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Abstract

Existing activity-based modeling predominantly focus on out-of-home activities in order to un-
derstand transport demand. In this research, we extend the state of practice in activity-based
modelling by determining both in- and out-of-home activities in a single scheduling framework.
This approach has two main benefits: Firstly, it can capture the trade-offs between in-home and
out-of-home activities. Secondly, in-home time-use patterns can be used to model high resolution
energy demand.
Our work builds on an existing optimisation framework, which treats individuals as maximising
their total utility from completed activities and incorporates multiple scheduling decisions simul-
taneously. The approach is tested on a set of detailed daily schedules extracted from the the
2016-2020 UK Time Use Survey data.
The results show that the model is able to generate peoples’ daily activity schedules based on their
individual preferences and constraints.

Keywords: Activity-based modeling; Daily scheduling behavior; Transport demand; Energy de-
mand; Mixed-integer optimization; Time use survey data.
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1. INTRODUCTION

Out of home activity participation has been modeled extensively for activity-based transport mod-
els in the last decades. These models derive travel demand from agents’ participation in activities
distributed in space and time (Axhausen & Gärling, 1992). There are two major research streams
within the scope of activity-based models among transport modelers: (i) empirical rule-based
such as (Golledge, Kwan, & Garling, 1994; Arentze & Timmermans, 2000) that rely on the as-
sumption that decision-makers consider conditional rules and heuristics to make decisions, and
(ii) econometric utility-based such as (Adler & Ben-Akiva, 1979; Bowman & Ben-Akiva, 2001)
that are based on the assumption that individuals choose their activity schedule to maximize the
utility they gain from it. Travel behavior is modelled as a result of discrete choices, treated sequen-
tially, and solved with econometric methods such as advanced discrete choice models (Bowman &
Ben-Akiva, 2001; Nurul Habib & Miller, 2009) or microsimulation (e.g., STARCHILD (Recker,
McNally, & Root, 1986), CEMDAP (Bhat, Guo, Srinivasan, & Sivakumar, 2004)).

However, these existing scheduling approaches in the literature have generally two shortcomings
(Pougala, Hillel, & Bierlaire, 2021):

1. They are either hard-coded and cannot be generalised to situations not seen in the data, or

2. They do not represent the nature of scheduling process and cannot capture complex trade-
offs and household interaction.

In order to address these shortcomings, Pougala et al. (2021) proposes a new optimization-based
scheduling framework based on first principles which integrates different scheduling choice di-
mensions simultaneously. This approach treats individuals as maximising their total utility from
completed activities in order to schedule their day and incorporates multiple scheduling decisions
such as activity participation, activity scheduling, and location choice simultaneously. One of the
major advantages of this framework is its high level of flexibility. This flexibility would allow
the framework to model both in-house and out-of-house activity participation in the same optim-
siation problem. However, so far this framework has been applied only for out-of-home activity
scheduling (developed for transportation models), and the resulting schedules do not contain any
information on activities performed at home.

This leave us a gap to extend the state of practice by jointly modelling time-use in the alongside
activity participation outside the home. This information can serve two primary purposes:

• The time-use pattern inside home can be used to predict building energy demand at high
temporal resolution. Energy and transport demand can both be considered as being derived
from an individual’s activity participation. As such, activity scheduling is the connecting
element between transportation and energy simulation. A comprehensive literature review
and a proposed framework for integrated models of transport and energy demand is dis-
cussed in a paper by Rezvany, Hillel, and BIerlaire (2021).

• It allows modellers to capture the trade-offs between in-home and out-of-home activities.
This is of high relevance for capturing the impact of flexible home-working policies. With
the COVID-19 pandemic, the lifestyle and behavior of people have changed dramatically.
Activities which were traditionally done out-of-home (such as work and education), are
now more likely to take place in-home and remote working and studying has become an
integral part of our lives. Combining in-home and out-off-home scheduling in the same
modelling can provide unique insights into how individuals schedule activities throughout
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the day in the post-COVID era.

To achieve this, we build on the existing optimization-based scheduling framework of Pougala et
al. (2021) to incorporate time-use for activities in the home (e.g., sleeping, cooking, showering,
etc). This approach is validated on daily schedules extracted from Time Use Survey (TUS) data.

The remainder of this manuscript is structured as follows. Section 2 introduces the scheduling
model framework used in this research. In the Section 3, an empirical investigation consisting
data preprocess and model assumptions are presented. Results are presented in Section 4. Finally,
the concluding remarks and future research are presented in Section 5.

2. Model Framework

In this study, we build on the scheduling model developed by Pougala et al. (2021) to incorpo-
rate join modelling of time-use in the home alongisde activities outside the home. This extended
framework can be applied to full daily schedules extracted from TUS data.

