Novel Anemia Therapies in CKD: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

Elaine Ku,1,2,3 Lucia Del Vecchio,4 Kai-Uwe Eckardt,5 Volker H. Haase,6 Kirsten L. Johansen,7 Masaomi Nangaku,8 Navdeep Tangri,9 Sushrut S. Waikar,10 Andrzej Więcek,11 Michael Cheung,12 Michel Jadoul,13 Wolfgang C. Winkelmayer,14 and David C. Wheeler15 for Conference Participants*

1Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, California, USA; 2Division of Pediatric Nephrology, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; 3Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA; 4Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como, Italy; 5Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; 6Department of Medicine, Vanderbilt University Medical Center; and Department of Molecular Physiology and Biophysics and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; 7Division of Nephrology, Hennepin Healthcare, Minneapolis, Minnesota, USA; Division of Nephrology, University of Minnesota, Minneapolis, Minnesota, USA; 8Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; 9Chronic Disease Innovation Centre, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada; Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba. Winnipeg, Manitoba, Canada; 10Section of Nephrology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, USA;
11Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland;
12KDIGO, Brussels, Belgium;
13Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium;
14Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA; and
15Department of Renal Medicine, University College London, London, UK

*Other conference participants: Baris Afsar, Turkey; Tadao Akizawa, Japan; Stefan D. Anker, Germany; Mustafa Arici, Turkey; Jodie L. Babitt, USA; Jonathan Barratt, UK; Jeffrey S. Berns, USA; Anatole Besarab, USA; Sunil Bhandari, UK; Christopher Brown, UK; Aleix Cases, Spain; Glenn M. Chertow, USA; Cynthia Delgado, USA; Tillman B. Drüeke, France; Steven Fishbane, USA; Rafael Gómez, Columbia; Morgan E. Grams, USA; Takayuki Hamano, Japan; Chuan-Ming Hao, China; Raymond K. Hsu, USA; Kunitoshi Iseki, Japan; Isabelle Jordans, Germany; Edgar V. Lerma, USA; Francesco Locatelli, Italy; Iain C. Macdougall, UK; Jolanta Małyszko, Poland; Patrick Maxwell, UK; Lawrence P. McMahon, Australia; Gregorio T. Obrador, Mexico; Marlies Ostermann, UK; Roberto Pecoits-Filho, USA; Farzana Perwad, USA; Simon D. Roger, Australia; Ajay K. Singh, USA; Laura Solá, Uruguay; Bruce S. Spinowitz, USA; Mai Sugahara, Japan; Toshiyuki Takahashi, Japan; Mototsugu Tanaka, Japan; Tetsuhiro Tanaka, Japan; Der-Cherng Tarng, Taiwan; Marcello Tonelli, Canada; Yusuke Tsukamoto, Japan; Carl P. Walther, USA; Angela Yee-Moon Wang, Hong Kong, China; Bradley A. Warady, USA; Angela C. Webster, Australia; Matthew R. Weir, USA; Jay B. Wish, USA, Muh Geot Wong, Australia.

Running title: Novel anemia therapies in CKD: A KDIGO Conference Report

Word count: 4917
Correspondence:

Elaine Ku
Division of Nephrology
University of California, San Francisco
533 Parnassus Avenue, U404
San Francisco, CA, USA 94143-0532
Email: elaine.ku@ucsf.edu

David C. Wheeler
Department of Renal Medicine
University College London
Royal Free Campus, Rowland Hill Street
London NW3 2NB, UK
Email: d.wheeler@ucl.ac.uk

Keywords: anemia; chronic kidney disease; dialysis; erythropoiesis stimulating agents; erythropoietin; hepcidin; hemoglobin; hyporesponsiveness; hypoxia-inducible factor-prolyl hydroxylase inhibitors; iron; iron deficiency; major adverse cardiovascular events
ABSTRACT

Anemia is common in patients with chronic kidney disease (CKD) and is associated with a high burden of morbidity and adverse clinical outcomes. In 2012, Kidney Disease: Improving Global Outcomes (KDIGO) published a guideline for the diagnosis and management of anemia in CKD. Since then, new data from studies assessing established and emerging therapies for the treatment of anemia and iron deficiency have become available. Beginning in 2019, KDIGO planned two Controversies Conferences to review the new evidence and its potential impact on the management of anemia in clinical practice. Here we report on the second of these conferences held virtually in December 2021 which focused on a new class of agents, the hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs). This report provides a review of the consensus points and controversies from this second conference and highlights areas that warrant prioritization for future research.
INTRODUCTION

Anemia is common in patients with chronic kidney disease (CKD) and results from inadequate erythropoietin (EPO) production, abnormal iron metabolism, blood loss, inflammation, nutritional deficiencies, and oxidative stress.¹ The 2012 Kidney Disease: Improving Global Outcomes (anemia) guideline provided recommendations for the diagnosis and treatment of anemia related to CKD, including the use of iron, recombinant human EPO and its derivatives (collectively termed erythropoiesis-stimulating agents [ESAs]), and blood transfusions.² Since the publication of this guideline, new therapies for the treatment of anemia have emerged and a reevaluation of the 2012 KDIGO guideline is required. In December 2019, KDIGO held the first of two Controversies Conferences on CKD anemia, which focused on iron.³ The second conference, held virtually in December 2021, focused primarily on hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) following the release of extensive efficacy and safety data. Given the historical nomenclature, we will continue to refer to epoetins, i.e., recombinant human EPO and its derivatives, but not HIF-PHIs as ESAs throughout even though HIF-PHIs also stimulate erythropoiesis.

Hypoxia-inducible factors (HIFs) are oxygen-regulated heterodimeric transcription factors that regulate multiple cellular processes.⁴ HIFs coordinate the response to hypoxia by increasing EPO production in the kidneys and liver and by upregulating the expression of genes involved in iron transport, enhancing its uptake and absorption.⁴⁻⁶ Hepcidin regulates ferroportin, an iron channel on the surface of enterocytes, hepatocytes, and macrophages, and inhibits iron absorption from the gut and its release from macrophages.⁷ Systemic HIF activation leads to an increase in EPO production and use of iron by erythroblasts, which in turn results in suppression of hepcidin production in the liver and enhanced intestinal iron absorption and iron mobilization.⁸⁻¹¹ In the presence of oxygen, prolyl hydroxylase enzymes hydroxylate the oxygen-regulated HIF-α subunit, thereby targeting it for proteasomal degradation.¹² When oxygen levels decrease, prolyl hydroxylation and degradation of HIF-α are inhibited, resulting in its cellular accumulation and formation of the HIF heterodimeric transcription factor.¹¹⁻¹³
Prolyl hydroxylation can be pharmacologically inhibited by oral HIF-PHIs, which stimulates erythropoiesis, largely by increasing EPO production. Potential benefits of HIF-PHIs in addition to their oral route of administration (particularly for patients who are not treated with hemodialysis) include the theoretical advantage of reduced exposure to high peak serum EPO concentrations, as substantially lower peak serum EPO levels have been found in patients treated with HIF-PHIs compared with those receiving epoetin injections. Due to their mechanism of action, HIF-PHIs may enhance enteric iron absorption and iron utilization (unlike ESAs) and may be more efficacious in correcting anemia despite chronic inflammation, though this remains an area of controversy. Other possible advantages of HIF-PHIs over ESAs include their stability at room temperature. Eliminating the need for subcutaneous injections, although these may be infrequently for longer-acting ESAs, may be important for those with non-dialysis dependent CKD (ND-CKD) or treated with peritoneal dialysis (Table 1).

Because of HIF’s pleiotropic functions, the pharmacologic activation of HIF in patients with anemia of CKD is also likely to have effects beyond erythropoiesis and iron metabolism, depending on the pharmacokinetic and pharmacodynamic properties of the administered compound, drug dosing, and drug exposure. HIF-mediated effects on cellular differentiation and growth, vascular homeostasis and hemodynamics, inflammation, and cellular metabolism are well documented in preclinical studies and could modify the risk of cardiovascular disease, thrombosis, and malignancy. To what extent non-erythropoietic signaling pathways are activated in patients receiving HIF-PHIs is difficult to predict and to measure, and the advantages of HIF-PHIs must therefore be balanced against potential risks. Thus, controversy persists surrounding the role of HIF-PHIs in the treatment of anemia of CKD.17 18

Overview of the available HIF-PHIs and clinical trial programs

To date, more than 50 randomized studies of HIF-PHIs have been published. There are currently six HIF-PHIs in clinical development including daprodustat, desidustat, enarodustat, molidustat, roxadustat, and vadadustat (Tables 2-3).20-51
Most published Phase 2 and 3 trials have focused on the efficacy of HIF-PHIs compared with placebo or ESAs in treating anemia.19 Because of concerns that became apparent during clinical trials of ESAs, particularly with respect to cardiovascular safety, regulators have required large-scale trials to establish the cardiovascular safety of these agents. Three large phase 3 programs (roxadustat, vadadustat, and daprodustat) have published data on cardiovascular outcomes in ND-CKD and dialysis-dependent CKD (DD-CKD) (Tables 2-3).21, 26, 34, 37, 42, 51 Conference participants felt that because most of the experience with these agents has been in the context of trials, regulatory agencies should continue to gather data on adverse events in routine clinical practice as usage grows. Currently, different HIF-PHIs have been approved for clinical use in various countries and regions (Supplemental Table 1).

HIF-PHIs have been studied in the context of either a superiority (compared with placebo) or non-inferiority (compared with ESAs) trial design. Non-inferiority trials formally test, within a statistical framework, whether a new treatment is not worse than the comparator by a pre-specified margin. This margin should ideally be based on the observed adverse event rate of the standard therapy versus placebo in randomized controlled trials (RCTs), or reflect a margin deemed acceptable to clinicians and patients.52 The null hypothesis in a non-inferiority trial states that a novel therapy is worse than the standard therapy (comparator) on the outcome by the pre-specified margin. Therefore, interpretation of the results of non-inferiority trials of HIF-PHIs should take into consideration the non-inferiority margins incorporated into the design as well as the rates of dropout and crossover in both arms.52 If multiple participants assigned to the new treatment switch to the comparator, non-inferiority will be more difficult to assess and erroneous rejection of the null hypothesis (i.e., a conclusion of non-inferiority) may occur. The three major phase 3 programs which have examined the cardiovascular safety of HIF-PHIs have all used non-inferiority trial designs.
Efficacy of HIF-PHIs in the correction of anemia

There was general consensus among the attendees that HIF-PHIs are superior to placebo and non-inferior to ESAs in increasing and maintaining hemoglobin (Hb) concentration among patients with ND-CKD and DD-CKD.21, 26, 31, 34, 37, 42, 51 Large, randomized trials have demonstrated that roxadustat,26, 42 vadadustat,34, 51 and daprodustat21, 37 are superior to placebo and/or non-inferior to ESAs in correcting and/or maintaining Hb at target levels in ND-CKD and incident and prevalent DD-CKD patients (Tables 2-3). Similar findings have been noted with molidustat, enarodustat, and desidustat.22-25, 39, 40, 53-55 The Hb response with HIF-PHIs is dose-dependent and varies by agent and protocol, and at the starting doses applied according to protocol at trial entry, some agents increased the Hb more rapidly than others. Rates of blood transfusion are similar among patients receiving HIF-PHIs versus ESAs and generally lower than among those receiving placebo.19

Based on the results of trials that included patients treated with hemodialysis (HD) and peritoneal dialysis (PD) and single-arm trials among patients treated with PD,56 HIF-PHIs appear to be at least as effective among those receiving PD versus HD.

Optimal hemoglobin targets for the correction of anemia

Current targets which aim for partial correction of Hb are based on clinical trials conducted several years ago.57-59 These trials compared higher versus lower Hb targets achieved using ESAs, in which major adverse cardiovascular events (MACE), mortality, and thrombotic events were more common among patients assigned to the higher of the Hb targets.57-59 In addition, one trial comparing a high Hb target with placebo (and a conservative rescue strategy) in ND-CKD patients with diabetes found an increased rate of strokes.60 However, no HIF-PHI trials to date have compared Hb normalization or near-normalization with the currently recommended lower Hb targets for CKD patients. A few Japanese trials using daprodustat and molidustat have targeted Hb values exceeding 12 g/dl.20, 24, 25 Because phase 3 trials of HIF-PHIs were designed primarily for efficacy and safety evaluation and to meet criteria set forth by regulatory agencies in different geographic regions, guideline-recommended Hb targets
were used resulting in some regional differences (Tables 2-3). Overall, the attendees felt that the available data do not provide a rationale for targeting higher Hb levels with HIF-PHIs than the currently recommended targets established using ESAs.

Implications for iron management during the correction of anemia

Iron therapy is a critical cornerstone of anemia management, and iron availability is impaired in patients with CKD.\(^3\),\(^61\) Although data from clinical trials suggest that HIF-PHIs may modulate iron metabolism,\(^62\) iron parameters and iron utilization were not primary outcomes in these studies. The conference participants generally felt that the interpretation of iron-related data from these trials is impeded by significant limitations in trial design. Many aspects of iron management were not appropriately specified and were left to the discretion of the investigator and/or were based on local clinical practice patterns.\(^9\) In some trials, iron protocols differed between treatment and comparator groups within a trial.\(^32\),\(^47\) Other design limitations included differences in Hb targets and achieved Hb between treatment arms, differences in the proportion of patients with baseline iron deficiency, and baseline imbalances in iron and hepcidin status and relevant co-morbidities.

Notwithstanding the limitations in trials thus far, higher serum transferrin levels in HIF-PHI treated patients, either measured directly \(^20\),\(^26\)-\(^28\),\(^35\),\(^42\)-\(^45\),\(^63\)-\(^65\) or indirectly by calculating total iron binding capacity (TIBC), were reported across different compounds. In contrast, the effects on serum iron, hepcidin, transferrin saturation (TSAT) and ferritin were more variable among individual trials and between compounds.\(^62\) A summary of iron use and changes in iron parameters is shown in Tables 4-5.\(^21\),\(^29\)-\(^32\),\(^34\),\(^36\)-\(^38\),\(^46\)-\(^49\),\(^51\)
Although there is potential for a reduction in intravenous (IV) iron treatment, there was general consensus that HIF-PHI therapy will not eliminate the need for iron replacement in DD-CKD patients. The conference participants agreed that iron parameters should be monitored during treatment with HIF-PHIs, and iron deficiency should be avoided because it is associated with thromboembolic events, impaired red blood cell production, lower HRQoL, higher rates of cardiovascular events, and higher mortality.66, 67

In summary, conference participants agreed that clinically meaningful differences in iron utilization have not so far been demonstrated using HIF-PHIs. There will likely be a continued role of iron therapy in patients with ND- and DD-CKD treated with HIF-PHIs.

Effect of HIF-PHIs on Health-Related Quality of Life (HRQoL)

Several large Phase 3 HIF-PHI trials have included assessments of QoL as exploratory or secondary endpoints.29-31, 47 These trials have used different scoring systems which may limit comparability across trials.29-31, 47 Numerical improvements, in particular for the SF-36 Physical Functioning subscore, were reported in the OLYMPUS trial which compared roxadustat to placebo.31 Data from the smaller dedicated ASCEND-NHQ study in ND-CKD patients, which evaluated the effects of daprodustat versus placebo on QoL using the SF-36 Vitality score, suggested higher vitality score (fatigue) in those receiving daprodustat.68 In general, assessment of differences in HRQoL is difficult in trials that do not have a double-blinded design.

The patient representatives in attendance felt that although HRQoL was important, a new treatment should ideally be superior to the current standard of care for both safety and efficacy. However, some patients who were not treated with hemodialysis would prefer an oral option over an injection if safety and efficacy were similar.
Safety of HIF-PHIs

Cardiovascular outcomes

Cardiovascular safety signals from clinical trials of ESAs targeting normal or near-normal Hb concentrations led to labelling changes by the US Food and Drug Administration (FDA) beginning in 2007. The current FDA labels for ESAs include warnings on increased risk of death, serious adverse cardiovascular events, and stroke when ESAs are administered to target Hb levels >11 g/dl. No trial has identified an ideal target Hb level, ESA dose, or dosing strategy that does not increase these risks. Thus, for HIF-PHI approval, regulatory agencies asked manufacturers to demonstrate non-inferiority or superiority of HIF-PHIs in terms of the risk for MACE in both dialysis and non-dialysis populations within target ranges recommended for ESAs.

