξ| ≤ 2} and is 0 whenever 2ab+{|ξ|2, b} = 2ec(x,ξ) 〈a〉T (x, ξ) ≤
α/2. We claim that wh is microlocally concentrating near the unit speed set {|ξ|2 = 1},
in the sense that 〈Oph(1− χ)wh, wh〉 = o(1), as h → 0. Note that the semiclassical

principal symbol of Ph is p(x, ξ) = |ξ|2 − 1, which is not 0 on the support of 1 − χ.

Hence

〈Oph (1− χ)wh, wh〉 =
〈

Oph
(

(1− χ)p−1
)

Phwh, wh
〉

+ h 〈R−1wh, wh〉 = O (h) (4.12)

for some R−1 ∈ Ψ−1
u,h which is then bounded on L2. Check Appendix A for the class of

semiclassical uniform pseudodifferential operators Ψ∗
u,h. Similarly we have

〈

Oph
((

2ab+
{

|ξ|2, b
})

(1− χ)
)

wh, wh
〉

=
〈

Oph
((

2ab+
{

|ξ|2, b
})

(1− χ) p−1
)

Phwh, wh
〉

+ h 〈R0wh, wh〉 = O(h), (4.13)

for some R0 ∈ Ψ0
u,h which is bounded on L2. Here we also used the fact that Oph((2ab+

{|ξ|2, b})(1− χ)) ∈ Ψ1
u,h. From (4.12) and (4.13) we know

〈

Oph
(

2ab+
{

|ξ|2, b
})

wh, wh
〉

=
〈

Oph

(

(

2ab+
{

|ξ|2, b
})

χ+
α

2
(1− χ)

)

wh, wh

〉

+O (h) .

As a symbol of order 0, (2ab+ {|ξ|2, b})χ+α(1−χ)/2 ≥ α/2 everywhere on T ∗M . We

apply the Garding inequality A.3 and see
〈

Oph

(

(

2ab+
{

|ξ|2, b
})

χ+
α

2
(1− χ)

)

wh, wh

〉

≥ C ‖wh‖2 = C > 0,

uniformly for small h. Therefore

〈

Oph
(

2ab+
{

|ξ|2, b
})

wh, wh
〉

≥ C +O (h) .

This contradicts (4.11) immediately. Therefore we have established (4.7).
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3c. We want to improve (4.7) and get the estimate (4.8) on H1. Consider for each

w ∈ H1, we have

∥

∥P−1
h w

∥

∥

H1 ≤
∥

∥P−1
h w

∥

∥

L2 +
∥

∥∇gP
−1
h w

∥

∥

L2 ≤ Ch−1 ‖w‖L2 +
∥

∥P−1
h ∇gw

∥

∥

L2

+ h−1
∥

∥

[

h∇g, P
−1
h

]

w
∥

∥

L2 ≤ Ch−1
(

‖w‖L2 + ‖∇gw‖L2

)

+ C ′′‖w‖L2 ≤ C ′h−1 ‖w‖H1 .

This is what we need.

4. We now use our estimates (4.7) and (4.8) to finish the proof by contradiction.

Rewrite (4.6) as

Phuh = fh + oL2(h2), (4.14)

where fh = oH1(h). Note that P−1
h fh = oH1(1) because of (4.8). Now observe

Re
〈

fh, P
−1
h fh

〉

= Re
〈

Ph
(

P−1
h fh

)

, P−1
h fh

〉

= 〈
(

h2∆g − 1 + h2
)

P−1
h fh, P

−1
h fh〉 = h2

∥

∥∇gP
−1
h fh

∥

∥

2

L2 + h2
∥

∥P−1
h fh

∥

∥

2

L2

−
∥

∥P−1
h fh

∥

∥

2

L2 = h2
∥

∥P−1
h fh

∥

∥

2

H1 −
∥

∥P−1
h fh

∥

∥

2

L2 . (4.15)

The second last equality comes from integration by parts. Meanwhile as fh = oH1(h)

we have Re 〈fh, P−1
h fh〉 = o(h)

∥

∥P−1
h fh

∥

∥

L2 . Hence

∥

∥P−1
h fh

∥

∥

L2 =
1

2

(

o(h) +

√

o(h2) + 4h2
∥

∥P−1
h fh

∥

∥

2

H1

)

= h
∥

∥P−1
h fh

∥

∥

H1 + o(h) = o(h). (4.16)

By (4.14) we have

Ph
(

uh − P−1
h fh

)

= Phuh − fh = oL2(h2),

Then uh − P−1
h fh = P−1

h (oL2(h2)) = oL2(h), that is uh = P−1
h fh + oL2(h) = oL2(h),

as a result of (4.16). From (4.3) we observe that ‖vh‖L2 = h−1 ‖uh‖L2 + o(1) = o(1).

