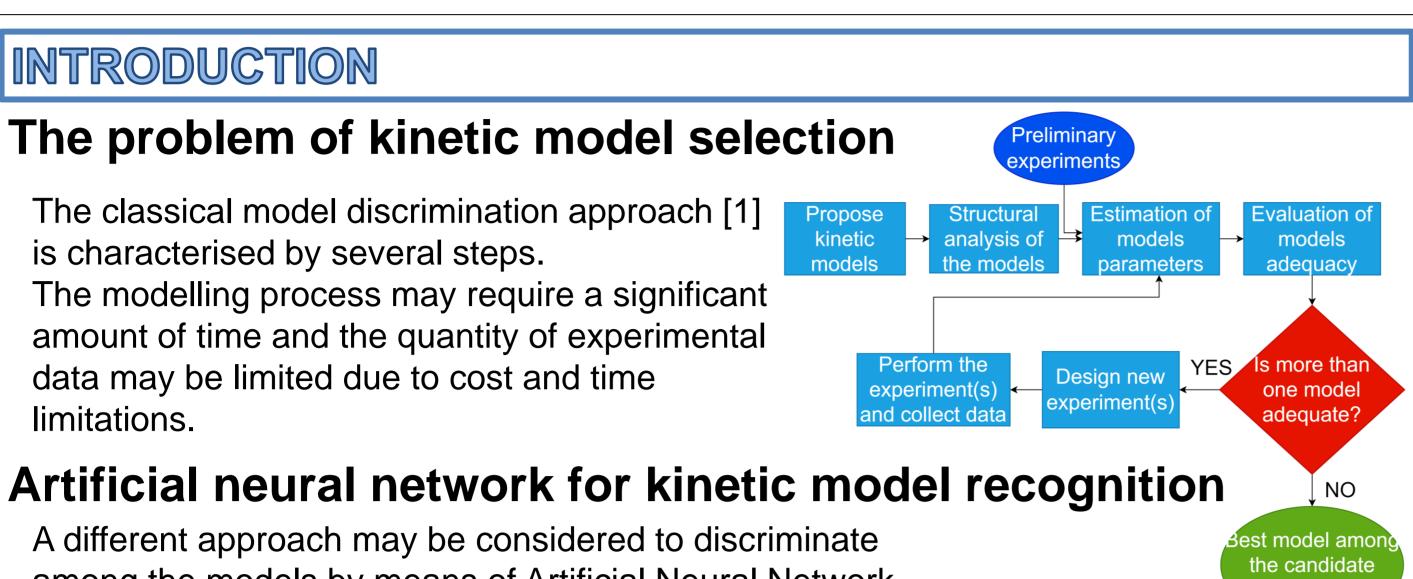
Optimal Design of Experiments for Artificial Neural Network-based Kinetic Model Recognition

Enrico Sangoi, Marco Quaglio, Federico Galvanin

Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK

Corresponding Author: f.galvanin@ucl.ac.uk



Kinetic models formula Material balances $\frac{dc_i}{dt} = \sum_{j=1}^{3} v_{ij} r_j \forall i = A, B, C$				Arrhenius-type kinetic factors			Experimental error $\epsilon \sim \mathcal{N}(0, \sigma^2)$		
		Series mechanism			Parallel mechanism				
Labe	l: 1	2	3	4	5	6	7	8	
r_1	$k_1 \cdot c$	$ \begin{array}{ccc} C_A & k_1 \cdot C_A \\ k_2 \cdot 0 \\ C_B & k_3 \cdot C_B^2 \end{array} $	$k_1 \cdot C_A^2$	$k_1 \cdot C_A^2$	$k_1 \cdot C_A$	$k_1 \cdot C_A$	$k_1 \cdot C_A^2$	$k_1 \cdot C_A^2$	
r_2	$k_2 \cdot ($	$k_2 \cdot 0$	$k_2 \cdot 0$	$k_2 \cdot 0$	$k_2 \cdot C_A$	$k_2 \cdot C_A^2$	$k_2 \cdot C_A$	$k_2 \cdot C_A^2$	
r_3	$k_3 \cdot 0$	$C_B \mid k_3 \cdot C_B^2$	$k_3 \cdot C_B$	$k_3 \cdot C_B^2$	$k_3 \cdot 0$	$k_3 \cdot 0$	$k_3 \cdot 0$	$k_3 \cdot 0$	
ULTS									