CKD not requiring dialysis (non-dialysis dependent, ND-CKD) (Table 6)

Roxadustat was the first HIF-PHI to be reviewed by the FDA. Data submitted in support of the New Drug Application included 3 separate trials comparing roxadustat with placebo that were pooled for meta-analyses in the ND-CKD (n = 4270) population. A fourth study comparing roxadustat to darbepoetin alfa was analyzed separately. The pooled analyses for roxadustat did not have prespecified non-inferiority margins that were agreed upon by the FDA. Comparing the upper limits of the 95% CI against the pre-specified non-inferiority margin of daprodustat and vadadustat trials (HR 1.25), roxadustat would not have met the criteria for non-inferiority in pooled analyses of MACE in the ND-CKD population when compared with placebo: HR 1.10; 95% CI: 0.96-1.27. In further on-treatment sensitivity analyses (as opposed to intention-to-treat analysis) requested by the FDA to minimize the effect of including unexposed person-times or events that may not be affected by the intervention, this risk was heightened. When assessing events occurring while patients were on treatment and for one week after discontinuation (on-treatment + 7 days analyses), 277 (7.2%) events were recorded in the roxadustat arm compared with 131 (5.6%) events in the placebo arm (HR 1.38; 95% CI: 1.11-1.70). A caveat in these analyses is the higher dropout rates in the placebo compared to roxadustat arms, with potential for bias that may have disadvantaged roxadustat.
Vadadustat ND-CKD Phase 3 trials of ESA-treated (n = 1725) and ESA-untreated (n = 1751) patients were pooled, as pre-specified, with darbepoetin alfa as the comparator arm in both trials.34 The primary MACE analysis did not meet the pre-specified HR=1.30 non-inferiority margin (HR 1.17; 95% CI: 1.01-1.36), and showed a higher risk of MACE in the vadadustat arm. The excess risk was accounted for by nonfatal MI and death from non-cardiovascular causes. Subgroup analyses found a regional difference in the study results, with the increased MACE risk observed in non-U.S. study sites (HR 1.30; 95% CI 1.05-1.62) but no difference in risk in the U.S. study sites (HR 1.06; 95% CI 0.87-1.29).34

Daprodustat non-inferiority trials met the pre-specified non-inferiority margins of a HR of 1.25 in primary analyses of the ND-CKD population in a mixed population of previously ESA-treated and untreated patients (HR: 1.03; 95% CI: 0.89-1.19) in comparison to darbepoetin alfa.21 However, in the sensitivity on-treatment MACE analysis, which censored patients at 28 days after the last dose, participants randomized to daprodustat had a higher incidence of MACE than those randomized to ESA in the ND-CKD study (14.1% vs. 10.5%, HR 1.40; 95% CI: 1.17-1.68).21 However, differences in the dosing frequency of daprodustat versus ESAs in this trial and differences in definitions of treatment periods may have led to potential bias that disadvantaged daprodustat.21

There was a general view among conference participants that major clinical trials have failed to conclusively demonstrate that HIF-PHIs are non-inferior to placebo or conventional ESAs in ND-CKD patients for cardiovascular outcomes. In fact, variable results have been reported for different HIF-PHIs and in different study settings, depending on the type of analyses being performed (e.g., intention-to-treat versus on-treatment analyses). Potential explanations for the differential effects on MACE outcomes between different trials and different agents may result from imbalances in patient characteristics or geographic location at baseline, or from non-matching intervals of follow-up assessment after the last study drug dose in different randomized groups.73
Dialysis-dependent (DD-CKD) population

In contrast to the ND-CKD trial results, there was consensus that HIF-PHIIs in general met non-inferiority criteria for MACE in cardiovascular outcome trials in DD-CKD populations (Table 7)\(^{36-38, 42-51}\) although controversies surrounding interpretation of the data were discussed. Moreover, in most clinical trials, efficacy and safety of HIF-PHIIs was similar in incident and prevalent dialysis populations.

Three studies of roxadustat involving dialysis patients (N=3880) were meta-analyzed in a report submitted to the FDA.\(^7\) All trials included in this report compared roxadustat to ESA. The analyses of the effect of roxadustat for MACE were discordant based on the analytical approach: in the primary, on-treatment + 7 day analyses, the risk of MACE was similar in the roxadustat and ESA groups: HR 1.02; 95% CI: 0.88-1.20. In the sensitivity, on-treatment analysis, the HR for the risk of MACE in patients treated with roxadustat versus ESA was 1.14; 95% CI: 1.00-1.30, a difference that just missed statistical significance for non-inferiority. A fourth trial conducted in Europe and not included in the pooled meta-analysis due to differences in study design demonstrated a higher risk of death in roxadustat vs. ESA-treated patients (8.9 per 100 patient years (PY) vs. 6.3 per 100 PY; HR 1.54, 95% CI 1.04-2.28).\(^7\) In a published analysis of the four roxadustat trials in the DD-CKD population,\(^7\) MACE and MACE+ (a composite of MACE plus unstable angina or congestive heart failure requiring hospitalization) in the on-treatment plus 7 day analyses showed different results in incident vs. prevalent dialysis patients, with the hazard ratio suggesting benefit in incident patients but harm in prevalent patients. In contrast to the ND-CKD studies, treatment duration was longer for the ESA group.

Vadadustat DD-CKD Phase 3 trials pooled two studies of prevalent (n = 3554) and incident (n = 369) patients, with darbepoetin alfa as the comparator group (Table 3).\(^51\) Pooled results showed similar MACE rates in the two arms and met non-inferiority (HR 0.96; 95% CI: 0.83-1.11).\(^51\) Sensitivity analyses were not available at the time of this conference.
Daprodustat trials met the pre-specified non-inferiority margin of 1.25 in primary analyses of the DD-CKD populations (DD: 0.93; 95% CI: 0.81-1.07).21,37 The sensitivity on-treatment analysis of the DD-CKD population was similar to the primary analysis (Table 7).

In most clinical trials, efficacy and safety of HIF-PHI were similar in incident and prevalent dialysis populations (Tables 3 and 7). A pooled analysis of roxadustat studies noted similar risk of MACE (HR 0.83; 95% CI: 0.61-1.13) and nominally lower risk of MACE+ (HR 0.76; 95% CI: 0.57-1.00) among incident dialysis patients treated with roxadustat, whereas roxadustat was less favorable for MACE (HR 1.18; 95% CI: 1.00-1.38) and all-cause mortality (HR 1.23; 95% CI: 1.02-1.49) in prevalent dialysis patients.74 However, the statistical significance of this difference between incident and prevalent dialysis patients was not reported.

Despite overall consensus that HIF-PHI met non-inferiority criteria for MACE in cardiovascular outcome trials involving DD-CKD populations, it was recognized that controversy has surrounded interpretation of the relevant data for roxadustat in this context. This has been fueled by retraction of a published pooled analysis because of post-publication recognition of deviation from the prespecified analytical plan.75

\textit{Thromboembolic events, including vascular access thrombosis}

Administration of HIF-PHI is has been associated with a higher risk of thrombotic events compared with ESAs or placebo.76,77 Although the underlying mechanisms are not understood and appear to be complex, they may be related to the steeper rate of rise in Hb as suggested by a recent FDA safety review for roxadustat.76 In addition, HIF-PHI interactions with iron metabolism, i.e., upregulation of transferrin,78 or the interference of HIF with the coagulation system, e.g., through increased expression of plasminogen activator inhibitor may contribute to thrombotic risk.79

Roxadustat showed an excess risk of thrombosis in both ND- (versus ESA) and DD-CKD (versus placebo) trials.70 A pooled analysis of roxadustat trials showed higher risks of thromboembolic events that were associated with the rate of Hb rise.71 It is
unclear, however, whether lower doses of roxadustat, which would be expected to lead
to a slower rate of Hb rise, would ameliorate thrombosis risk while maintaining efficacy.
Concerns surrounding the thrombotic risk with vadadustat were raised by the FDA
although these concerns were not initially noted in published data.80 Daprodustat trials
have not reported excess risk of thrombosis compared with active comparator.21, 37

\textit{Hypertension}

Pre-clinical studies in healthy rats and rats with CKD demonstrated that HIF-PHIs
generate significant dose-dependent blood-pressure lowering effects.81-83 However, so
far, no significant blood pressure effects have been reported in any HIF-PHI phase 3
programs. The results from a dedicated blood pressure study with daprodustat
(ASCEND-BP) have not yet been published (NCT03029247).

\textit{Lipid metabolism}

Theoretically, HIF-dependent increases in lipoprotein uptake and reductions in
cholesterol synthesis via enhanced degradation of 3-hydroxy-3-methyl-glutaryl-CoA
reductase may lead to lower blood cholesterol levels with HIF-PHI treatment.84, 85 Although dedicated clinical studies specifically focused on the interactions between HIF-
PHIs and lipid metabolism have not yet been conducted, significant and consistent
reductions in total cholesterol, low-density lipoprotein cholesterol (LDL-C) and high-
density lipoprotein cholesterol (HDL-C) levels were reported in patients treated with
roxadustat or daprodustat (ND- and DD-CKD).20, 26, 29, 32, 42, 46, 47, 49, 63, 65 These
reductions were not seen in patients treated with enarodustat, molidustat or
vadadustat,23, 24, 40, 53, 55, 86, 87 clearly indicating that different compounds may have
different properties. To what degree cholesterol-lowering effects of daprodustat and
roxadustat might impact cardiovascular risk in patients with CKD anemia is not clear.
Given the lack of clear cardiovascular benefits with the initiation of statin therapy in
dialysis patients,88 HIF-PHI-mediated interactions with lipid metabolism may not
necessarily translate into clinical benefits, even when considering long-term effects
beyond the exposure in studies conducted so far.
Kidney disease progression

Pharmacologic HIF activation has been studied in multiple kidney disease models using pharmacologic and genetic approaches.\cite{1} Experimental studies have consistently demonstrated renoprotective effects of HIF activation in acute kidney injury models, whereas the effects of HIF activation in models of chronic kidney injury appeared to be context-dependent and less consistent.\cite{1} This has raised concerns that anemia therapy with HIF-PHIs may worsen CKD in certain subgroups of patients. In one trial of molidustat versus ESA, the risk of CKD progression was higher with molidustat, though whether this finding is specific to molidustat is unclear.\cite{25}

Prespecified secondary analyses of Phase 3 trials of daprodustat and vadadustat in ND-CKD patients showed no beneficial or harmful effects of either drug on CKD outcomes, including the need for dialysis, kidney transplantation, or >40% decline in eGFR.\cite{21,34} A Phase 3 trial of roxadustat\cite{31} suggested greater decline in kidney function compared with placebo. The annual rate of change in eGFR was -3.70 ml/min per 1.73 m2 with roxadustat and -3.19 ml/min per 1.73 m2 with placebo (difference -0.51 ml/min per 1.73 m2; 95% CI: -1.00 to -0.01; nominal $P = 0.046$). Conference participants agreed that data from CKD anemia trials reported so far do not suggest any clinically relevant impact of HIF-PHIs on kidney disease progression, but also pointed out that these trials were not specifically designed to evaluate such effects.

Malignancy risk

Adaptation to regional hypoxia mediated by the HIF-pathway plays an important role in tumor progression.\cite{89} Moreover, genetic HIF activation is a central mechanism of tumorigenesis in patients with the von Hippel-Lindau (VHL) disease and clear cell renal carcinomas.\cite{90} This and other evidence implies that cancer initiation and/or progression could be an adverse event associated with HIF-PHI use.

While the HIF-PHI phase 3 studies have mostly not shown any signals supporting this assumption, in the ASCEND-ND trial, cancer-related death or tumor progression or recurrence was more commonly observed in those randomized to...
daprodustat (72 of 1937, 3.7%) than in those randomized to darbepoetin alfa (49 of 1933, 2.5%), with relative risk of 1.47 (95% CI: 1.03-2.10).21 Post hoc analyses that accounted for differential dosing frequency attenuated this observed risk.21 A clinical trial of molidustat also reported neoplasms in 9.8% of trial participants in the molidustat group compared with 5.3% in the darbepoetin group.41 The conference participants agreed that there has been no consistent signal across the HIF-PHIs of an excess risk of malignancy-related adverse events, but the accrued exposure time in clinical trials and clinical practice has not been long enough to be confident of the absence of a clinically relevant risk compared with ESAs, and patients with a history of recent or active malignancy were excluded from trials. Post-marketing surveillance will be important to confirm the safety of HIF-PHIs from the standpoint of cancer risk and provide longer-term follow-up data, and avoidance of HIF-PHIs in patients with a history of malignancy is recommended.

Additional safety concerns

An approximate 2-fold increase in the risk for sepsis and septic shock was reported for roxadustat in ND-CKD patients (pooled studies).76 No increased risk of infections has been noted in the serious adverse events of other trials.21, 34, 37, 51

Upregulation of vascular endothelial growth factor by the HIF pathway may increase angiogenesis and therefore in theory worsen diabetic retinopathy and age-related macular degeneration.91, 92 All HIF-PHI trials have included individuals with diabetes at risk for diabetic retinopathy. However, to date, retinopathy has not been reported to worsen during treatment with HIF-PHIs.93

Although higher rates of hyperkalemia and low serum bicarbonate have been reported for HIF-PHIs in some studies,26, 29, 42, 94-96 such data have not been reproduced by centralized laboratory analysis or in larger trials.33, 34, 50, 51

Central hypothyroidism has been reported in patients treated with roxadustat,97-99 and the Japanese regulatory agency recently added central hypothyroidism as a potential complication of roxadustat in the package insert. This may be due to the
structure of roxadustat, which has a molecular structure similar to triiodothyronine (T3), so that its binding to thyroid hormone receptor β may lead to the down-regulation of thyrotropin releasing hormone (TRH). There has been no report of hypothyroidism as a complication in patients treated with other HIF-PHIs according to our knowledge.

Other clinically significant adverse events may become more apparent as we gain experience with the use of HIF-PHIs in clinical practice.

Practical considerations

Dosing considerations

There have been no head-to-head trials comparing different HIF-PHIs in patients with ND- or DD-CKD. However, marked differences exist in potency, dose requirements, and presumably pharmacokinetics. Phase 3 trials generally showed good efficacy in achieving and maintaining target Hb ranges overall and in subgroups based on age, sex, race, and dialysis modality. There was consensus among conference participants that the appropriate dose depends on the drug and should follow label recommendations. There was also general consensus that the starting HIF-PHI dose should be lower for those who are ESA-naïve versus those who are not. Based on the current Hb and the achieved change in Hb (typically over a 4-week period), the dosing in phase 3 trials was maintained or changed in stepwise fashion. Treatment was temporarily discontinued when Hb exceeded 12 or 13 g/dl in most studies,21, 22, 24-26, 31, 34, 35, 37, 39, 42, 46, 51, 54-56, 100, 101 Conference participants generally felt that in clinical routine the HIF-PHI dose should be maintained or changed in similar stepwise fashion as in trial protocols based on the current Hb and its rate of change.
Use of HIF-PHIs in subpopulations of interest

Patients hyporesponsive to ESAs

By lowering hepcidin levels, HIF-PHIs may theoretically be more effective in treating patients who are hyporesponsive to ESAs because of chronic inflammation or functional iron deficiency. Preliminary data suggest that whereas higher doses of ESAs are needed for patients with high C-reactive protein (CRP) levels, this may not be true for HIF-PHIs.16,45 However, CRP concentrations that were considered high in trial participants were only slightly elevated, and sicker and more inflamed patients may have been less likely to have been enrolled in trials of HIF-PHIs. Conference participants also felt that data on the effect of HIF-PHIs in ESA-hyporesponsive patients are limited.

Although the use of HIF-PHIs in combination with ESAs might theoretically be advantageous for patients who are ESA hyporesponsive, there are no data available to support this strategy in clinical practice at present.102 As with all drugs, there is a risk for drug-drug interactions with the use of HIF-PHIs, particularly in combination with other oral agents (Supplemental Table 2).

Children

Anemia is also a common complication of CKD in children and is associated with decreased quality of life, reduced neurocognitive ability, left ventricular hypertrophy, and increased risk of hospitalizations.103 Pain has also been reported with subcutaneous injections of ESAs, making an oral formulation for anemia treatment especially attractive in the pediatric population.104 However, participants felt that there are insufficient data supporting the use of HIF-PHIs in pediatric patients with anemia of CKD because patients under the age of 18 years were excluded from all Phase 3 trials.105 Several new trials with roxadustat, daprodustat, and molidustat are planned in pediatric patients after completion of Phase 3 trials in adults.
Polycystic kidney disease

HIF activation occurs in polycystic kidneys in humans and rodents and activation of the HIF–pathway has been shown to enhance cyst expansion in preclinical models.\(^{106}\) However, whether the use of HIF-PHIs to treat anemia may enhance cyst growth remains unclear. Nevertheless conference participants felt that these agents should not be used in patients with polycystic kidney disease until adequate safety data emerge.

