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Abstract

Reliable estimates of volatility and correlation are fundamental in economics and
finance for understanding the impact of macroeconomics events on the market and
guiding future investments and policies. Dependence across financial returns is likely
to be subject to sudden structural changes, especially in correspondence with major
global events, such as the COVID-19 pandemic. In this work, we are interested in
capturing abrupt changes over time in the conditional dependence across US industry
stock portfolios, over a time horizon that covers the COVID-19 pandemic. The selected
stocks give a comprehensive picture of the US stock market. To this end, we develop a
Bayesian multivariate stochastic volatility model based on a time-varying sequence of
graphs capturing the evolution of the dependence structure. The model builds on the
Gaussian graphical models and the random change points literature. In particular, we
treat the number, the position of change points, and the graphs as object of posterior
inference, allowing for sparsity in graph recovery and change point detection. The high
dimension of the parameter space poses complex computational challenges. However,
the model admits a hidden Markov model formulation. This leads to the development of
an efficient computational strategy, based on a combination of sequential Monte-Carlo
and Markov chain Monte-Carlo techniques. Model and computational development are
widely applicable, beyond the scope of the application of interest in this work.

1 Introduction

Understanding the temporal evolution of the dependence structure among time series is a
fundamental topic in many fields, such as psychology (Williams, 2021), speech recognition
(Bilmes, 2004), genomics (Yin and Li, 2011), and, in particular, finance. In this latter con-
text, estimates of volatility and correlation of different financial instruments are largely used
for portfolio allocation, option-pricing, and to draw conclusions about the impact of macroe-
conomic events on the markets with the goal of guiding future investments and policies. In
particular, estimates of correlation are key to minimise the risk of investment portfolios
and define hedging strategies (see, among others, Lien et al., 2002; Lee, 2010; Thampanya
et al., 2020; Dutta et al., 2021). Changes in correlation modify the return/risk profile of the
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investments and are of interest to both investors and policy makers. To understand how
to better prepare for and deal with future major global events, it is important to estimate
the impact of the COVID-19 pandemic on the volatility and the dependence structure of
financial instruments (Just and Echaust, 2020; Sakurai and Kurosaki, 2020; Alqaralleh and
Canepa, 2021; Guidolin et al., 2021; Yousfi et al., 2021; Derbali et al., 2022; Dey et al.,
2022). Global “catastrophic” events, such as financial crises, often lead to sudden changes
in the dependence structure across. Financial markets’ reaction to the pandemic appears
to be no exception: around the end of February 2020 the Dow Jones and S&P 500 fell by
11% and 12%, respectively, marking the biggest weekly decline since the financial crisis of
2008, to the point that the Financial Times described such decline as the “quickest cor-
rection since the Great Depression”. Standard statistical approaches assume time-varying
dependence to change smoothly over time, which appears to be an unrealistic assumption
when investigating financial shocks. In this manuscript, we develop statistical machinery
to detect abrupt changes in the correlation structure among time series. Such machinery is
employed to detect the impact of the COVID-19 pandemic on the US stock market and, in
particular, on cross-industry relationships.

There exists a vast literature on models for time-varying second moments. More specifi-
cally, there are two main approaches: conditional volatility models, as the well-known ARCH
and GARCH (Engle, 1982; Bollerslev et al., 1994; Bollerslev, 1986; Engle and Bollerslev,
1986; Bauwens et al., 2006; Silvennoinen and Teräsvirta, 2009; Boudt et al., 2019), and
stochastic volatility models (e.g., Taylor, 1982; Wiggins, 1987; Hull and White, 1987; Asai
et al., 2006). The former class specifies second moments at a certain time t as a determin-
istic function of past values of observations, volatility, and possibly covariance, given model
parameters. The latter assumes second moments to follow a latent stochastic process, typ-
ically of Markovian structure, so that, even conditionally on all past information, volatility
and correlations are unobservable random variables evolving over time. While stochastic
volatility models are often more flexible and may achieve better inferential performances
when compared to conditional volatility approaches (Chan, 2013; Clark and Ravazzolo,
2015), they are more difficult to estimate since the likelihood is typically intractable, see,
e.g., Nilsson (2016).

Within both classes, a further distinction may be made between models that explic-
itly target the covariance matrix Σt and those focusing on the precision matrix Ωt = Σ−1

t ,
specifically allowing for zero entries in Ωt to favour parsimony. In this work, we develop
a Bayesian stochastic volatility model for the precision matrix. Specifically, the precision
matrix at time t is modelled conditionally on a graph at time t, which describes the depen-
dence structure among time series. As such, our work lies within the literature on Gaussian
graphical models (GGMs) (see, e.g., Carvalho and West, 2007; Wang and West, 2009; Prado
and West, 2010; Wang, 2010; Chandra et al., 2021). This approach presents an important
advantage: GGMs target conditional independence instead of marginal, leading to possi-
ble identification of macro-components (represented, for instance, by hubs and cliques in
the graph) and safeguarding against spurious relationships, in the sense that GGMs aid
understanding if pairwise correlations between variables can be fully or partially explained
by their relationship with one or more additional variables. The identification of graph
substructures is of particular interest in finance, where hubs may be interpreted as risk
factors driving the market, while cliques represent financial instruments exposed to the
same unobserved risk factor. See Figure 1 for a toy example clarifying the role of graph
substructures in financial markets and, in particular, the interpretation of hubs as risk fac-
tors. Moreover, marginal dependence and Pearson correlation simply measure the pairwise
co-movement between two investments, but do not provide any indication on whether a risk
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Figure 1: Toy example of graphs substructures in a financial market with three assets.
Market n.1: the asset Z acts as common risk factor in the market driving the dependence
and is a hub. Market n.2: the return of all three assets X, Y , and Z are driven by an
unobservable risk factor W and the tree assets form a clique. Market n.3: X and Y are
driven by a common risk factor, not affecting the asset Z. Market n.4: the three assets are
independent and the graph does not include any edge. Here ϵz, ϵx, ϵy are white noises.

Portfolio
Name Industry Description

NoDur Consumer Nondurables Food, Tobacco, Textiles, Apparel, Leather, Toys

Durbl Consumer Durables Cars, TVs, Furniture, Household Appliances

Manuf Manufacturing Machinery, Trucks, Planes, Chemicals, Off Furn, Paper

Enrgy Energy Oil, Gas, and Coal Extraction and Products

HiTec Business Equipment Computers, Software, and Electronic Equipment

Telcm Telecommunications Telephone and Television Transmission

Shops Shops Wholesale, Retail, and Some Services

Hlth Health Healthcare, Medical Equipment, and Drugs

Utils Utilities Utilities

Table 1: Industry portfolios descriptions. SIC codes for each portfolio are available
at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_
10_ind_port.html

factor generating the co-movement is specific to the two investments or it is common also
to other financial instruments of interest. On the contrary, entries of the precision matrix
represent co-movements conditionally on the effect of all the other instruments considered
in the model (Michis, 2022), so that an entry is non-zero if and only if the two returns are
dependent conditionally on all other investments.

Changes over time of second moments can be smooth or abrupt. The focus of this work
is on changes of the second type. Standard versions of the models cited so far assume
variances and covariances changing smoothly over time and, in particular, between any
two consecutive time points. For instance, Carvalho and West (2007) propose a Bayesian
dynamic stochastic volatility model based on GGMs and conditional independence. In
their construction, the graph structure is kept constant over time, while the covariance
matrix changes smoothly between any two consecutive time points. However, this feature
is often in contrast with what is observed in financial markets, where volatility clusters
(i.e., periods with a persistent value of volatility, that are interrupted by sudden changes)
and correlation breakdowns (i.e., substantial changes in correlations during stressed times
and financial crises) are well documented (see, for example, Von Furstenberg et al., 1989;
Contessi et al., 2014).
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Figure 2: Moving window: graph estimated with the R package GGMselect (Bouvier et al.,
2022). The four central graphs are computed on 80 time points, while the first and the last
graphs refer respectively to the the first 70 and last 68 weeks. The window is moved by 20
time points at the time from one graph to the next.

To detect the possible effect of COVID-19 pandemic on the US stock market, we analyse
the correlation structure between nine industry portfolios, considering logarithmic weekly
returns in the years 2019, 2020, and 2021. Weekly returns are computed starting from
the daily returns available at Kenneth R. French’s Data Library. The Kenneth R. and
French’s Data Library provides also portfolio returns corresponding to more fragmented
definitions of industries. However, our goal is to detect possible macro effects of the pan-
demic in the market, and for this reason, we focus on the industry portfolios described in
Table 1. Thanks to diversification within the same portfolio, the corresponding returns are
less volatile and appropriately represent the tendency of a whole industry. More details
about the construction of the portfolios can be found in Section 5.

Figure 2 shows empirical estimates of a graph describing the conditional dependence
structure over time. The estimates are obtained using a moving window of 80 weeks,
shifting in steps of 20 weeks from one graph to the next. Graph estimates are obtained
using an adaptive lasso approach as implemented in the R package GGMselect (Bouvier
et al., 2022). From this preliminary analysis, changes in dependence are already evident, as
well as the role of hub of the manufacturing and consumer non-durables industries. However,
it is difficult to determine whether the pandemic had an effect on the overall structure and
when. Moreover, it is well known that edge estimation in GGMs is sensitive to sample
size and this empirical approach is highly dependent on the arbitrary choice of the window
size (and corresponding sample size). To achieve our inferential goals, a sound modelling
strategy is needed to be able to effectively infer the existence and location of change points
due to sudden changes, still borrowing information across the entire time horizon.

Sudden changes in volatility and dependence have been modelled generalizing either con-
ditional or stochastic volatility models with the introduction of Markov switching regimes
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(see, among others, So et al., 1998; Haas et al., 2004; Bianchi et al., 2019; Caporale and
Zekokh, 2019). However, in a frequentist framework, Markov switching approaches require
an arbitrary choice of the number of different regimes and, consequently, ad hoc criteria for
model choice (see also Cribben and Yu, 2017). A full Bayesian model for evolving graphs
has been introduced by Warnick et al. (2018); similarly to Markov switching models, here
the graph evolves assuming one possible state out of a finite number of exchangeable (not
consecutive) states. Still in a Bayesian framework, Schwaller and Robin (2017) develop a
strategy for change point detection in graphical models, which, in order to preserve compu-
tational tractability, assumes independent consecutive graphs. Their method has the often
unrealistic implication that the graphs are estimated independently without borrowing in-
formation across the entire time horizon. Recently, Keshavarz et al. (2020) have proposed an
accurate algorithmic procedure, which employs multiple frequentist tests to detect abrupt
changes in the precision matrix of a GGM, however, the procedure does not provide es-
timates of the graph’s structure. Alternatively, penalised likelihood techniques have been
successfully employed for estimating dynamic GGMs (Zhou et al., 2010; Kolar and Xing,
2012; Danaher et al., 2014; Yang et al., 2015; Gibberd and Nelson, 2017; Hallac et al.,
2017; Roy et al., 2017; Bybee and Atchadé, 2018; Cribben, 2019; Yang and Peng, 2020;
Liu et al., 2021), however, such approaches do not allow for uncertainty quantification on
the number and temporal location of the abrupt changes and the graph topology. Similar
limitations are shared also by algorithmic approaches, as the one proposed by Anastasiou
et al. (2022). A detailed comparison between our contribution and penalised likelihood
approaches is provided in Sections 4 and 5.

In this work, we introduce a Bayesian dynamic GGM to detect abrupt changes in the
conditional dependence structure between time series. Our proposal is a piece-wise constant
stochastic volatility model. It favours sparsity at three levels by explicitly penalizing: (i)
the number of change points; (ii) the number of edges within each graph; (iii) the number
of edges which are activated (appear) and deactivated (disappear) at each change point. In
a Bayesian framework, it is straightforward, at least in principle, to perform posterior infer-
ence also on the number of change points and on their location. Finally, we note that our
model does not assume global Gaussianity, which would imply the existence of a single Gaus-
sian distribution for the entire temporal span. The assumption of global Gaussianity poses
challenges in the analysis of financial returns, which are typically characterised by heavy
tails and changes of behaviour. In our setup, we assume local Gaussianity, between two con-
secutive change points. Our assumption on the return distribution possibly accommodates
the excess of kurtosis typically observed in financial returns’ empirical distributions. More
precisely, the introduction of change points allows the Multivariate Gaussian distribution
to change along the overall time horizon so that the observed empirical distribution can be
thought of as been drawn from a mixture of Gaussians, which can accommodate heavy tails
(Cui, 2012).

