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ABSTRACT Transport models for infrastructure investment and operations planning make use of generalised trip cost to predict travel 

choice decisions. In cities, the most important factors in the generalised cost is trip duration.  When calibrating such models to achieve sim-

ulation fidelity, observed data such as the choice of destination and means of travel recorded in travel surveys are used in estimating model 

parameters.  Ideally, observed travel durations should also be used in the model estimation.  However, in the past it was infeasible to record 

the actual trip durations to any degree of accuracy in travel surveys.  Trip durations derived from a transport network model were common-

ly assumed to be sufficiently representative.  Increasing availability of better recorded trip durations from travel surveys and better mod-

elled trip durations from online mapping present the promise of significant improvements in the fidelity of transport models. As a preamble 

to adopting such data, we investigate how the best developed recording of actual trip durations from the London Travel Demand Survey 

compares with the most advanced trip duration modelling from Google Map travel directions API.  We find clear discrepancies between the 

two, with the discrepancies varying systematically for different means and purposes of travel.  The magnitude of the discrepancies is great-

er than can be attributed to randomness or noise.  The systematic nature of the discrepancies suggests that transport network modelling even 

in its advanced form still has a long way to go to represent the observed patterns of behaviour, particularly for non-commuting journeys 

which account for about 80% of all trips made in cities.  Since the discrepancies may create a systematic bias in the model parameters, it is 

of critical importance to understand them better in future analysis.   

 

1 INTRODUCTION 

Transport models for infrastructure investment and 

operations planning use discrete choice models to 

predict travel on the transport network, based on gen-

eralised travel costs (Train 2009; Prato 2009; TfL 

2014). In order to obtain sound predictions, it is es-

sential to have good measurements of the generalised 
travel costs.  In cities, the duration of travel is usually 

the greatest influence on generalised cost. 

The commonly assumed definition of trip duration, 

used in both research and industry, is the time taken 

to complete the optimal route between two points on 

the network, as predicted by a transport network 

model.  This includes timetable information on pub-

lic transport services, and either observed or predict-

ed congestion delays on roads.  This common as-

sumption has been made by convention because it is 

difficult to record systematically the actual trip dura-

tions in travel surveys, where all travel within a day 

or week need to be recorded.    

Increasing availability of better recorded trip dura-

tions from travel surveys and better modelled trip du-

rations from online mapping present the promise of 

significant improvements in both data sources. In this 

paper we investigate how the best developed record-
ing of actual trip durations from the London Travel 

Demand Survey (LTDS) compares with the most ad-

vanced trip duration modelling from Google Maps 

API.  The analysis is for passenger travel only. 

2 DEFINITIONS OF TRIP DURATION 

There are four alternative definitions of trip duration: 

1. Ideal duration (ti): time to complete a trip as 

predicted by a transport model, free of effects 

of traffic congestion or delays. 



2. Commonly assumed duration (tc): time to 

complete a trip as predicted by a transport 

model given predicted/observed traffic condi-

tions, congestion and delays. 
3. Expected duration (te): time the passenger ex-

pects to take. 

4. Recorded duration (tr): time the passenger 

records a trip as having taken. 

Their characteristics are summarised in Table 1. 

 

Table 1. Summary of trip duration definitions used in this study. 

Name 

Includes 

congestion/ 

disruption 

Mod-

elled 

Meas

ured 

Perti-

nence 

ti Ideal   n/a Low 

tc 

Commonly 

assumed 
  n/a Mid 

te Expected ?   High 

tr Recorded    High 

 

Both the ideal and optimal durations are theoretical 

values which represent minimum journey times and 

are computed using a model. The expected and rec-

orded durations are real world values that need to be 

observed or measured rather than computed. 

Galotti & Bathelemy (2014) analyse the theoreti-

cal efficiency of the British public transport network 

by comparing the ideal route and duration for multi-

ple journeys (ti). This value is independent of the 

conditions of the transport network, and so is of low 
relevance for real passenger journeys. 