Kidney transplantation

While kidney transplant recipients were excluded from Phase 3 trials of roxadustat and vadadustat, no formal exclusion of subjects with prior kidney transplant was stated in the Phase 3 trials of daprodustat.\(^{21, 37, 107}\) However, whether subjects with a functioning kidney transplant at baseline were actually enrolled is currently unknown. HIF-PHIs play a role in immune cell function and therefore HIF-PHIs use could potentially promote graft rejection or increase the risk of malignancy.\(^{108}\) There is limited experience of using HIF-PHIs in patients who are receiving immunosuppression, such as those with kidney allografts.

Other novel therapeutic agents

Several new agents have been introduced into clinical medicine that may be beneficial for patients with CKD anemia and might be used concurrently with ESAs or HIF-PHIs. Agents in clinical development have been discussed during the first KDIGO Controversies in Optimal Anemia Management Conference in 2019 and are not further discussed here.\(^{3}\) In analogy with HIF-PHIs, SGLT2 inhibitors (SGLT2i) are also considered to stimulate endogenous EPO production.

SGLT2 inhibitors

In addition to their antidiabetic and beneficial cardiovascular and kidney effects, SGLT2i have been shown to increase Hb in patients with kidney disease and/or heart failure.\(^{109-114}\) Because increased Hb in patients treated with SGLT2i appears to be independent of diuretic use and/or rate of intravascular volume depletion,\(^{115}\) SGLT2i-
induced changes in Hb are no longer believed to simply reflect hemoconcentration due to diuresis.116 In fact, SGLT2i administration was associated with transient increases in serum EPO concentrations (30-40\%), an increase in reticulocyte counts, a decrease in ferritin and hepcidin, indicating erythropoietic stimulation.117-120 It has been hypothesized that these pro-erythropoietic actions may have contributed to SGLT2i-mediated protective effects on heart failure outcomes and kidney disease progression.109-111 Although current data suggest that SGLT2i may provide beneficial “anti-anemic” effects and delay or prevent the initiation of anemia therapy,121 conference participants agreed that more information is needed to better understand the mechanisms of action underlying these effects and their clinical relevance.

Conclusions

In summary, HIF-PHIs are non-inferior to conventional ESAs in increasing and maintaining Hb concentrations in patients with NDD- and DD-CKD, and reduce transfusion requirements when compared with placebo. In terms of cardiovascular safety, HIF-PHIs are inferior, or at best similar to conventional ESAs. Different safety signals were observed for different HIF-PHIs across large phase 3 trial programs, and concerns surrounding cardiovascular and thrombotic risks persist. The data that are currently available do not support the concept that use of HIF-PHIs will reduce the need for IV or oral iron supplementation among patients with NDD- or DD-CKD nor have superior efficacy in the correction of anemia in states of chronic inflammation. However, published trials to date were not designed to address these questions, and iron was administered according to trial protocols which varied widely. Studies examining alternative iron dosing strategies in patients receiving HIF-PHIs are needed. Currently, there are insufficient data to determine whether use of HIF-PHIs improves quality of life in patients with ND-CKD. Further research recommendations are provided in Table 8.
DISCLOSURES

The conference was sponsored by KDIGO and was in part supported by unrestricted educational grants from 7 Elements Global, Akebia Therapeutics, Amgen, Astellas, AstraZeneca, GlaxoSmithKline, Mitsubishi Tanabe Pharma Group, Otsuka, Roche, Rockwell Medical, Torii Pharmaceutical Co., Ltd., US Renal Care, and Vifor Fresenius Medical Care Renal Pharma.
Tables

Table 1: Potential advantages and disadvantages of various CKD-anemia therapies

Table 2: Efficacy data from phase 3 HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease

Table 3: Efficacy data from phase 3 HIF-PHI clinical trials in patients with dialysis-dependent chronic kidney disease

Table 4: Iron parameters from phase 3 HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease

Table 5: Iron parameters from phase 3 HIF-PHI clinical trials in dialysis-dependent chronic kidney disease

Table 6: Cardiovascular safety data from phase 3 non-inferiority HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease

Table 7: Cardiovascular safety data from phase 3 non-inferiority HIF-PHI clinical trials in dialysis-dependent chronic kidney disease

Table 8: Research recommendations

Supplemental Table 1: Availability of HIF-PHIs (as of April 24, 2023)

Supplemental Table 2: Drug-drug interactions of HIF-PHIs
REFERENCES

12. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. *Science* 2001; **294**: 1337-1340.

68. Johansen KL, Cobitz AR, Singh AK, et al. The ASCEND-NHQ trial found positive effects of daprodustat on hemoglobin and quality of life in patients with non-dialysis-dependent...

70. FDA. Cardiovascular and Renal Drugs Advisory Committee Meeting - Roxadustat. https://www.fda.gov/media/150728/download.

83. Yu J, Wang S, Shi W, *et al.* Roxadustat prevents Ang II hypertension by targeting angiotensin receptors and eNOS. *JCI Insight* 2021; **6**: e133690.

85. Shen GM, Zhao YZ, Chen MT, *et al.* Hypoxia-inducible factor-1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia. *Biochem J* 2012; **441**: 675-683.

111. Li J, Woodward M, Perkovic V, et al. Mediators of the Effects of Canagliflozin on Heart Failure in Patients With Type 2 Diabetes. JACC Heart Fail 2020; 8: 57-66.

Novel Anemia Therapies in CKD: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

Elaine Ku,1,2,3 Lucia Del Vecchio,4 Kai-Uwe Eckardt,5 Volker H. Haase,6 Kirsten L. Johansen,7 Masaomi Nangaku,8 Navdeep Tangri,9 Sushrut S. Waikar,10 Andrzej Więcek,11 Michael Cheung,12 Michel Jadoul,13 Wolfgang C. Winkelmayer,14 and David C. Wheeler15 for Conference Participants

1Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, California, USA;
2Division of Pediatric Nephrology, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA;
3Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA;
4Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como, Italy;
5Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany;
6Department of Medicine, Vanderbilt University Medical Center; and Department of Molecular Physiology and Biophysics and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA;
7Division of Nephrology, Hennepin Healthcare, Minneapolis, Minnesota, USA; Division of Nephrology, University of Minnesota, Minneapolis, Minnesota, USA;
8Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan;
9Chronic Disease Innovation Centre, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada; Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba. Winnipeg, Manitoba, Canada;
10Section of Nephrology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, USA;
11Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland;
12KDIGO, Brussels, Belgium;
13Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium;
14Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA; and
15Department of Renal Medicine, University College London, London, UK

*Other conference participants: Baris Afsar, Turkey; Tadao Akizawa, Japan; Stefan D. Anker, Germany; Mustafa Arici, Turkey; Jodie L. Babitt, USA; Jonathan Barratt, UK; Jeffrey S. Berns, USA; Anatole Besarab, USA; Sunil Bhandari, UK; Christopher Brown, UK; Aleix Cases, Spain; Glenn M. Chertow, USA; Cynthia Delgado, USA; Tillman B. Drüeke, France; Steven Fishbane, USA; Rafael Gómez, Columbia; Morgan E. Grams, USA; Takayuki Hamano, Japan; Chuan-Ming Hao, China; Raymond K. Hsu, USA; Kunitoshi Iseki, Japan; Isabelle Jordans, Germany; Edgar V. Lerma, USA; Francesco Locatelli, Italy; Iain C. Macdougall, UK; Jolanta Małyszko, Poland; Patrick Maxwell, UK; Lawrence P. McMahon, Australia; Gregorio T. Obrador, Mexico; Marlies Ostermann, UK; Roberto Pecoits-Filho, USA; Farzana Perwad, USA; Simon D. Roger, Australia; Ajay K. Singh, USA; Laura Solá, Uruguay; Bruce S. Spinowitz, USA; Mai Sugahara, Japan; Toshiyuki Takahashi, Japan; Mototsugu Tanaka, Japan; Tetsuhiro Tanaka, Japan; Der-Cherng Tarng, Taiwan; Marcello Tonelli, Canada; Yusuke Tsukamoto, Japan; Carl P. Walther, USA; Angela Yee-Moon Wang, Hong Kong, China; Bradley A. Warady, USA; Angela C. Webster, Australia; Matthew R. Weir, USA; Jay B. Wish, USA, Muh Geot Wong, Australia.

Running title: Novel anemia therapies in CKD: A KDIGO Conference Report

Word count: 4917
Correspondence:

Elaine Ku
Division of Nephrology
University of California, San Francisco
533 Parnassus Avenue, U404
San Francisco, CA, USA 94143-0532
Email: elaine.ku@ucsf.edu

David C. Wheeler
Department of Renal Medicine
University College London
Royal Free Campus, Rowland Hill Street
London NW3 2NB, UK
Email: d.wheeler@ucl.ac.uk

Keywords: anemia; chronic kidney disease; dialysis; erythropoiesis stimulating agents; erythropoietin; hepcidin; hemoglobin; hyporesponsiveness; hypoxia-inducible factor-prolyl hydroxylase inhibitors; iron; iron deficiency; major adverse cardiovascular events
ABSTRACT

Anemia is common in patients with chronic kidney disease (CKD) and is associated with a high burden of morbidity and adverse clinical outcomes. In 2012, Kidney Disease: Improving Global Outcomes (KDIGO) published a guideline for the diagnosis and management of anemia in CKD. Since then, new data from studies assessing established and emerging therapies for the treatment of anemia and iron deficiency have become available. Beginning in 2019, KDIGO planned two Controversies Conferences to review the new evidence and its potential impact on the management of anemia in clinical practice. Here we report on the second of these conferences held virtually in December 2021 which focused on a new class of agents, the hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs). This report provides a review of the consensus points and controversies from this second conference and highlights areas that warrant prioritization for future research.
INTRODUCTION

Anemia is common in patients with chronic kidney disease (CKD) and results from inadequate erythropoietin (EPO) production, abnormal iron metabolism, blood loss, inflammation, nutritional deficiencies, and oxidative stress.\(^1\) The 2012 Kidney Disease: Improving Global Outcomes (anemia) guideline provided recommendations for the diagnosis and treatment of anemia related to CKD, including the use of iron, recombinant human EPO and its derivatives (collectively termed erythropoiesis-stimulating agents [ESAs]), and blood transfusions.\(^2\) Since the publication of this guideline, new therapies for the treatment of anemia have emerged and a reevaluation of the 2012 KDIGO guideline is required. In December 2019, KDIGO held the first of two Controversies Conferences on CKD anemia, which focused on iron.\(^3\) The second conference, held virtually in December 2021, focused primarily on hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) following the release of extensive efficacy and safety data. Given the historical nomenclature, we will continue to refer to epoetins, i.e., recombinant human EPO and its derivatives, but not HIF-PHIs as ESAs throughout even though HIF-PHIs also stimulate erythropoiesis.

Hypoxia-inducible factors (HIFs) are oxygen-regulated heterodimeric transcription factors that regulate multiple cellular processes.\(^4\) HIFs coordinate the response to hypoxia by increasing EPO production in the kidneys and liver and by upregulating the expression of genes involved in iron transport, enhancing its uptake and absorption.\(^4-6\) Hepcidin regulates ferroportin, an iron channel on the surface of enterocytes, hepatocytes, and macrophages, and inhibits iron absorption from the gut and its release from macrophages.\(^7\) Systemic HIF activation leads to an increase in EPO production and use of iron by erythroblasts, which in turn results in indirectly suppression of hepatic hepcidin production in the liver and leads to enhanced intestinal iron absorption and iron mobilization.\(^8-11\) In the presence of oxygen, prolyl hydroxylase enzymes hydroxylate the oxygen-regulated HIF-α subunit, thereby targeting it for proteasomal degradation.\(^12\) When oxygen levels decrease, prolyl hydroxylation and degradation of HIF-α are inhibited, resulting in its cellular accumulation and formation of the HIF heterodimeric transcription factor.\(^1, 13\)
Prolly hydroxylation can be pharmacologically inhibited by oral HIF-PHIs, which stimulates erythropoiesis, largely by increasing EPO production. Potential benefits of HIF-PHIs in addition to their oral route of administration (particular for patients who are not treated with hemodialysis) include the theoretical advantage of reduced exposure to high peak serum EPO concentrations, as substantially lower peak serum EPO levels have been found in patients treated with HIF-PHIs compared with those receiving intravenous epoetin injections. Due to their mechanism of action, HIF-PHIs may enhance enteric iron absorption and iron utilization (unlike ESAs) and may be more efficacious in correcting anemia despite chronic inflammation, though this remains an area of controversy. Other possible advantages of HIF-PHIs over ESAs include their oral route of administration and stability at room temperature. Eliminating the need for frequent subcutaneous injections, although these may be infrequently for longer-acting ESAs, may be important for those with non-dialysis dependent CKD (ND-CKD) or treated with peritoneal dialysis (Table 1).

Because of HIF’s pleiotropic functions, the pharmacologic activation of HIF in patients with anemia of CKD is also likely to have effects beyond erythropoiesis and iron metabolism, depending on the pharmacokinetic and pharmacodynamic properties of the administered compound, drug dosing, and drug exposure. HIF-mediated effects on cellular differentiation and growth, vascular homeostasis and hemodynamics, inflammation, and cellular metabolism are well documented in preclinical studies and could modify the risk of cardiovascular disease, thrombosis, and malignancy. To what extent non-erythropoietic signaling pathways are activated in patients receiving HIF-PHIs is difficult to predict and to measure, and the advantages of HIF-PHIs must therefore be balanced against potential risks. Thus, controversy persists surrounding the role of HIF-PHIs in the treatment of anemia of CKD.

Overview of the available HIF-PHIs and clinical trial programs
To date, more than 50 randomized studies of HIF-PHIs have been published. There are currently six available HIF-PHIs agents in clinical development including
daprodustat, desidustat, enarodustat, molidustat, roxadustat, and vadadustat (Tables 2-3).
Most published Phase 2 and 3 trials have focused on the efficacy of HIF-PHIs compared with placebo or ESAs in treating anemia. Because of concerns that became apparent during clinical trials of ESAs, particularly with respect to cardiovascular safety, regulators have required large-scale trials to establish the cardiovascular safety of these agents. Three large phase 3 programs (roxadustat, vadadustat, and daprodustat) have published data on cardiovascular outcomes in ND-CKD and dialysis-dependent CKD (DD-CKD) (Tables 2-3). Conference participants felt that because most of the experience with these agents has been in the context of trials, regulatory agencies should continue to gather data on adverse events in routine clinical practice as usage grows. Currently, different HIF-PHIs have been approved for clinical use in various countries and regions (Supplemental Table 1).

HIF-PHIs have been studied in the context of either a superiority (compared with placebo) or non-inferiority (compared with ESAs) or superiority (compared with placebo) trial design. Non-inferiority trials formally test, within a statistical framework, whether a new treatment is not worse than the comparator by a pre-specified margin. This margin should ideally be based on the observed adverse event rate of the standard therapy versus placebo in randomized controlled trials (RCTs), or reflect a margin deemed acceptable to clinicians and patients. The null hypothesis in a non-inferiority trial states that a novel therapy is worse than the standard therapy (comparator) on the outcome by the pre-specified margin. Therefore, interpretation of the results of non-inferiority trials of HIF-PHIs should take into consideration the non-inferiority margins incorporated into the design as well as the rates of dropout and crossover in both arms. If multiple participants assigned to the new treatment switch to the comparator, non-inferiority will be more difficult to assess and erroneous rejection of the null hypothesis (i.e., a conclusion of non-inferiority) may occur. The three major phase 3 programs which have examined the cardiovascular safety of HIF-PHIs have all used non-inferiority trial designs, and two have also used superiority designs.
Efficacy of HIF-PHIs in the correction of anemia

There was general consensus among the attendees that HIF-PHIs are superior to placebo and non-inferior to ESAs in increasing and maintaining hemoglobin (Hb) concentration among patients with ND-CKD and DD-CKD. Large, randomized trials have demonstrated that roxadustat, vadadustat, and daprodustat are superior to placebo and/or non-inferior to ESAs in correcting and/or maintaining Hb at target levels in ND-CKD and incident and prevalent DD-CKD patients (Tables 2-3). Similar findings have been noted with molidustat, enarodustat, and desidustat. The Hb response with HIF-PHIs is dose-dependent and varies by agent and protocol, and at the recommended starting doses applied according to protocol at trial entry, some agents may increased the Hb more rapidly than others. Rates of blood transfusion are similar among patients receiving HIF-PHIs versus ESAs and generally lower than among those receiving placebo.

Based on the results of trials that included patients treated with hemodialysis (HD) and peritoneal dialysis (PD) and single-arm trials among patients treated with PD, HIF-PHIs appear to be at least as effective among those receiving PD versus HD. A detailed comparison of Japanese HD and PD patients receiving daprodustat or vadadustat indicated that patients treated with HD required a higher dose to achieve the same Hb as patients treated with PD.