Similarly to (4.15), we take the real part of the L2-inner product between Phuh and uh
to see

‖uh‖2H1 = h−2
(

‖uh‖2L2 + o(h) ‖uh‖L2

)

= o(1).

Now we have

‖Uh‖2X = ‖uh‖2H1 + ‖vh‖2L2 = o(1)

This contradicts our assumption that this term should be constantly 1, as in (4.2).

5. Now we bring together the contradictions in high frequencies and low frequencies

to see

sup
µ∈R

∥

∥(A− iµ)−1
∥

∥

X→X
<∞.

Hence by Theorem 4, we conclude that etA is exponentially stable and the energy

decays exponentially. �
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5. Logarithmic decay of energy

In this section we aim to show the energy decays logarithmically under the Network

Control Condition. In order to characterise the logarithmic decay, we cite [Bur98,

Theorem 3].

Theorem 5 (Burq). Let A be a maximal dissipative operator that generates a con-

traction C0-semigroup in a Hilbert space X and assume that there exist C, c > 0 such

that iR ∩ σ(A) = ∅, that is, the spectrum of A has no purely imaginary elements, and

assume for any µ ∈ R,
∥

∥(A− iµ)−1
∥

∥

X→X
< Cec|µ|. (5.1)

Then for any k > 0 there is Ck such that for any t > 0,
∥

∥

∥

∥

∥

etA

(1−A)k

∥

∥

∥

∥

∥

X→X

≤ Ck

log (2 + t)k
.

Now we give a proof of Theorem 2.

Proof. 1. We set up a proof by contradiction against (5.1). Let X = H1(M) ×
L2(M), and drop M whenever there is no confusion. Assume that for all c > 0, there

exists a sequence of Un = (un, vn) ∈ H2 × H1, ‖Un‖X = 1, and {µn} ⊂ R such that

(A− iµn)Un = oH1×L2(e−c/h). This is reduced to
{

vn = iµnun + oH1(e−c/h)

Pµnun = (∆g + Id) un + iµnaun − µ2
nun = oL2(e−c/h).

(5.2)

Again, as in the proof of Theorem 1, there are two cases: (a) the low frequency case

when {µn} is bounded; (b) the high frequency case when {µn} is unbounded.

2. Recall that the low frequency case under the Network Control Condition has been

dealt with, in Step 2 of the proof of Theorem 1. See (4.4) to (4.5). Therefore we have

the desired contradiction. It suffices to look at the high frequency case, in which {µn}
is not bounded, assuming merely the Network Control Condition.

3. In the high frequency case, we use the high frequency Carleman estimate derived

in Corollary 3.8 to show there is a contradiction. As A is a linear real operator, by

passing through a subsequence and by the symmetry, we may assume without loss of

generality that µn = h−1 → ∞. Let Ph = h2Pµ. We reduce (5.2) to

Phuh =
(

h2∆g − 1
)

uh + ihauh + h2uh = oL2(h2e−c/h).

From (5.2) we know that

‖vh‖L2 = h−1‖uh‖L2 + o(e−c/h). (5.3)
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Observe

〈Phuh, uh〉 = h2 ‖∇guh‖2L2 + h2 ‖uh‖2L2 − ‖uh‖2L2 + ih 〈auh, uh〉
= h2 ‖uh‖2H1 − ‖uh‖2L2 + ih 〈auh, uh〉 (5.4)

as a result of integration by parts. Recall that ‖uh‖L2 ≤ ‖uh‖H1 ≤ 1, as Uh is nor-

malised. Therefore 〈Phuh, uh〉 = o(h2e−c/h)‖uh‖L2 . Compare this with (5.4) to see

‖uh‖H1 = h−1‖uh‖L2 + o(he−c/h) (5.5)

‖
√
auh‖L2 = o(h

1
2 e−c/2h) ‖uh‖

1
2

L2 .