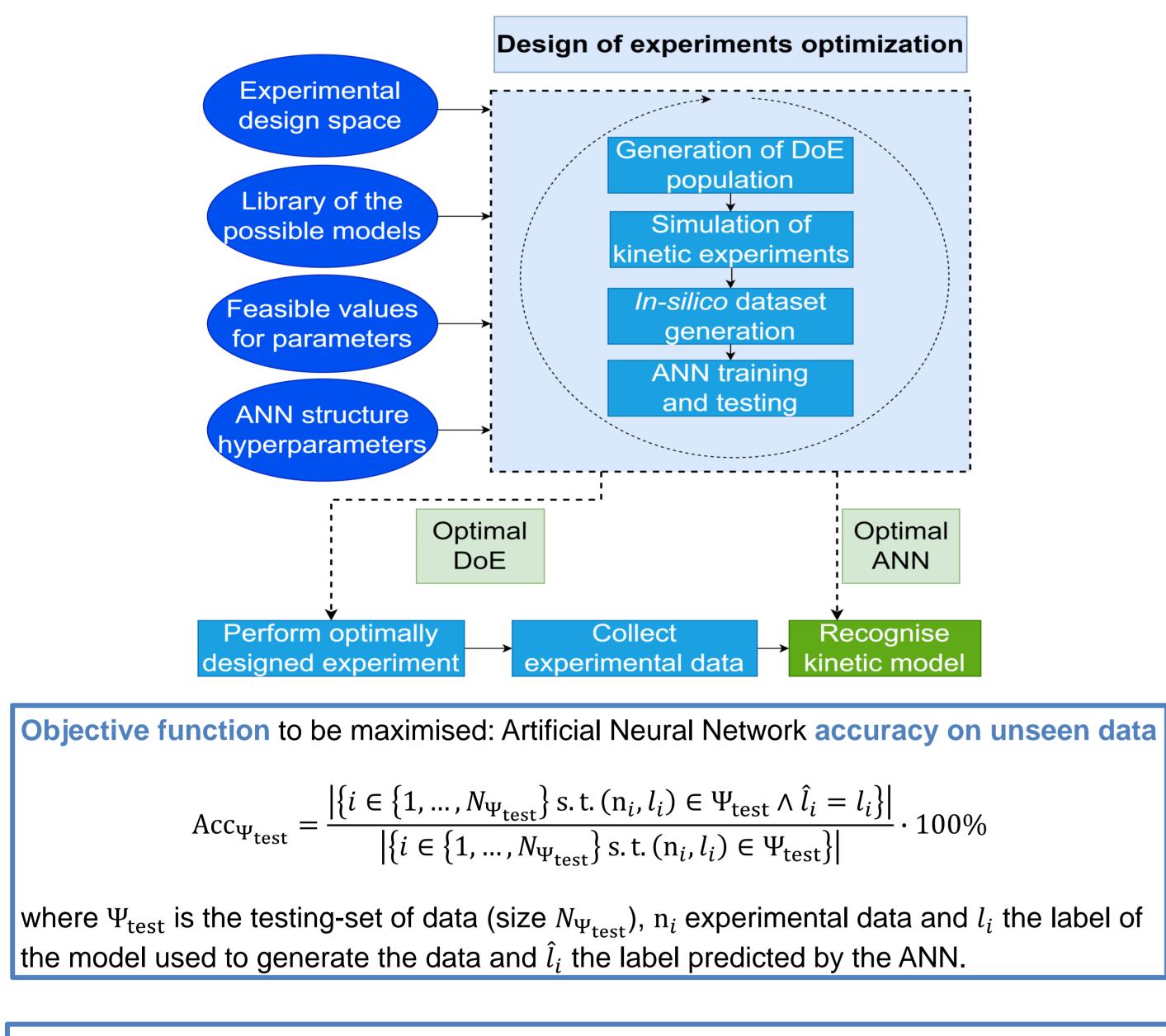
- among the models by means of Artificial Neural Network classifiers. [2]
- The advantages are
- Small amount of experimental data required (in silico dataset generation)
- ▲ No structural identifiability test → no rejection of any model a priori

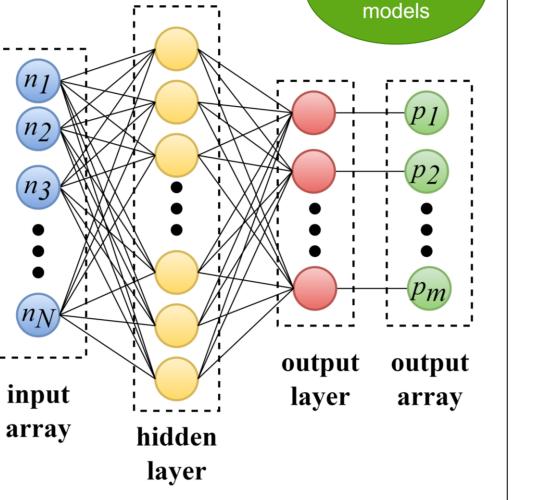
The limitations are:

