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Abstract 

Bac kgr ound: Large r outinel y collected data such as electr onic health r ecords (EHRs) ar e incr easingl y used in r esear c h, but the statistical 
methods and processes used to c hec k suc h data for tempor al data quality issues hav e not mov ed beyond man ual, ad hoc pr oduction 

and visual inspection of graphs. With the prospect of EHR data being used for disease surveillance via automated pipelines and 

public-facing dashboards, automation of data quality c hec ks will become increasingly valuable. 

F indings: We gener ated 5,526 time series from 8 differ ent EHR datasets and enga ged > 2,000 citizen-science volunteers to label the 
locations of all suspicious-looking change points in the resulting graphs. Consensus labels were produced using density-based cluster- 
ing with noise, with validation conducted using 956 images containing labels produced by an experienced data scientist. Parameter 
tuning was done against 670 images and performance calculated against 286 images, resulting in a final sensitivity of 80.4% (95% 

CI, 77.1%–83.3%), specificity of 99.8% (99.7%–99.8%), positi v e pr edicti v e v alue of 84.5% (81.4%–87.2%), and negati v e pr edicti v e v alue of 
99.7% (99.6%–99.7%). In total, 12,745 change points were found within 3,687 of the time series. 

Conclusions: This large collection of labelled EHR time series can be used to validate automated methods for change point detection 

in real-w orld settings, encour aging the development of methods that can successfully be applied in pr actice . It is particularl y v alua b le 
since change point detection methods are typically validated using synthetic data, so their performance in real-world settings cannot 
be assumed to be compara b le. While the dataset focusses on EHRs and data quality, it should also be applica b le in other fields. 

Ke yw ords: time series, change point detection, anomalies, data quality 
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Data Description 

Context 
The use of electronic health records (EHRs) in medical research 

has gr own enormousl y ov er the past 20 years, given its ability to 
cov er lar ge numbers of patients and often ov er long time periods.
Ho w e v er, using r outinel y collected data such as EHRs for r esearc h 

carries inherent risks, since the data will have been collected for a 
differ ent pur pose (i.e., oper ational) and usuall y at a gr eat distance 
(both tempor all y and physicall y) fr om the r esearc hers making use 
of it. Ther efor e, to ensur e the v alidity of their r esearc h outputs, it is
important that r esearc hers include c hec ks for data quality issues 
before conducting their analyses [ 1 ]. 

In particular, the presence of change points (i.e., points in time 
where the distribution of data values changes suddenly and un- 
pr edictabl y) can lead to systematic biases that, if not identified 

and taken into account, can lead to erroneous results and incor- 
rect conclusions being drawn, ultimately resulting in poor deci- 
sions at a clinical or public health policy le v el. For example, Fig. 1 
shows 3 real-world examples of data from a large UK hospital 
group and where shifts in the data were caused by changes to in- 
fr astructur e r ather than by natur al c hanges in the patient popu- 
lation. If a r esearc her wer e to naiv el y compar e the number of hos- 
pital admissions (Fig. 1 A) in 2010 to the number of admissions in 

2013, without c hec king for c hange points in between those dates,
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hey could incorr ectl y conclude that hospital admissions had de-
reased when in fact they had been increasing. Similarly, a re-
earc her anal ysing a cohort of patients between 2008 and 2012
ight mistakenly infer that the patients admitted with infections 

n 2012 were overall less severely unwell than those admitted in
008 because they had lo w er creatinine blood test values (Fig. 1 C),
hen in fact the difference was due to a change in testing method
nd not in the patients themselves. 