The paper is structured as follows. In Section 2, the dynamic GGM is presented. Sec-
tion 3 contains a discussion of the computational challenges, the proposed algorithm, and
a simulation study to assess the performance of the sequential Monte-Carlo procedure. Re-
sults on simulated data and on the US stock market data can be found in Sections 4 and 5,
respectively. Section 6 concludes the paper with a discussion about future directions and
extensions. In Supplementary Material we provide the dataset, R codes to reproduce all
the results in this work, and additional results on the algorithm, simulation studies, and
the application.
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2 The dynamic Gaussian graphical model

We first introduce some definitions and notation. Let G = (V,E) represent an undirected,
simple, and unweighted graph, where V = {1, . . . , p}, p ≥ 1, corresponds to the set of
labelled nodes and E ⊆ { (h, k) ∈ V × V : h < k } the set of edges linking pairs of nodes.
There is a one-to-one correspondence between G and its p × p adjacency binary matrix
A, which is defined as follows. The element A[h, k] on the h−th row and k−th column is
equal to 1 when an edge exists between nodes h and k, and to 0 otherwise. Note that A is
symmetric with zeros on the main diagonal, since G is simple. When each node corresponds
to a random variable, the graph structure can be used to encode conditional independence
so that an edge is present between vertices h and k if and only if the h−th and k−th random
variables are dependent conditionally on all other variables in the graph (Lauritzen, 1996).

A powerful modelling tool is offered by GGMs, which assume that the distribution of
the random variables represented by the nodes in V is Multivariate Gaussian. Then, the
precision matrix Ω can be modelled conditionally on the graph, so that the presence of an
edge between two nodes in G implies a non-zero entry in the precision matrix between the
corresponding random variables, while the absence of an edge implies a zero entry. Let the
cone M+ be the space of symmetric positive-definite matrices on Rp×p. For graph G and
adjacency matrix A, M+(G) ⊂M+ denotes the set of the matrices, M , with M [h, k] = 0 if
and only if A[h, k] = 0, for any h ̸= k, so that Ω ∈M+(G).

In a time series setting, let Gt = (V, Et) describe the (conditional) dependence structure
at time t between p time series, each corresponding to one node in V . We propose a prior
distribution for the process {Gt, t ≥ 1}, obtained by letting t vary, which lies in the class of
stochastic volatility models.

Data are collected at common discrete time points t = 1, 2, . . . , T . We denote with
Yt the vector of observations at time t on the p variables (i.e., returns at week t for the
considered industry portfolios) and with Y1:T = [Yt]

T
t=1 the T × p data matrix. We assume

that, conditionally on a time-indexed collection of precision matrices {Ωt, t = 1, . . . , T}, the
vectors of observations are normally distributed and independent over time, i.e.,

Yt | Ωt
ind∼ Np(0,Ω

−1
t ) for t = 1, . . . , T (1)

where Np(µ,Σ) denotes a p-variate Gaussian distribution with mean µ and covariance ma-
trix Σ.

We model Ωt conditionally on a graph at time t, Gt. Then, to allow for time-varying
dependence structure among the p variables, we introduce a sequence of random change
points. A time point t is said to be a change point if the dependence structure among the p
observable variables changes between t− 1 and t, i.e., if Gt ̸= Gt−1 and, consequently, Ωt ̸=
Ωt−1. Let c1:κ = (c1, c2, . . . , cκ) be the (possibly empty) vector of ordered change points,
which, similarly to the precision matrices and the graphs, are unobserved. Here, κ ≥ 0
denotes the (random) number of change points. In what follows, we use the conventions
c1:0 = ∅, c0 = 1, and cκ+1 = T +1. Note that between consecutive change points the graph
and the corresponding precision matrix are kept constant. Given the sequence of graphs,
G1:T = {Gt, t = 1, . . . , T}, and change points, we assume that

Ω1 | G1 ∼WG1(d,D) (2)

and, for t ≥ 2,

Ωt | Ωt−1, Gt, c1:κ ∼

{
WGt(d,D), if t ∈ {c1, . . . , cκ}
δΩt−1 , otherwise

(3)
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where, δx denotes the Dirac delta distribution at x andWG(d,D) theG-Wishart distribution
(see Roverato, 2002; Dobra et al., 2011), with shape parameter d > 2 and inverse scale
matrix parameter D ∈M+. Its density w.r.t. the Lebesgue measure of dimension equal to
the free elements of a matrix in M+(G) is

P (Ω|G) =
1

IG(d,D)
|Ω|(d−2)/2 exp

{
− 1

2tr(DΩ)
}
, Ω ∈M+(G)

The stated constraints for hyper-parameters d and D suffice to ensure the integrability of
the above density (Diaconis and Ylvisaker, 1979). The normalizing constant is equal to

IG(d,D) =

∫
M+(G)

|Ω|(d−2)/2 exp
{
− 1

2tr(DΩ)
}
dΩ

and will be used later to compute the marginal likelihood of the data conditionally only on
the graph structure.

To complete the model, we next describe the graph dynamics. Denote with At the
adjacency matrix corresponding to Gt, then, for all h, k ∈ {1, . . . , p} with h < k, we specify
the prior distributions

A1[h, k] | ω
iid∼ Bernoulli

(
2ω

p− 1

)
(4)

and, for t ≥ 2,

At[h, k] | At−1[h, k], c1:κ, z
ind∼

{
| At−1[h, k]− Bernoulli

(
2z
p−1

)
|, if t ∈ {c1, . . . , ck}

δAt−1[h,k], otherwise
(5)

Notice that the hyper-parameter ω ∈ [0, (p − 1)/2] controls the graph sparsity, so that
the expected number of edges for the initial graph a priori equals pω, while the hyper-
parameter z ∈ [0, (p − 1)/2] controls the impact of an event on graph structure when a
change point is reached, in particular, the (a priori) expected number of edges that will
change is equal to p z. Our prior choice is reminiscent of the one proposed in Jones et al.
(2005), who recommend setting a prior edge inclusion probability equal to 2/(p−1) so that
the expected number of edges is p. The extra parameters ω and z allow for more control on
graph sparsity and temporal dependence. We note that alternative priors can be employed
to model the precision matrix and the graph as, for instance, the graphical horseshoe (Li
et al., 2019) and the prior proposed by Banerjee and Ghosal (2015). The former is a prior
used directly on the precision matrix, which requires (arbitrary) thresholding of its entries in
order to recover a sparse graph representation. The latter is more similar to our modelling
strategy and consists of three elements: (i) Bernoulli priors for the entries of the adjacency
matrix, conditionally on a maximum number of edges; (ii) a Laplace prior on the non-zero
off-diagonal elements of the precision matrix, and (iii) an exponential prior for the diagonal
elements, still imposing the positive definiteness of the matrix. This construction is still
computationally intensive.

Equations (1) and (2)-(5) can be viewed as observation and state dynamics, respec-
tively, of a hidden Markov model with the unobserved signal corresponding to the pair
{(Gci ,Ωci), i = 0, 1, . . . , κ} (see Figure 3 for a graphical representation). For more details
see, for example, West and Harrison (2006).

Finally, the prior distribution for c1:κ is chosen as

c1:κ|κ ∼ Uniform(Tκℓ)
κ | p0 ∼ Truncated−Geometric(p0) for κ = 0, 1, . . . ,KTℓ

(6)
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Latent

Observed Y1 . . . Yc1−1 Yc1 . . . Yc2−1 . . . Yck . . . YT

Ωc0 Ωc1 Ωcκ

Gc0 Gc1
. . . Gcκ

Figure 3: Graphical representation of the model conditionally on change points. Both
graph and precision matrix are constant between change points. Observations (Yt) are
independent conditionally on the model parameters over time, while are iid between change
points. Moreover, the precision matrices {Ωci , i = 1, . . . , κ} are conditionally independent
given the sequence {Gci , i = 1, . . . , κ}.

for hyper-parameter p0 ∈ (0, 1), so that the (a priori) number of expected change points is

E[κ] =
1− p0
p0

1− (1− p0)
KTℓ (p0KTℓ + 1)

1− (1− p0)KTℓ+1
(7)

Through appropriate choice of p0 in (6), we are able to enforce the desired level of sparsity on
the number of change points. Here, Tκℓ is the space of ordered κ-tuples c1 < · · · < cκ, with cj
in {2, . . . , T}, under the minimum-span constraint that cj+1−cj ≥ ℓ, for any j = 0, 1, . . . , κ,
with the convention c0 = 1 and cκ+1 = T + 1. Moreover, KTℓ is the maximum number
of change points compatible with the minimum-span constraint. Notice that for KTℓ

of moderate size, the second term in the product in (7) is negligible and the Truncated
Geometric in (6) approximates a standard Geometric distribution on N0 = {0, 1, . . . , }. The
imposition of the minimum-span constraint defined by ℓ ensures likelihood identifiability
between change points, leading to more stable computations and robust inference. Notice
that, between any two change points, the sample covariance/precision matrix has p(p+1)/2
entries. To guarantee likelihood identifiability of the model, we need the number of data
points between any two change points, i.e., (cj+1 − cj), to be greater than p. This poses
a trade-off: the lower ℓ, the more flexible the change-point detection procedure, and the
higher ℓ, the more stable the estimates of the precision matrices. In the simulation study
and in the application, we set ℓ equal to p+2. When p = 9, this means that each precision
matrix containing 45 entries is estimated with at least 99 single data points.

3 Bayesian inference via sequential Monte-Carlo

The dynamic GGM proposed herein is a hierarchical model, with the first layer represented
by the change points, c1:κ, the second by graphs and precision matrices (Gcj ,Ωcj ), and the
third by the observations. Markov chain Monte-Carlo (MCMC) methods developed directly
on such space of unobserved variables would face major challenges. We ignore the precision
matrices in this discussion as they are later integrated out. Gibbs-type approaches would
involve reversible-jump MCMC (Green, 1995), thus requiring the design of a joint update
on the “model” space (as determined by the change-points) and model “parameters” of
varying dimension (corresponding to the graphs). This joint space is entangled, with very
limited space for maneuvering, as updates on the graph space would be heavily constrained
by the strong prior Markovian dependencies amongst graphs.

8



Instead, we perform computationally effective posterior inference for the dynamic GGM
through a tailored sequential Monte-Carlo (SMC) algorithm. The proposed Particle MCMC
(PMCMC) method is quite appropriate for exploiting the hidden Markov model structure
conditionally on the change points, and naturally disentangles the updates on the change
points and the latent Markovian signal. See, e.g., Karagiannis and Andrieu (2013) and Pers-
ing et al. (2015) for related ideas. The proposed PMCMC algorithm is better understood
as comprised of an ‘outer’ cycle and an ‘inner’ cycle. In the former, the change points are
updated via a reversible jump Metropolis-Hasting (M-H) algorithm. In the latter, a parti-
cle filter, of enhanced performance due to a combination of adaptive tempering, dynamic
resampling, and mutation steps, is employed to sample the sequence of graphs and com-
pute the acceptance probability of the outer algorithm. In particular, for each M-H step,
the inner component provides an unbiased estimate of the conditional likelihood given the
proposed change point sequence together with a corresponding proposed graph sequence.
Adaptive tempering and resampling steps are used to improve the robustness of such esti-
mate, while the mutation step is used both to bring particles closer to the modal region of
the likelihood and to avoid depletion of the number of unique particles which can otherwise
be a consequence of successive resampling and tempering.

The overall PMCMC algorithm is well-understood as an “exact-approximate” one, in
the sense that it targets the correct posterior on the space of graphs and change points,
thanks to the unbiasedness (and positivity) of the estimator provided by the inner particle
filter.