Bring (5.3) and (5.5) together to see

1 = ‖Uh‖2X = ‖uh‖2H1 + ‖vh‖2L2 = 2h−2 ‖uh‖2L2 + 2h−1 ‖uh‖L2 o(e
−c/h)

+ o(e−2c/h).

Therefore

‖uh‖L2 =

√

h2

2
+ o (h2e−2c/h) + o(he−c/h) =

h√
2
+ o(he−c/h).

On Ωβ we have a ≥ β and then

‖uh‖L2(Ωβ) ≤ β−1/2‖
√
auh‖L2(Ωβ) = o(h

1
2 e−c/2h) ‖uh‖1/2L2 = o(he−c/h).

Now invoke Corollary 3.8. We have for all h small, there is a positive constant C such

that

‖u‖L2(M) ≤ eC/h
(

‖Phu‖L2(M) + ‖u‖L2(Ωβ)

)

,

which in our context reads

h√
2
≤ eC/h

(

o
(

h2e−c/h
)

+ o
(

he−c/h
))

= o
(

he(C−c)/h
)

which does not hold for any c ≥ C. Hence we obtain the contradiction.

4. We now claim (1.7) by sacrificing regularity for better decay. We have shown in

Step 1, 2 and 3 that there are C, c > 0 such that

∥

∥(A− iµ)−1
∥

∥

H1×L2→H1×L2 < Cec|µ|,

for all µ ∈ R. Invoke Theorem 5 to see
∥

∥

∥

∥

∥

etA

(1−A)k

∥

∥

∥

∥

∥

H1×L2→H1×L2

≤ C ′
k

log (2 + t)k
.
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As etA is strongly continuous, it commutes with (1− A)k. Therefore

∥

∥etA (u0, u1)
∥

∥

H1×L2 =
∥

∥

∥
(1−A)k (1−A)−k etA (u0, u1)

∥

∥

∥

H1×L2

=
∥

∥

∥
(1−A)−k etA (1−A)k (u0, u1)

∥

∥

∥

H1×L2

≤
∥

∥

∥
(1−A)−k etA

∥

∥

∥

H1×L2→H1×L2

∥

∥

∥
(1− A)k (u0, u1)

∥

∥

∥

H1×L2

≤ C ′′
kC

′
k

log (2 + t)k
‖(u0, u1)‖Hk+1×Hk =

Ck

log (2 + t)k
‖(u0, u1)‖Hk+1×Hk

because (1−A)k ∈ Ψk
u,h(M). �

Appendix A. Analysis on manifolds of bounded geometry

We will recall Riemannian geometric terminologies our arguments require in this

appendix. Assume our manifold (Md, g) is smooth, connected, complete, and open,

which means non-compact and without boundary.

There are some invariantly defined classes of functions and operators on M . Denote

the smooth complex-valued functions on M , by C∞(M,C). Let L2
g(M) be the class

of square-integrable complex-valued functions on M with respect to the density dg

induced by the metric. This is a Hilbert space endowed with the inner product

〈u, v〉L2
g(M) =

∫

M

uv̄ dg.

Moreover TM inherits a bundle metric

〈X, Y 〉L2
g(TM) =

∫

M

g(X, Y ) dg.

There is an exterior derivative on 0-forms d : C∞(M) → C∞(M,T ∗M). The gradient

operator ∇g : C
∞(M) → C∞(M,TM) is defined as the dual of d, where ∇gf is defined

uniquely by g(∇gf,X) = df(X) for each X ∈ TM . Locally we have

∇gf = ∇if∇i =
∑

j

gij(∂jf)∂i. (A.1)

Define the divergence operator ∇∗
g : C

∞(M,TM) → C∞(M) as the formal L2
g-adjoint

of ∇g, in the sense that

〈

∇∗
gX, f

〉

L2
g
=

∫

M

g(X,∇gf) dg.