While these types of temporal artefacts should in theory be
icked up by the diligent researcher at the initial data analysis
ta ge, in pr actice, it is not clear to what extent this is actually
one, since this process is rarely, if ever, reported in published pa-
ers [ 2 , 3 ]. Standard c hec ks suc h as the calculation of summary
tatistics and visual inspection of gr a phs may be effective enough
or tr aditional r esearc h studies wher e ther e is a limited number
f variables of interest as well as a researcher with appropriate
omain knowledge, but with the increasing volume of data be-

ng collected in EHRs and across multiple sites (each with their
wn idiosyncratic processes), these checks will become more and 

or e oner ous and ther efor e less likel y to be conducted thor oughl y
nd consistentl y. Ther efor e, automation of c hec ks that would oth-
rwise be labour intensive and re petiti ve, such as screening time
eries for change points, would be of value to r esearc hers. Further-
or e, ther e is an increasing prospect of EHR data being used for
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Figure 1: Examples of temporal changes in data caused by updates to infrastructure at Oxford University Hospitals. (A) Total number of inpatient 
admissions containing multiple diagnosis codes . T he jump in records in 2008 was caused by the inclusion of dialysis day-case patients, which were 
then excluded again in 2012. (B) Emergency department attendances by r eferr al source. A change in computer systems in 2011 noticeably affected the 
data recorded, with the “Other” category tempor aril y being ov err epr esented in 2012, and a new, undefined category of “30” appearing thereafter. (C) 
Lo w est creatinine blood test result each da y. T he bimodal distribution up to 1997 was due to a mixture of units being used, and the drop in values in 
2009 was due to a change in testing method and reference range. 
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disease surveillance via automated pipelines and public-facing 
dashboards, where automation of data quality checks will be of 
e v en mor e v alue. 

While there is a rich literature on change point detection meth- 
ods, with applications across a range of different scientific fields 
[ 4 ], none of these has to our knowledge been de v eloped with a fo- 
cus on EHRs or on data quality . Additionally , most of these meth- 
ods are validated using synthetic data, and as such, their adver- 
tised performance cannot be assumed to hold in real-world sce- 
narios . T her efor e, in order to assess whether or not any of these 
methods would be effective to use as a screening method for iden- 
tifying change points in EHRs requires real-world datasets with 

“gold-standard” labels against which to judge performance. 

Methods 

An ov ervie w of the process can be seen in Fig. 2 , with full details 
described below. 

Study sample 
EHR data are collected from all patients attending the 4 hospi- 
tals within the Oxford University Hospitals NHS Foundation Trust 
(OUH), whic h pr ovide all acute car e and all micr obiology and 

pathology services in the region ( ∼600,000 individuals). Much of 
these data is automatically fed into a linked database for use in 

surveillance and service activities within the OUH and is peri- 
odicall y extr acted into a partiall y cur ated, anon ymised, r esearc h 

database, the Infections in Oxfordshire Research Database (IORD). 
These data go back to the 1980s and are known to cover multiple 
periods of change in the hospital computer and laboratory sys- 
tems. 

IORD has Research Ethics Committee and Health Research 

Authority a ppr ov al as a generic deidentified electr onic r esearc h 

database (19/SC/0403, 19/CAG/0144). 
Data were included from all 4 major component datasets 

of IORD (patient administr ation, antibiotic pr escribing, haema- 
tology/bioc hemistry labor atories, and micr obiology labor atories).
Eight data extracts were taken, comprising a total of 253 data 
fields and 57 million records, with dates between 2 June 1986 and 

30 June 2019: 

� Inpatient episodes 
� Outpatient episodes 
� Emergency department episodes 
� Antibiotic prescriptions 
� Bioc hemistry cr eatinine tests (a common biomarker for infec- 

tion) 
� Haematology neutrophil counts (a standard test requested 

for most patients) 
� Microbiology blood culture tests 
� Microbiology tests that identified Esherichia coli (regardless of 

specimen type) 

Creation of time series 
A total of 5,526 time series were generated from the 8 data ex- 
tracts , as follows . 

One data field from each data extract was selected to be its 
“timepoint ” field, and this was used to r epr esent the date of the 
r ecord (patient administr ation data used the disc har ge date, labo- 
ratory data used the specimen collection date, and antibiotic data 
used the pr escription date). An y r ecords that contained a missing 
or invalid datetime value in the timepoint field were necessarily 
excluded. Also, any duplicate records were removed, and the num- 
ber of r emov ed r ecords stor ed as a calculated field. 
ggre gation gr anularities 

or each data extract, the time span that each timepoint field cov-
red was divided into regular intervals. Records were aggregated 

sing the chosen timepoint field by day (midnight to midnight),
s well as by week (Monday to Sunday) and by calendar month . 