3.1 Outer component

The key component in the development of the M-H step is the choice of proposal distribution,
q(c′1:κ′ | c1:κ), where c1:κ and c′1:κ′ are the current and proposed collections of ordered change
points, respectively. Starting from c1:κ, one of four alternative events (namely a birth, a
death, a global move, or a local move) generates the proposed new value. With probabilities
equal to P (B | c1:κ), P (D | c1:κ), P (Mglob | c1:κ) and P (Mloc | c1:κ), one of the following
four events takes place, respectively: a new change point is added to the current set (birth);
a change point is removed from the current set (death); one of the existing change points
is moved to another position (global move); one of the existing change points is moved to
another position in-between its neighbours (local move). When a new change point, c∗, is
created, c∗ is chosen uniformly over the set B(c1:κ, ℓ) ⊂ {2, . . . , T} of allowed positions (i.e.,
satisfying the minimum-span constraint), of size |B(c1:κ, ℓ)| =: n(c1:κ, ℓ) ≥ 0. Thus, in the
birth scenario

q(c′1:κ′ | c1:κ) =
P (B | c1:κ)
n(c1:κ, ℓ)

, κ′ = κ+ 1, c′1:κ′ = c1:κ ∪ c∗, c∗ ∈ B(c1:κ, ℓ) (8)

When a change point, c′, is removed, the change point is chosen uniformly among the
current change points, i.e., in the death scenario

q(c′1:κ′ | c1:κ) =
P (D | c1:κ)

κ
, κ′ = κ− 1, c′1:κ′ = c1:κ \ c′, c′ ∈ c1:κ (9)

To improve mixing and posterior exploration, we introduce also two move steps. When
a change point is moved, firstly, a change point c′ ∈ c1:κ is selected uniformly among the
current change points and removed. Then, if the step is a global move a new change point
is selected uniformly in B(c1:κ\c′, ℓ). If instead the step is a local move a new change point
c∗ is selected with probability proportional to

exp{−λ |c∗ − c′|}1{c∗∈[c̄l,c̄r]} (10)
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for algorithmic parameter λ > 0, with

c̄l = cl + ℓ, c̄r = cr − ℓ

where cl and cr denote the left-side and right-side neighbours of c′ in c0:κ+1. Thus, the
proposal kernel for a move step is

q(c′1:κ′ | c1:κ) =
P (Mglob | c1:κ)
κn(c1:κ\c′, ℓ)

+
P (Mloc | c1:κ) e−λ |c∗−c′|

κ
∑c̄r

χ=c̄l
e−λ |c∗−χ| 1{c∗∈[c̄l,c̄r]}

κ′ = κ, c′1:κ′ = c1:κ\c′ ∪ c∗, c′ ∈ c1:κ, c∗ ∈ B(c1:κ\c′, ℓ) (11)

Note that we prefer to write the joint kernel for both the global and local move, as the
same configuration c′1:κ might be reached by both type of moves. This needs to be accounted
for when computing the M-H acceptance probability to ensure detailed balance.

Finally, we choose the event probabilities as

P (B | c1:κ) =


1, if κ = 0

0, if n(c1:κ, ℓ) = 0

qB, otherwise

P (D | c1:κ) =


0, if κ = 0

q′D, if n(c1:κ, ℓ) = 0

qD, otherwise

and P (Mglob | c1:κ) = P (Mloc | c1:κ) = [1− P (B | c1:κ)− P (D | c1:κ)]/2

(12)

The Metropolis-Hastings acceptance probability is equal to

1 ∧
P (Y1:T |c′1:κ′)P (c′1:κ′) q(c1:κ|c′1:κ′)

P (Y1:T |c1:κ)P (c1:κ) q(c′1:κ′ |c1:κ)

where P (Y1:T | c1:κ) is the marginal likelihood of the data given the change points, i.e.,

P (Y1:T | c1:κ) =
∫

P (Y1:T | G1:T )P (G1:T |c1:κ)dG1:T

with

P (Y1:T | G1:T ) =

∫
P (Y1:T | G1:T ,Ω1:T )P (Ω1:T | G1:T )dΩ1:T

Since P (Y1:T | c1:κ) is not available in closed form, it needs to be estimated. Algorithm 1
contains the pseudo-code for the outer part of the algorithm described in this section. In
the next section we describe the SMC algorithm to approximate the marginal likelihood.

3.2 Inner Component: Particle Filter

As already mentioned, the inner component of the algorithm is used to compute P (Y | c1:κ),
i.e., the likelihood values required in the acceptance probability of the outer M-H, and to
provide proposed samples of the graphs to be accepted or rejected by the outer algorithm.

To compute the marginal likelihood given the change point sequence, a standard boot-
strap particle filter with multinomial resampling carried out at each change point, samples

N ≥ 1 particles {G(n)
cj }Nn=1, for 0 ≤ j ≤ κ, from the joint distribution

N∏
n=1

P (G(n)
c0 )×

κ∏
j=1

{ N∏
n=1

( N∑
l=1

w
(l)
j−1∑N

m=1w
(m)
j−1

P (G(n)
cj | G

(l)
cj−1

)
)}

10



Algorithm 1 Outer algorithm - Reversible jump M-H

Input: change point sequence c1:κ; B(c1:κ, ℓ); likelihood value P (Y1:T |c1:κ);
prior value P (c1:κ).

Output: new change point sequence c̃1:κ̃; B(c̃1:κ̃, ℓ); likelihood value P (Y1:T |c̃1:κ̃);
prior value P (c̃1:κ̃).

Sample event E from {B,D,Mglob,Mloc} according to (12);

if E = B then

Sample a new change point uniformly from B(c1:κ, ℓ) and propose c′1:κ′ = c1:κ ∪ c′;

Compute q(c′1:κ′ | c1:κ) according to (8);

else

Sample uniformly and remove a change point c′ from c1:κ;

if E = Mglob or Mloc then

if E = Mglob then

Sample a new change point c∗ uniformly from B(c1:κ\c′, ℓ);

else

Sample a new change point c∗ from the interval [c̄l, c̄r] according to (10);

Propose c′1:κ′ = c1:κ\c′ ∪ c∗ and compute q(c′1:κ′ | c1:κ) according to (11);

else

Propose c′1:κ′ = c1:κ\c′ and compute q(c′1:κ′ | c1:κ) according to (9);

Determine B(c′1:κ′ , ℓ) and compute q(c1:κ | c′1:κ′) according to (8), (9), or (11), respectively;

Compute prior P (c′1:κ′) and likelihood P (Y1:T | c′1:κ′) for proposed configuration;

Sample u from a Uniform(0, 1);

if u ≤ P (Y1:T |c′
1:κ′ )P (c′

1:κ′ ) q(c1:κ|c
′
1:κ′ )

P (Y1:T |c1:κ)P (c1:κ) q(c1:κ|c′1:κ′ )
then

Return c′1:κ′ , B(c′1:κ′ , ℓ), P (Y1:T |c′1:κ′), P (c′1:κ′).

else

Return c1:κ, B(c1:κ, ℓ), P (Y1:T |c1:κ), P (c1:κ).

where the unnormalised weights are defined as

w
(n)
j = P (Ycj :cj+1−1 | G(n)

cj ), 1 ≤ n ≤ N, 0 ≤ j ≤ κ

The unbiased estimate P̂ (Y | c1:κ) of P (Y | c1:κ) could then be obtained as

P̂ (Y1:T | c1:κ) =
κ∏

j=0

( 1

N

N∑
n=1

w
(n)
j

)
(13)

However, it is often the case that further algorithmic advances must complement the stan-
dard particle filter to control the variance of the estimate (13). It is well-understood that
such variability is critically linked to the performance of the overall PMCMC algorithm.
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Algorithm 2 Inner Algorithm - Particle Filter with Tempering

Input: Data Y1:T ; change points c1:κ; number of particles N ; ESS threshold ϵ;
number Sj of temperatures for graph j, ϕ0,j ≡ 0, ϕ0,Sj+1 ≡ 1, 0 ≤ j ≤ κ;
number of mutation steps M ≥ 1; temperatures {ϕ1,j , . . . , ϕSj ,j};
M-H kernel P̄j,s(Gcj |Gcj , Gcj−1), 0 ≤ j ≤ κ, 1 ≤ s ≤ Sj + 1;
P̄M
j,s denotes M iterations of such a kernel;

hyper-parameters ω, z, d, D.

Output: Unbiased estimate P̂ (Y1:T |c1:κ) > 0 and proposed sequence (Gc0 , . . . , Gcκ).

(Actions over n are understood to be repeated for 1 ≤ n ≤ N .)

Set P̂ = 1;

for j in 0 : κ do

if j = 0 then

Sample G0,n
c0

iid∼ P (Gc0) and set w0,n
0 = 1;

else

Initialise particles G0,n
cj

ind.∼ P (Gcj |G
Sj−1,n
cj−1 );

Initialise weights w0,n
j = w

Sj−1+1,n
j−1 ;

for s in 1 : Sj + 1 do

Calculate weights ws,n
j = ws−1,n

j ·
[
P (Ycj :cj+1−1|Gs−1,n

cj )
]ϕj,s−ϕj,s−1

;

if ESS(ws,1:N
j ) < ϵN then

P̂ ← P̂ · 1
N

∑N
n=1w

s,n
j ;

Resample {Gs−1,n
cj , G

Sj−1,n
cj−1 } according to the weights {ws,n

j };

Mutate particles, i.e., sample Gs,n
cj

ind.∼ P̄M
j,s (Gcj |G

s−1,n
cj , G

Sj−1,n
cj−1 );

Set ws,n
j = 1;

else

set Gs,n
cj = Gs−1,n

cj ;

Sample a graph Gcκ from {GSκ+1,n
cκ , w

Sκ+1,n
κ }n and retrieve its genealogy, (Gc0 , . . . , Gcκ),

amongst particles {GS0+1,n
c0 }n,. . . , {GSκ−1+1,n

cκ−1 }n.

Return P̂ (Y1:T |G1:T
) = P̂ and the proposed sequence (Gc0 , . . . , Gcκ).

See e.g. Pitt et al. (2012); Doucet et al. (2015); Sherlock et al. (2015) where, in various
model settings, standard deviations centred around 1 are proposed for the estimate of the
logarithm of the normalising constant, with exponential decay in performance for PMCMC
reported when the standard deviation exceeds a (not too high) threshold.

A standard approach to reduce standard deviation for given number of particles, is
via the application of tempering, i.e. introduction of a sequence of temperatures together
with corresponding mutation steps. Such approach has been shown, in cases, to reduce the
required number of particles for a target error from exponential to quadratic in the number
T of log-likelihood terms, see e.g. Beskos et al. (2014); Ruzayqat et al. (2021). Application
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of tempering will indeed be critical for the class of models we are considering in this work,
as shown in Section 3.2.4. The temperatures are determined on-the-fly, thus avoiding the
introduction of additional tuning parameters in the algorithm. The complete algorithm can
be understood as a particle filter applied on a Feynman-Kac model (Del Moral, 2004) that
we extend to include additional Markov iterations and potentials. The overall approach is
summarised in Algorithm 2. We stress that the particle filter that includes the tempering
and mutation steps will still provide unbiased estimates of p(Y1:T |c1:κ), and the induced
overall PMCMC method will still target the exact posterior P (c1:κ, Gc0:cκ |Y1:T ), see e.g. the
original paper on PMCMC (Andrieu et al., 2010) for a detailed justification.

3.2.1 Preliminary run – Determination of temperatures

Within Algorithm 2, the sequence of temperatures is treated as given. In practice, at each
iteration of the outer algorithm, the temperatures are determined by a separate preliminary
and independent execution of the particle filter, that identifies and stores the temperatures,
that are later used within Algorithm 2. Similar ideas have been used in the SMC literature,
see e.g. Jasra et al. (2011). That is, we first determine the temperatures according to a
target effective sample size (ESS), and, then, apply the particle filter in Algorithm 2, with
the obtained temperatures, to produce a robust unbiased estimator of the likelihood needed
to compute the acceptance probability in Algorithm 1.

We describe here how to compute the temperatures {ϕ1,j , . . . , ϕSj ,j} used in Algorithm 2,
for Sj ≥ 0, where ϕ0,j ≡ 0, ϕ0,Sj+1 ≡ 1, and 0 ≤ j ≤ κ. Note that Sj , the number
of temperatures, can vary across graphs at different change points, i.e., it depends on j.
Within this subsection, particles and weights Gs,n

cj , ws,n
j refer to such a preliminary execution

of the particle filter. The temperatures are selected on-the-fly, based on the target ESS,
denoted by ESS0, with ESS0 = ϵN , ϵ ∈ (0, 1). Consider the current collection of particles
and weights, Gs−1,n

cj and ws−1,n
j , generated while filtering data points Ycj :cj+1−1, and the

corresponding likelihood factor
[
P (Ycj :cj+1−1 | Gcj )

]ϕs−1,j up to the present step. Then, the
next temperature ϕs is determined so that the ESS equals the target, i.e., ESS(ϕs) = ESS0.
More precisely, define the next set of weights as function of the next temperature

ws,n
j (ϕ) =

[
P (Ycj :cj+1−1 | Gs−1,n

cj )
]ϕ−ϕs−1,j

and consider

ESS(ϕ) :=

(∑N
n=1w

n
s,j(ϕ)

)2

∑N
n=1

(
wn
s,j(ϕ)

)2 = ϵN

whose solution – assuming it exists within (ϕs−1,j , 1] – provides the next temperature ϕs,j .
The solution is obtained with a simple fast bisection method. If ESS(1) ≥ ϵN , we simply
select ϕ = 1. With this procedure we obtain all temperatures related to data Ycj :cj+1−1 and
we can then proceed to the next filtering step. We set ϵ to 1/2 to obtain a minimum ESS
of N/2, which is a common choice (see, e.g., Chopin et al., 2020, p.133). See Algorithm 3
for a detailed description.