Optimal hemoglobin targets for the correction of anemia

From a theoretical standpoint, the different mechanisms by which ESAs and HIF-PHIs enhance erythropoiesis could warrant different therapeutic Hb targets. Current targets which aim for partial correction of Hb are based on clinical trials conducted several years ago. These trials compared higher versus lower Hb targets achieved using ESAs, in which major adverse cardiovascular events (MACE), mortality, and thrombotic events were more common among patients assigned to the higher of the Hb targets. In addition, one trial comparing a high Hb target with placebo (and a conservative rescue strategy) in ND-CKD patients with diabetes found an increased rate of strokes. However, no HIF-PHI trials to date have compared Hb normalization or
near-normalization with the currently recommended lower Hb targets recommended for CKD patients. A few Japanese trials using daprodustat and molidustat have targeted Hb values exceeding 12 g/dl.20, 24, 25 Because phase 3 trials of HIF-PHIs were designed primarily for efficacy and safety evaluation and to meet criteria set forth by regulatory agencies in different geographic regions, guideline-recommended Hb targets were used resulting in some regional differences (Tables 2-3). Overall, the attendees felt that the available data do not provide a rationale for targeting higher Hb levels with HIF-PHIs than the currently recommended targets established using ESAs.

Implications for iron management during the correction of anemia

Iron therapy is a critical cornerstone of anemia management, and iron availability is impaired in patients with CKD.3, 61 Although data from clinical trials suggest that HIF-PHIs may modulate iron metabolism,62 iron parameters and iron utilization were not primary outcomes in these studies. The conference participants generally felt that the interpretation of iron-related data from these trials is impeded by significant limitations in trial design. Many aspects of iron management were not appropriately specified and were left to the discretion of the investigator and/or were based on local clinical practice patterns.9 In some trials, iron protocols differed between treatment and comparator groups within a trial.32, 47 Other design limitations included differences in Hb targets and achieved Hb between treatment arms, differences in the proportion of patients with baseline iron deficiency, and baseline imbalances in iron and hepcidin status and relevant co-morbidities.

Notwithstanding the limitations in trials thus far, higher serum transferrin levels in HIF-PHI treated patients, either measured directly20, 28-28, 35, 42-45, 63-65 or indirectly by calculating total iron binding capacity (TIBC), were reported across different compounds. In contrast, the effects on serum iron, hepcidin, transferrin saturation (TSAT) and ferritin were more variable among individual trials and between compounds.62 A summary of iron use and changes in iron parameters is shown in Tables 4-5.21, 29-32, 34, 36-38, 46-49, 51
Although there is potential for a reduction in intravenous (IV) iron treatment, there was general consensus that HIF-PHI therapy will not eliminate the need for iron replacement in DD-CKD patients. The conference participants agreed that iron parameters should be monitored during treatment with HIF-PHIs, and iron deficiency should be avoided because it is associated with thromboembolic events, impaired red blood cell production,43 lower HRQoL, higher rates of cardiovascular events, and higher mortality.66, 67

In summary, conference participants agreed that clinically meaningful differences in iron utilization have not so far been demonstrated using HIF-PHIs. There will likely be a continued role of iron therapy in patients with ND- and DD-CKD treated with HIF-PHIs.

Effect of HIF-PHIs on Health-Related Quality of Life (HRQoL)

Several large Phase 3 HIF-PHI trials have included assessments of QoL as exploratory or secondary endpoints.29-31, 47 These trials have used different scoring systems which may limit comparability across trials.29-31, 47 Numerical improvements, in particular for the SF-36 Physical Functioning subscore, were reported in the OLYMPUS trial which compared roxadustat to placebo.31 Data from the smaller dedicated ASCEND-NHQ study in ND-CKD patients, which evaluated the effects of daprodustat versus placebo on QoL using the SF-36 Vitality score, suggested higher vitality score (fatigue) in those receiving daprodustat.68 In general, assessment of differences in HRQoL is difficult in trials that do not have a double-blinded design.

The patient representatives in attendance felt that although HRQoL was important, a new treatment should ideally be superior to the current standard of care for both safety and efficacy. However, some patients who were not treated with hemodialysis would prefer an oral option over an injection if safety and efficacy were similar.
Safety of HIF-PHIs

Cardiovascular outcomes

Cardiovascular safety signals from clinical trials of ESAs targeting normal or near-normal Hb concentrations led to labelling changes by the US Food and Drug Administration (FDA) beginning in 2007. The current FDA labels for ESAs include warnings on increased risk of death, serious adverse cardiovascular events, and stroke when ESAs are administered to target Hb levels >11 g/dl. No trial has identified an ideal target Hb level, ESA dose, or dosing strategy that does not increase these risks. Thus, for HIF-PHI approval, regulatory agencies asked manufacturers to demonstrate non-inferiority or superiority of HIF-PHIs in terms of the risk for MACE in both dialysis and non-dialysis populations within target ranges recommended for ESAs.

CKD not requiring dialysis (non-dialysis dependent, ND-CKD) (Table 6)

Roxadustat was the first HIF-PHI to be reviewed by the FDA. Data submitted in support of the New Drug Application included 3 separate trials comparing roxadustat with placebo that were pooled for meta-analyses in the ND-CKD (n = 4270) population. Three ND-dependent studies comparing roxadustat with placebo were pooled. A fourth study comparing roxadustat to darbepoetin alfa was analyzed separately. The pooled analyses for roxadustat did not have prespecified non-inferiority margins that were agreed upon by the FDA. Comparing the upper limits of the 95% CI against the pre-specified non-inferiority margin of daprodustat and vadadustat trials (HR 1.25), roxadustat would not have met the criteria for non-inferiority in pooled analyses of MACE in the ND-CKD population when compared with placebo: HR 1.10; 95% CI: 0.96-1.27. In further on-treatment sensitivity analyses (as opposed to intention-to-treat analysis) requested by the FDA to minimize the effect of including unexposed person-times or events that may not be affected by the intervention, this risk was heightened. When assessing events occurring while patients were on treatment and for one week after discontinuation (on-treatment + 7 days analyses), 277 (7.2%) events were recorded in the roxadustat arm compared with 131 (5.6%) events in the placebo arm (HR 1.38; 95% CI: 1.11-1.70). A caveat in these analyses is the higher
dropout rates in the placebo compared to roxadustat arms, with potential for bias that may have disadvantaged roxadustat.

Vadadustat ND-CKD Phase 3 trials of ESA-treated (n = 1725) and ESA-untreated (n = 1751) patients were pooled, as pre-specified, with darbepoetin alfa as the comparator arm in both trials. The primary MACE analysis did not meet the pre-specified HR=1.30 non-inferiority margin (HR 1.17; 95% CI: 1.01-1.36), and showed a higher risk of MACE in the vadadustat arm. The excess risk was accounted for by nonfatal MI and death from non-cardiovascular causes. Subgroup analyses found a regional difference in the study results, with the increased MACE risk observed in non-U.S. study sites (HR 1.30; 95% CI 1.05-1.62) but no difference in risk in the U.S. study sites (HR 1.06; 95% CI 0.87-1.29).

Daprodustat non-inferiority trials met the pre-specified non-inferiority margins of a HR of 1.25 in primary analyses of the ND-CKD population in a mixed population of previously ESA-treated and untreated patients (HR: 1.03; 95% CI: 0.89-1.19) in comparison to darbepoetin alfa. However, in the sensitivity on-treatment MACE analysis, which censored patients at 28 days after the last dose, participants randomized to daprodustat had a higher incidence of MACE than those randomized to ESA in the ND-CKD study (14.1% vs. 10.5%, HR 1.40; 95% CI: 1.17-1.68). However, differences in the dosing frequency of daprodustat versus ESAs in this trial and differences in definitions of treatment periods may have led to potential bias that disadvantaged daprodustat.

There was a general view among conference participants that major clinical trials have failed to conclusively demonstrate that HIF-PHIs are non-inferior to placebo or conventional ESAs in ND-CKD patients for cardiovascular outcomes. In fact, variable results have been reported for different HIF-PHIs and in different study settings, depending on the type of analyses being performed (e.g., intention-to-treat versus on-treatment analyses). Potential explanations for the differential effects on MACE outcomes between different trials and different agents may result from regional differences in event rates together with imbalances in patient characteristics.
Dialysis-dependent (DD-CKD) population

In contrast to the ND-CKD trial results, there was consensus that HIF-PHIs in general met non-inferiority criteria for MACE in cardiovascular outcome trials in DD-CKD populations (Table 7)36-38, 42-51 although controversies surrounding interpretation of the data were discussed. Moreover, in most clinical trials, efficacy and safety of HIF-PHIs was similar in incident and prevalent dialysis populations.

Three studies of roxadustat involving dialysis patients (N=3880) were meta-analyzed in a report submitted to the FDA.70 All trials included in this report compared roxadustat to ESA. The analyses of the effect of roxadustat for MACE were discordant based on the analytical approach: in the primary, on-treatment + 7 day analyses, the risk of MACE was similar in the roxadustat and ESA groups: HR 1.02; 95% CI: 0.88-1.20. In the sensitivity, on-treatment analysis, the HR for the risk of MACE in patients treated with roxadustat versus ESA was 1.14; 95% CI: 1.00-1.30, a difference that just missed statistical significance for non-inferiority. A fourth trial conducted in Europe and not included in the pooled meta-analysis due to differences in study design demonstrated a higher risk of death in roxadustat vs. ESA-treated patients (8.9 per 100 patient years (PY) vs. 6.3 per 100 PY; HR 1.54, 95% CI 1.04-2.28).70 In a published analysis of the four roxadustat trials in the DD-CKD population,74 MACE and MACE+ (a composite of MACE plus unstable angina or congestive heart failure requiring hospitalization) in the on-treatment plus 7 day analyses showed different results in incident vs. prevalent dialysis patients, with the hazard ratio suggesting benefit in incident patients but harm in prevalent patients. In contrast to the ND-CKD studies, treatment duration was longer for the ESA group.

Vadadustat DD-CKD Phase 3 trials pooled two studies of prevalent (n = 3554) and incident (n = 369) patients, with darbepoetin alfa as the comparator group (Table 3).51 Pooled results showed similar MACE rates in the two arms and met non-inferiority
Sensitivity analyses were not available at the time of this conference.

Daprodustat trials met the pre-specified non-inferiority margin of 1.25 in primary analyses of the DD-CKD populations (DD: 0.93; 95% CI: 0.81-1.07). The sensitivity on-treatment analysis of the DD-CKD population was similar to the primary analysis with confidence intervals including 1.0 and upper limit of the 95% CI equal to 1.14 (Table 7). As seen in studies with ND-CKD patients, regional differences in MACE event rates between geographical regions may at least in part explain these results.

In most clinical trials, efficacy and safety of HIF-PHI were similar in incident and prevalent dialysis populations (Tables 3 and 7). A pooled analysis of roxadustat studies noted similar risk of MACE (HR 0.83; 95% CI: 0.61-1.13) and nominally lower risk of MACE+ (HR 0.76; 95% CI: 0.57-1.00) among incident dialysis patients treated with roxadustat, whereas roxadustat was less favorable for MACE (HR 1.18; 95% CI: 1.00-1.38) and all-cause mortality (HR 1.23; 95% CI: 1.02-1.49) in prevalent dialysis patients. However, the statistical significance of this difference between incident and prevalent dialysis patients was not reported.

Despite overall consensus that HIF-PHI met non-inferiority criteria for MACE in cardiovascular outcome trials involving DD-CKD populations, it was recognized that controversy has surrounded interpretation of the relevant data for roxadustat in this context. This has been fueled by retraction of a published pooled analysis because of post-publication recognition of deviation from the prespecified analytical plan.

Thromboembolic events, including vascular access thrombosis

Administration of HIF-PHIs has been associated with a higher risk of thrombotic events compared with ESAs or placebo. Although the underlying mechanisms are not understood and appear to be complex, they may be related to the steeper rate of rise in Hb as suggested by a recent FDA safety review for roxadustat. In addition, HIF-PHI interactions with iron metabolism, i.e., upregulation of transferrin, or the
interference of HIF with the coagulation system, e.g., through increased expression of plasminogen activator inhibitor may contribute to thrombotic risk.79

Roxadustat showed an excess risk of thrombosis in both ND- (versus ESA) and DD-CKD (versus placebo) trials.70 A pooled analysis of roxadustat trials showed higher risks of thromboembolic events that were associated with the rate of Hb rise.71 It is unclear, however, whether lower doses of roxadustat, which would be expected to lead to a slower rate of Hb rise, would ameliorate thrombosis risk while maintaining efficacy. Concerns surrounding the thrombotic risk with vadadustat were raised by the FDA although these concerns were not initially noted in published data.80 Daprodustat trials have not reported excess risk of thrombosis compared with active comparator.21, 37

Hypertension

Pre-clinical studies in healthy rats and rats with CKD demonstrated that HIF-PHIs generate significant dose-dependent blood-pressure lowering effects.81-83 However, so far, no significant blood pressure effects have been reported in any HIF-PHI phase 3 programs. The results from a dedicated blood pressure study with daprodustat (ASCEND-BP) have not yet been published (NCT03029247).

Lipid metabolism

Theoretically, HIF-dependent increases in lipoprotein uptake and reductions in cholesterol synthesis via enhanced degradation of 3-hydroxy-3-methyl-glutaryl-CoA reductase may lead to lower blood cholesterol levels with HIF-PHI treatment.84, 85 Although dedicated clinical studies specifically focused on the interactions between HIF-PHIs and lipid metabolism have not yet been conducted, significant and consistent reductions in total cholesterol, low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were reported in patients treated with roxadustat or daprodustat (ND- and DD-CKD).20, 26, 29, 32, 42, 46, 47, 49, 63, 65 These reductions were not seen in patients treated with enarodustat, molidustat or vadadustat,23, 24, 40, 53, 55, 86, 87 clearly indicating that different compounds may have different properties. To what degree cholesterol-lowering effects of daprodustat and
roxadustat might impact cardiovascular risk in patients with CKD anemia is not clear. Given the simultaneous lowering of both LDL- and HDL-cholesterol and lack of clear cardiovascular benefits resulting from the initiation of statin therapy in cholesterol-lowering therapy (such as statin), dialysis patients with advanced CKD, HIF-PHI-mediated interactions with lipid metabolism may not necessarily translate into clinical benefits, even when considering long-term effects beyond the exposure in studies conducted so far.

Kidney disease progression

Pharmacologic HIF activation has been studied in multiple kidney disease models using pharmacologic and genetic approaches. Experimental studies have consistently demonstrated renoprotective effects of HIF activation in acute kidney injury models, whereas the effects of HIF activation in models of chronic kidney injury appeared to be context-dependent and less consistent. This has raised concerns that anemia therapy with HIF-PHIs may worsen CKD in certain subgroups of patients. In one trial of molidustat versus ESA, the risk of CKD progression was higher with molidustat, though whether this finding is specific to molidustat is unclear.

Prespecified secondary analyses of Phase 3 trials of daprodustat and vadadustat in ND-CKD patients showed no beneficial or harmful effects of either drug on CKD outcomes, including the need for dialysis, kidney transplantation, or >40% decline in eGFR. A Phase 3 trial of roxadustat suggested greater decline in kidney function compared with placebo. The annual rate of change in eGFR was -3.70 ml/min per 1.73 m² with roxadustat and -3.19 ml/min per 1.73 m² with placebo (difference -0.51 ml/min per 1.73 m²; 95% CI: -1.00 to -0.01; nominal P = 0.046). Conference participants agreed that data from CKD anemia trials reported so far do not suggest any clinically relevant impact of HIF-PHIs on kidney disease progression, but also pointed out that these trials were not specifically designed to evaluate such effects.

Malignancy risk

Adaptation to regional hypoxia mediated by the HIF-pathway plays an important role in tumor progression. Moreover, genetic HIF activation is a central mechanism of
tumorigenesis in patients with the von Hippel-Lindau (VHL) disease and clear cell renal carcinomas. This and other evidence implies that cancer initiation and/or progression could be an adverse event associated with HIF-PHI use.

While the HIF-PHI phase 3 studies have mostly not shown any signals supporting this assumption, in the ASCEND-ND trial, cancer-related death or tumor progression or recurrence was more commonly observed in those randomized to daprodustat (72 of 1937, 3.7%) than in those randomized to darbepoetin alfa (49 of 1933, 2.5%), with relative risk of 1.47 (95% CI: 1.03- 2.10). Post hoc analyses that accounted for differential dosing frequency attenuated this observed risk. A clinical trial of molidustat also reported neoplasms in 9.8% of trial participants in the molidustat group compared with 5.3% in the darbepoetin group. The conference participants agreed that there has been no consistent signal across the HIF-PHIs of an excess risk of malignancy-related adverse events, but the accrued exposure time in clinical trials and clinical practice has not been long enough to be confident of the absence of a clinically relevant risk compared with ESAs, and patients with a history of recent or active malignancy were excluded from trials. Post-marketing surveillance will be important to confirm the safety of HIF-PHIs from the standpoint of cancer risk and provide longer-term follow-up data, and avoidance of HIF-PHIs in patients with a history of malignancy is recommended.