ggregation functions 

umeric summary values were calculated for each timepoint 
rom the (often nonnumeric) data by a ppl ying simple functions
e.g., number of values present, percentage of missing values,
umber of distinct values, or median value). If there were no
ecords in a particular timepoint (which meant that no summary
alue could be calculated), the value of N A w as gi ven (exce pt for
he a ggr egation function counting the number of v alues pr esent
n a data field, which would take the value of 0 as expected). Each
 ggr egation function demonstrated a measure within one of the
ntrinsic data quality dimensions of Completeness , Conformance ,
nd Plausibility [ 5 ]. Different functions were used depending on
he type of data field: 

� Timepoint—The data field r epr esenting the date of the e v ent
described in the record 

� Numeric—Fields containing continuous values (such as 
blood cell counts) or discrete integers (such as the episode
number within an admission spell) 

� Categorical—Fields containing a finite list of v alues, whic h
may be stored either as c har acter strings or coded as integers

� Datetime—Fields containing dates, with or without a time el- 
ement 

� UniqueIdentifier—Fields containing computer-generated 

record identifiers and may be based on either a numeric or a
c har acter data type 

� Freetext—Unstructured text 

or if applied to the data extract as a whole (e.g., calculating the
umber of duplicate records). See Table 1 for details of the data
elds in each data extract and Table 2 for the list of aggregation
unctions applied to each data field. 

ollection of change point labels by visual inspection 

ach time series was plotted on a separate graph (with time on the
-axis and the a ggr egation function value on the y-axis); see Fig. 3
or some examples. F requenc y-based aggregation functions were 
lotted on a scale always starting at zero and ending no earlier
han 10. P er centages w er e al wa ys plotted on a 0–100 scale , and
requencies of subcategories were plotted on the same scale as
requencies for the data field as a whole. All graphs were saved
s png files of the same size (i.e., 1,000px wide by 666px tall) at a
esolution of 96 dpi. 

Visually inspected labels for the locations of change points 
ere collected using the Zooniverse [ 6 ] citizen-science platform.
he Zooniverse is a free, popular, and well-established online 
latform for public involvement in research and has over 2 mil-

ion r egister ed volunteers who r e vie w and participate in m ulti-
le pr ojects fr om astr onomy to wildlife surveys to historical tran-
criptions. 

The “Health Record Hiccups” [ 7 ] Zooniverse project sho w ed v ol-
nteers one image at a time and asked them to draw a vertical line
n the image wherever they saw an abrupt change in the distribu-
ion of values; see Fig. 4 for a screenshot. They were initially pre-
ented with a tutorial that included multiple examples of differ-
nt ways in which the data can c hange—namel y, c hanges in level ,
rend , (vertical) variability , presence/absence of data points, or
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Figure 2: Ov ervie w of the dataset cr eation w orkflo w. 
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unpredictable) outliers . They were asked to draw a green line if
hey saw a clear change, a y ello w line if they were uncertain, or
o lines if they saw no abrupt changes. To reduce risk of bias, no
etadata were visible at the point of classification. 
Ima ges wer e sc heduled for r etir ement once 41 classifications

ad been completed on them (i.e., once the image had been in-
pected by 41 different people). 

ata cleaning 

ue to the way the Zooniverse platform randomises and supplies
mages to its volunteers, it was possible for the same person to be
erved the same image more than once and for images to have
ore than the specified number of 41 classifications . T herefore ,

nly the first attempt per person per image was k e pt, up to a max-
mum of 41 different people per image. 