3.2.2 Determination of mutation kernel P̄

The mutation kernel P̄ is used within the algorithm to jitter particles, and move them
towards the centre of the support of each filtering distribution under consideration during
a full application of the particle filter. The addition of mutation steps has been shown
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Algorithm 3 Inner Algorithm - Temperature Tuning (Preliminary particle filter)

Input: Data Y1:T ; change points c1:k; number of particles N ;
hyper-parameters w, z, d, D; ESS threshold ϵ; mutation steps M ≥ 1;
M-H kernel P̄j,s(Gcj |Gcj , Gcj−1) that preserves the law[
P (Ycj :cj+1−1|Gcj )

]ϕj,s · P (Gcj |Gcj−1),
P̄M
j,s denotes M iterations of such a kernel.

Output: Temperatures {ϕ1,j , . . . , ϕSj ,j}, Sj ≥ 0, ϕ0,j ≡ 0, ϕ0,Sj+1 ≡ 1, 0 ≤ j ≤ κ.

(Actions over n are understood to be repeated for 1 ≤ n ≤ N .)

for j in 0 : κ do

if j = 0 then

Sample G0,n
c0

iid∼ P (Gc0) and set w0,n
0 = 1;

else

Initialise particles G0,n
cj

ind.∼ P (Gcj | G
Sj−1,n
cj−1 );

Initialise weights w0,n
j = w

Sj−1+1,n
j−1 ;

s← 1; ϕ0,j ← 0; ϕs,j ← 1;

while ϕs,j ̸= ∅ do

Find ϕs,j ∈ (ϕs−1,j , 1] so that ESS(ϕs,j) ≥ ϵN ;

if ϕs,j = ∅ then

Sj = s− 1;

else

Set ws,n
j =

[
P (Ycj :cj+1−1 | Gs−1,n

cj )
]ϕs,j−ϕs−1,j

;

Resample {Gs−1,n
cj :cj+1−1, G

Sj−1,n
cj−1 } according to the weights {ws,n

j };

Set ws,n
j = 1;

Mutate particles, i.e., sample Gs,n
cj

ind.∼ P̄M
j,s (Gcj | G

s−1,n
cj , G

Sj−1,n
cj−1 );

s← s+ 1

Set w
Sj+1,n
j =

[
P (Ycj :cj+1−1 | Gs−1,n

cj )
]1−ϕs−1,j

;

Return {ϕ1,j , . . . , ϕSj ,j}, Sj ≥ 0, 0 ≤ j ≤ κ.

to be, in many cases, critical, both in theoretical and experimental works, see e.g. Beskos
et al. (2014); Ruzayqat et al. (2021) and Llopis et al. (2018); van Leeuwen et al. (2021),
respectively. In Section 3.2.4, we illustrate such impact for the specific model at hand
through a simulation study.

For the overall algorithm to ensure a correct particle filter on an extended space, the
user-specified mutation kernel P̄j,s(Gcj | Gcj , Gcj ) must have invariant distribution

Gcj 7→
[
P (Ycj :cj+1−1 | Gcj )

]ϕj,s × P (Gcj | Gcj−1)
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where we use the convention that Gc0−1 = ∅ in which case the rightmost term becomes the
prior defined by (4). This is readily achieved via a M-H step. That is, for each current
segment cj : cj+1 − 1, temperature ϕj,s, graph Gcj , with adjacency matrix Acj = Acj [h, k],
and given Gcj−1, we define a proposed graph G′

cj , with adjacency matrix A′
cj = A′

cj [h, k],
using the symmetric transition

Acj [h, k]
′ | Acj [h, k]

ind∼ | Acj [h, k]− Bernoulli
(

2s0
p−1

)
| (14)

for algorithmic tuning parameter s0 ∈ (0, (p− 1)/2). Thus, under the proposal in (14), the
expected number of flips in the edges in s0 · p. The acceptance probability for the mutation
step is

1 ∧

[
P (Ycj :cj+1−1 | G′

cj )
]ϕj,s

× P (G′
cj | Gcj−1)[

P (Ycj :cj+1−1 | Gcj )
]ϕj,s × P (Gcj | Gcj−1)

3.2.3 Likelihood given the graph structure

An important quantity required within the particle filter is the marginal likelihood

P (Ycj :cj+1−1 | Gcj ) =

∫
M+(Gcj )

P (Ycj :cj+1−1 | Ωcj )P (Ωcj | Gcj ) dΩcj

Since the G-Wishart law is conjugate, we can integrate out the precision matrices Ω1:T .
That is, we have (Atay-Kayis and Massam, 2005)

P (Ycj :cj+1−1 | Gcj ) =
1

(2π)(cj+1−cj)p/2

IGcj
(d+ (cj+1 − cj), D +Hj)

IGcj
(d,D)

where, for j = 0, . . . , κ,

Hj =

cj+1−1∑
i=cj

Yi Y
⊤
i

Notice that, while computing the likelihood of the graphs, we marginalize over Ωt and,
thus, the particles (from the inner algorithm) consist of only the graphs. However, after
running the particle filter and thanks to the conjugacy properties of the G-Wishart law,
a straightforward independent sampler can be used to get both marginal and conditional
posterior of the precision matrices, where with conditional posterior distribution we mean
the posterior distribution conditional on the point estimates of the graphs. The normalising
constant of the G-Wishart prior can be factorised (Roverato, 2002; Uhler et al., 2018), i.e.,
for a given graph G,

IG(d,D) =

∏r
m=1 IGPm

(d,DPm)∏r
m=2 IGSm

(d,DLm)
(15)

where P1;L2, P2; . . . ;Pr, Lr, is a perfect sequence of prime components and corresponding
minimal separators of G (see, e.g., Chapter 2 of Lauritzen, 1996, for details) and DPm is the
submatrix of D corresponding to the rows and columns in Pm. In the case of a decomposable
graph G, all prime components are complete graphs. For complete graphs the G-Wishart
distribution coincides with the Hyper-Wishart distribution (Dawid and Lauritzen, 1993),
for which an analytical expression for the normalising constant is available:

IGPm
(d,DPm) =

2(d+pm−1)pm/2Γpm(
d+pm−1

2 )

|DPm |(d+pm−1)
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Here Γd(·) is the multivariate Gamma function of dimension d and pm is the dimension
of DPm . Note that, by construction, the minimal separators are complete sub-graphs of
G, thus the terms in the denominator in (15) are analytically computable. For a general,
non-decomposable graph G, Roverato (2002); Dellaportas et al. (2003); Atay-Kayis and
Massam (2005); Carvalho et al. (2007) propose Monte-Carlo methods for the approximation
of IG(d,D). Herein, to compute the normalizing constant, we employ the method of Atay-
Kayis and Massam (2005) implemented in the function gnorm of the R package BDgraph
(Mohammadi et al., 2022). When dealing with large number of nodes, the implementation
of more sophisticated algorithms, such as the exchange algorithm by Murray et al. (2006), is
advisable (see, e.g., Cheng and Lenkoski, 2012; van den Boom et al., 2022, for an application
to GGMs).

3.2.4 Evaluation of SMC approximation

The inner SMC algorithm provides unbiased estimates of the marginal likelihood condi-
tionally on the change points. The variability of such estimates depends on the number of
particles N , and the effect of the tempering and mutation steps, with the number of the
latter, M , specified by the user. Thus, a trade-off is posed between accuracy of estimates
and computational time.

To assess the effect of the number of particles and the mutation step, and, in general,
obtain insights into the performance of the SMC component, we perform a series of simu-
lation studies. We simulate data for p = 10 nodes and T = 200 observation instances. We
then fix the change point sequence to its known true value, and carry out 30 independent
executions of the SMC algorithm, for each different combination of N ∈ {200, 500, 750} and
M ∈ {0, 5, 10, 20}. Recall that the mutation steps are performed only when the ESS falls
below the threshold ϵN , where ϵ is here fixed to be N/2. We consider two data generating
mechanisms. The first (Scenario A) has no change points and the p variates are mutually
independent (see Figure B.1.1 (a) in the Supplement for the corresponding graph). In Sce-
nario B we set a change point at t = 70, and the two graphs (before and after the change
point) encode some non-trivial dependence. The full graph structure of Scenario B is de-
scribed later in Section 4.1 and displayed in Figure B.1.2 of the Supplement. Figure A.1 of
the Supplement and Figure 4 show the box-plots of the estimates of the log-likelihood, the
standard deviation, and the running time of the inner SMC algorithm coded in R (and run
with an Intel Xeon W-1250 processor), under scenarios A and B, respectively.

Under Scenario A, the variability of the estimates is limited, as expected, for all pairs
(N,M) since data are simulated under the assumption of independence with no change
points. However, in real scenarios, as the analysis of financial markets, this is highly un-
likely to be the case and the computational machinery here developed is essential. Figure 4
shows similar box-plots obtained under the more realistic and challenging Scenario B. Here,
we obtain higher variability with values of standard deviation ranging from 2.986 to 29.297.
These results highlight the importance of the tempering and mutation steps for the over-
all algorithmic performance (even accounting for the increased computational time), and
in particular for recovering the complex dependence structures. Their role is essential in
reducing variability of the estimates of the normalising constant. Lastly, notice that com-
putational time is increased compared to Scenario A as a consequence of: (i) the presence
of a change point; (ii) the computational complexity of the Monte Carlo iterations used to
compute IG(d,D), which increases when particles concentrate on less sparse graphs; (iii)
and the increased number of times the ESS threshold is reached.
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Figure 4: Log-likelihood estimates for Scenario B obtained with the particle filter by fixing
the change points to the truth. Distinct box-plots correspond to different numbers of
particles N and/or mutations steps M . For each pair (N,M), we run the algorithm 30
times and obtain the log-likelihood estimates. Each box-plot shows the distribution of such
estimates. The variability of the estimates is rather limited for all pairs (N,M), provided
that M ≥ 5.

4 Model performance on simulated data

WE investigate model performance through a simulation study which includes five different
scenarios. For each scenario, we simulate data for T = 200 observation times. There are
no change points in Scenarios 1 and 2, there is one change point in Scenario 3, and there
are three change points in Scenario 4.Finally, in Scenario 5 the dependence structure, as
captured by the precision matrix, presents smooth changes and thus our model is misspec-
ified. The number of nodes is p = 10 in Scenarios 1, 2, 3, and 5, and p = 20 in Scenario 4.
In terms of the abruptness of changes in the precision matrix, Scenario 4 presents highly-
abrupt changes, Scenario 3 presents mildly-abrupt changes, and Scenario 5 presents smooth
changes. For a detailed description, see Sections 4.2, 4.1 and Section B.4 of the Supplement.

To carry out posterior inference, we run the algorithm to estimate the change point
sequence, usingN = 200 particles, M = 10 mutation steps, and performing 10,000 iterations
of the outer component, of which the first 2,000 are discarded as burn-in. Then, we re-run
only the inner SMC with N = 1, 000 particles and M = 20 mutation steps to obtain the
graph estimates conditionally on the maximum-a-posteriori (MAP) estimate of the change
point sequence obtained in the first step. When the true sequence of change points is the
null set (Scenarios 1 and 2), we initialise the MCMC chain at (c1 = 51, c2 = 101, c3 = 151),
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whereas when the graph and/or the precision matrix changes (Scenario 3, 4, and 5), we
initialise the chain to the state of zero change points. In real applications, when the change
points are unknown, we suggest initialising the chain to no change points. The adopted
initialization for these simulations better tests the convergence speed of the algorithm.