As discussed, trip assignment within state-of-the-

art transport models uses the commonly assumed du-

ration (tc). This is of greater relevance to real world 

journeys than the ideal duration (ti), as it is dependent 

on the network conditions. However, it still repre-

sents an idealised case, where the passenger takes the 

optimal route and travels as quickly as possible. 

In reality, passengers make decisions based on 

their expected duration of a trip (te). It is not possible 

to model the expected duration of a trip directly as it 

is highly dependent on a passenger’s individual expe-
rience at that time. Instead this study investigates the 

recorded trip duration (tr), which is how long a pas-

senger reports a trip to have taken. This is likely to 

have a strong relationship with the expected duration 

of repeating a similar trip in the future. 

Each of these definitions of trip duration is sepa-

rate from the duration a passenger actually takes. 

3 METHODOLOGY 

This study assesses the discrepancies between rec-
orded trip durations (tr) taken from the London 

Transport Demand Survey (LTDS) and their corre-

sponding commonly assumed trip duration (tc), gen-

erated using the Google Maps Directions Application 

Programming Interface (API). 

3.1 LTDS 

The data source for completed journeys for this study 

is the LTDS, a continuous survey carried out by TfL 

of a sample of households within London’s orbital 

motorway, the M25 (TfL 2011). 

Each household is surveyed on one day of the 
year, listing all of the members of the household, all 

of the vehicles that the household owns or has access 

to, and the estimated total household income. Each 

household member over 5 years of age then com-

pletes a trip diary, giving details of all of the trips 

made on the survey date. Details include the trip 

start-point, end-point, start time, trip duration (tR), 

means of travel and trip purpose. 

This study uses data from the 2013/14 survey 

year, which contains 44,981 trips made by 18,877 in-

dividuals. 

3.2 Google Maps API 

The data source for generating optimal journey times 

is the Google Directions API. It generates more than 

one route for any origin-destination pair.  In line with 

the modelling convention, we retrieve the optimal 

route as the commonly assumed trip duration (tc). 

Google’s representation of London’s transport 

network is commonly considered fine grained and 

accurate. On the network, Google generates real-time 

traffic routeing using crowd-sourced movements da-

ta. Google also receives up-to-date public transport 

timetable and delay information from TfL and Net-
work Rail.  It is reasonable to consider this dataset to 

the most advanced estimation of trip durations.  

Using this information, the Google Maps API can 

return an optimal route and the commonly assumed 



trip duration (tc) calculated using a modified Dijks-

tra’s algorithm (Dijkstra 1959; Casey et al. 2015). 

3.3 Processing the data 

The trips from the LTDS are sorted into the same 
trip classes as used in London’s transport policy 

model LTS (Table 2). For each trip in the LTDS, an 

optimal route and duration is obtained from the 

Google Maps API. The trip requests to the Google 

Directions API are performed in time bracketed 

groups, according to their departure time and day of 

the week from the LTDS, for each means of travel: 

 Driving: Trips sorted by weekday, Saturday, 

or Sunday departure. Within each day, trips 

sorted into groups of departure time within 

two hour intervals. 

 Transit (public transport): Trips sorted into 

weekday or weekend departure. Within each 

day, trips sorted into day and night departure 

trips. 

 Cycling and walking: No time bracketing 

used, as walking and cycling durations re-

turned by Google are time independent. 

 

Table 2.  LTS model trip classes. 

Time periods 

(weekday) 

Morning peak: 07:00-10:00 

Inter-peak: 10:00-16:00 

Evening peak: 16:00-19:00 

Means of travel 

Walking 

Cycling 

Transit 

Driving 

Trip purposes 

Home-based work 

Home-based education 

Home-based other 

Non-home-based work 

Non-home-based-other 

4 RESULTS 

4.1 Scatter plots 

Figure 1 shows a scatter plot of tc against tr for all 

trips within the study. A bi-square linear regression, 

which is robust to outliers, is performed on the data. 