Locally we have

∇∗
gX = −(

√
g)−1∂i

√
gX i,
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where
√
g = |det gij |1/2. We define the Laplace-Beltrami operator ∆g : C∞(M) →

C∞(M) as ∆g = ∇∗
g∇g, locally given by

∆g = −(
√
g)−1∂i

√
ggij∂j .

It is a positive symmetric operator on C∞(M).

We follow [Tri10, Chapter 7] to define the manifolds of bounded geometry. For each

p ∈M let the exponential map at p, expp : TpM →M be

expp(v) = γ(1)

where γ is the unique geodesic such that γ(0) = p and γ′(0) = v. Note that expp(0) = p.

With a choice of the local orthonormal frame, we identify TpM by Rd isometrically.

Given r > 0 small enough, expp is then a diffeomorphism from B(0, r) ⊂ Rd onto

Ωp(r) = expp(B(0, r)) = BM(p, r) ⊂ M . Note that (Ωp(r), exp
−1
p ) is a local cover of

M about p. We call the corresponding local coordinates geodesic normal coordinates.

Note in geodesic normal coordinates about p = expp(0), locally we have

gij(p) = δij, ∂kgij(p) = 0, Γkij(p) = 0.

Let rp be the supremum of all r’s such that expp yields a diffeomorphism. Define the

injectivity radius of M by r0 = infp∈M rp. We say a manifold (M, g) is a manifold of

bounded geometry if (a) the injectivity radius is positive, that is, r0 > 0; and (b) fixing

some 0 < r < r0, there are constants C,Cα > 0 such that for each multi-index α > 0

we have

det gij(p) ≥ C, |∂αp gij(p)| ≤ Cα,

at each p ∈ Ωp(r) where ∂p is the differentiation in the geodesic normal coordinates

about itself. The uniform boundedness of all derivatives of the metric tensor is equiv-

alent to that of the curvature tensor. See [Eic07]. We remark that, on manifolds of

bounded geometry, uniform boundedness of derivatives of functions in one choice of

geodesic normal coordinates is equivalent to that in another choice. As a result, from

now on, we fix 0 < r < r0 and the bounds on ∂αp u(p) could be discussed in arbitrary

geodesic normal coordinates of which p is inside.

We can define the uniformly bounded functions on manifolds of bounded geometry,

following [Shu92,Kor91]. We call a complex-valued Ck function f : M → C is Ck-

bounded, denoted f ∈ Ck
b (M), if for each multi-index α with |α| ≤ k we have a

constant Cα such that |∂αp f(p)| ≤ Cα for any p ∈ M . This is equivalent to

|∇jf |(p) =





∑

α1,...,αj

(∇α1 . . .∇αjf(p)) .
(

∇α1 . . .∇αj
f̄(p)

)





1
2

< Cj

for each 0 ≤ j ≤ k, where ∇αl’s and ∇αl
’s are respectively the contravariant and

covariant derivatives with respect to a local orthonormal frame of TM and α1, . . . , αj
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run through the orthonormal frame. Note that |∇jf | does not depend on the choice

of the local orthonormal frame. Also write C∞
b (M) =

⋂

k C
k
b (M). We can also define

the L2-based uniform Sobolev spaces. Let Hk(M) be the completion of C∞
c (M) under

the norm

‖f‖Hk(M) =

(

k
∑

j=0

∫

M

|∇jf |2 dg
)

1
2

. (A.2)

Specifically, we have

‖f‖H1(M) =
(

‖f‖2L2(M) + ‖∇gf‖2L2(M)

)
1
2

.

We look at the partition of unity on manifolds of bounded geometry. We note that

there is ǫ0 > 0 such that if 0 < ǫ < ǫ0, then there exists a countable cover ofM by balls

of radius ǫ, say, B(pk, ǫ), and moreover the enlarged cover {B(pk, 2ǫ)}k has a finite

multiplicity. Fix some ǫ < r/2, and in each ball B(pk, 2ǫ) we can now use the geodesic

normal coordinates about xk. For such cover, there is a partition of unity by functions

χk, that
∞
∑

k=1

χk = 1 (A.3)

such that

(i) χk ≥ 0, χk ∈ C∞
c (M), suppχk ⊂ B(pk, 2ǫ);

(ii) |∂αp χk(p)| ≤ Cα, for each p ∈ M , in arbitrary geodesic normal coordinates,

where Cα does not depend on k.