The framework treats individuals as utility maximizers. The problem is defined as a mixed-integer
optimization problem for each individual, maximising the sum of the utilities of completed activ-
ities in a schedule over a fixed time budget. It incorporates a simultaneous estimation of multiple
scheduling decisions such as activity participation and activity scheduling (start time, duration,
sequence). The framework is defined under a set of constraints which define the time budget,
location, duration, sequence, and time window constraints. The model takes as input a set of ac-
tivities with associated location. The framework defines a distribution over possible schedules and
stochastically draws likely schedules from a distribution for a given individual. The output of the
model is a feasible schedule S. As the utility functions of all activities depend on the error term,
we expect different draws of the error term to generate different solutions.

For a comprehensive explanation of the model, including a complete formal definitions of model
constraint and parameters, we direct the reader to Pougala et al. (2021).

We introduce a minimum duration of 10 minutes for the activities, reflecting the high-resolution
nature of in-home time use patterns.

3. Empirical Investigation

In order to show the capability of the modeling framework on a real-world case-study, we have
make use of data from the UK 2016-2020 TUS. The data is first preprocessed to extract the nec-
essary schedule information and present them in the format compatible with the model. This
is presented in section 3.1 We make realistic assumptions to provide estimators for the missing
attributes in the current dataset and simplify the model at this stage (section 3.2).
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3.1. Data preprocess

The UK 2016-2020 TUS (Gershuny & Sullivan, 2021) has been used as an input to the model.
The data collection of this time use diary has been conducted in four waves among which the last
three waves have been collected during the COVID-19 pandemic (late May-June (full lockdown),
August (during the easing of social restrictions), and November (second lockdown) 2020). There-
fore, this dataset provides information to compare the behavioural changes between pre-COVID,
COVID lockdown, and the intervening period of the relaxation of restrictions. This survey con-
tains 4360 time use diaries in which people were asked to list, in sequence, all the things they
have done, with the start and end times of each successive activity, from 4 AM until 4 AM of the
next day. It contains between one to three time-use diaries per respondent to include one weekday
and one weekend day. The survey consists of individual questionnaires including information on
socio-demographic variables, household equipment, device use, preferences and satisfaction, ef-
fects of lockdown, and diary information on activity, location, and accompaniment.

In this study, we extract an individual’s activity diary for a single day, including activity start
and end times and duration, alongside their location in space (given accurate to 10 minutes time
intervals). We then covert the schedules to Pandas DataFrame in order to use them as an input to
the model to simulate new feasible schedules.

3.2. Modeling assumptions

Activity flexibility assumption: We have classified the activities in the UK TUS data into differ-
ent categories; mandatory, maintenance, and discretionary. Mandatory activities refer to activities
which are the least flexible and will be penalized the most if deviated from the preference such as
work and study activities. Maintenance activities refer to service-related activities and personal or
household needs such as meal preparation. This category is more flexible compared to the manda-
tory activities regarding start and duration deviations. Discretionary activities refer to the activities
related to recreation, sports, civic services, and social visits. Activities in this category have high
start and duration flexibility. As the required inputs to the model are not all available in the sur-
vey, we have made some realistic assumptions and have provided some heuristics to estimate the
missing attributes including feasible start, feasible end, and flexibility profiles.

Different activities have different levels of flexibility towards starting and duration deviations from
the preferred one and thus, are penalized to different extents. This can be shown using three levels
of flexibility (Pougala et al., 2021):

1. Flexible (F): deviations from preferences for activity i are relatively unimportant, thus are
less or not penalized.

2. Moderately flexible (MF): deviations from preferences are moderately undesirable, and so
are more penalized than in the flexible case.

3. Not flexible (NF): deviations from preferences are strongly undesirable, and are highly
penalized.

Table 1 shows the flexibility profiles of different activity categories in the UK TUS survey data.
Each activity category is associated with a flexibility level and each level of flexibility is charac-
terised by specific penalty values. At this stage of the model, for the sake of simplicity, the values
associated to each flexibility level are deterministic and homogeneous across the population. The
penalty values are chosen according to the literature (Pougala et al., 2021). As presented in the

4



table, mandatory activities are less flexible in start time and duration compared to the other groups.

Travel time assumption: In the UK survey data, we only know the generic location of the activity
out of home, work, or other place, and do not have the geographical coordinates of the locations
of activities from which accurate travel times could be calculated. Therefore, at this stage of the
research, we have made the following simplifying assumption: if the location of two consecutive
activities are not the same, the travel time between the two locations is a fixed amount of 0.25 hr
accounted in the activity duration.