The regression line is well below the line 𝑦 = 𝑥 

which corresponds to 𝑡𝑟 = 𝑡𝑐. This shows that the 
recorded trip durations tend to be substantially longer 

on average than the commonly assumed durations. 

 
Figure 1. Scatter plot of all trips. 

 

 
Figure 2. Scatter plot of walking trips. 

Figures 2-5 show the scatter plots for each 

transport mode. Each plot contains trips for all trip 

purposes and trip departure periods. Each plot has 

different visual characteristics, which are shown nu-

merically in Table 3. The bi-square regression gradi-

ent shows the average relationship between tc and tr 
and the Pearson correlation coefficient demonstrates 

the spread of the data. These values are also calculat-

ed for each journey purpose and departure period. 

There is wide variation in both the gradient of the 



linear regression and the value of the cross-

correlation coefficient for each trip class. 

 

 
Figure 3. Scatter plot of cycling trips. 

 
Figure 4. Scatter plot of transit trips. 

All of the plots show strong banding of the rec-

orded duration (tr). This relates to the fact that the 

recorded duration is a measure of how long a passen-

ger perceives a journey to have taken. Below 60 

minutes, the bands occur at 5 minute intervals, 

demonstrating that for short journeys the resolution 
of perceived duration is ±2.5 minutes, i.e. the trip du-

rations are rounded to the nearest 5 minutes. For all 

of the plots, the strongest band above 30 minutes is at 

60 minutes. 

The bands at 55 minutes and 65 minutes are also 

much weaker than the other bands. This suggests that 

for the majority of the population, there is a tendency 

to round trip durations to 60 minutes. Above 60 

minutes, the plot for all trips shows the strongest 

bands at 75 minutes, 90 minutes, and 120 minutes, 

showing the resolution for the majority of the popula-

tion reduces to 15 minute and then 30 minute inter-
vals. 

 
Figure 5. Scatter plot of driving trips 

Table 3. Linear regression gradient, and correlation coefficient for 
each trip mode, trip purpose, and departure time period. 

Category Class Gradient Correlation 

All All 0.718 0.830 

Transport 

mode 

Walking 0.679 0.548 

Cycling 0.908 0.588 

Transit 0.679 0.751 

Driving 0.647 0.837 

Purpose 

Home-based work 0.752 0.840 

Home-based education 0.629 0.849 

Home-based other 0.681 0.822 

Non-home-based work 0.573 0.760 

Non-home-based other 0.655 0.712 

Period 

AM Peak 0.766 0.866 

Inter peak 0.669 0.797 

PM peak 0.694 0.848 

Other 0.736 0.820 

4.2 Probability distributions 

In order to create the probability distributions, a di-

mensionless ratio of recorded duration (tr) to com-

monly assumed duration (tc) is defined: 

𝑑 = 𝑡𝑟 𝑡𝑐⁄  (1) 



The ratio of two values is not a symmetrical oper-

ation, and as such the distribution of the ratios show 

heavy positive skew. This is shown in Figure 6, 

which plots smoothed kernel distributions of the ratio 

for each transport mode. The line 𝑑 = 1 correspond-

ing to 𝑡𝑟 = 𝑡𝑐 is given for reference. To deal with the 

heavy skew, the natural logarithm of the ratio is tak-

en to provide a symmetrical operation. This gives the 

following formula for the log-ratio (r): 

𝑟 =  ln(𝑑) = ln(𝑡𝑟 𝑡𝑐⁄ ) (2) 
 

 
Figure 6. Skewed probability distributions by means of travel. 

 
Figure 7. Probability distribution for all trips. 

Figure 7 shows the smoothed kernel distribution 

plot of all trips combined. Here the line 𝑟 = 0 corre-

sponds to 𝑡𝑟 = 𝑡𝑐. The mean, median, and mode are 

all to the right of this line, once again showing that 

the recorded durations (tr) are on average significant-

ly higher than the commonly assumed durations (tc). 