We say a map f from M to N , between two manifolds of bounded geometry, is Ck-

bounded for k ≥ 1, denoted f ∈ Ck
b (M,N), if for each 0 ≤ j ≤ k − 1 we have Cj > 0

such that

|∇jdf |(p) ≤ Cj

at all p ∈ M , where ∇j is the Levi-Civita connection on M applied j times. The

class C∞
b (M,N) is defined to be the intersection of all Ck

b (M,N) for integers k ≥ 1.

A C∞
b -diffeomorphism on M is a bijective map in C∞

b (M,M) whose inverse is also in

C∞
b (M,M). See further details in [Eic07].

We now define the semiclassical uniform pseudodifferential operators on manifolds

of bounded geometry. Those are locally semiclassical pseudodifferential operators, but

with some uniform control. We start by defining the residual class, in the manner

of [DZ19].

Definition A.1 (Residual class). Let an h-dependent operator A : C∞
c (M) → C∞(M)

is said to be in the residual class of the semiclassical uniform pseudodifferential opera-

tors, denoted A ∈ h∞Ψ−∞
u (M) if, its kernel KA ∈ C∞(M ×M) satisfying

|∂αp ∂βqKA(p, q)| ≤ Cαβkh
k
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for each k and each multi-indices α, β, any h ∈ (0, h0), each p, q ∈ Ωp(r), in arbitrary

geodesic normal coordinates, where Cαβk does not depend on p or q.

With the residual class we could define the semiclassical uniform pseudodifferential

operators.

Definition A.2 (Semiclassical uniform pseudodifferential operators). We say an op-

erator A : C∞
c (M) → C∞(M) is a semiclassical uniform pseudodifferential operator of

order m, denoted A ∈ Ψm
u,h(M), if

A =
∞
∑

k=1

χk
(

exp−1
pk

)∗
Oph(ak) exp

∗
pk
χk +O

(

h∞Ψ−∞
u

)

, (A.4)

for some partition of unity {B(pk, 2ǫ), χk}k described in (A.3), and ak ∈ Smu (R
d) is a

symbol on Rd with bounds uniformly in k, that

sup
h∈(0,h0)

|∂αξ ∂βxak(x, ξ; h)| ≤ Cαβ〈ξ〉m−|α|,

for each multi-indices α, β, and Cαβ independent of x, ξ, k.

For each h-dependent a(x, ξ; h) ∈ C∞(T ∗M), we say it is a uniformly bounded

symbol of order m, denoted a ∈ Smu (T
∗M), if for each multi-indices α, β, there exists

constants Cαβ > 0 such that

sup
h∈(0,h0)

|∂αξ ∂βxa(x, ξ; h)| ≤ Cαβ〈ξ〉m−|α|, (A.5)

for all x ∈ M and all ξ ∈ T ∗
xM , in the geodesic normal coordinates near x, where

the constants do not depend on x, ξ. Let exp′
pk

be the lifted diffeomorphism from

T ∗(B(0, 2ǫ)) to T ∗(B(pk, 2ǫ)) defined via

exp′
pk
(x, ξ) =

(

exppk(x),
(

exp−1
pk

)∗
ξ
)

.

and
(

exp−1
pk

)′
being its inverse. We have a principal symbol map such that, given

A ∈ Ψm
u,h(M), there exists a unique σh(A) ∈ Smu (T

∗M), where in each representation

of (A.4), we have

σh(A) =

∞
∑

k=1

χk(p)
2
(

(

exp−1
pk

)′
)∗

a0k,

where a0k ∈ Smu (R
d) is the principal part of ak. The principal symbol σh(A) is defined

independently of representations (A.4). We have a quantisation map on M , that is,

Op : Smu (T
∗M) → Ψm

u,h(M), given by

Oph(a) =

∞
∑

k

χ′
k

(

exp−1
pk

)∗
Oph

((

exp′
pk

)∗
(χka)

)

exp∗
pk
χ′
k,
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where χ′
k ∈ C∞

c (B(pk, 2ǫ)) is 1 on the support of χk. Note Oph(A) is a properly sup-

ported semiclassical uniform pseudodifferential operator of order m, and σh(Oph(a)) =

a0, where a0 ∈ Sm(T ∗M) is the principal part of a.