Additional safety concerns

An approximate 2-fold increase in the risk for sepsis and septic shock was reported for roxadustat in ND-CKD patients (pooled studies). No increased risk of infections has been noted in the serious adverse events of other trials.

Upregulation of vascular endothelial growth factor by the HIF pathway may increase angiogenesis and therefore in theory worsen diabetic retinopathy and age-related macular degeneration. All HIF-PHI trials have included individuals with diabetes at risk for diabetic retinopathy. However, to date, retinopathy has not been reported to worsen during treatment with HIF-PHIs.
Although higher rates of hyperkalemia and low serum bicarbonate have been reported for HIF-PHIs in some studies,26, 29, 42, 94-96 such data have not been reproduced by centralized laboratory analysis or in larger trials.33, 34, 50, 51

Central hypothyroidism has been reported in patients treated with roxadustat,97-99 and the Japanese regulatory agency recently added central hypothyroidism as a potential complication of roxadustat in the package insert. This may be due to the structure of roxadustat, which has a molecular structure similar to triiodothyronine (T3), so that its binding to thyroid hormone receptor \(\beta \) may lead to the down-regulation of thyrotropin releasing hormone (TRH). There has been no report of hypothyroidism as a complication in patients treated with other HIF-PHIs according to our knowledge.

Other clinically significant adverse events may become more apparent as we gain experience with the use of HIF-PHIs in clinical practice.

Practical considerations

Dosing considerations

There have been no head-to-head trials comparing different HIF-PHIs in patients with ND- or DD-CKD. However, marked differences exist in potency, dose requirements, and presumably pharmacokinetics. Phase 3 trials generally showed good efficacy in achieving and maintaining target Hb ranges overall and in subgroups based on age, sex, race, and dialysis modality. There was consensus among conference participants that the appropriate dose depends on the drug and should follow label recommendations. There was also general consensus that the starting HIF-PHI dose should be lower for those who are ESA-naïve versus those who are not. Based on the current Hb and the achieved change in Hb (typically over a 4-week period), the dosing in phase 3 trials was maintained or changed in stepwise fashion. Treatment was temporarily discontinued when Hb exceeded 12 or 13 g/dl in most studies.21, 22, 24-26, 31, 34, 35, 37, 39, 42, 46, 51, 54-56, 100, 101 Conference participants generally felt that in clinical routine the HIF-PHI dose should be maintained or changed in similar stepwise fashion as in trial protocols based on the current Hb and its rate of change.
Use of HIF-PHIs in subpopulations of interest

Patients hyporesponsive to ESAs

By lowering hepcidin levels, HIF-PHIs may theoretically be more effective in treating patients who are hyporesponsive to ESAs because of chronic inflammation or functional iron deficiency. Preliminary data suggest that whereas higher doses of ESAs are needed for patients with high C-reactive protein (CRP) levels, this may not be true for HIF-PHIs. However, CRP concentrations that were considered high in trial participants were only slightly elevated, and sicker and more inflamed patients may have been less likely to have been enrolled in trials of HIF-PHIs. Conference participants also felt that data on the effect of HIF-PHIs in ESA-hyporesponsive patients are limited.

Although the use of HIF-PHIs in combination with ESAs might theoretically be advantageous for patients who are ESA hyporesponsive, there are no data available to support this strategy in clinical practice at present. As with all drugs, there is a risk for drug-drug interactions with the use of HIF-PHIs, particularly in combination with other oral agents (Supplemental Table 42).

Children

Anemia is also a common complication of CKD in children and is associated with decreased quality of life, reduced neurocognitive ability, left ventricular hypertrophy, and increased risk of hospitalizations. Pain has also been reported with subcutaneous injections of ESAs, making an oral formulation for anemia treatment especially attractive in the pediatric population. However, participants felt that there are insufficient data supporting the use of HIF-PHIs in pediatric patients with anemia of CKD because patients under the age of 18 years were excluded from all Phase 3 trials. Several new trials with roxadustat, daprodustat, and molidustat are planned in pediatric patients after completion of Phase 3 trials in adults.
Polycystic kidney disease

HIF activation occurs in polycystic kidneys in humans and rodents and activation of the HIF–pathway has been shown to enhance cyst expansion in preclinical models. However, whether the use of HIF-PHIs to treat anemia may enhance cyst growth remains unclear. Nevertheless conference participants felt that these agents should not be used in patients with polycystic kidney disease until adequate safety data emerge.

Kidney transplantation

While kidney transplant recipients were excluded from Phase 3 trials of roxadustat and vadadustat, no formal exclusion of subjects with prior kidney transplant was stated in the Phase 3 trials of daprodustat. However, whether subjects with a functioning kidney transplant at baseline were actually enrolled is currently unknown. HIF-PHIs play a role in immune cell function and therefore HIF-PHIs use could potentially promote graft rejection or increase the risk of malignancy. There is limited experience of using HIF-PHIs in patients who are receiving immunosuppression, such as those with kidney allografts.

Other novel therapeutic agents

Several new agents have been introduced into clinical medicine that may be beneficial for patients with CKD anemia and might be used concurrently with ESAs or HIF-PHIs. Agents in clinical development have been discussed during the first KDIGO Controversies in Optimal Anemia Management Conference in 2019 and are not further discussed here. In analogy with HIF-PHIs, SGLT2 inhibitors (SGLT2i) are also considered to stimulate endogenous EPO production.

SGLT2 inhibitors

In addition to their antidiabetic and beneficial cardiovascular and kidney effects, SGLT2i have been shown to increase Hb in patients with kidney disease and/or heart failure. Because increased Hb in patients treated with SGLT2i appears to be independent of diuretic use and/or rate of intravascular volume depletion, SGLT2i-
induced changes in Hb are no longer believed to simply reflect hemoconcentration due to diuresis. In fact, SGLT2i administration was associated with transient increases in serum EPO concentrations (30-40%), an increase in reticulocyte counts, a decrease in ferritin and hepcidin, indicating erythropoietic stimulation. It has been hypothesized that these pro-erythropoietic actions may have contributed to SGLT2i-mediated protective effects on heart failure outcomes and kidney disease progression. Although current data suggest that SGLT2i may provide beneficial “anti-anemic” effects and delay or prevent the initiation of anemia therapy, conference participants agreed that more information is needed to better understand the mechanisms of action underlying these effects and their clinical relevance.

Conclusions

In summary, HIF-PHIs are non-inferior to conventional ESAs in increasing and maintaining Hb concentrations in patients with NDD- and DD-CKD, and reduce transfusion requirements when compared with placebo. In terms of cardiovascular outcomes, HIF-PHIs are not superior to inferior, or at best, similar to conventional ESAs. Different safety signals were observed for different HIF-PHIs across large phase 3 trial programs, and concerns surrounding cardiovascular and thrombotic risks persist. The data that are currently available do not support the concept that use of HIF-PHIs will reduce the need for IV or oral iron supplementation among patients with NDD- or DD-CKD nor have superior efficacy in the correction of anemia in states of chronic inflammation. However, published trials to date were not designed to address these questions, and iron was administered according to trial protocols which varied widely. Studies examining alternative iron dosing strategies in patients receiving HIF-PHIs are needed. Currently, there are insufficient data to determine whether use of HIF-PHIs improves quality of life in patients with ND-CKD. Further research recommendations are provided in Table 8.
DISCLOSURES

The conference was sponsored by KDIGO and was in part supported by unrestricted educational grants from 7 Elements Global, Akebia Therapeutics, Amgen, Astellas, AstraZeneca, GlaxoSmithKline, Mitsubishi Tanabe Pharma Group, Otsuka, Roche, Rockwell Medical, Torii Pharmaceutical Co., Ltd., US Renal Care, and Vifor Fresenius Medical Care Renal Pharma.
Tables

Table 1: Potential advantages and disadvantages of various CKD-anemia therapies
Table 2: Efficacy data from phase 3 HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease
Table 3: Efficacy data from phase 3 HIF-PHI clinical trials in patients with dialysis-dependent chronic kidney disease
Table 4: Iron parameters from phase 3 HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease
Table 5: Iron parameters from phase 3 HIF-PHI clinical trials in dialysis-dependent chronic kidney disease
Table 6: Cardiovascular safety data from phase 3 non-inferiority HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease
Table 7: Cardiovascular safety data from phase 3 non-inferiority HIF-PHI clinical trials in dialysis-dependent chronic kidney disease
Table 8: Research recommendations

Supplemental Table 1: Availability of HIF-PHIs (as of April 24, 2023)
Supplemental Table 2: Drug-drug interactions of HIF-PHIs
REFERENCES

12. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. *Science* 2001; **294**: 1337-1340.

68. Johansen KL, Cobitz AR, Singh AK, et al. The ASCEND-NHQ trial found positive effects of daprodustat on hemoglobin and quality of life in patients with non-dialysis-dependent

70. FDA. Cardiovascular and Renal Drugs Advisory Committee Meeting - Roxadustat. https://www.fda.gov/media/150728/download.

111. Li J, Woodward M, Perkovic V, et al. Mediators of the Effects of Canagliflozin on Heart Failure in Patients With Type 2 Diabetes. *JACC Heart Fail* 2020; **8**: 57-66.

Novel Anemia Therapies in CKD: A KDIGO Controversies Conference Report

TABLES
Table 1: Potential advantages and disadvantages of various CKD-anemia therapies

<table>
<thead>
<tr>
<th>Agents</th>
<th>Potential Advantages</th>
<th>Potential Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIF-PHIs</td>
<td>• Oral dosing more convenient for some patients</td>
<td>• Difficult to monitor adherence</td>
</tr>
<tr>
<td></td>
<td>• May facilitate anemia treatment in patients with non-dialysis dependent CKD</td>
<td>• Potential polypharmacy and drug-drug interactions</td>
</tr>
<tr>
<td></td>
<td>• May improve utilization of iron for erythropoiesis, particularly oral iron</td>
<td>• Less clinical experience</td>
</tr>
<tr>
<td></td>
<td>• May be more effective in chronic inflammatory states (CRP >5 mg/l)</td>
<td>• Potential risk of enhancing tumor growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Potential risk of worsening retinopathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Potential risk of cyst growth in ADPKD</td>
</tr>
<tr>
<td>ESAs</td>
<td>• Adherence can be monitored with in-clinic administration</td>
<td>• Treatment requires self-injection or regular clinic visits</td>
</tr>
<tr>
<td></td>
<td>• Extensive clinical experience</td>
<td>• Resistance in chronic inflammatory states</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Risk of enhancing tumor growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Antibody-mediated pure red cell aplasia (rare)</td>
</tr>
<tr>
<td>Iron compounds</td>
<td>• No serious adverse effects of oral iron</td>
<td>• If PO, risk of poor gastrointestinal tolerance and non-adherence to therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If IV, risk of allergic/anaphylactic reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If IV, potential risk of increasing oxidative stress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If IV, potential risk of hemosiderosis</td>
</tr>
</tbody>
</table>
Table 2: Efficacy data from phase 3 HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease

| Study; Location; Sponsor | Study design; No. of patients, randomization | Treatment, starting dose, study duration | Primary efficacy outcomes: Differences in mean Hb and/or ΔHb from baseline to evaluation period | Hb targets and Hb response rate

Daprodustat (GlaxoSmithKline)

- **Nangaku et al., 2021**²⁰ (NCT02791763); Japan
 - R, OL, AC; ESA-naive and ESA-treated; n = 299, 1:1
 - DAPRO 2 and 4 mg QD^c for ESA-naive and 4 mg QD^c for ESA-users vs EBP, 52 weeks
 - Difference in mean Hb, weeks 40-52:
 - DAPRO: 12 g/dl
 - EBP: 11.9 g/dl
 - Difference: 0.1 (-0.1, 0.3) g/dl
 - Hb within target range (11–13 g/dl) during weeks 40–52:
 - DAPRO: 92%
 - EBP: 92%

- **ASCEND-ND**²¹ (NCT02876835); Global
 - R, OL, AC; ESA-naive and ESA-treated; n = 3872, 1:1
 - DAPRO 2-4 mg QD^c for ESA-naive and 1-4 mg QD^d for ESA-users vs DPO, 148 weeks
 - Difference in mean ΔHb, weeks 28-52:
 - DAPRO: 0.74 g/dl
 - DPO: 0.66 g/dl
 - Difference: 0.08 (0.03, 0.13) g/dl
 - Hb target (10-11 g/dl)

Desidustat (Cadila Healthcare Ltd.)

- **DREAM-ND**²² (NCT04012957); India, Sri Lanka
 - R, OL, AC; ESA-naive; n = 588, 1:1
 - DESI 100 mg TIW vs DPO, 24 weeks
 - Difference in mean ΔHb, weeks 16-24:
 - DESI: 1.95 g/dl
 - DPO: 1.83 g/dl
 - LSMD: 0.11 (–0.12, 0.35) g/dl
 - Hb target (10–12 g/dl) during weeks 16–24:
 - DESI: 77.78%
 - DPO: 68.48%

Enarodustat (Japan Tobacco Inc.)

- **SYMPHONY ND**²³ (JapicCTI-183870); Japan
 - R, OL, AC; ESA-naive and ESA-treated; n = 216, 1:1
 - ENARO 2 mg QD vs DPO, 24 weeks
 - Difference in mean Hb, weeks 20–24:
 - ENARO: 10.96 g/dl
 - DPO: 10.87 g/dl
 - Difference: 0.09 (–0.07, 0.26) g/dl
 - Hb within target range (10–12 g/dl) during weeks 20–24:
 - ENARO: 88.6%
 - DPO: 87.9%

Molidustat (Bayer Yakuhin, Ltd.)

- **MIYABI ND-C**²⁴ (NCT03350321); Japan
 - R, OL, AC; ESA-naive; n = 162, 1:1
 - MOLI 25 mg QD vs DPO, 52 weeks
 - Difference in mean Hb, weeks 30-36:
 - MOLI: 11.28 g/dl
 - DPO: 11.70 g/dl
 - Difference: 0.42 g/dl
 - Difference in mean ΔHb, weeks 30-36:
 - MOLI: 1.32 g/dl
 - DPO: 1.69 g/dl
 - LSMD: –0.38 (–0.67, –0.08) g/dl
 - Hb within target range (11–13 g/dl) during weeks 30–36:
 - MOLI: 59.8%
 - DPO: 82.5%
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Treatments</th>
<th>Study Design</th>
<th>Comparator</th>
<th>Primary Outcome</th>
<th>Secondary Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIYABI ND-M^25 (NCT03350347)</td>
<td>Japan</td>
<td>R, OL, AC; ESA-treated; n = 164, 1:1</td>
<td>MOLI 25 mg or 50 mg QD^d vs DPO, 52 weeks</td>
<td>Difference in mean Hb, weeks 30-36: MOLI: 11.67 g/dl DPO: 11.53 g/dl Difference in mean ΔHb, weeks 30-36: MOLI: 0.36 g/dl DPO: 0.24 g/dl LSMD: 0.13 (–0.15, 0.40) g/dl</td>
<td>Hb within target range (11–13 g/dl), responder rate during weeks 30–36: MOLI: 72.0% DPO: 76.8%</td>
<td></td>
</tr>
<tr>
<td>Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)</td>
<td>Chen et al., 2019^26 (NCT02652819); China FibroGen, Inc.</td>
<td>R, DB, PC; ESA-naïve; n = 154, 2:1, n = 152 (safety population)</td>
<td>ROXA 70 or 100 mg TIW^e vs PBO, 8 weeks DB, then 18 weeks OL</td>
<td>Difference in mean ΔHb, weeks 7–9: ROXA: 1.9 g/dl PBO: -0.4 g/dl Difference: 2.2 (1.9, 2.6) g/dl*</td>
<td>Hb target: 10-12 g/dl; pts with >10 g/dl and increase in ΔHb of 1-2 g/dl at week 9: ROXA: 75% PBO: 0%</td>
<td></td>
</tr>
<tr>
<td>Akizawa et al., 2020^27 (NCT02964936); Japan Astellas Pharma, Inc.</td>
<td>R, OL, NC; ESA-naïve; n = 99</td>
<td>ROXA 50 or 70 mg TIW^f, 24 weeks</td>
<td>Difference in mean ΔHb, weeks 18-24: ROXA 50 mg: 1.34 g/dl ROXA 70 mg: 1.30 g/dl</td>
<td>Hb target: 10-12 g/dl; Hb ≥ 10 g/dl and ΔHb of ≥ 1 g/dl at EOT: ROXA 50 mg: 97.0% ROXA 70 mg: 98.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akizawa et al., 2021^28 (NCT02988973); Japan Astellas Pharma, Inc.</td>
<td>R, OL, AC; ESA-treated (DPO and EBP); n = 334, 1:1, n = 92 (safety population)</td>
<td>ROXA 70 or 100 mg TIW^g vs DPO, 52 weeks</td>
<td>Difference in mean ΔHb, weeks 18-24: ROXA 70 mg: 0.22 g/dl LSMD: -0.07 g/dl (–0.23, 0.10) g/dl</td>
<td>Hb target: 10-12 g/dl, maint.; Mean ΔHb without rescue therapy, weeks 28-36: ROXA: 2.01 g/dl (iron-replete) i PBO: 0.26 g/dl (iron-replete) i ROXA: 0.493 g/dl (non-replete) i PBO: 0.16 g/dl LSMD: 1.88 (1.73, 2.04) g/dl*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPS^29 (NCT01887600); Europe Astellas Pharma, Inc.</td>
<td>R, DB, PC; ESA-naïve; n = 594, 2:1</td>
<td>ROXA 70 or 100 mg TIW^h vs PBO, 104 weeks</td>
<td>EMA endpoint,^g first 24 weeks: ROXA: 79.2% PBO: 9.9% Odds ratio: 34.74 (20.48, 58.93) %* FDA endpoint,^h weeks 28-52: ROXA: 1.99 g/dl PBO: 0.3 g/dl LSMD: 1.69 (1.52, 1.86) g/dl*</td>
<td>Hb target: 10-12 g/dl, maint.; Mean ΔHb without rescue therapy, weeks 28-36: ROXA: 2.01 g/dl (iron-replete) i PBO: 0.26 g/dl (iron-replete) i ROXA: 0.493 g/dl (non-replete) i PBO: 0.16 g/dl LSMD: 1.88 (1.73, 2.04) g/dl*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANDES^30 (NCT01750190); Global (no European sites) FibroGen Inc.</td>
<td>R, DB, PC; ESA-naïve; n = 922, 2:1</td>
<td>ROXA 70 or 100 mg TIW^i vs PBO, 52 weeks</td>
<td>EMA endpoint,^g first 24 weeks: ROXA: 86.0% PBO: 6.6% Odds ratio: 77.6 (44.7, 134.5) %* FDA endpoint,^h weeks 28-52: ROXA: 2.00 g/dl PBO: 0.16 g/dl</td>
<td>Hb target: 10-12 g/dl, maint.; Mean ΔHb without rescue therapy, weeks 28-36 (exploratory): ROXA: 2.02 g/dl PBO: 0.20 g/dl LSMD: 1.88 (1.73, 2.04) g/dl*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LSMD: 1.85 (1.74, 1.97) g/dl*