To impr ov e consistenc y betw een classifications made b y dif-
erent volunteers using different screen resolutions, a “minimum
istance cutoff” of 7px was selected (see Data validation section)
o distinguish between distinct change points (i.e., any lines drawn
loser together than this should be assumed to r epr esent the
ame change point). An example of a 7px distance between 2 lines
s shown in Fig. 5 . Any lines that wer e dr awn by the same person
ithin this “minimum distance cutoff” interval were combined

nto a single line located at the mean position of the contributing
ines. If any of the combined lines was green (certain), the result-
ng line was also considered green. 

reation of consensus labels 
o create consensus labels from the volunteers’ classifications,
he dbscan [ 8 ] (density-based spatial clustering of applications
ith noise [ 9 ]) pac ka ge (v1.1–5) in R (v3.6.3) was used to find zero
r more clusters of lines within an image . T he mean cluster lo-
ation was assigned to be the crowdsourced consensus label for
he change point, and any lines that were deemed by the pack-
ge to be noise were ignored. Following tuning of the dbscan al-
orithm (see Data validation section), the following 3 parameters
ere used to create the final labels for the locations of change
oints: 
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Table 1: Ov ervie w of data fields contained in eac h data extr act 

Dataset type Da ta extr act Data from Data to 

Total No. 
of data 
fields a 

No. of 
timepoint 

fields 

No. of 
numeric 

fields 

No. of cat- 
egorical 

fields 

No. of 
datetime 

fields 

No. of 
UniqueI- 
dentifier 

fields 

No. of 
freetext 
fields 

Antibiotics Antibiotic 
prescribing 

10/06/2008 30/06/2019 27 1 3 9 7 2 3 

Patient 
administration 

Emergency 
department 
attendances 

01/04/2005 30/06/2019 28 1 1 15 6 2 1 

Patient 
administration 

Inpatient 
episodes 

01/04/1997 30/06/2019 41 1 2 23 6 4 3 

Patient 
administration 

Outpatient 
episodes 

01/04/1997 30/06/2019 35 1 1 21 4 3 3 

Biochemistry Creatinine tests 02/06/1986 30/06/2019 24 1 1 7 5 6 2 
Haematology Neutrophil 

counts 
01/04/1987 30/06/2019 24 1 1 7 5 6 2 

Microbiology Blood cultures 04/06/1993 30/06/2019 37 1 0 18 6 2 8 
Microbiology E. coli isolations 17/05/1993 30/06/2019 37 1 0 18 6 2 8 

a Includes 2calculated fields, for duplicate records and for all data combined. 

Table 2: The a ggr egation functions applied to each data field, to produce the time series 

Individual data field type 
Across data extract as 

a whole 

Aggregation function ( shorthand label ) Timepoint Numeric Categorical Datetime UniqueIdentifier Freetext 
All data 

combined 
Duplicate 
records 

COMPLETENESS 
Number of missing values ( missing_n ) x x x x x x 
P er centage of missing values ( missing_perc ) x x x x x x 
CONFORMANCE 
Number of nonconformant values a 

( nonconformant_n ) 
x x x 

P er centage of nonconformant values a 

( nonconformant_perc ) 
x x x 

PLAUSIBILITY 

Sum of duplicate records removed ( sum ) x 
P er centage of records that had been 
duplicated ( nonzero_perc ) 

x 

Number of values present ( n ) x x x x x x x 
Minim um v alue ( min ) x x 
Maxim um v alue ( max ) x x 
Mean value ( mean ) x 
Median value ( median ) x 
Number of values with no time element b 

( midnight_n ) 
x x 

P er centage of values with no time element b 

( midnight_perc ) 
x x 

Minimum string length ( minlength ) x 
Maximum string length ( maxlength ) x 
Mean string length ( meanlength ) x 
Number of distinct values ( distinct ) x 
Number of values within each subcategory c 

( subcat_n ) 
x 

P er centage of values within each 
subcategory c ( subcat_perc ) 

x 

a Nonconformance was deemed as a nonnumeric value in a (supposedly) numeric data field or a nondate value in a (supposedly) date field. 
b These were only calculated for fields that were known to contain a time element and where midnight would be used as the default when no time element was 
a vailable . 
c With 1 time series created per subcategory. These were only calculated for fields with fewer than 20 subcategories (with the additional inclusion of DischargeDes- 
tinationCode in the inpat_episode data extr act, whic h contained 23 subcategories, and was included for consistency with the other coded fields in the data extract). 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad060/7232826 by C

atherine Sharp user on 10 August 2023



6 | GigaScience , 2023, Vol. 12, No. 1 

Figure 3: Examples of gr a phs gener ated for visual inspection of c hange points. 