The inference results for no change points show the expected good performance of the
model in terms of both identification of change points and recovery of the dependence
structure. The posterior concentrates on the true state of no change points, with posterior
probability of no-change points not falling below 0.98 in all replicates. The area under the
curve (AUC) for edge detection is approximately 1. We refer to section B of the Supplement
for a more detailed presentation of the simulation studies for Scenarios 1, 2, and 5. The
following Sections describe Scenarios 3 and 4.

4.1 Simulation results for one change point

The third simulation scenario (Scenario 3) is obtained by setting one change point at t = 70
and generating two precision matrices as in Peterson et al. (2015) and Molinari et al.
(2022b). In particular, we first define the Ωc0 and then derive Ωc1 as perturbation of Ωc0 ,
which defines a mildly-abrupt change. Firstly, Ωc0 is obtained by setting diagonal elements
equal to 1, the first off-diagonal elements to 0.5, i.e., Ωc0 [h, h+ 1] = Ωc0 [h+ 1, h] = 0.5, for
h = 1, . . . , 9, and the remaining elements to 0. To construct Ωc1 , we randomly remove five
edges among the active ones in Gc0 and set to 0 the corresponding entries in the precision
matrix. Then we add five randomly selected edges drawn from the set of inactive edges
in Gc0 . Finally, a precision entry equal to 0.2 is assigned to the new edges. The obtained
matrix is not necessary positive-definite, and, to this end, we compute the nearest positive-
definite approximation through the R function nearPD (Higham, 2002), available in the R
package Matrix (Bates et al., 2022). The resulting graphs are shown in Figure B.1.2 of the
Supplement. We note that the computation of the nearest positive-definite matrix may
result in a strong shrinkage of the non-zero elements in the precision matrix, which may
cause unrealistic high values in the correspondent covariance matrix. However, this is not
the case in our simulation scenario (see Figure B.1.4 and B.1.5 in the Supplement, where
the simulated covariance matrices and data are displayed). We consider 20 replicates of
Scenario 3.

The hyperparameter ω in (4) is determined using an approach inspired by empirical
Bayes techniques, so that a priori the expected number of edges for the graphs is equal to
the number of edges detected by estimating one unique graph using all the time points. To
this end, we estimate the graph using an adaptive lasso approach, which is a modification of
the estimation procedure proposed by Meinshausen and Bühlmann (2006) inspired by the
adaptive lasso of (Zou, 2006), as implemented in the R package GGMselect (Bouvier et al.,
2022). For the hyperparameter z in (5), we opt for z = 0.1, so that a priori we expect
only one edge to change at each change point, favouring graph similarity. This choice
also allows us to better understand model performance and hyperparameter sensitivity,
as in our simulations we force 10 edges to change across the change point, an event to
which our prior associates a probability lower than 4 · 10−8. The hyperparameter p0, which
controls the a priori number of the change points, is set to p0 = 0.1 to favour sparsity.
The hyperparameters of the G-Wishart distribution are set to the common values of δ = 3
and D = Idp. In Section C.5 of the Supplement we provide hyperparameter sensitivity
analysis carried on the real dataset. The change point detection procedure appears to be
unsensitive to the choice of the hyperparameters and the graph recovery performance is
limitedly affected by the choice of z.
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True MAP MAP prob 90% 95%
change point est. prob. κ = 1 C.I. C.I. Mean Median

Rep. 10 (70) 0.306 0.971 [70, 74] [70, 79] 72.21 71
Rep. 5 (70) 0.294 0.987 [70, 80] [70, 80] 73.34 72
Rep. 3 (70) 0.289 0.975 [69, 79] [68, 79] 71.17 70

Scenario 3 (70)

Rep. 11 (68) 0.245 0.966 [68, 76] [68, 81] 70.60 70
Rep. 20 (73) 0.179 0.965 [67, 75] [66, 77] 71.19 71
Rep. 12 (74) 0.191 0.933 [67, 83] [67, 83] 73.53 73

Table 2: Scenario 3: Posterior summaries for change points of the three best and three
worst replicates in terms of MAP estimate and MAP probability. MAP estimates, MAP
probabilities (for the posterior over all configurations of change points), posterior probability
of the number of change points being 1, and credible intervals, mean and median of the
position of the change point (conditionally on having one change point). Credible intervals
are obtained computing the smallest credible sets with 90% and 95% credibility, which are
not necessary continuous intervals, and then using the minimum and the maximum time
points in the credible set as extremes of the provided interval.
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Figure 5: Panel (a): FPR versus PPI threshold, for Scenario 3, computed via 20 replicates.
Panel (b): ROC curve in Scenario 3, computed via 10 replicates.

Table 2 contains posterior summaries of the three best and three worst replicates based
on the accuracy in the recovery of the change point configuration. Summaries for all repli-
cates can be found in Section B.3 of the Supplement. In all replicates, the posterior distri-
bution of the number of change points is concentrated around 1, with a posterior probability
greater or equal to 0.91. Moreover, though the space of sequences that satisfy the minimum
duration constraint of ℓ = 12 for T = 200 includes more than 4 · 1012 sequences, in eight
of the 20 replicates the MAP estimate (which minimises the 0 − 1 loss function) coincides
with the true state c⋆ = 70, and in all replicates the MAP is contained in the interval
[68, 74]. Moreover, Table 2 reports also the 90% and 95% credible intervals, the mean, and
the median for the position of the change point, confirming that the posterior is concen-
trated around the true state in all replicates. Figure 5a shows the combined false positive
rate (FPR) of edge detection for the two graphs as a function of the threshold used for the
posterior probability of inclusion (PPI). FPRs show a reasonable pattern, and, for the 0.5
threshold, the FPR is 0.156. Figure 5b displays the combined ROC curve, with an AUC
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approximately equal to 0.86. The graph estimates used to evaluate the FPRs are obtained
conditionally on the estimated change point sequence, even when it does not coincide with
the true one. Indeed, the MAP always identifies a single change point, so, we compare the
estimated graphs before/after the estimated change point, with the true graph before/after
the true change point for fairness of results.

Lastly, we compare the results with those obtained by applying the group-fused graphical
lasso (GFGL), introduced by Gibberd and Nelson (2017) (see also Gibberd and Roy, 2017),
and the LOcal Group Graphical Lasso Estimation (loggle) of Yang et al. (2015). Similarly
to our proposal, GFGL consists of a piece-wise constant graphical model. Differently from
our model, it is estimated employing a penalized likelihood approach, where two penalties
act favouring both sparsity of the graph structure (i.e., shrinkage penalty) and sparsity in
the number of change points (i.e., smoothing penalty). The loggle approach is also based
on a penalised likelihood approach, but it assumes that the graph topology is gradually
changing over time and, thus, cannot be used to detect change points. We compare our
approach with an “oracle version” of loggle, where we estimate the graphs knowing the
position of the change points.

From a theoretical point of view, both GFGL and loggle prohibit principled uncertainty
quantification on the number and location of change points and graph structure. Contrarily,
our strategy allows for straightforward uncertainty quantification, which is one of teh main
advantages of the Bayesian framework. However, as it is well-known, Bayesian posterior
inference typically comes at the expense of the computational time needed to estimate
the model. So, in this scenario, GFGL and loggle produce estimates in a few seconds or
minutes and our dynamic Gaussian graphical model requires hours to be estimated (see
D.2 in the Supplement for details on computational time). Results from the GFGL model
are obtained for different values of the hyperparameters λ1 and λ2. The hyperparameters
λ1 and λ2 control respectively the shrinkage and the smoothness of the solution; for more
details see Gibberd and Nelson (2017). Detailed output summaries for the GFGL are
presented in Section B.3 of the Supplement. As already noticed by Gibberd and Nelson
(2017), GFGL’s results can be highly sensitive to the choice of the hyperparameters in
terms of both detected change points and recovered graph structure. In our experiment,
the number of change points estimated by GFGL varies from one to seven, depending on
the simulation replicate and on the choice of hyperparameters λ1 and λ2. The location of
the change points also varies largely across the different simulation replicates. Contrary,
our model identifies the correct number of change points and their approximate position
in all replicates. The “oracle version” of the loggle model gives a FPR of 0.242 and a
TPR of 0.825. Contrary, with our approach, if we fix the FPR to 0.242 the corresponding
TPR is 0.895, fixing the TPR to 0.825 leads to a FPR of 0.181. (see Table B.3.2 in the
Supplement).

4.2 Simulation results for more changes points and nodes

The fourth simulation scenario (Scenario 4) is obtained simulating data for T = 200 time
points and p = 20 variables/nodes. The data generating mechanism presents three change
points located at t = 60, t = 100 and t = 150 and, thus, four different graph structures.
The true graph structures are displayed in Figure B.1.3 of the Supplement and obtained
fixing the first graph G1, which presents 11 activated edges, and subsequently randomly
changing the graph structure across change points. In correspondence of each change point,
any active/non-active edge is deactived/activated with probability 0.4. The four precision
matrices are then generated sampling from a G-Wishart distribution, independently con-
ditionally on graph structure. Note that the abruptness in the changes in the dependence
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Figure 6: Panel (a): FPR versus PPI threshold, for Scenario 4. Panel (b): ROC curve in
Scenario 4.

structure is higher in this scenario than in Scenario 3, since the precision matrix is gener-
ated independently at each change point and not obtained as a perturbation of the previous
precision matrix as in the previous section. The hyperparameters are chosen as described
in the previous section.

The posterior distribution for the number of change points assigns probability one to the
correct value of 3 (see Figure B.4.1 in the Supplement). The posterior expectation for the
first change point location is 60.68, for the second change point is 98.11, and for the third
one is 149.94. More details on posterior inference results are provided in Section B.4 of the
Supplement. Figure 6a shows the combined FR of edge detection for the four graphs as
function of the threshold used for the PPI. Again, FPRs are appears reasonable for any PPI
threshold, quickly decaying to zero, and, for the 0.5 threshold, the FPR is 0.035. Figure 6b
displays the ROC curve, with an AUC approximately equal to 0.89. In the Supplement, we
report also results obtained with the GFGL model of Gibberd and Nelson (2017), which,
similarly to what already observed in the previous section, shows high variability of the
estimates depending on the value of the hyperparameters. Moreover, in this scenario, we
note that the GFGL model leads also to poor graph recovery even when the correct change
points are detected (see Figures B.4.3 and B.4.4 of the Supplement). The “oracle version”
of the loggle model produces a FPR of 0.113 and a TPR of 0.426, presenting a significant
worse performance than our approach. For example, for a 0.5 PPI threshold we obtain a
FPR of 0.035 and a TPR of 0.611, if we fix the FPR to 0.113 the corresponding TPR is
0.764, fixing the TPR to 0.426 leads to a FPR of 0.021. See Table 3.

loggle Bayesian dynamic GGM
PPI thres. 0.5 PPI thres. 0.25 PPI thres. 0.78

FPR 0.113 0.035 0.113 0.021
TPR 0.426 0.611 0.764 0.426

Table 3: Scenario 4: Comparison on graph recovery between the results obtained with the
“oracle version” of the loggle model and our model.

21



0.0

0.2

0.4

0.6

0.8

20
18

−
12

−
31

20
19

−
03

−
11

20
19

−
05

−
20

20
19

−
07

−
29

20
19

−
10

−
07

20
19

−
12

−
16

20
20

−
02

−
24

20
20

−
05

−
04

20
20

−
07

−
13

20
20

−
09

−
21

20
20

−
11

−
30

20
21

−
02

−
08

20
21

−
04

−
19

20
21

−
06

−
28

20
21

−
09

−
06

20
21

−
11

−
15

20
21

−
12

−
27

Change Points

P
os

te
rio

r 
pr

ob
ab

ili
ty

 

Figure 7: Marginal posterior probability of every time point to be a change point.