We define the semiclassical Sobolev spaces. Let 〈hD〉s = Oph(〈hξ〉s). For each s ≥ 0,

define Hs
h(M) = {f ∈ L2(M) : 〈hD〉sf ∈ L2(M)} with norm

‖f‖Hs
h
= ‖〈hD〉sf‖L2 .

When h = 1, define Hs(M) = Hs
h(M). We see at integer s = k, at fixed h > 0, the

spaces Hs(M), Hk(M) defined in (A.2), and Hs
h(M) coincide, with equivalent norms.

Uniformly in small h we have positive constants C−, C+ for that

C− (‖f‖L2 + hs ‖f‖Hs) ≤ ‖f‖Hs
h
≤ C+ (‖f‖L2 + hs ‖f‖Hs) ,

relating the semiclassical and non-semiclassical spaces.

We list some essential properties of this calculus. We have hlΨm
u,h(M) ⊂ Ψm+l

u,h (M)

for each l > 0. Note that h∞Ψ−∞
u =

⋂

k h
kΨ−k

u,h. Each A ∈ Ψ0
u,h(M) defines a bounded

operator on L2(M) and each A ∈ Ψm
u,h(M) is bounded on C∞

b (M) for any m, for fixed

h > 0. Also note each A ∈ Ψm
u,h is bounded from Hk+m to Hk, for each k, k +m ≥ 0.

The principal symbol map Ψm
u,h(M) → Smu (T

∗M) has kernel inside hΨm−1
u,h (M). For

each A ∈ Ψm
u,h(M), there exists a ∈ Smu (T

∗M) such that

A = Oph(a) +O(h∞Ψ−∞
u ).

If A ∈ Ψm
u,h and B ∈ Ψl

u,h, we have AB ∈ Ψm+l
u,h and

σh (AB) = σh(A)σh(B)

σh(h
−1[A,B]) =

1

i
{σh(A), σh(B)} .

We now discuss uniform ellipticity of those pseudodifferential operators. An operator

A ∈ Ψm
u,h(M) is called uniformly elliptic if there exists a constant C such that,

|ak(x, ξ; h)| ≥ C 〈ξ〉m ,

for each x ∈ B(pk, 2ǫ) and h ∈ (0, h0), and ak(x, ξ; h) as in (A.4). For each A ∈
Ψm
u,h(M) that is uniformly elliptic, there exists a parametrix P ∈ Ψ−m

u,h (M) such that

PA− Id, AP − Id ∈ h∞Ψ−∞
u . We now prove a weak version of the Garding inequality

in our setting.

Proposition A.3 (Weak G̊arding inequality with truncation). Let (M, g) be a manifold

of bounded geometry, without boundary, and assumeW ⊂M is a possibly empty region.

IfW 6= ∅, then let Wǫ be {p ∈M : d(p,M \W ) < ǫ}. Given b ∈ Smu (T
∗M), with m ≥ 0,

such that there is uniform α > 0, for any (x, ξ) ∈ T ∗(M \W ), Re b(x, ξ) ≥ α〈ξ〉m.
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Then there exists C > 0 and for arbitrary h small, for any u ∈ Hm(M) with u ≡ 0 on

W , we have

Re 〈Oph (b) u, u〉 ≥ C
(

‖u‖2L2(M) + hm/2 ‖u‖2Hm/2(M)

)

.