Figure 4: Screenshot of Zooniverse project interface. 
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Figure 5: Example of 2 lines drawn 7px a part. An y lines drawn closer together than this were considered to represent the same change point. 
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� exclude y ello w (uncertain) lines, 
� minimum-lines-in-cluster (i.e., the minimum number of lines 

needed to create a cluster) = 5, 
� epsilon-neighbourhood (i.e., the maximum distance between 

2 lines in a cluster) = 3px. 

The pixel locations of the consensus labels were then con- 
v erted bac k to dates. A total of 12,745 change points were found 

within 3,687 of the time series. Examples of the locations of crowd- 
sourced consensus labels can be seen in Fig. 6 . A summary of the 
number of change points and time series per data extract is shown 

in Table 3 . 

Da ta Valida tion 

Methods 

Accuracy of the cro wdsour ced consensus labels was assessed 

against expert labels produced for the initial batch of 956 images 
(inpatient episodes, antibiotic pr escriptions, cr eatinine tests, and 

blood culture tests, aggregated by da y). T hese expert labels were 
created by a researcher with > 8 years’ experience compiling and 

analysing EHR data, and this was done using the same interface 
as the volunteers but blinded to any of their results. 

To impr ov e consistenc y betw een classifications made b y dif- 
ferent volunteers using different screen resolutions, a “mini- 
mum distance cutoff” was selected to distinguish between dis- 
tinct change points (i.e., any lines drawn closer together than this 
should be assumed to r epr esent the same change point). This was 
done by calculating the minimum distance between any 2 lines 
drawn on a single image by the same volunteer and the distribu- 
tion of minimum distances visually inspected for a threshold. 
To calculate the accuracy of the consensus cro wdsour ced la-
els compared to expert labels, a binary classifier was a ppr oxi-
ated using the following terms: 

� True positi v e : a cro wdsour ced label is within the “minimum
distance cutoff” of an expert line. 

� False positi v e : a cro wdsour ced label is present, but no expert
line lies within the “minimum distance cutoff” of it. 

� False negati v e : an expert line is present, but no cro wdsour ced
label lies within the “minimum distance cutoff” of it. 

� True negati v e : total estimated as the number of the “min-
imum distance cutoff” intervals in an image (i.e., the maxi- 
mum number of change points that could possibly be identi-
fied on a single image) minus the sum of above 3 categories. 

In order to avoid double-counting, the following additional 
ules were enforced: 

� When there w ere “x” cro wdsour ced labels close to 1 expert
line, this counted as 1 true positive and zero false positives. 

� When ther e wer e 2 expert lines close to 1 cro wdsour ced label,
this counted as 2 true positives and zero false negatives. 

Tuning of the algorithm to create consensus labels from the
ro wdsour ced data w as done using a random sample of 70% of the
56 images, balanced across the 4 data extracts, with the remain-
ng 30% r eserv ed for final testing of the performance of the al-
orithm. Final performance was assessed using sensitivity, speci- 
city, positiv e pr edictiv e v alue (PPV), and negativ e pr edictiv e v alue

NPV). 
Of note, 746 time series were constant (e.g., when ther e wer e no

issing values at all in the data field), and these were included in
rder that the accuracy reported be re presentati ve of the range
nd distribution of time series across all the data fields. 
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Figure 6: Examples of the locations of crowdsourced consensus labels for change points. 

Table 3: Ov ervie w of time series and change points per data 
extract. 

Da ta extr act 

No. of time 
series 

created 

No. of 
constant 

time 
series (%) 

No. with 
missing 

values (%) 

No. with at 
least 1 
change 

point (%) 