5 Industry returns during COVID-19 pandemic

We apply the model to detect changes in the dependence structure of the nine industry port-
folios’ weekly returns described in Section 1. We consider weekly data over a time horizon of
three years: from January 2019 to December 2021 so that T = 157. When choosing which
type of returns to include in the analysis, i.e. daily, weekly, or monthly, we are faced with a a
trade-off: higher frequency data may show lower degree of dependence, making harder to de-
tect structure changes in the dependence structure (see, for instance, Ab Razak et al., 2018);
on the other hand, lower frequency data provide a less detailed representation of markets’
trends. For this reason, we consider weekly returns to attain a more detailed level of informa-
tion compared to monthly data and a potentially stronger signal on correlations compared
to daily returns. Logarithmic weekly returns are computed starting from the daily returns
available from Kenneth R. French’s Data Library at https://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data_library.html, where the industry classification used
to associate each stock to one of the nine portfolios is defined as follows. Stocks listed
in the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), and
National Association of Securities Dealers Automatic Quotation System (NASDAQ) are
assigned to an industry at the end of June of year t based on their four-digit standard
industrial classification (SIC) code at that time. Then, returns are computed from July of
year t to June of year t+ 1. The corresponding standardized time series are represented in
Figure C.1 of the Supplement.

To estimate the dependence structure for the weekly returns, we firstly run the algorithm
to estimate the change point sequence, using 200 particles, 10 mutation steps, performing
32,000 iterations of the outer component, of which the first 2,000 are discarded as burn-in,
and thinning every ten iterations. Secondly, we re-run only the particle filter with 1,000
particles and 20 mutation steps to sample the graphs from their posterior distribution condi-
tionally on the MAP estimate of the change point configuration. The algorithm is initialised
assuming no change points and hyperparameters are set as described in Section 4.1.

Figure 7 shows, for each time point, the marginal posterior probability of being a change
point and Table 4 reports the joint posterior distribution of the configurations of change
points, which have been accepted by the algorithm. The posterior distribution on the
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number of change points assigns probability 0.9984 to two change points and the remaining
mass 0.0016 to three change points. The posterior distribution for the number and location
of change points are highly concentrated around the posterior mode, showing a low level of
uncertainty. Our analysis highlights a first structural change at t = 61, i.e., during the week
starting on February 24, 2020, in correspondence of what appears to be the market’s reaction
to the first significant world-wide increase in Coronavirus confirmed cases and deaths outside
China over the previous weekend. In particular, during the weekend February 21-23, 2020,
Italy, the first and hardest-hit country in Europe in 2020, reported the first local cases of
COVID-19 (see, e.g., Just and Echaust, 2020). During the week of February 24, 2020, the
Dow Jones and S&P 500 fell by 11% and 12%, respectively, marking the biggest weekly
declines to occur since the financial crisis of 2008. The identification of a first change point
in correspondence of a major shock is coherent with the known stylized fact that, during
crisis, dependence among investments typically increases diminishing diversification benefits
(see, for instance, Kotkatvuori-Örnberg et al., 2013). A second change point is detected at
t = 79, i.e., during the last week of June 2020, interpretable as a subsequent and partial
re-stabilization of the financial markets after the initial and most uncertain period of the
pandemic. The credible intervals, obtained computing the smallest credible sets with 95%
credibility and then using the minimum and the maximum time points in the set as extremes
of the interval, are [60, 61] and [76, 83] for the first and second change point respectively.

Conditionally on the MAP change point configuration, estimates of the three graphs are
provided in Figure 8, while the estimated variance and covariance matrices are displayed in
Figure C.2.1 of the Supplement. The graphs are obtained based on the marginal PPI of the
edges in order to control the corresponding Bayesian false discovery rate (Newton et al.,
2004). In particular, we set the threshold of inclusion based on the PPI to 0.8 in order to
guarantee an expected rate of false detection not higher than 0.05, i.e., a specificity of at least
0.95 (for more details, see, Leday and Richardson, 2019; Williams, 2021). In Section C.1 of
the Supplement we report the values of degree centrality, betweenness centrality (Freeman,
1977), local clustering and global clustering coefficients (Watts and Strogatz, 1998) for the
estimated graphs, which give insights into the role of each node.

A clearly noticeable feature from Figure 8 is the increase in the number of edges from the
first change point (8 edges) to the followings (11 and 12 edges, respectively), reflected also
in the global measures of clustering of the graphs which varies from 0 in the pre COVID-19
period, to 0.43 during the first COVID-19 outbreak, to 0.24 to the post COVID-19 outbreak

change post change post change post change post
points prob points prob points prob points prob

(57 79) 0.0010 (59 82) 0.0073 (60 99) 0.0003 (61 81) 0.0137
(57 82) 0.0010 (59 84) 0.0017 (61 116) 0.0010 (61 82) 0.1094
(57 84) 0.0007 (60 78) 0.0020 (61 73) 0.0007 (61 83) 0.0650
(57 85) 0.0003 (60 79) 0.0073 (61 74) 0.0033 (61 84) 0.0150
(58 79) 0.0003 (60 80) 0.1010 (61 75) 0.0103 (61 85) 0.0127
(58 82) 0.0033 (60 81) 0.0033 (61 76) 0.0133 (61 86) 0.0043
(59 77) 0.0013 (60 82) 0.0297 (61 77) 0.0447 (61 99) 0.0010
(59 78) 0.0007 (60 83) 0.0100 (61 78) 0.0737 (19 61 83) 0.0010
(59 79) 0.0010 (60 84) 0.0127 (61 79) 0.3735 (39 61 83) 0.0003
(59 81) 0.0003 (60 85) 0.0020 (61 80) 0.0694 (61 80 113) 0.0003

Table 4: Posterior distribution of change point configuration. In bold we highlight prob-
abilities greater than 0.05 and in blue the MAP estimate.
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Figure 8: Posterior estimates of the graphs and PPI for the selected edges. Threshold of
inclusion is set to achieve an expected posterior specificity of at least 95%.

(see Table C.1.3 in the Supplement). Such increase in the connectivity of the graph is co-
herent with the hypothesis of the COVID-19 outbreak acting as a common non-measurable
risk factor driving the returns in the market. As already noticed in the preliminary analysis
summarised by Figure 2, the role of hub of the manufacturing portfolio (i.e., machinery,
trucks, planes, chemicals, office furniture, paper) over the three years is confirmed. The
corresponding degree centrality (i.e., number of vertices in the neighbourhood of the man-
ufacturing portfolio) is the highest in all three graphs (see Table C.1.1 of the Supplement
for more details). However, contrary to the conclusions of the initial exploratory analysis,
consumer non-durable (i.e., food, tobacco, textiles, apparel, leather, toys) returns appear
to play a less central role before the COVID-19 outbreak. Such evidence that was absent
in the explanatory analysis is discovered mainly thanks to the automatic detection of the
change points, that allow us to determine the most appropriate time window to estimate
the graph and capture differences in structure. Moreover, we identify another hub in the
Shops portfolio (i.e., wholesale, retail, and some services, as laundries and repair shops) in
the time-interval after the last change point.

In terms of volatility, in all three periods the consumer durables (i.e., cars, TVs, furni-
ture, household appliances) and energy (i.e, oil, gas, and coal extraction and products) are
characterised by the highest volatility. Moreover, the analysis confirms that the three peri-
ods (pre COVID-19 outbreak, during first COVID-19 global outbreak, and after) coincide
with small, high, and medium volatility markets, as already evident from the time-series plot
(see Figure C.1 in the Supplement). In more detail, we note that health (i.e., healthcare,
medical equipment, and drugs) is the only industry in the market whose portfolio presents a
similar volatility before and after the outbreak, while all other portfolios’ returns are set to
higher levels of variability as consequence of a long-run effect of market uncertainty. Similar
conclusions can be drawn also for the pair-wise correlations (that can be easily computed
from the values in Figure C.2.1 and are reported in Section C.2 of the Supplement), i.e.
correlations are higher during COVID-19 outbreak.

Finally, we compare our results with those obtained by applying the group-fused graph-
ical lasso (GFGL) (Gibberd and Nelson, 2017). Output summaries for the GFGL are shown
in Table 5 and additional figures can be found in Section C.3 of the Supplement. We esti-
mate the GFGL model for different values of the hyperparameters λ1 and λ2. We recall that

24



# of change
λ1 λ2 points change points Global clustering coef.
0.25 60 0 () (0.72)
0.35 60 2 (61, 80) (0, 1, 0.33)
0.50 60 2 (61, 80) (0, 0, 0)
0.25 55 2 (61, 80) (0.72, 0.84, 0.81)
0.25 20 3 (61, 80, 98) (0, 1, 0.92, 0.92)
0.35 20 4 (61, 80, 98, 99) (0, 1, 0.33, 0.33, 0)
0.50 20 4 (61, 68, 77, 80) (0, 1, 0.88, 0.87, 0)
0.25 10 6 (57, 61, 80, 98, 99 ,116) (0, 0, 1, 0.89, 0.90, 0.33, 0.33)
0.35 10 4 (61, 80, 98, 116) (0, 1, 0.33, 0.33, 0)
0.50 10 6 (57, 61, 68, 69, 77, 80) (0, 0, 1, 0.88, 0.88, 0)

Table 5: Results obtained using GFGL for different values of the hyperparameters.

λ1 and λ2 control the shrinkage and the smoothness of the solution of the GFGL model,
respectively . As already noticed by Gibberd and Nelson (2017) and in the simulation
study in Section 4, for GFGL inference results are highly sensitive to the hyperparameters
in terms of both detected change points (see Table 5 and Figure C.3.1 in the Supplement)
and recovered graph structure (see Figure C.3.2 in the Supplement). Here, we consider
values for λ1 in {0.25, 0.35, 0.50} and λ2 in {10, 20, 55, 60}, which are in the range of those
considered by Gibberd and Nelson (2017) in their work. The number of identified change
points ranges widely from 0 to 6. However, we notice that in all estimated change point
configurations, but the one with no estimated change points, GFGL always includes t = 61
and at t = 80 as change points, which is consistent with the change points identified by
our approach. Moreover, even though the graph structure estimated by the GFGL largely
varies depending on the hyperparameters, in all settings where change points are detected,
the graph structure connectivity increases during the COVID-19 outbreak in February 2020
and diminishes after June 2020 (cf. the global clustering coefficients reported in Table 5 and
Figure C.3.2 in the Supplement). This result is again consistent with teh results obtained
with our approach. Increased graph connectivity during the COVID-19 outbreak is also
found applying loggle; see section C.3 of the Supplement.

6 Discussion and conclusion

In this work, we study the impact of the COVID-19 pandemic on the US stock market,
with a specific focus on changes in dependence structure across stocks related to different
industries. To do so, we consider weekly returns recorded for three years starting in January
2019. We identify two structural changes. The first change is in correspondence with the
last week of February 2020, a date that for most countries coincided with the beginning of
the pandemic. That same week financial markets recorded the weekly biggest losses since
the financial crisis of 2008. The second change point is detected after approximately four
months, when there is a reduction in market uncertainty, but the dependence structure
as well as the volatility are not back to pre COVID-19 levels. Comparing the dependence
structure across the three periods (i.e., before February 24th, between February 24th and
June 26th, after June 26th) we provide many insights on the impact of the pandemic on
the stock market and highlight whose effects appear to be persistent up to the end of 2021,
the last year considered.

The main methodological contribution of this work is the development of a dynamic
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GGM, which allows for abrupt changes in the dependence structure of the random variables
represented by the nodes of the graph. Our model builds on existing literature on GGMs, as
well as random change points. Our model construction allows us to control sparsity in the
number of change points and/or in the graph structure. We have designed a tailored SMC
algorithm, arguing for its use in such a complex setup over other M-H based alternatives
and demonstrating its performance on simulated data and on our motivating application.

Our work opens up several avenues for future research.

(a) Scalability. We have not made use of the full SMC machinery. We briefly discuss two
directions for increase in model dimension, along the number of nodes, p, and along
the length of time instances for observations T . In terms of the size of the graph,
recent works have developed effective proposals, informed by the observations, for
MCMC methods on graph posteriors, instead of previously used random-walk-type
blind moves. See, e.g., van den Boom et al. (2022), and the references therein, for
approaches based on Langevin-type analogues for discrete spaces, with parallelisation
employed within the specification of the proposal. Such approaches have been seen to
be effective for node sizes of p = O(102). In terms of the length T , recent advances on
modelling involving change points and accompanying SMC methodologies, can permit
for recasting models so that change points also become part of the hidden Markov
process (see, e.g. Yildirim et al., 2013). At the same time, SMC methods based on
state-of-art particle Gibbs approaches that incorporate backward steps to improve
mixing over the update of the unobserved Markovian states, are shown to provide
pseudomarginal methodologies of superior mixing compared to standard PMCMC
(Lindsten et al., 2014). Such new algorithms are supported by strong theoretical
results. Indicatively, the number of particles can now be allowed to remain constant,
N = O(1), as a function of T , when PMCMC requires N = O(T ). Thus, costs for
the overall SMC algorithm can be brought down to O(NT ), from the previous O(T 2),
for big T – with O(NT ) not taking under consideration the option of parallelisation
across particles.