Proof. 1. We first show the case when W = ∅. As Re b ≥ α〈ξ〉m ≥ 0 everywhere on

the cotangent bundle, let

e(x, ξ) = (Re〈ξ〉−mb(x, ξ))1/2 ≥ α1/2,

and we see E = Oph(e) ∈ Ψ0
u,h is uniformly elliptic, hence there is a parametrix

P ∈ Ψ0
u,h with PE − Id ∈ h∞Ψ−∞

u and

‖w‖L2(M) ≤ C ‖Ew‖L2(M) +O(h∞) ‖w‖L2(M)

where we used the fact that P and PE − Id are bounded on L2. Therefore we have

‖Ew‖L2(M) ≥ K ‖w‖L2(M)

uniformly for small h. Now for each w ∈ L2, as 〈ξ〉−mRe b is a symbol of order 0,

Re
〈

Oph(〈ξ〉−mb)w,w
〉

= 〈Ew,Ew〉+O (h) ‖w‖2L2(M) ≥
K2

2
‖w‖2L2(M) . (A.6)

Now let w = 〈hD〉m/2u for each u ∈ L2(M). Consider

Re 〈Oph(b)u, u〉 = Re
〈

Oph(〈ξ〉−mb)w,w
〉

+O(h) 〈Gu, u〉 ,
where G ∈ Ψm−1

u,h . Note that

〈Gu, u〉 =
〈

〈hD〉−m−1
2 Gu, 〈hD〉m−1

2 u
〉

= O
(

‖u‖2
H

(m−1)/2
h

)

= O
(

‖u‖2
H

m/2
h

)

. (A.7)

Together with (A.6) we conclude

Re 〈Oph(b)u, u〉 ≥
(

K2

2
−O (h)

)

‖u‖2
H

m/2
h

≥ K2

4
‖u‖2

H
m/2
h

≥ C
(

‖u‖2L2 + hm/2 ‖u‖2Hm/2

)

(A.8)

as claimed.

2. Now take W as described in the statement of this proposition. As b ∈ Smu (T
∗M),

defined as in (A.5), we have a global constant C1 > 0 such that

|∇xb(x, ξ)| ≤ C1 〈ξ〉m

at each x ∈ M in geodesic normal coordinates. Therefore there exist small ǫ > 0 such

that Re b(x, ξ) ≥ (α/2) 〈ξ〉m on Wǫ = {p ∈M : d(p,M \W ) < ǫ}. There exists a cutoff

χǫ ∈ C∞
b (M) such that χǫ ≡ 1 on W c

ǫ and supported in W . As b ∈ Smu (T
∗M) we have

a global constant C2 > 0 such that

b(x, ξ) ≥ −C2 〈ξ〉m
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at each x ∈M in geodesic normal coordinates. Now set

b′(x, ξ) = b(x, ξ) + 2C2 〈ξ〉m χ(x).
Note that now Re b′ ≥ α′〈ξ〉m for some α′ > 0, everywhere on T ∗M . Apply what we

have obtained in Step 1. We know from (A.8) that

Re 〈Oph(b
′)u, u〉 ≥

(

K2

2
−O (h)

)

‖u‖2
H

m/2
h

≥ K2

4
‖u‖2

H
m/2
h

.

Note that

Oph b
′ = Oph b+ 2C2Oph (〈ξ〉m χ(x)) +O(h)G

for G ∈ Ψm
u,h(M). As 〈ξ〉m χ(x) ≡ 0 on W c, hence vanishes on supp u, and

Oph (〈ξ〉m χ(x))u = O(h∞).

Therefore for small h we have

Re 〈Oph(b)u, u〉 ≥ Re 〈Oph(b
′)u, u〉 − O(h) 〈Gu, u〉 ≥ K2

8
‖u‖2

H
m/2
h

≥ C
(

‖u‖2L2 + hm/2 ‖u‖2Hm/2

)

,

as a result of (A.7). �
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[Bur98] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur
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[Leb93] G. Lebeau, Équation des ondes amorties, Algebraic and Geometric Methods in Mathe-

matical Physics (1993).

[LR97] G. Lebeau and L. Robbiano, Stabilisation de l’équation des ondes par le bord, Duke Math.

J. 86 (1997), no. 3, 465–491.

[Mel95] R. Melrose, Geometric scattering theory, Cambridge University Press, 1995.

[MR18] M. Malloug and J. Royer, Energy decay in a wave guide with dissipation at infinity, ESAIM

Control Optim. Calc. Var. 24 (2018), no. 2, 519–549.

[MS20] S. Malhi and M. Stanislavova, On the energy decay rates for the 1D damped fractional

Klein-Gordon equation, Math. Nachr. 293 (2020), no. 2, 363–375.
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