Total No. 
of change 

points 

Antibiotic 
prescribing 

501 92 (18) 167 (33) 385 (77) 932 

Emergency 
department 
attendances 

762 87 (11) 454 (60) 528 (69) 1,589 

Inpatient 
episodes 

1203 129 (11) 0 (0) 665 (55) 2,064 

Outpatient 
episodes 

690 52 (8) 14 (2) 546 (79) 1,959 

Creatinine 
tests 

552 79 (14) 338 (61) 415 (75) 2,017 

Neutrophil 
counts 

462 83 (18) 34 (7) 356 (77) 1,584 

Blood cultures 612 94 (15) 177 (29) 307 (50) 844 
E. coli 
isolations 

744 130 (17) 218 (29) 485 (65) 1,756 

Total 5,526 746 (13) 1,402 (25) 3,687 (67) 12,745 
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uning of consensus algorithm 

he dbscan pac ka ge in R accepts 2 tuning parameters: minPts (the
inimum number of lines needed to create a cluster) and eps (the
aximum distance between 2 lines in a cluster). In addition, there
as the choice of whether or not to include the yellow (uncertain)
ines that volunteers had dra wn. T herefore , a grid search of 3 pa-
ameters was conducted: 

� include/exclude y ello w (uncertain) lines, 
� minPts (i.e., minimum-lines-in-cluster) between 2 and 20, and
� eps (i.e., epsilon-neighbourhood) between 1px and 7px (i.e.,

the “minimum distance cutoff”). 

Given the imbalanced distribution of positiv e v ersus negativ e
alls, Matthe ws corr elation coefficient (MCC) [ 10 ] was used to se-
ect the highest-performing parameters, 

MCC = 

T P × T N − F P × F N 

√ 

( T P + F P ) × ( T P + F N ) × ( T N + F P ) × ( T N + F N ) 

here TP = true positives, TN = true negatives, FP = false posi-
ives, and FN = false negatives. 

esults 

 total of 48,533 classifications were completed by at least 543
iffer ent volunteers acr oss the 956 ima ges. After r emoving r epeat
lassifications by the same person as well as classifications above
he r etir ement thr eshold of 41, ther e wer e 43,502 distinct classifi-
ations, and 840 of 956 (88%) images had the full complement of
1 classifications each. 

The expert classified each image once , dra wing 1,992 green
ines plus 163 y ello w lines altogether. 

The minimum distance between 2 lines drawn on a single im-
ge by the same volunteer was below 1px (see Fig. 7 ). Since there
as a visible threshold in minimum distances at 7px, this was

hosen to be the “minimum distance cutoff” for 2 distinct change
oints . T his led to the r emov al of 96 (0.1%) volunteer lines (with
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Figure 7: Minimum distances between 2 lines drawn on an image by the same volunteer. Shown up to a maximum of 10px. Intervals are closed on the 
left and open on the right (i.e., when the minimum distance is an integer, this is included in the bar to the right). 

Table 4: Best-performing parameters for the density-based clustering algorithm, based on the tuning set 

Include 
yellow 

lines 

Minimum 

No. of lines 
in cluster 

Epsilon 
distance 

Ma tthe ws 
correlation 
coefficient Sensitivity Specificity 

Positi v e 
predicti v e 

value 

Negati v e 
predicti v e 

value 

FALSE 5 3 0.851 0.806 0.999 0.903 0.997 
TRUE 7 2 0.850 0.796 0.999 0.913 0.997 
TRUE 6 2 0.850 0.826 0.998 0.878 0.997 
TRUE 8 3 0.849 0.796 0.999 0.911 0.997 
TRUE 7 3 0.848 0.826 0.998 0.875 0.997 
FALSE 6 3 0.845 0.769 0.999 0.933 0.996 
FALSE 5 2 0.844 0.780 0.999 0.918 0.996 
TRUE 6 3 0.844 0.855 0.997 0.838 0.998 
FALSE 4 3 0.843 0.843 0.997 0.848 0.997 
TRUE 9 3 0.843 0.767 0.999 0.930 0.996 

Note: Results are presented as proportions. 
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distance < 7px) and, for consistency, the r emov al of 12 (0.6%) ex- 
pert lines. 

Based on the MCC and only using the tuning set of 670 images,
the optimal parameters to identify individual change points were 
as follows: exclude yellow lines, minimum-lines-in-cluster = 5, 
and epsilon-neighbourhood = 3 (see Table 4 ), although it should 

be noted that se v er al differ ent par ameter combinations gav e v ery 
similar performance. 