(b) Smooth changes. In this work, we have considered abrupt changes in edge inclusion
probabilities. Alternatively, we could model edge inclusion probabilities as a function
of time, for example, using autoregressive-type models. In this setup, shrinkage priors
could be specified to link the probability of edge inclusion at time t to the same
probability at time t − 1 (see, for instance, Molinari et al., 2022a). This approach is
amenable to many generalizations, such as the inclusion of covariates. Moreover, the
probability of edge inclusion at time t could be a function of the probabilities of edge
inclusions at time t− 1 of a neighbourhood of each node.

(c) Graph sub-structures. Here, we have presented changes between graphs as captured
by edge flips before and after a change point. Edge detection is very sensitive to the
number of nodes as well as sample size. It has been argued (van den Boom et al.,
2022, and references therein) that in many applications a more robust approach is
to shift the focus of inference to graph sub-structures such as hubs and communities,
with the goal of capturing the evolution over time of such macro-structures which
better describe the underlying phenomenon.

(d) More general response types. The model can be easily extended to accommodate
different type of responses, such as binary and count data. An easy solution would
be the representation of such data in terms of latent variables (Albert and Chib,
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1993; Chib and Greenberg, 1998). Moreover, it is straightforward to include time-
homogeneous and time-varying covariates to model the mean of the time series, as
well as a trend and seasonal component.
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A. Evaluation of SMC approximations under scenario A
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Figure A.1: Log-likelihood estimates for Scenario A obtained with the particle filter by
fixing the change points to the truth. Distinct box-plots correspond to different numbers
of particles N and/or mutations steps M . For each pair (N,M), we run the algorithm 30
times and obtain the log-likelihood estimates. Each box-plot shows the distribution of such
estimates. The variability of the estimates is small for all considered pairs (N,M).
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B. Simulation studies: additional figures, tables, and results

B.1 True data generating processes for simulation studies
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(b) No change points and dependence

Figure B.1.1: Graph structure of Scenarios 1 (panel a), 2 (panel b) and 5 (panel b) used as
data generating mechanism for assessing model’s performance.
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Figure B.1.2: Scenario 3: graph structure used as data generating mechanism for assessing
model’s performance.
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True graph from t=1 to t=59
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Figure B.1.3: Scenario 4: graph structure used as data generating mechanism for assessing
model’s performance.
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Figure B.1.4: Scenario 3: Covariance matrices.
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Figure B.1.5: Scenario 3: Simulated data - replicate n.1.
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B.2 Scenarios 1 and 2: results

The first two scenarios do not include change points among the T = 200 instances. In
Scenario 1 all variables are independent, while in Scenario 2 we assume a non-trivial condi-
tional independence structure represented by a graph with nine edges, shown in Figure B.1.1
(b). We consider 10 simulation replicates for Scenario 1 and 2. The hyperparameters for
Scenario 1 and 2 are chosen as described in Section 4.1 of the paper. The inference results
for no change points show the expected good performance of the model in terms of both
identification of change points and recovery of the dependence structure. In both scenarios
the posterior on the change points concentrates on the true state of no change points, with
posterior MAP probability not falling below 0.98 in all simulation replicates. Figure B.2.1a
shows the false positive rate (FPR) of edge detection as function of the threshold used
for the marginal posterior probability of edge inclusion (PPI, i.e., the posterior probability
associated to each edge in the graph, P(A[h, k] = 1 | data)). FPRs are very low for almost
any PPI threshold (indicatively, for a threshold of 0.5, FPR is 0 and 0.006 for Scenarios 1
and 2, respectively). Figure B.2.1b displayes the receiver operating characteristic (ROC)
curve for Scenario 2, with the area under the curve (AUC) approximately 1.

True change
point configuration

Scenario 1 ∅

MAP estimate MAP prob.
Replica 1 ∅ 1
Replica 2 ∅ 1
Replica 3 ∅ 1
Replica 4 ∅ 1
Replica 5 ∅ 1
Replica 6 ∅ 1
Replica 7 ∅ 1
Replica 8 ∅ 1
Replica 9 ∅ 1
Replica 10 ∅ 1

Scenario 2 ∅

MAP estimate MAP prob.
Replica 1 ∅ 0.980
Replica 2 ∅ 1
Replica 3 ∅ 0.993
Replica 4 ∅ 1
Replica 5 ∅ 1
Replica 6 ∅ 1
Replica 7 ∅ 0.997
Replica 8 ∅ 1
Replica 9 ∅ 1
Replica 10 ∅ 1

Table B.2.1: Scenarios 1 and 2: Posterior summaries for change points. MAP estimates
and MAP probabilities (for the posterior over all configurations of change points). Results
are obtained simulating 10 replicates.
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Figure B.2.1: Scenarios 1 and 2: Panel (a): FPR versus PPI threshold, for simulation
Scenarios 1 and 2, computed across 10 replicates. Panel (b): ROC curve in Scenario 2,
computed across 10 replicates.

B.3 Scenario 3: additional results

GFGL estimate GFGL estimate Bayesian
True change λ1 = 0.25 λ1 = 0.50 dynamic
point position λ2 = 10 λ2 = 60 GGM MAP

Replica 1 (69, 70) (69) (70)
Replica 2 (60, 69) (60, 69) (69)
Replica 3 (47, 69, 70, 74) (69) (70)
Replica 4 (41, 60, 68, 70) (60) (70)
Replica 5 (67, 70) (70) (70)
Replica 6 (26, 53, 70) (52) (69)
Replica 7 (45, 67, 71) (45, 67) (69)
Replica 8 (44, 56, 59, 60, 61, 63, 65) (44, 56) (71)
Replica 9 (62, 69, 70) (69) (71)

Scenario 3 (70) Replica 10 (67, 70) (70) (70)
Replica 11 (25, 31, 42, 67, 68, 69) (42) (68)
Replica 12 (69, 70) (69) (74)
Replica 13 (21, 68, 70) (68) (69)
Replica 14 (65, 66, 70, 87) (66) (71)
Replica 15 (34, 54, 61, 66, 67, 68, 85) ∅ (70)
Replica 16 (30, 36, 66, 68, 69, 70) (65) (70)
Replica 17 (37, 52, 57, 69, 70) (49) (71)
Replica 18 (53, 61, 70, 78) (70) (71)
Replica 19 (38, 61, 62, 69, 70) (29, 61) (70)
Replica 20 (67, 68, 70, 74) (67, 68) (73)

Table B.3.1: Scenario 3: Comparison on the estimated change points between the results
obtained with the GFGL model and our model (last column).

39



loggle Bayesian dynamic GGM with threshold 0.5

FPR 0.242 0.241
TPR 0.825 0.825

Table B.3.2: Scenario 3: Comparison on graph recovery between the results obtained with
the “oracle version” of the loggle model and our model.

True MAP MAP prob 90% 95%
change point est. prob. κ = 1 C.I. C.I. Mean Median

Rep. 1 (70) 0.250 0.960 [68, 78] [67, 80] 71.74 70
Rep. 2 (69) 0.299 0.987 [65, 76] [65, 79] 70.69 70
Rep. 3 (70) 0.289 0.975 [69, 79] [68, 79] 71.17 70
Rep. 4 (70) 0.230 0.984 [68, 78] [60, 78] 71.70 71
Rep. 5 (70) 0.294 0.987 [70, 80] [70, 80] 73.34 72
Rep. 6 (69) 0.301 0.985 [65, 76] [65, 79] 70.56 70
Rep. 7 (69) 0.207 0.973 [68, 74] [68, 91] 70.27 69
Rep. 8 (71) 0.123 0.911 [63, 84] [60, 84] 70.82 70
Rep. 9 (71) 0.122 0.930 [69, 83] [69, 83] 75.75 75

Scenario 3 (70) Rep. 10 (70) 0.306 0.971 [70, 74] [70, 79] 72.21 71
Rep. 11 (68) 0.245 0.966 [68, 76] [68, 81] 70.60 70
Rep. 12 (74) 0.191 0.933 [67, 83] [67, 83] 73.53 73
Rep. 13 (69) 0.180 0.966 [68, 74] [67, 77] 70.99 71
Rep. 14 (71) 0.205 0.988 [65, 81] [65, 81] 71.63 71
Rep. 15 (70) 0.140 0.998 [66, 87] [65, 90] 73.59 70
Rep. 16 (70) 0.140 0.985 [66, 78] [66, 78] 71.86 71
Rep. 17 (71) 0.143 0.991 [53, 75] [53, 75] 66.82 69
Rep. 18 (71) 0.245 0.954 [66, 80] [66, 80] 71.78 71
Rep. 19 (70) 0.188 0.950 [69, 80] [68, 80] 71.67 71
Rep. 20 (73) 0.179 0.965 [67, 75] [66, 77] 71.19 71

Table B.3.3: Scenario 3: Posterior summaries for change point recovery. MAP estimates,
MAP probabilities (for the posterior over all configurations of change points), posterior
probability of the number of change points being 1, and credible intervals, mean and me-
dian of the position of the change point (conditionally on having one change point). Credible
intervals are obtained computing the smallest credible sets with 90% and 95% credibility,
which are not necessary continuous intervals, and then using the minimum and the maxi-
mum time points in the credible set as boundaries of the interval.
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B.4 Scenarios 4: additional results
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Figure B.4.1: Scenario 4: Posterior distribution on the number of change points

change post
points prob

(60, 97, 148) 0.0012
(60, 98, 148) 0.0262
(60, 98, 150) 0.2909
(61, 98, 150) 0.1785
(61, 97, 150) 0.1935
(61, 99, 150) 0.3096

Table B.4.1: Scenario 4: Posterior distribution of the change point configuration

0.00

0.25

0.50

0.75

1.00

7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

16
8

17
5

18
2

18
9

19
6

Change Points

P
os

te
rio

r 
pr

ob
ab

ili
ty

 

Figure B.4.2: Scenario 4: Marginal posterior probability of every time point to be a change
point.
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(a) The change points identified
with λ1 = 0.10 and λ2 = 60 are
{60, 63, 100}.

(b) The change points identified
with λ1 = 0.20 and λ2 = 60 are
{60, 100, 150}.

(c) The change points identified
with λ1 = 0.50 and λ2 = 60 are
{60, 141, 150}.

Figure B.4.3: Scenario 4: Change points (as blue vertical lines) detected by the GFGL
model.

(a) The change points identified with λ1 = 0.10 and λ2 = 60 are {60, 63, 100}.

(b) The change points identified with λ1 = 0.20 and λ2 = 60 are {60, 100, 150}.

(c) The change points identified with λ1 = 0.50 and λ2 = 60 are {60, 141, 150}.

Figure B.4.4: Scenario 4: Graphs estimated by the group-fused graphical lasso model for
different values of the hyperparameters.
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Figure B.4.5: Scenario 4: Graph estimation with the “oracle version” of the loggle model.x

B.5 Scenario 5: results

We consider a scenario for our model is highly misspecified. In this scenario, the dependence
structure presents both an abrupt change point in the variance as well as smooth changes.
The true data generating mechanism is as follows. The first covariance matrix is generated
starting from a graph with 21 edges. There is a first change point at t = 60, at which
the correlation structure remain the same as before, but standard deviations double for all
variables. Then, starting from t = 100 the dependence structure starts to smoothly change
according to a multivariate GARCH model (see, for instance, Silvennoinen and Teräsvirta,
2009), i.e.

Yt | Σt
ind∼ Np(0,Σt) for t = 100, . . . , 200

vech(Σt) = A vech(Yt−1Y
′
t−1) +B vech(Σt−1)

where vech() is an operator that stacks the columns of the lower triangular part of its
argument and A and B are p(p+1)/2× p(p+1)/2 dimensional matrices, that we set to be
diagonal (for more details on this specification of the multivariate GARCH, see Bollerslev
et al., 1988). All entries on the diagonal of A are equal to 0.21 and all entries on the
diagonal of B are equal to 0.80. The following figures summarize the results obtained for
two replicates of Scenario 5.
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Figure B.5.1: Scenario 5: Simulated data - replicate n.1.
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Figure B.5.2: Scenario 5: Simulated data - replicate n.2.
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Figure B.5.3: Scenario 5: Posterior distribution of the number of change points - replicate
n.1.
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Figure B.5.4: Scenario 5: Posterior distribution of the number of change points - replicate
n.2.
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Figure B.5.5: Scenario 5: Marginal posterior probability of every time point to be a change
point - replicate n.1.
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Figure B.5.6: Scenario 5: Marginal posterior probability of every time point to be a change
point - replicate n.2.