Smoothed kernel distributions of the log-ratio (r) 

are generated for each trip class. The sample geomet-
ric mean and standard deviation of the ratios (d) can 

be calculated directly from the log-ratio (r), using the 

following formulae: 

𝜇𝑔 = (∏ 𝑑𝑖
𝑛
𝑖=1 )

1
𝑛⁄ = exp [

1

𝑛
∑ ln 𝑑𝑖

𝑛
𝑖=1 ] (3) 

𝑠𝑔 = exp
√

∑ (ln
𝑑𝑖
𝜇𝑔

)
2

𝑛
𝑖=1

𝑛−1
 (4) 

where: 

𝑟𝑖 = ln 𝑑𝑖 

These values are given in Table 4 for all of the 
primary trip classes, alongside a calculation of the 

Pearson's moment coefficient of skewness of the log-

ratios. 

 
Figure 8. Probability distributions for each means of travel. 

Figure 8 shows the smoothed kernel distribution 

plots for each means of travel. Walking has the mod-

al value closest to the 𝑟 =  0 line. However, it has 

high positive skewness and variance. Cycling trips 

show a very similar distribution to walking. Transit 

trips have the lowest variance and skewness, reflect-

ing their constrained nature (transit trips are con-
strained to train lines/bus routes, which generally run 

to a fixed schedule). The value of transit trips is also 

lower than that for driving trips. 

Table 4 also gives the statistical properties of the 

distributions for each trip purpose and departure 

time. As with choice of the means of travel, the dis-



tributions for trip purpose are distinct with clear dif-

ferences. Home-based work (commuting) trips have 

the geometric mean closest to the origin, as well as 

the lowest variance and skew. These trips are repeat-
ed regularly, and as such there is a high incentive for 

passengers to research and select the quickest route. 

Home-based trips tend to show lower variance and 

skewness to non-home-based trips. 

The distributions for each departure period are rela-

tively closely matched compared to those for differ-

ent means of travel and trip purpose, as shown by 

their similar geometric mean, standard deviation and 

skewness. 

 Overall the distribution of the log ratios varies 

significantly for each trip class. This is indicated with 

the properties shown in Table 4. 
 
Table 4. Geometric mean, standard deviation and skewness of the 

log-ratio. 

Category Class 
Geometric 

mean 

Geometric 

S.D. 

Skew-

ness 

All All 1.390 0.568 0.918 

Means of 

travel 

Walking 1.328 0.741 1.002 

Cycling 1.608 0.719 1.047 

Transit 1.311 0.389 0.575 

Driving 1.472 0.494 0.648 

Purpose 

H.B.W. 1.275 0.396 0.527 

H.B.E 1.380 0.519 0.477 

H.B.O. 1.384 0.527 0.666 

N.H.B.W 1.473 0.601 0.716 

N.H.B.O. 1.538 0.801 0.864 

Period 

AM Peak 1.363 0.502 0.560 

Inter peak 1.431 0.623 0.966 

PM peak 1.421 0.534 0.689 

Other 1.355 0.562 1.012 

 

5 CONCLUSIONS 

There are clear discrepancies between the commonly 

assumed trip durations such as used in transport 

models and trip durations as recorded by the passen-

ger as reflected in the survey data. Crucially, as is 
shown by the geometric mean and skewness of the 

data, the discrepancies are non-uniform across the 

modes of travel and trip classes. The patterns of vari-

ation in the duration of actual trips compared to the 

commonly assumed duration for different classes of 

trip is not captured in the generalised costs calculated 
by current transport models, which may have signifi-

cant implications regarding the assumptions made for 

model calibration, validation and predictions. 

The analysis carried out in this study is subject to 

imprecisions inherent in both the recording by the 

surveyed travellers and in the derivations of the 

Google based travel times, but the discrepancies are 

both greater in magnitude and more systematic than 

can be attributed to randomness or noise. This would 

appear to warrant more in-depth analysis. Emerging 

availability of more directly sensored travel data 

would make this increasingly feasible in future work. 
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