F inal perf ormance of algorithm 

Using these parameters on the reserved test set of 286 images re- 
sulted in final sensitivity of 80.4% (95% CI, 77.1%–83.3%), speci- 
ficity of 99.8% (99.7%–99.8%), PPV of 84.5% (81.4%–87.2%), NPV of 
99.7% (99.6%–99.7%), and MCC of 0.822. This was from 492 true 
positi ves, 38,194 true negati ves, 90 false positives (in 42 distinct 
images), and 120 false negatives (in 70 distinct images). 

Examples of discrepancies 
Of the 120 false negatives, 78 (65%) had been classed as clear 
change points by the expert and 42 (35%) as uncertain. In a ran- 
dom sample of 20 images that contained discrepancies (10 that 
contained at least 1 false positive and 10 that contained at least 
1 clear false negativ e), ther e wer e 30 false positives and 14 false 
negativ es. Twenty-fiv e of 30 of the false positives were in im- 
a ges wher e the a ggr egation function v alues wer e highl y discr e- 
ised. Se v enteen of 30 could be argued to be change points (13 in
 ariability, 3 in tr end, 1 outlier), and 1 was in between 2 nearby
true positive) clusters and so potentially merely comprised bor- 
er points that could have belonged to either of the nearby clus-
ers. Twelve had no explanation beyond the discretisation. Of the
4 false negatives, 7 could be argued to be change points (5 in
rend, 1 in variability, 1 outlier), and the other 7 were clear outliers
3 of which were very small in magnitude). See Figures 8 and 9 for
xamples. 

iscussion and Reuse Potential 
ur motivating purpose for releasing this dataset is to improve
 esearc h quality by encour a ging the creation of methods to help
creen for temporal artefacts ahead of formal statistical anal- 
ses, a highly underappreciated yet important part of the re-
earc h pr ocess [ 3 , 11 ]. Automating this task will become increas-
ngl y v aluable as datasets continue to grow (and the effort re-
uired to manually check them also increases), whether that 
e within health r esearc h or in other fields that use temporal
ata. 

The primary audience for this dataset, ther efor e, is de v elopers
f (univariate) change point detection methods, who belong to a
 ery activ e r esearc h field [ 4 , 12–14 ] but for whom there are cur-
 entl y v ery little r eal-world data av ailable to either train or val-
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Figure 8: Examples of change points identified by the volunteers but not by the expert. Vertical lines denote positions of volunteer clusters and expert 
labels; those with numbers above indicate the number of volunteers contributing to the cluster, and those with inverted triangles indicate lines drawn 
by the expert. (A) The 2 false-positive change points at 2012 and 2015 could arguably be changes in variability. (B) The false-positive change point at 
2010 potentially just comprised border points for the 2 adjacent clusters, while the 4 on the far right are likely only related to discretisation. 
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Figure 9: Examples of change points identified by the expert but not by the volunteers. Vertical lines denote positions of volunteer clusters and expert 
labels; those with numbers above indicate the number of volunteers contributing to the cluster, and those with inverted triangles indicate lines drawn 
by the expert. (A) The 2 false-negative change points in 2010 and 2017 could arguably be changes in trend or variability. (B) The false-negative change 
point around 2018 is an outlier that was small in magnitude. 
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idate their methods. In order to assess a detection method’s ac- 
curacy, a collection of time series containing “ground-truth” la- 
bels for the locations of all change points is needed. Synthetic 
data ar e commonl y used for this task [ 15 , 16 ], since large num- 
bers of time series with known frequency and locations of change 
points can be generated easily by concatenating segments from 

parametric or other statistical models. Ho w ever, while methods 
de v eloped and assessed this way may work well for applications 
here the data happen to conform to the specific models used,
hey will not work for applications such as ours, where underly-
ng trends and fluctuations in the data are widespread and where
he enormous variety of different behaviours exhibited in the dif-
erent time series is unlikely to be captured by a predefined sta-
istical model. 