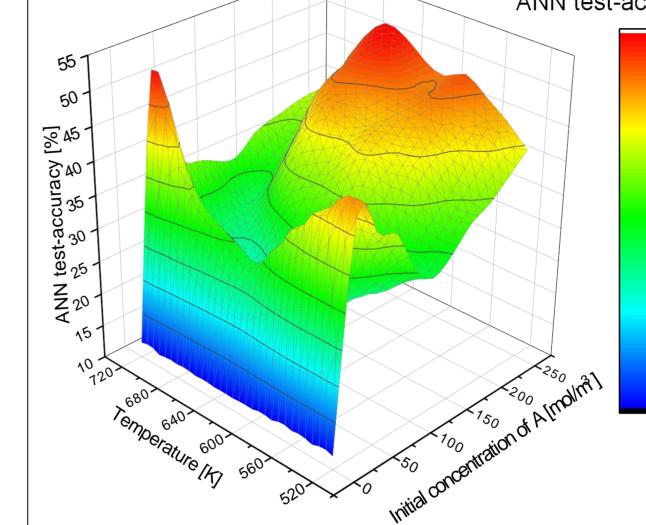
- No information about the model parameters from the discrimination
- Experimental design is fixed

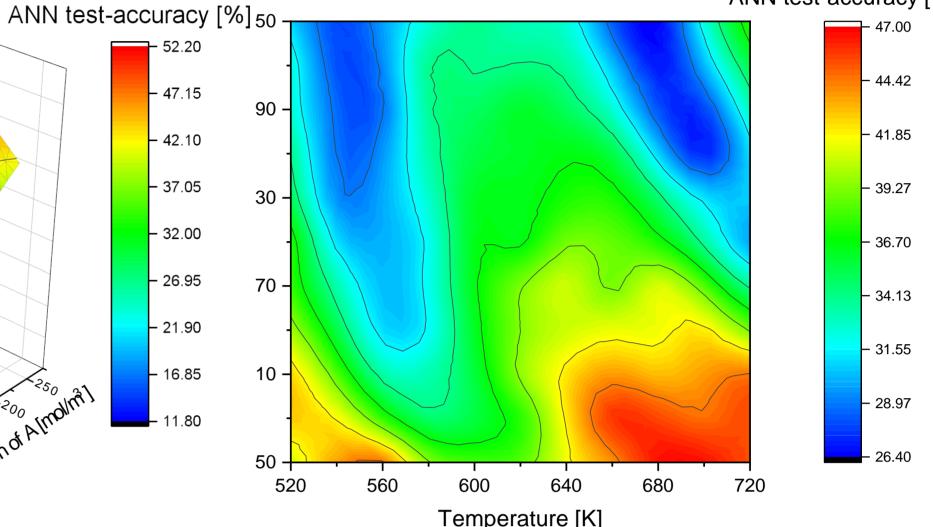
APPROACH TO OPTIMIZE THE DESIGN OF EXPERIMENTS

- We propose to couple the ANN application to model recognition with a **population algorithm** for optimizing the experimental conditions, **aiming to improve the ANN performance**.
- The number of experiments is provided as an input to the algorithm
- The ANN training is performed with simulated experimental data, which include parameter uncertainty within feasibility regions.
- Physical experiments are only required to be conducted at the identified optimal conditions, then the acquired experimental data is fed to the trained ANN.