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Comparator</th>
<th>Duration</th>
<th>Endpoint</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLYMPUS 31 (NCT02174627)</td>
<td>R, DB, PC; ESA-naive; n = 2781, 1:1</td>
<td>ROXA 70 mg TIW vs PBO, 164 weeks</td>
<td>FDA endpoint; weeks 28-52: ROXA: 1.75 g/dl; PBO: 0.4 g/dl; LSMD: 1.35 (1.27, 1.43) g/dl*</td>
<td>Hb target: 10-12 g/dl, maint.; EMA endpoint, g first 24 weeks: ROXA: 77%; PBO: 8.5%; Odds ratio: 9.12 (7.63, 10.89)*, comparable results in iron-replete versus non-replete groups</td>
<td></td>
</tr>
<tr>
<td>DOLOMITES 32 (NCT02021318)</td>
<td>R, OL, AC; ESA-naive; n = 616, 1:1</td>
<td>ROXA 70 or 100 mg TIW vs DPO, 104 weeks</td>
<td>EMA endpoint, g first 24 weeks: ROXA: 89.5%; DPO: 78.0%; Difference: 11.51 (5.66, 17.36) %</td>
<td>Hb target range: US, 10-11 g/dl / non-US, 10-12 g/dl; Hb at target, weeks 24-36: VADA: 50.4%; DPO: 50.2%; Hb at target, weeks 40-52: VADA: 43.1%; DPO: 43.5%</td>
<td></td>
</tr>
</tbody>
</table>

Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Comparator</th>
<th>Duration</th>
<th>Endpoint</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nangaku et al., 2021 33 (NCT03329196)</td>
<td>R, OL, AC; ESA-naive and ESA-treated; n = 304, 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 52 weeks</td>
<td>Difference in mean Hb, weeks 20 and 24: VADA: 11.66 g/dl; DPO: 11.93 g/dl; LSMD: -0.26 (-0.50, -0.02) g/dl</td>
<td>Hb within target range (11-13 g/dl) at week 52 (ESA-naive</td>
<td>ESA-treated)</td>
</tr>
<tr>
<td>PROTECT 34 (NCT02648347)</td>
<td>R, OL, AC; ESA-naive; n = 1751, 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 168 weeks</td>
<td>Difference in mean ΔHb, weeks 24-36: VADA: 1.43 g/dl; DPO: 1.38 g/dl; LMSD: 0.05 (-0.04, 0.15) g/dl</td>
<td>Hb target range: US, 10-11 g/dl / non-US, 10-12 g/dl; Hb at target, weeks 24-36: VADA: 60.1%; DPO: 60.7%; Hb at target, weeks 40-52: VADA: 50.7%; DPO: 49.0%</td>
<td></td>
</tr>
<tr>
<td>PROTECT 34 (NCT02680574)</td>
<td>R, OL, AC; ESA-treated; n = 1725, 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 168 weeks</td>
<td>Difference in mean ΔHb, weeks 24-36: VADA: 0.41 g/dl; DPO: 0.42 g/dl; LMSD: -0.01 (-0.09, 0.07) g/dl</td>
<td>Hb target range: US, 10-11 g/dl / non-US, 10-12 g/dl; Hb at target, weeks 24-36: VADA: 60.1%; DPO: 60.7%; Hb at target, weeks 40-52: VADA: 50.7%; DPO: 49.0%</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Haase.9 Funding sources are indicated either with drug name or with individual studies. 95% confidence intervals are shown in brackets.

AC, active-controlled; DAPRO, daprodustat; DB, double-blind; DESI, desidustat; DPO, darbepoetin alfa; EBP, epoetin beta pegol; ENARO, enarodustat; EOT, end of treatment; ESA, erythropoiesis-stimulating agent; Hb, hemoglobin; LSMD, least-squares mean difference; maint., maintenance; MOLI, molidustat; NC, non-
comparative; NR, not reported; OL, open-label; PBO, placebo; PC, placebo-controlled; QD, once daily; R, randomized; ROXA, roxadustat; TIW, three times weekly; VADA, vadadustat. ESA-naïve is defined as no use of ESA for a study-defined period of time prior to start of study.

a starting dose, then titrated to maintain target Hb levels (right column).
b proportion of patients with Hb in target range reported as secondary outcomes in most studies.
c starting dose based on baseline Hb level; for NCT02964936, Akizawa et al., 2020, starting dose is based on an algorithm that included 2 baseline Hb levels, weight and eGFR.
d starting dose based on prior ESA dose.
e weight-based dosing: 70 mg for patients weighing 40 to < 60 kg or 100 mg for ≥ 60 kg.
f weight-based dosing: 70 mg for weight of 45 to <70 kg; 100 mg for ≥70 kg.
g EMA: For the European Union’s European Medicines Agency (EMA), the primary efficacy endpoint was Hb response defined as Hb ≥ 11.0 g/dl and an Hb increase from baseline by ≥1.0 g/dl in any patient with baseline Hb >8.0 g/dl, or an increase from baseline by ≥ 2.0 g/dl in any patient with baseline Hb ≤ 8.0 g/dl at two consecutive visits separated by at least 5 days during the first 24 weeks of treatment without rescue therapy (i.e., RBC transfusion, ESA or IV iron administration) prior to Hb response.
h FDA: For the US Food and Drug Administration (FDA), the primary efficacy endpoint was the mean change in Hb from baseline to the average Hb level during the evaluation period (defined as Weeks 28–52), regardless of rescue therapy.
i iron status: iron replete, transferrin saturation (TSAT) ≥ 20% and ferritin ≥ 100 ng/ml; non-replete, TSAT ≤ 20% and ferritin ≤ 100 ng/ml.
jk key secondary endpoint.
* Statistical significance reported.
Table 3: Efficacy data from phase 3 HIF-PHI clinical trials in patients with dialysis-dependent chronic kidney disease

<table>
<thead>
<tr>
<th>Study; Location</th>
<th>Study design; No. of pts, randomization</th>
<th>Treatment: Starting dose, study duration</th>
<th>Primary efficacy outcomes: Differences in mean Hb and/or ΔHb from baseline to evaluation period</th>
<th>Hb targets and Hb response rateb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (GlaxoSmithKline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akizawa et al., 202035 (NCT02969655); Japan</td>
<td>R, DB, AC; ESA-treated, M-HD; n = 271, 1:1</td>
<td>DAPRO 4 mg QD vs DPO, 52 weeks</td>
<td>Difference in mean Hb, weeks 40–52: DAPRO: 10.9 g/dl DPO: 10.8 g/dl Adjusted difference: 0.1 (−0.1, 0.2) g/dl</td>
<td>Hb at target (10–12 g/dl) during weeks 40–52: DAPRO: 88% DPO: 90%</td>
</tr>
<tr>
<td>ASCEND-ID36 (NCT03029208); Global</td>
<td>R, OL, AC; ESA-naive and ESA-treated (limited exposure <6 weeks), I-DD; n = 312, 1:1</td>
<td>DAPRO 1-4 mg QDc vs DPO, 52 weeks</td>
<td>Difference in mean ΔHb, weeks 28–52: DAPRO: 1.02 g/dl DPO: 1.12 g/dl Difference: 0.10 (−0.34, 0.14) g/dl</td>
<td>Hb target: 10-11 g/dl</td>
</tr>
<tr>
<td>ASCEND-D37 (NCT02879305); Global</td>
<td>R, OL, AC; ESA-treated, M-DD; n = 2964, 1:1</td>
<td>DAPRO 4-12 mg QDd vs ESA (epoetin alfa for HD, DPO for PD), 52 weeks</td>
<td>Difference in mean ΔHb, weeks 28-52: DAPRO: 0.28 g/dl ESA: 0.10 g/dl Difference: 0.18 (0.12, 0.24) g/dl</td>
<td>Hb target: 10-11 g/dl</td>
</tr>
<tr>
<td>ASCEND-TD38 (NCT03400033); Global</td>
<td>R, DB, AC; ESA-treated, M-DD; n = 407, 2:1</td>
<td>DAPRO 8-24 mg TIWd adjusted to dose range of 2-48 mg TIW vs epoetin alfa, 52 weeks</td>
<td>Difference in mean ΔHb, weeks 28-52: DAPRO: -0.04 g/dl Epoetin alfa: 0.02 g/dl Difference: -0.05 (-0.21, 0.10) g/dl</td>
<td>Hb within analysis range of 10–11.5 g/dl during weeks 28-52: DAPRO: 80% Epoetin alfa: 64%*</td>
</tr>
<tr>
<td>Desidustat (Cadila Healthcare Ltd.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DREAM-D39 (NCT04215120); (CTRI/2019/12/022312) India</td>
<td>R, OL, AC; ESA-naive (n = 50) and ESA-treated, M-HD (2 or 3 x week); n = 392, 1:1</td>
<td>DESI 100 mg TIW (ESA-naive); 100, 125 or 150 mg TIWd (ESA-treated) vs epoetin alfa, 24 weeks</td>
<td>Difference in mean ΔHb, weeks 16–24: DESI: 0.95 g/dl Epoetin alfa: 0.80 g/dl LSM difference: 0.14 (−0.13, 0.42) g/dl</td>
<td>Hb within target range (10–12 g/dl) during weeks 16–24: DESI: 59.2% Epoetin alfa: 48.4%</td>
</tr>
<tr>
<td>Enarodustat (Japan Tobacco Inc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYMPHONY-HD40 (JapicCTI-183938) Japan</td>
<td>R, DB, AC; ESA-treated; M-HD; n = 173, 1:1; FAS: n = 172</td>
<td>ENARO 4 mg QD vs DPO; 24 weeks.</td>
<td>Difference in mean Hb, weeks 20–24: ENARO: 10.73 g/dl DPO: 10.85 g/dl Difference: −0.12 (−0.33, +0.10) g/dl</td>
<td>Hb within target range (10–12 g/dl) during EOT period: ENARO: 77.9% DPO: 88.4%</td>
</tr>
</tbody>
</table>
Molidustat (Bayer Yakuhin, Ltd.)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Treatment</th>
<th>Comparator</th>
<th>Duration</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIYABI HD-M</td>
<td>R, DB, AC; ESA-treated, M-HD; n = 229, 2:1</td>
<td>MOLI 75 mg QD vs DPO; 52 weeks</td>
<td>Difference in mean Hb, weeks 33-36: MOLI: 10.63 d/dl DPO: 10.77 g/dl Difference in mean ΔHb, weeks 33-36: MOLI: -0.14 g/dl DPO: -0.07 g/dl LSMD: -0.13 (-0.46, 0.19) g/dl</td>
<td>Hb within target range (10-12 g/dl): MOLI: 61.2-77.8% during weeks 18-52 DPO: 68.7-88.7% during weeks 2-52.</td>
<td></td>
</tr>
</tbody>
</table>

Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Treatment</th>
<th>Comparator</th>
<th>Duration</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al., 2019</td>
<td>R, OL, AC; ESA-treated; M-DD; n = 304, 2:1</td>
<td>ROXA 100 or 120 mg TIW vs epoetin alfa, 26 weeks</td>
<td>Difference in mean ΔHb, weeks 23–27: ROXA: 0.7 g/dl Epoetin alfa: 0.5 g/dl Difference: 0.2 (-0.02, 0.5) g/dl</td>
<td>Hb target: 10–12 g/dl Hb of ≥ 10 g/dl, weeks 23-27: ROXA: 87.0% Epoetin alfa: 88.5%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Treatment</th>
<th>Comparator</th>
<th>Duration</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akizawa et al., 2020</td>
<td>R, OL, NC; I-HD (ESA-naïve, n = 75) and M-HD (>12 weeks, ESA-treated); n = 239</td>
<td>ESA-naïve: ROXA 50 or 70 mg TIW, 24 weeks ESA-treated: ROXA 70 or 100 mg TIW, 52 weeks</td>
<td>Difference in mean ΔHb, weeks 18-24: ESA-naïve: -0.03 g/dl ESA-treated: -0.03 g/dl</td>
<td>Hb target: 10–12 g/dl Hb within target range (10-12 g/dl) during weeks 18-24: ESA-naïve: 79.1% at weeks 18-24 ESA-treated: 71.2% at weeks 46-52</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Treatment</th>
<th>Comparator</th>
<th>Duration</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akizawa et al., 2020</td>
<td>R, OL, NC; ESA-naïve (n = 13) and ESA-treated, PD (> 4 weeks); n = 56</td>
<td>ROXA 50 or 70 mg TIW (ESA-naïve) or ROXA 70 or 100 mg TIW (ESA-treated), 24 weeks</td>
<td>Difference in mean Hb, weeks 18–24: ESA-naïve: 1.69 g/dl ESA-treated: 0.14 g/dl</td>
<td>Hb within target range (10–12 g/dl) during weeks 18–24: ESA-naïve: 92.3% ESA-treated: 74.4%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Treatment</th>
<th>Comparator</th>
<th>Duration</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akizawa et al., 2020</td>
<td>R, DB, AC; ESA-treated, M-HD; n = 303, 1:1</td>
<td>ROXA 70 or 100 mg TIW vs DPO QW, 24 weeks</td>
<td>Difference in mean Hb, weeks 18–24: ROXA: -0.04 g/dl DPO: -0.03 g/dl Difference: -0.02 (-0.18, 0.15) g/dl</td>
<td>Hb within target range (10–12 g/dl) during weeks 18–24: ROXA: 79.3% DPO: 83.4%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Treatment</th>
<th>Comparator</th>
<th>Duration</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIMALAYAS</td>
<td>R, OL, AC; ESA-naïve and ESA-limited use (≤3 weeks), I-DD; n = 1043, 1:1</td>
<td>ROXA 70-100mg TIW vs epoetin alfa, 52 weeks</td>
<td>EMA endpoint, first 24 weeks: ROXA: 88.2% Epoetin alfa: 84.4% Difference: 3.5 (-0.7, 7.7)% FDA endpoint, weeks 28-52: ROXA: 2.57 g/dl Epoetin alfa: 2.36 g/dl ΔHb, weeks 28-52 (EU second. endpoint): ROXA: 2.62 g/dl Epoetin alfa: 2.44 g/dl* LSMD: 1.18 (0.08, 0.29) g/dl*</td>
<td>Hb at target (10-12 g/dl), first 24 weeks (US second. endpoint): ROXA: 84.3% Epoetin alfa: 79.5% ΔHb, weeks 28-52 (EU second. endpoint): ROXA: 2.62 g/dl Epoetin alfa: 2.44 g/dl*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Treatment</th>
<th>Comparator</th>
<th>Duration</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYRENEES</td>
<td>R, OL, AC; ESA-treated, M-DD;</td>
<td>ROXA 100-200 mg TIW vs ESA (epoetin alfa or</td>
<td>Difference in mean ΔHb, weeks 28-36: ROXA: 0.43 g/dl</td>
<td>Hb within target range (10-12 g/dl) at weeks 28 to 36:</td>
<td></td>
</tr>
</tbody>
</table>
Europe