Table 1: Categories and flexibility profiles for activities in the UK TUS

Activity Category Start flexibility Duration flexibility
Paid work

Mandatory
Early:NF
Late:MF

Short:NF
Long:NFFormal education

Maintenance daily

Maintenance
Early:MF
Late:MF

Short:MF
Long:F

Consuming services
Caring for own child

Caring for other children
Help, caring for core adult

Help, caring for non-coresidents
Voluntary work for organisation

Shopping, bank incl internet
Cinema, theatre, sport

Preparing food, cooking
Washing, dressing

Cleaning tidying housework
Clothes washing and mending

Sleeping
Resting

Eating, drinking
Reading

Discretionary
Early:F
Late:MF

Short:F
Long:F

Recreational courses
Playing sports,exercise
Going out to eat, drink
Walking, dog walking

Playing computer games
Time with friends and family
Telephone, text, email, letters

Hobbies
Church, temple, synagogue, prayer

Work and study break
Watching TV, video, DVD, music

4. Results and discussion

The following analysis is performed on a single schedule taken from the UK TUS data, which
presents the schedule of a given day for a given person. The chosen schedule is visualized in Fig-
ure 1. We use this given schedule as an input to the scheduling model. The activity start time and
duration preferences are assumed to be the ones considered in the given schedule from the data.
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Figure 2 presents 5 outputs of the model, which are random draws from the feasible distributions
of schedules generated from different draws of the error term.

As seen in the model solutions, mandatory activities such as paid work are less flexible. Therefore,
we can see that we have paid work in all the simulated schedules. This is while maintenance activ-
ities such as caring for children are more flexible and have less penalty if deviated from preference
or not scheduled at all. So, we can see that they might not be present in all the simulated schedules.

We can see in the model results that in some realizations of the simulation, we have the eating ac-
tivity in nearly two consecutive time slots with no eating during the rest of the day, or sometimes
have only one meal during the day. These might at first seem unusual but, there is a probability
for such schedules in daily schedules. For example, we might skip some meals when having busy
working days or we might skip some meals because we had a heavy meal earlier.

Our contribution in this paper is modeling the in-home activities in addition to the out-of home
activities utilizing the scheduling model developed by Pougala et al. (2021) which was modeled
and utilized for only the out-of home activities and travels utilizing travel diary survey data. This
information can serve for two primary purposes: first, the time-use pattern inside home can be
used to predict building energy demand at high temporal resolution. Second, with this informa-
tion, we can capture the trade-offs between in-home and out-of-home activities. This is of high
relevance specially in the post-COVID era such as capturing the impact of flexible home-working
policies. As results show, we can use this scheduling approach to jointly model the time-use in
home as well as the activities outside home, making use of TUS data. An important part of this
study was the data preprocess in order to derive the information needed in the model and in the
format compatible to the model.
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Figure 1: Original schedule

Figure 2: Model solutions
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5. Conclusions and Future Work

In this paper, we have proposed a new viewpoint on activity scheduling of individuals. The
main contribution of our research is the application of the utility maximization approach based
on first principles, which was originally developed for simulation of only out-of-home activities
in activity-based transportation simulation, to jointly model in-home activities as well.

Out of home activity participation has already been modeled extensively for transport demand
modeling in form of activity-based transport models in the last decades. However, although behav-
ior is the key element joining mobility and energy use, the human behavior element is frequently
neglected in the energy demand literature (Sovacool et al., 2015) and the current energy demand
models are mostly based on active occupancy concept. There is therefore limited understanding of
the interactions between these sectors. In order to address this gap, we propose an integrated model
of disaggregate energy and transport demand using activity-based approach to model complex in-
dividual behaviors due to the multiplicity of individual actors, their multi-criteria objectives, and
the multidimensionality of relevant factors. By recreating individual activity schedules in a day,
our research proposes an integrating framework to co-simulate and study the interdependencies
of energy demand and transport modeling. This new modeling paradigm, can be used to directly
model both energy demand and transport demand derived from in-home and out-of-home activity
participation.

One major limitation of the current implementation is that the agent currently considers only ac-
tivities completed in the original schedule. As such, the resulting schedules from the optimisation
approach can only either the activities already completed, or a subset of these activities. A key
step for future work is to include a choice set generation model, in which alternatives that were not
already chosen by the considered agent can be included. Other key directions for future works also
include the modification of the model to account for location choice for work and education activi-
ties and the trade-off between conducting activities in- and out-of-home. The out-of-home activity
locations have the advantage/disadvantage of social interaction for a sociable/unsociable person
compared to in-home location (only the limited interaction with members of the household). For
this purpose, we aim to use the data regarding the enjoyment level of activities in the UK TUS
data in order to have an understanding of the sociability characteristic of the individual and then,
estimate the location choice parameter accordingly. Also, in the next steps of this research, we
will estimate the values of parameters in the model from the data.
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