We are aware of only 3 publicly available time-series datasets
hat contain real-world data with change points labelled by (ex- 
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ert) humans . T hese are the Yahoo S5 dataset [ 17 ], which con-
ains 67 real-world time series from traffic to Yahoo services;
he Numenta Anomaly Benchmark [ 18 ], which contains 47 real-
orld time series from a variety of sources; and the Turing
hange Point Dataset [ 19 ], which contains 37 time series from
 range of different scientific fields. Within all of these, the
hange points were considered manifestations of real events
ather than artefacts of data collection. In comparison, our col-
ection of 5,526 time series provides a vastly larger sample against
hich to conduct benchmarking of change point detection meth-
ds, which will in turn lead to m uc h gr eater confidence in an y
esults. 

Other applications of these change point detection methods
ould include c hec king for data feed anomalies in routine an-
lytical pipelines (e.g., the United Kingdom’s coronavirus dash-
oard [ 20 ] and Fingertips Public health profiles [ 21 ]) in order
o alert on any potential data input pr oblems internall y befor e
 eleasing an y downstr eam outputs. Another possible a pplica-
ion could be for change detection in automated machine learn-
ng (AutoML) models [ 22 , 23 ], to ensure model validity is main-
ained e v en when the data they ar e being a pplied to ine vitabl y
hange. 

Cro wdsour ced labels identifying the locations of change points
ithin EHR time series had a sensitivity of ∼80%, PPV at ∼85%,
nd specificity/NPV at > 99%, when compared to labels made by
n experienced data scientist. Given that visual inspection is al-
ays going to be a subjective measure, even when performed by
n expert, this le v el of accuracy suggests that cro wdsour cing is a
atisfactory method for identifying change points in EHR datasets
nd consequently for use as a “gold standard” to assess automated
ethods of identifying them. 
The types of change points that were most often missed by the

 olunteers w ere “outliers” and, to a lesser extent, change points
hat were small in magnitude . T his is potentially acceptable since
r guabl y, outliers ar e less likel y to hav e a significant impact on a
tudy’s results than persistent change points, owing to them oc-
urring for only a small number of records, and similarly change
oints that are small in magnitude are less likely to have large
onsequences . Con v ersel y, the volunteers tended to label change
oints more often than the expert on images based on highly dis-
r etised v alues, whic h means that certain a ggr egation functions
ill likel y r esult in mor e false-positiv e calls than others and hence
ay r equir e mor e car eful scrutin y when being used for tuning au-

omated methods. Many of the discrepancies for the presence of
 change point could have been argued either wa y. T his subjectiv-
ty means that if these labels are to be used as a “gold standard”
or testing automated methods, we can ne v er expect those au-
omated methods to perform perfectly against the labels, and so
erhaps w e w ould need to accept a lo w er accurac y rate than w e
therwise would. 

The number of change points identified b y cro wdsour ced vi-
ual inspection was incr edibl y high, with c hange points detected
n all 8 data extracts examined, and in almost e v ery year of data
hat each extract covered. Studies from France [ 24 ] and Spain
 25 ] have also found frequent change points in their EHR-related
ata, despite being more limited in the types of data fields and
 ggr egation functions examined. Giv en the high risk that any
ata extract obtained from EHRs will contain temporal change
oints, ther e is consequentl y a r eal risk of flawed or incorrect
 esearc h r esults if r esearc hers do not take a ppr opriate steps to
dentify them and manage their impact. Any ways that can be
ound to assist them with this task would ther efor e be highly
eneficial. 
vailability of Source Code and 

equirements 

he dataset described in this article was produced as part of a PhD
r oject, for whic h the source code has been made available in a
enodo repository. 
roject name: Data quality in health r esearc h: the de v elopment
f methods to impr ov e the assessment of temporal data quality
n electronic health records 
r oject homepa ge: https:// doi.org/ 10.5281/ zenodo.7327780 
perating system(s): Platform independent 
r ogr amming langua ge: R v3.6.3 
ther r equir ements: R pac ka ges as listed in r env.loc k file 
icense: MIT 

a ta Av ailability 

he data set supporting the results of this article is available in
he Zenodo repository [ 26 ]. All research publications using data
eriv ed fr om Zooniv erse [ 6 ] a ppr ov ed pr ojects ar e r equir ed to ac-
nowledge the Zooniverse and the Project Builder platform. Please
se the text: “This publication uses data generated via the Zooni-
 erse.or g platform.”
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