Astellas Pharma, Inc.
- n = 838 (836 treated), 1:1
- DPO, 52–104 weeks
- ESA: 0.19 g/dl
- LSMD: 0.23 (0.13, 0.34) g/dl*
- Difference in mean ΔHb, weeks 28-52:
 - ROXA: 0.36 g/dl
 - ESA: 0.19 g/dl
 - LSMD: 0.17 (0.082, 0.261) g/dl*

ROCKIES (NCT02174731);
- Global
- AstraZeneca
- R, OL, AC; ESA-naive and ESA-treated, M-DD and I-DD (n = 416);
- n = 2133, 1:1
- ROXA 70-200 mg TIW
d, j for ESA-treated and 70 or 100 mg TIW
d for ESA-naive vs epoetin alfa, 52-164 weeks
- Difference in mean ΔHb, weeks 28-52:
 - ROXA: 0.77 g/dl
 - ESA: 0.68 g/dl
 - LSMD: 0.09 (0.01, 0.18) g/dl*

SIERRAS (NCT02273726);
- United States
- FibroGen, Inc.
- R, OL, AC; ESA-treated, M-DD and I-DD (n = 71); total n = 741, 1:1
- ROXA 70-200 mg TIW
d vs epoetin alfa, 52 weeks
- Difference in mean ΔHb, weeks 28-52:
 - ROXA: 0.39 g/dl
 - ESA: -0.09 g/dl
 - LSMD: 0.48 (0.37, 0.59) g/dl*

Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Country</th>
<th>Treatment</th>
<th>Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nangaku et al., 2021 (NCT03439137); Japan</td>
<td>R, DB, AC; ESA-treated, M-HD; n = 323, 1:1</td>
<td>Japan</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 52 weeks</td>
<td>Difference in mean Hb, weeks 20-24:</td>
<td>Hb within target range (10–12 g/dl) at weeks 24 and 52:</td>
</tr>
<tr>
<td>INNO2VATE (NCT02865850); Global</td>
<td>R, DB, AC; ESA-naive and ESA-treated; I-DD; n = 369, 1:1</td>
<td>Global</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg vs DPO, 116 weeks</td>
<td>Difference in mean ΔHb, weeks 24-36:</td>
<td>Hb target range: US, 10-11 g/dl / non-US, 10-12 g/dl;</td>
</tr>
<tr>
<td>INNO2VATE (NCT02892149); Global</td>
<td>R, DB, AC; ESA-naive and ESA-treated; M-DD; n = 3554, 1:1</td>
<td>Global</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg vs DPO, 116 weeks</td>
<td>Difference in mean ΔHb, weeks 24-36:</td>
<td>Hb target range: US, 10-11 g/dl / non-US, 10-12 g/dl;</td>
</tr>
</tbody>
</table>

Adapted from Haase.9 Funding sources are indicated either with drug name or with individual studies. 95% confidence intervals are shown in brackets.

AC, active-controlled; DAPRO, daprodustat; DB, double-blind; DESI, desidustat; DPO, darbepoetin alfa; ENARO, enarodustat; EOT, end of treatment; ESA, erythropoietin-stimulating agent; FAS, full analysis set; Hb, hemoglobin; HD, hemodialysis; I-DD, incident dialysis (HD and PD); I-HD, incident hemodialysis; M-DD, maintenance/stable dialysis (HD and PD); M-HD, maintenance/stable hemodialysis; MOLI, molidustat; LSMD, least-squares mean difference; NC, non-
comparative; NR, not reported; OL, open-label; PBO, placebo; PC, placebo-controlled; PD, peritoneal dialysis; QD, once daily; QW, once weekly; R, randomized, ROXA, roxadustat; TIW, three times weekly; VADA, vadadustat. ESA-naïve is defined as no use of ESA for a study-defined period of time prior to start of study.

a starting dose, then titrated to maintain target Hb levels (right column).

b proportion of patients with Hb in target range reported as secondary outcomes in most studies.

c depending on study, starting dose is based on either recent Hb measurements or weight or both.

d initial dose according to prior ESA dose.

e Weight-based dosing (100 mg for > 45 to 60 or 120 mg for ≥ 60 kg), adjusted to maintain Hb levels of 10–12 g/dl.

f all patients, full analysis set.

g dosed at 70 mg for weight of 45 to 70 kg; 100 mg for weight of >70-160.

h EMA: For the European Union’s European Medicines Agency (EMA), the primary efficacy endpoint was Hb response defined as Hb ≥ 11.0 g/dl and an Hb increase from baseline by ≥1.0 g/dl in any patient with baseline Hb >8.0 g/dl, or an increase from baseline by ≥ 2.0 g/dl in any patient with baseline Hb ≤ 8.0 g/dl at two consecutive visits separated by at least 5 days during the first 24 weeks of treatment without rescue therapy (i.e., RBC transfusion, ESA or IV iron administration) prior to Hb response.

i FDA: For the US Food and Drug Administration (FDA), the primary efficacy endpoint was the mean change in Hb from baseline to the average Hb level during the evaluation period (defined as Weeks 28–52), regardless of rescue therapy.

j titrated to achieve a Hb level of 11 g/dl and to maintain Hb levels of 10–12 g/dl.

k key secondary endpoint.
Table 4: Iron parameters from phase 3 HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease

<table>
<thead>
<tr>
<th>Study; Location</th>
<th>Entry criteria</th>
<th>Iron strategy</th>
<th>Iron utilization</th>
<th>Changes in markers of iron metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (GlaxoSmithKline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCEND-ND(^{21}) (NCT02876835); Global N=3872</td>
<td>ESA naïve and Hb 8-10 g/dl or ESA treated and Hb 8-11 g/dl eGFR <60 ml/min/1.73 m(^2) Hb <10 g/dl Ferritin >100 ng/ml TSAT >20%</td>
<td>Iron starting criteria: ferritin ≤100 ng/ml or TSAT ≤20%</td>
<td>13% in HIF-PHI vs. 11% in ESA between weeks 36-48</td>
<td>Hepcidin: decreased from median (IQR) 105.6 (61.7-165.9) to 82.7 (43.0-142.4) ng/ml in HIF-PHI vs. 105.3 (61.2-169.8) to 120.1 (66.5-201.1) ng/ml in ESA TSAT: 30.0% (24.0-37.0) to 29.0 (22.0-35.0) in HIF-PHI vs. 29.0% (23.0-36.0) to 32.0 (24.0-41.0) in ESA Ferritin: Median (IQR) 267.0 (164.0-456.0) to 240.0 (135.0-425.0) ng/ml in HIF-PHI vs. 275.0 (171.0-449.0) to 262.0 (150.5-447.5) ng/ml in ESA TIBC: 45.0 (40.0-50.0) to 50.0 (45.0-55.0) mmol/l in HIF-PHI vs. 44.0 (40.0-49.0) to 44.0 (39.0-49.0) mmol/l in ESA Iron: 13.0 (10.0-16.0) to 14.0 (11.0-17.0) mmol/l in HIF-PHI vs. 13.0 (10.0-16.0) to 14.0 (11.0-18.0) mmol/l in ESA</td>
</tr>
<tr>
<td>Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPS(^{29}) (NCT01887600); Europe Astellas Pharma, Inc. N=594</td>
<td>eGFR <60 ml/min/1.73 m(^2) ESA naïve Ferritin ≥30 ng/ml TSAT ≥5%</td>
<td>Oral iron recommended IV iron as rescue if Hb <8.5 g/dl and ferritin <100 ng/ml or TSAT <20%</td>
<td>Not reported</td>
<td>Hepcidin: decreased from median (IQR) 37.9 (36.6) to 24.6 (30.1) mg/l in HIF-PHI and from 41.2 (37.6) to 39.4 (37.8) mg/l in placebo Ferritin: 112.6 ng/ml (IQR 76.8-198.6 to 82.8 ng/ml (IQR 48.0-170.1) in HIF-PHI and from 111.6 ng/ml (IQR 78.2-205.3) to 100.2 ng/ml (IQR 66.5-182.1) in ESA TIBC: increased in HIF-PHI and decreased in placebo; LSM difference 38.65 μg/dl (95% CI 31.9-45.5) TSAT: LSM difference -0.1%, 95% CI (-2.0, 1.7) Iron: LSM difference 8.3 mg/l (95% CI 2.9, 13.6)</td>
</tr>
<tr>
<td>ANDES(^{30}) (NCT01750190); Global (no European sites) FibroGen Inc. N=922</td>
<td>ESA naïve eGFR <60 ml/min/1.73 m(^2) Hb ≤10 g/dl Ferritin ≥30 ng/ml TSAT ≥5%</td>
<td>Oral iron encouraged IV iron rescue</td>
<td>% receiving IV iron 2.5% HIF-PHI vs. 4.9% placebo; HR 0.39 (95% CI 0.15-0.81)</td>
<td>Hepcidin: -22.1 (80.9) mg/l in HIF-PHI and 3.9 (80.9) mg/l in placebo; LSM difference of -25.7 μg/l (95% CI -38.5 to -12.9). TIBC: increased in HIF-PHI and decreased in placebo; LSM difference 38.65 μg/dl (95% CI 31.9-45.5) TSAT: LSM difference -0.1%, 95% CI (-2.0, 1.7) Iron: LSM difference 8.3 mg/l (95% CI 2.9, 13.6)</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Region</td>
<td>ESA naïve</td>
<td>eGFR, ml/min/1.73 m²</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>OLYMPUS31</td>
<td>Global</td>
<td>AstraZeneca</td>
<td>N=2781</td>
<td>eGFR <60</td>
</tr>
<tr>
<td>DOLOMITES32</td>
<td>Europe</td>
<td>Astellas Pharma, Inc</td>
<td>N=616</td>
<td>eGFR <60</td>
</tr>
<tr>
<td>PROTECT34</td>
<td>Global</td>
<td>(NCT02648347); Global</td>
<td>N=1751</td>
<td>eGFR ≤60</td>
</tr>
<tr>
<td>PROTECT34</td>
<td>Global</td>
<td>(NCT02648347); Global</td>
<td>N=1725</td>
<td>eGFR ≤60</td>
</tr>
</tbody>
</table>
Table 5: Iron parameters from phase 3 HIF-PHI clinical trials in dialysis-dependent chronic kidney disease

<table>
<thead>
<tr>
<th>Study; Location</th>
<th>Entry criteria</th>
<th>Iron strategy</th>
<th>Iron utilization</th>
<th>Changes in markers of iron metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (GlaxoSmithKline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCEND-D<sup>37</sup> (NCT02879305); Global Prevalent dialysis N=2964</td>
<td>ESA users ferritin >100 ng/ml TSAT >20%</td>
<td>Iron supplementation protocol to maintain ferritin 100-800 ng/ml and TSAT 20-40%</td>
<td>Mean monthly IV dose 139.2 (171.1) to 90.8 (SE 3.3) mg HIF-PHI vs. 137.4 (174.7) to 99.9 (SE 3.3) mg ESA Difference: -9.1 mg (95% CI -18.4, 0.2)</td>
<td>Hepcidin: decreased more in HIF-PHI than ESA TIBC: increased more in HIF-PHI than ESA Ferritin: slight decrease in both groups TSAT: decreased slightly in both groups</td>
</tr>
<tr>
<td>ASCEND-ID<sup>36</sup> (NCT03029208); Global Incident Dialysis N=312</td>
<td>ESA naïve ferritin >100 ng/ml TSAT >20%</td>
<td>Iron starting criteria: ferritin ≤100 ng/ml or TSAT ≤20% Iron stopping criteria: ferritin ≥800 ng/ml and TSAT ≥20% or TSAT ≥40% Route of iron administration based on local clinical practice</td>
<td>159.3 (207.1) to 142 (161) mg HIF-PHI vs. 180.1 (209.9) to 128 (137) mg ESA Difference: 19.4 mg/mo (95% CI -11.0, 49.9)</td>
<td>Hepcidin: decreased from 112.6 ng/ml (IQR 76.8-198.6) to 82.8 ng/ml (IQR 48.0-170.1) in HIF-PHI and from 111.6 ng/ml (IQR 78.2-205.3) to 100.2 ng/ml (IQR 66.5-182.1) in ESA TIBC: increased in HIF-PHI but not ESA Ferritin: decreased in both groups TSAT: decreased in both groups Iron: stable in both groups</td>
</tr>
<tr>
<td>ASCEND-TD<sup>38</sup> (NCT03400033); Global Prevalent HD N=407</td>
<td>ESA treated Hb 8-11.5 g/dl Ferritin >100 ng/ml TSAT >20%</td>
<td>Iron was administered if ferritin ≤100 ng/ml or TSAT ≤20% Iron was stopped if: ferritin >800 ng/ml and TSAT >20% or TSAT >40%</td>
<td>% receiving IV iron Weeks 28-52: 38% in HIF-PHI vs. 40% in ESA Weeks 1-52: 51% HIF-PHI vs. 51% ESA</td>
<td>Mean monthly dose Weeks 28-52: 104.9 (222.5) mg HIF-PHI vs. 103.1 (244.7) mg ESA Weeks 1-52: 99.0 (187.1) HIF-PHI vs. 104.4 (210.8) ESA Mean treatment difference: -8.1 (95% CI -45.7, 29.4)</td>
</tr>
</tbody>
</table>
Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>ESA use</th>
<th>Iron Use</th>
<th>Weekly IV Dose</th>
<th>Mean Monthly IV Dose</th>
<th>Oral Iron Use</th>
<th>Mean Monthly Oral Dose</th>
<th>Hematocrit Changes</th>
<th>Ferritin Changes</th>
<th>TIBC Changes</th>
<th>Iron Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIMALAYAS</td>
<td>Global (NCT02052310); Incident dialysis N=1043</td>
<td>ESA use for ≤3 weeks</td>
<td>Oral iron encouraged; IV iron allowed if Hb response inadequate and ferritin ≥100 ng/ml and TSAT <20%</td>
<td></td>
<td>Mean of last 2 Hb ≤10 g/dl</td>
<td>Mean weekly IV dose 83.7% HIF-PHI vs. 85.4% ESA</td>
<td>Mean monthly oral dose 290.7 (95% CI -463.2, 1044.5) mg</td>
<td>Mean weekly Hb ≤10 g/dl</td>
<td>Mean weekly ferritin ≥100 ng/ml</td>
<td>Mean weekly TSAT ≥20%</td>
<td>Mean weekly TIBC 35.0 (95% CI 31.8, 38.2) mg/dl HIF-PHI vs. -2.4 (95% CI -5.5, 0.7) mg/dl ESA; difference -6.9 (95% CI 30.2, 41.9) mg/dl</td>
</tr>
</tbody>
</table>
SIERRAS (NCT02273726); United States
Prevalent HD N=741

<table>
<thead>
<tr>
<th>ESA users</th>
<th>Ferritin ≥100 ng/ml</th>
<th>TSAT ≥20%</th>
<th>Oral iron encouraged IV iron if oral not tolerated or if iron deficient</th>
<th>Mean monthly IV dose</th>
<th>Hepcidin: decreased in both groups; difference: -19.12 (95% CI -39.52, 1.28)</th>
<th>Ferritin: decreased in both groups; difference: -41.71 (95% CI -96.51, 13.09) ng/ml</th>
<th>Iron: increased in roxadustat; difference: 6.33 (95% CI 2.20, 10.45) mg/dl</th>
<th>TSAT: decreased in both groups; difference: 2.18% (95% CI 0.16, 4.20)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

<table>
<thead>
<tr>
<th>INNO2VATE (NCT02865850); Global</th>
<th>ESA users and ESA-naive</th>
<th>Encouraged iron supplementation to maintain ferritin ≥100 ng/ml or TSAT ≥20%</th>
<th>Not reported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hb 8-11 mg/dl in US or 9-12 mg/dl in non-US ferritin ≥100 ng/ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INNO2VATE (NCT02865850); Global</th>
<th>Encouraged iron supplementation to maintain ferritin ≥100 ng/ml or TSAT ≥20%</th>
<th>Not reported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hb 8-11 mg/dl ferritin ≥100 ng/ml TSAT ≥20%</td>
<td></td>
</tr>
</tbody>
</table>