Sargent Centre

Engineering

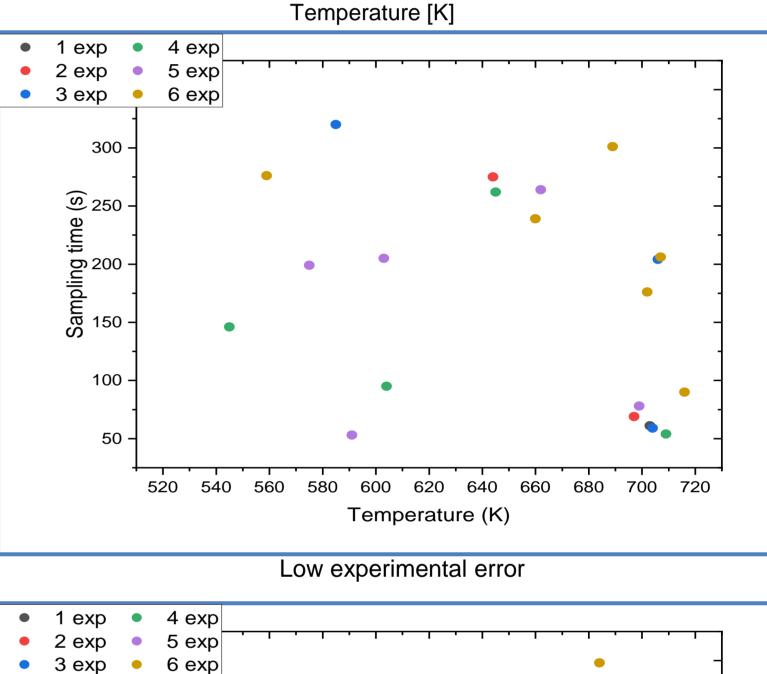
for Process Systems

SENSITIVITY ANALYSIS

- The choice of the experimental conditions has a strong impact on the ANN performance.
- Using a fixed experimental design may lead to suboptimal performance or to conduct unnecessary experiments.

OPTIMAL DESIGN OF EXPERIMENTS

- The optimization algorithm performance was satisfactory both in the case of low and high noise on experimental data.
- High levels of accuracy were 3 exp 6 exp obtained with just a few 300 experiments required even in the s 250 high experimental error scenario. The choice of which experimental ව 200 variables to manipulate affected Ug 150 the outcome in terms of ANN 100 accuracy. When the optimal ANN failed, the 50 correct model was always among 560 the top 3 ranked models. Temperature (K) High experimental error Noise Max ANN (%) accuracy exp. σ 90 acy, 100 % 1.00 80 test-acci 4.00 97 % 92 % 10.00 etwork ural Artificial —— Temperature, reactant concentration and sampling time σ =4.00 – – - Temperature and reactant concentration SCAN ME \bullet σ =10.00 ····· Temperature and sampling time GitHub repository for the Python code Number of experiments



CASE STUDY DESCRIPTION

The proposed approach has been tested on a case study with in silico generated experimental data. The system considered was an **isothermal batch reactor**, where the experimental conditions were defined by:

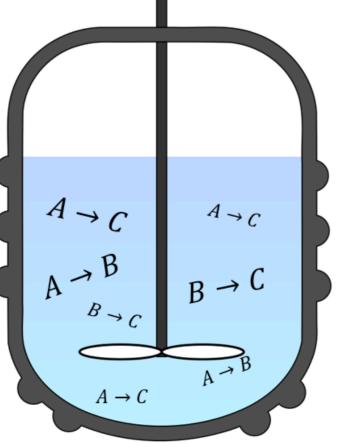
- Initial concentration of reactant A
- > Temperature
- > Sampling times

ymbol	Lower bound	Upper bound	
C_{A0}	$0 mol/m^3$	$250 mol/m^3$	F
Т	520 К	720 К	
t	50 sec	350 sec	T

The reacting system was characterised by three species: A, B, C

We aimed at discriminating among 8 candidate model structures, assuming the reactions could take place either in series or parallel, and being described either by 1st or 2nd order power law kinetic equations.

Series mechanism:	$A \xrightarrow{k_1} B,$	$B \xrightarrow{k_3} C$
Parallel mechanism:	$A \xrightarrow{k_1} B$,	$A \xrightarrow{k_2} C$



- The identification of kinetic model structures using ANNs was improved by optimizing the experimental design.
- > Steep increase in ANN accuracy with respect to the number of experiments.
- High levels of accuracy were obtained with a minimal number of experiments to be conducted.
- The proposed approach is promising for conducting a first discrimination among many candidate kinetic models.

REFERENCES

CONCLUSIONS

[1] S.P. Asprey and S. Macchietto, 2000, Statistical Tools for Optimal Dynamic Model Building, Computers & Chemical Engineering, 24, 1261-1267
[2] M. Quaglio, L. Roberts, M.S. Bin Japaar, E.S. Fraga, V. Dua, F. Galvanin, 2020, An Artificial Neural Network Approach to Recognise Kinetic Models from Experimental Data, Computers & Chemical Engineering, 135

ACKNOWLEDGEMENTS I wish to thank UCL's Department of Chemical Engineering and the EU Erasmus+ Study Abroad project that allowed me to study and do research at UCL during my Masters.