C. US stock market analysis: additional figures and tables
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Figure C.1: Weekly Standardised Logarithmic Returns of nine Industry Portfolios from
January 2019 to December 2021.
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C.1 Descriptive indexes and summaries of the posterior graphs

The following tables contain degree centrality, betweenness centrality, local clustering and
global clustering coefficients for the estimated graphs.

Portfolios pre COVID-19 during COVID-19 post COVID-19

Consumer Nondurables (NoDur) 2 3 4
Consumer Durables (Durbl) 1 2 1
Manufacturing (Manuf) 3 4 4
Energy (Enrgy) 1 2 3
High Technology (HiTec) 3 3 2
Telecommunications (Telcm) 2 1 1
Shops (Shops) 2 2 4
Health (Hlth) 1 3 2
Utilities (Utils) 1 2 3

Table C.1.1: Degree centrality. Degree centrality of a certain node is the number of
vertices in the neighbourhood of that node. In bold, we highlight the highest degree
centrality for each graph.

Portfolios pre COVID-19 during COVID-19 post COVID-19

Consumer Nondurables (NoDur) 7 11.5 10
Consumer Durables (Durbl) 0 4.5 0
Manufacturing (Manuf) 13 14 6.67
Energy (Enrgy) 0 0 1.33
High Technology (HiTec) 19 3.5 2.33
Telecommunications (Telcm) 12 0 0
Shops (Shops) 15 0 10
Health (Hlth) 0 5.5 2.33
Utilities (Utils) 0 0 1.33

Table C.1.2: Betweenness centrality. Between centrality of a certain node v is c(v) =∑
h̸=v ̸=k σh,k(v)σh,k, where σh,k(v) is the number of geodesics (i.e., shortest paths) between

nodes h and k going through node j and σh,k is the number of geodesics between nodes h
and k. In bold, we highlight the three highest values for each graph.

Portfolios pre COVID-19 during COVID-19 post COVID-19

Consumer Nondurables (NoDur) 0 0 0.17
Consumer Durables (Durbl) 0 0 0
Manufacturing (Manuf) 0 0.17 0.50
Energy (Enrgy) 0 1 0.67
High Technology (HiTec) 0 0.33 0
Telecommunications (Telcm) 0 0 0
Shops (Shops) 0 1 0.17
Health (Hlth) 0 0.33 0
Utilities (Utils) 0 1 0.67

Global clustering coefficient 0 0.43 0.24

Table C.1.3: Local clustering coefficients Local clustering coefficients are the ratio be-
tween the number of triangular cliques, of which the node is a part, and d (d− 1)/2, where
d is the degree centrality of that node. Global clustering is the average of local coefficients.
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C.2 Posterior estimates of precision, covariance, and correlation matrices.
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Figure C.2.1: Posterior estimates of the variance and covariance matrices for the original
non-standardised weekly percentage logarithmic returns. Posterior estimates are obtained
computing the expected values of the entries in the matrix with respect to its posterior
distribution conditionally to the graphs point estimate.
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Figure C.2.2: Posterior estimates of the correlation matrices for weekly logarithmic returns.
Posterior estimates are obtained from the estimates in Figure C.2.1.
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Figure C.2.3: Posterior estimates of the precision matrices for weekly standardized loga-
rithmic returns. Posterior estimates are the entry-wise posterior expected value conditional
on the estimated graph structure.
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C.3 Results obtained with GFGL and loggle

(a) The change points identified
with λ1 = 0.25 and λ2 = 10 are
{57, 61, 80, 98, 99, 116}.

(b) The change points identified
with λ1 = 0.35 and λ2 = 10 are
{61, 80, 98, 116}.

(c) The change points identified
with λ1 = 0.55 and λ2 = 10 are
{57, 61, 68, 69, 77, 80}.

(d) The change points identified
with λ1 = 0.25 and λ2 = 20 are
{61, 80, 98}.

(e) The change points identified
with λ1 = 0.35 and λ2 = 20 are
{61, 80, 98, 99}.

(f) The change points identified
with λ1 = 0.5 and λ2 = 20 are
{61, 68, 77, 80}.

(g) No change point is identified
with λ1 = 0.25 and λ2 = 60.
xxxxxxxxxxxx

(h) The change points identified
with λ1 = 0.35 and λ2 = 60 are
{61, 80}.

(i) The change points identified
with λ1 = 0.5 and λ2 = 60 are
{61, 80}.

(j) The change points identified
with λ1 = 0.25 and λ2 = 55 are
{61, 80}.

Figure C.3.1: Change points (as blue vertical lines) detected by the GFGL model.
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(a) The change points identified with λ1 = 0.35 and λ2 = 10 are {61, 80, 98, 116}.

(b) The change points identified with λ1 = 0.25 and λ2 = 20 are {61, 80, 98}.

(c) The change points identified with λ1 = 0.35 and λ2 = 20 are {61, 80, 98, 99}.

(d) The change points identified with λ1 = 0.5 and λ2 = 20 are {61, 68, 77, 80}.

(e) The change points identified with λ1 = 0.35 and λ2 = 60 are
{61, 80}.

(f) The change points identified with λ1 = 0.25 and λ2 = 55 are
{61, 80}.

Figure C.3.2: Graphs estimated by the group-fused graphical lasso model on real data for
different values of the hyperparameters.
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Figure C.3.3: Estimated graph using the “oracle version” of loggle.

C.4 Pooled estimate
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Figure C.4.1: Estimated graph using the adaptive lasso approach as implemented in the R
package GGMselect (Bouvier et al., 2022) assuming no change points.

C.5 Sensitivity to the hyperparameter p0 controlling the prior on the
number of change points and the hyperparameter z controlling edges’
(de)activation

hyperparameter prob. κ = 2 MAP configuration MAP prob.

p0 = 0.20, z = 0.1 0.998 (61 79) 0.3735
p0 = 0.50, z = 0.1 0.997 (61 79) 0.3922
p0 = 0.80, z = 0.1 0.997 (61 79) 0.3810
p0 = 0.20, z = 0.2 0.997 (61 79) 0.3742
p0 = 0.20, z = 0.4 0.975 (61 79) 0.3614

Table C.5.1: Prior sensitivity: posteriors estimates of change point configuration.
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NoDur

Durbl

Manuf

Enrgy

HiTec

Telcm

Shops

Hlth

Utils

Graph from June 29, 2020 
 to December 31, 2021

NoDur

Durbl

Manuf
Enrgy

HiTec

Telcm

Shops

Hlth

Utils

Figure C.5.1: Posterior estimates of the graphs obtained with z = 0.2. Threshold of inclu-
sion is set to achieve an expected posterior specificity of at least 95%.
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Figure C.5.2: Posterior estimates of the graphs obtained with z = 0.4. Threshold of inclu-
sion is set to achieve an expected posterior specificity of at least 95%.

z = 0.1

Gc0 Gc1 Gc2

Active Inactive Active Inactive Active Inactive

z = 0.2 Active 8 0 10 8 12 5
Inactive 0 73 1 62 1 63

z = 0.4 Active 6 8 10 18 10 20
Inactive 2 65 1 52 3 48

Table C.5.1: Edge detection comparison for z = 0.1, z = 0.2, and z = 0.4.

C.6 Goodness-of-fit: Posterior predictive checking

The following figures showcase the posterior predictive checking for the real data. For
brevity, plots refer to the first portfolio, however analogous results are observed for all
portfolios under investigation. Posterior predictive checking consists in simulating data from
the posterior predictive distribution of a new data point, in our case an entire realization
of the time series, given the observed time series.

53



−6

−4

−2

0

2

4

2019 2020 2021 2022
date

N
oD

ur

Figure C.6.1: Posterior predictive checking for NoDur portfolio, conditionally on the change
points configuration. Dark and light shaded areas correspond respectively to 90% and 95%
credible intervals. The posterior predictive is obtained simulating 100 000 replicates of the
data keeping the change points fixed.

−6

−4

−2

0

2

4

2019 2020 2021 2022
date

N
oD

ur

Figure C.6.2: Posterior predictive checking for NoDur portfolio, conditionally on the graph
topology. Dark and light shaded areas correspond respectively to 90% and 95% credible
intervals. The black continuous line is the real observed standardised time series of returns.
The posterior predictive is obtained simulating 100 000 replicates of the data keeping the
graphs fixed.
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Figure C.6.3: Posterior predictive checking for NoDur portfolio, conditionally on the co-
variance matrices. Dark and light shaded areas correspond respectively to 90% and 95%
credible intervals. The black continuous line is the real observed standardised time series
of returns. The posterior predictive is obtained simulating 100 000 replicates of the data
keeping the covariance matrices fixed.
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D Algorithmic mixing and computational time

D.1 Mixing performance
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Figure D.1.1: Outer algorithm - simulated data - Scenario 3: Trace plots of the indicator
variable of time point 70 being a change point. 8000 iterations after burn-in.
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Figure D.1.2: Outer algorithm - real data: Trace plots of the indicator variables of time
points 61 and 79 being change points in the real data analysis. 32000 iterations, including
burn-in.

D.2 Computational time

The effective computational time needed to estimate the model obviously depends on the
dataset dimension, i.e., number of nodes p and number of time points T , and the SMC
parameters, i.e., number of particles N and number of mutation steps M . However, it
depends also on the true data generating process, i.e., true number of change points and
true graph topology, as well as on the posterior distribution of the number of change points.
Dependence from the latter is due to the fact that exploring configurations with a high
number of change points is computationally more expensive. Moreover, we empirically ob-
serve that the cost for computing the marginal likelihood with the inner algorithm increases
while exploring configurations distant from the posterior mode and the true change point
configuration. In Table D.2.1 we report the recorded average computational time for the
inner algorithm in the simulation studies and the real data analysis. Table D.2.2 contains
the computational time per one iteration of the inner algorithm fixing a specific number
of equally spaced change points proposed by the outer algorithm. Computational times
tend to be higher in Table D.2.2 than in Table D.2.1, because the configurations evaluated
in the former are far from the posterior mode and the true configurations, which present
one change point. In this sense computational times in Table D.2.2 may be intended as a
“worst case” scenario. The algorithm is coded in R, does not exploit parallelization, and is
performed with an Intel Xeon W-1250 processor.
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Data Time in seconds

Scenario 1 0.25
Scenario 2 0.43
Scenario 3 0.80
Scenario 4 3.90
Scenario 5 0.82

Financial data 1.07

Table D.2.1: Average computational time in seconds for one iteration of the inner algorithm
for the simulation studies and the application. Algorithm is coded in R, does not employ
parallelization, and is performed with an Intel Xeon W-1250 processor.

Nodes Particles proposed κ Time

κ = 2 0.34 sec
N = 50 κ = 3 0.35 sec

κ = 4 0.49 sec
κ = 2 0.59 sec

p = 10 N = 100 κ = 3 0.79 sec
κ = 4 0.81 sec
κ = 2 1.15 sec

N = 200 κ = 3 1.68 sec
κ = 4 2.16 sec

κ = 2 2.10 sec
N = 50 κ = 3 2.67 sec

κ = 4 3.36 sec
κ = 2 4.10 sec

p = 20 N = 100 κ = 3 5.52 sec
κ = 4 6.81 sec
κ = 2 8.21 sec

N = 200 κ = 3 10.95 sec
κ = 4 13.78 sec

κ = 2 28.19 sec
N = 50 κ = 3 1.06 min

κ = 4 1.66 min
κ = 2 24.65 sec

p = 50 N = 100 κ = 3 2.67 min
κ = 4 3.32 min
κ = 2 1.94 min

N = 200 κ = 3 5.27 min
κ = 4 6.62 min

Table D.2.2: Computational time for one iteration of the inner algorithm for different values
of the number of nodes p, the number of particles N , and the number of change points κ
in the configuration proposed by the outer algorithm. Here data are simulated for T = 200
total times points. The truth presents one change point and both graphs (before and after
the change point) have p − 1 activated edges. Algorithm is coded in R, does not employ
parallelization, and is performed with an Intel Xeon W-1250 processor.
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