Changes from baseline to weeks 40-52

| Hepcidin: 193.9 (140.1) ng/ml to 137.4 (119.9) ng/ml in HIF-PHI vs. 190.4 (135.9) to 158.2 (123.4) in ESA |
| Ferritin: 846.8 (562.7) to 787.3 (550.2) ng/ml in HIF-PHI vs. 840.7 (538.5) to 828.9 (565.8) ng/ml in ESA |
| TSAT: 38.1% (13.5) to 34.1% (21.4) in HIF-PHI vs. 37.6% (13.2) to 36.6% (14.3) in ESA |

Changes from baseline to weeks 40-52

| Hepcidin: 122.4 (109.5) to 95.7 (72.1) ng/ml in HIF-PHI vs. 126.9 (111.2) to 101.1 (95.6) in ESA |
| Ferritin: 469.7 (316.9) to 555.5 (453.2) ng/ml in HIF-PHI vs. 527.8 (401.1) to 559.4 (458.5) ng/ml in ESA |
| TSAT: 31.3% (9.5) to 33.1% (12.0) in HIF-PHI vs. 34.2% (12.7) to 35.6% (13.8) in ESA |
Table 6: Cardiovascular safety data from phase 3 non-inferiority HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease

<table>
<thead>
<tr>
<th>Study; Location; Sponsor</th>
<th>Study design; No. of patients, randomization</th>
<th>Treatment, starting dose, study duration</th>
<th>Primary outcome hazard ratio; non-inferiority margin (95% confidence interval)</th>
<th>Other outcome hazard ratios (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (GlaxoSmithKline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCEND-ND²¹ (NCT02876835); Global</td>
<td>R, OL, AC; ESA-naive and ESA-treated; n = 3872, 1:1</td>
<td>DAPRO 2-4 mg QD² for ESA-naive and 1-4 mg QD³ for ESA-users vs DPO, 148 weeks</td>
<td>First occurrence of adjudicated MACE (composite of death, nonfatal myocardial infarction, or nonfatal stroke): HR 1.03, 95% CI 0.89-1.19</td>
<td>On-treatment MACE: HR 1.40, 95% CI 1.17-1.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Noninferiority margin: HR 1.25</td>
<td>MACE or hospitalization for heart failure: HR 1.09, 95% CI 0.95-1.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MACE or thromboembolic event: HR 1.06, 95% CI 0.93-1.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All-cause death: HR 1.03, 95% CI 0.87-1.20</td>
</tr>
<tr>
<td>Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPS²⁹ (NCT01887600); Europe Astellas Pharma, Inc.</td>
<td>R, DB, PC; ESA-naive; n = 594, 2:1</td>
<td>ROXA 70 or 100 mg TIW⁴ vs PBO, 104 weeks</td>
<td></td>
<td>MACE+ (composite of death, nonfatal myocardial infarction, nonfatal stroke, unstable angina and hospitalization for heart failure): HR 1.07, 95% CI 0.93-1.21</td>
</tr>
<tr>
<td>ANDES³⁰ (NCT01750190); Global (no European sites) FibroGen Inc.</td>
<td>R, DB, PC; ESA-naive; n = 922, 2:1</td>
<td>ROXA 70 or 100 mg TIW⁴ vs PBO, 52 weeks</td>
<td>Pooled analysis of ALPS, ANDES, OLYMPUS: time to first MACE (composite of death, nonfatal myocardial infarction, or nonfatal stroke): HR 1.10, 95% CI 0.96-1.27</td>
<td>MACE, on treatment + 7d: HR 1.38, 95% CI 1.11-1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Noninferiority margin: HR 1.30</td>
<td>Myocardial infarction: HR 1.29, 95% CI 0.90-1.85</td>
</tr>
<tr>
<td>OLYMPUS³¹ (NCT02174627); Global AstraZeneca</td>
<td>R, DB, PC; ESA-naive; n = 2781, 1:1</td>
<td>ROXA 70 mg TIW vs PBO, 164 weeks</td>
<td></td>
<td>Stroke: HR 1.25, 95% CI 0.82-1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unstable angina: HR 0.56, 95% CI 0.22-1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Congestive heart failure: HR 0.93, 95% CI 0.75-1.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All-cause death: HR 1.08, 95% CI 0.93-1.26</td>
</tr>
</tbody>
</table>

For Peer Review Only
Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

PRO2TECT34 (NCT02648347); Global

R, OL, AC; ESA-naive; n = 1751, 1:1
VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 168 weeks

(Pooled analysis of ESA-naive and ESA-treated subjects)
Time to first MACE (composite of death from any cause, nonfatal myocardial infarction, or nonfatal stroke): HR 1.17 (1.01 to 1.36)
Noninferiority margin: HR 1.25 (USA) and HR 1.30 (EMA)
MACE plus hospitalization for either heart failure or a thromboembolic event HR 1.11, 95% CI 0.97 -1.27
Death from cardiovascular causes: HR 1.01, 95% CI 0.79-1.29
Death from any cause: HR 1.09, 95% CI 0.93-1.27
Composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke: HR 1.16, 95% CI 0.95-1.42

PRO2TECT34 (NCT02680574); Global

R, OL, AC; ESA-treated; n = 1725, 1:1
VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 168 weeks

Adapted from Haase.9 Funding sources are indicated either with drug name or with individual studies. 95% confidence intervals are shown in brackets.

AC, active-controlled; DAPRO, daprodustat; DB, double-blind; DPO, darbepoetin alfa; EBP, epoetin beta pegol; EOT, end of treatment; ESA, erythropoiesis-stimulating agent; Hb, hemoglobin; HR, hazard ratio; LSMD, least-squares mean difference; maint., maintenance; NC, non-comparative; NR, not reported; OL, open-label; PBO, placebo; PC, placebo-controlled; QD, once daily; R, randomized; ROXA, roxadustat; TIW, three times weekly; VADA, vadadustat. ESA-naïve is defined as no use of ESA for a study-defined period of time prior to start of study.

a starting dose, then titrated to maintain target Hb levels (right column).
b starting dose based on baseline Hb level; for NCT02964936, Akizawa \textit{et al}., 2020, starting dose is based on an algorithm that included 2 baseline Hb levels, weight and eGFR.
c starting dose based on prior ESA dose.
d weight-based dosing: 70 mg for weight of 45 to <70 kg; 100 mg for \geq70 kg.
Table 7: Cardiovascular safety data from phase 3 non-inferiority HIF-PHI clinical trials in dialysis-dependent chronic kidney disease

<table>
<thead>
<tr>
<th>Study; Location; Sponsor</th>
<th>Study design; No. of patients, randomization</th>
<th>Treatment, starting dose, study duration</th>
<th>Primary outcome hazard ratio; non-inferiority margin (95% confidence interval)</th>
<th>Other outcome hazard ratios (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (GlaxoSmithKline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCEND-ID<sup>36</sup> (NCT03029208); Global</td>
<td>R, OL, AC; ESA-naive and ESA-treated (limited exposure <6 weeks), I-DD; n = 312, 1:1</td>
<td>DAPRO 1-4 mg QD<sup>b</sup> vs DPO, 52 weeks</td>
<td>Exploratory analysis: first occurrence of adjudicated MACE (composite of death from any cause, non-fatal myocardial infarction or non-fatal stroke): n=19 (12%) DAPRO vs n=15 (10%) DPO -- absolute rate difference/100 PYs 2.41 (95% CI−4.61 to 9.43)</td>
<td>The first occurrence of MACE or a hospitalization for heart failure: n=24 (15%) DPO vs. n=18 (12%) DPO</td>
</tr>
<tr>
<td>ASCEND-D<sup>37</sup> (NCT02879305); Global</td>
<td>R, OL, AC; ESA-treated, M-DD; n = 2964, 1:1</td>
<td>DAPRO 4-12 mg QD<sup>c</sup> vs ESA (epoetin alfa for HD, DPO for PD, 52 weeks</td>
<td>Adjudicated MACE (composite of death from any cause, nonfatal myocardial infarction, or nonfatal stroke): HR 0.93, 95% CI 0.81-1.07</td>
<td>MACE or thromboembolic event: HR 0.88, 95% CI 0.78-1.00</td>
</tr>
<tr>
<td>ASCEND-TD<sup>38</sup> (NCT03400033); Global</td>
<td>R, DB, AC; ESA-treated, M-DD; n = 407, 2:1</td>
<td>DAPRO 8-24 mg TIW<sup>c</sup> adjusted to dose range of 2-48 mg TIW vs epoetin alfa, 52 weeks</td>
<td>First occurrence of adjudicated MACE: Absolute rate difference per 100 person-years (95% CI) 2.3 (−4.4, to 9.0)</td>
<td>Worsening hypertension (post-hoc): DAPRO vs. Epoetin: Relative risk 0.83 (0.50 to 1.39)</td>
</tr>
<tr>
<td>Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen et al., 2019<sup>42</sup> (NCT02652806); China FibroGen, Inc.</td>
<td>R, OL, AC; ESA-treated; M-DD; n = 304, 2:1</td>
<td>ROXA 100 or 120 mg TIW<sup>d</sup> vs epoetin alfa, 26 weeks</td>
<td>Cardiac disorders: ROXA n=5 (2.5%) and epoetin alfa n=1 (1.0%)</td>
<td>Vascular disorders: ROXA n=2 (1.0%) and epoetin alfa n=0</td>
</tr>
</tbody>
</table>

Note: QD = once daily, TIW = three times weekly, M = mid-dose, D = dialysis, HD = hemodialysis, PD = peritoneal dialysis, ESA = erythropoiesis-stimulating agent, MACE = major adverse cardiovascular event, CI = confidence interval, DPO = darbepoetin alfa, ROXA = roxadustat.
Akizawa et al., 202013 (NCT02779764, NCT02780141); Japan
Astellas Pharma, Inc.
R, OL, NC; I-HD (ESA-naïve, n = 75) and M-HD (>12 weeks, ESA-treated); n = 239

ESAs: ROXA 50 or 70 mg TIWb, 24 weeks
MACE – not reported

R, OL, NC; ESA-naïve (n = 13) and ESA-treated, PD (> 4 weeks); n = 56

ROXA 50 or 70 mg TIWc (ESA-naïve) or ROXA 70 or 100 mg TIWc (ESA-treated), 24 weeks

Cardiac disorders: ROXA n=5 (3.3%), Vascular disorders: ROXA n=5 (3.3%), ROXA n=1 (0.7%)

Arteriovenous fistula thrombosis: ROXA n=39 (7.5%) vs n=21 (4.1%)

Pooled analysis of HIMALAYAS, PYRENEES, ROCKIES, and SIERRAS
MACE (myocardial infarction, stroke, and all-cause mortality)
HR 1.09, 95% CI 0.95–1.26;
Noninferiority margin: HR 1.30

All-cause mortality: HR 1.13, 95% CI 0.95–1.34

Pooled analysis of HIMALAYAS, PYRENEES, ROCKIES, and SIERRAS:
MACE plus congestive heart failure or unstable angina requiring hospitalization:
HR 0.98, 95% CI 0.86–1.11
Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Patients</th>
<th>Treatment</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nangaku et al., 2021<sup>50</sup> (<NCT03439137>; Japan)</td>
<td>R, DB, AC; ESA-treated, M-HD; n = 323. 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 52 weeks</td>
<td>Cardiovascular event, cardiac failure</td>
<td>VADA: 13 (8.0%), DPO 15 (9.3%)</td>
</tr>
<tr>
<td>INNO<sub>2</sub>VATE<sup>51</sup> (<NCT02865850>; Global)</td>
<td>R, DB, AC; ESA-naïve and ESA-treated; I-DD; n = 369, 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 116 weeks</td>
<td>Pooled analysis of I-DD and M-DD trials MACE (myocardial infarction, stroke, and all-cause mortality): HR 0.96, 95% CI 0.83 – 1.11</td>
<td>Non-inferiority margin: HR 1.25</td>
</tr>
<tr>
<td>INNO<sub>2</sub>VATE<sup>51</sup> (<NCT02892149>; Global)</td>
<td>R, DB, AC; ESA-naïve and ESA-treated; M-DD; n = 3554, 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 116 weeks</td>
<td></td>
<td>MACE plus hospitalization for heart failure or thromboembolic event: HR 0.96; 95% CI, 0.84 to 1.10.</td>
</tr>
</tbody>
</table>

Adapted from Haase.⁹ Funding sources are indicated either with drug name or with individual studies. 95% confidence intervals are shown in brackets.

AC, active-controlled; DAPRO, daprodustat; DB, double-blind; DESI, desidustat; DPO, darbepoetin alfa; ENARO, enarodustat; EOT: end of treatment; ESA, erythropoietin-stimulating agent; FAS, full analysis set; Hb, hemoglobin; HD, hemodialysis; HR, hazard ratio; I-DD, incident dialysis (HD and PD); I-HD, incident hemodialysis; M-DD, maintenance/stable dialysis (HD and PD); M-HD, maintenance/stable hemodialysis; MOLI, molidustat; LSMD, least-squares mean difference; NC, non-comparative; NR, not reported; OL, open-label; PBO, placebo; PC, placebo-controlled; PD, peritoneal dialysis; QD, once daily; QW, once weekly; R, randomized, ROXA, roxadustat; TIW, three times weekly; VADA, vadadustat. ESA-naïve is defined as no use of ESA for a study-defined period of time prior to start of study.

^a starting dose, then titrated to maintain target Hb levels (right column).
^b depending on study, starting dose is based on either recent Hb measurements or weight or both.
^c initial dose according to prior ESA dose.
^d Weight-based dosing (100 mg for > 45 to 60 or 120 mg for ≥ 60 kg), adjusted to maintain Hb levels of 10–12 g/dl.
^e dosed at 70 mg for weight of 45 to 70 kg; 100 mg for weight of >70-160.
^f titrated to achieve a Hb level of 11 g/dl and to maintain Hb levels of 10–12 g/dl.
Table 8: Research recommendations

- Determine whether HIF-PHIs have an impact on progression of CKD based on severity of baseline disease, presence of proteinuria/albuminuria, or the cause of CKD
- Understand if hemoglobin targets should be the same when using HIF-PHIs versus ESAs for patients with ND-CKD and DD-CKD
- Conduct of additional trials to understand the need for iron supplementation and the appropriate iron dosing strategy with the use of HIF-PHIs, along with identification of iron targets during treatment
- Assess long-term safety for specific populations such as children, older adults, kidney transplant recipients, patients with PKD or acute kidney injury in future HIF-PHI studies
- Identification of novel biomarkers that can be used to monitor the safety of HIF-PHIs
- Ascertain variability in the risk of MACE and thrombosis with respect to region of the world, patients characteristics/subpopulations, Hb target, or rate of Hb correction
- Perform future studies to understand the effect of HIF-PHIs on HRQoL and patient-centered outcomes
- Determine whether HIF-PHIs are effective in patients with ESA hyporesponsiveness or in immunosuppressed populations, including those with kidney transplants
- Obtain longer term safety data (e.g., post-market surveillance) for HIF-PHI on risk for de novo cancer or progression of malignancy, retinopathy, and other potential adverse effects
- In regions where HIF-PHIs are available, comparative cost-effectiveness analysis should be conducted between these agents and ESAs
REFERENCES

Novel Anemia Therapies in CKD: A KDIGO Controversies Conference Report

TABLES

<table>
<thead>
<tr>
<th>Table 1: Summary of Novel Anemia Therapies in CKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Epoetin alfa</td>
</tr>
<tr>
<td>Darbepoetin alfa</td>
</tr>
<tr>
<td>Menaquinone</td>
</tr>
</tbody>
</table>

The International Society of Nephrology (http://www.isn-online.org/site/cms)
Table 1: Potential advantages and disadvantages of various CKD-anemia therapies

<table>
<thead>
<tr>
<th>Agents</th>
<th>Potential Advantages</th>
<th>Potential Disadvantages</th>
</tr>
</thead>
</table>
| **HIF-PHI**s | • Oral dosing more convenient for some patients
• **May facilitate anemia treatment in patients with non-dialysis dependent CKD**
• **Suppression of hepcidin may improve utilization of iron for erythropoiesis, particularly oral iron**
• **May be more effective in chronic inflammatory states (CRP > 5 mg/l)** | • Difficult to monitor adherence
• Potential polypharmacy and drug-drug interactions
• Less clinical experience
• **Potential risk of enhancing tumor growth**
• **Potential risk of worsening retinopathy**
• **Potential risk of cyst growth in ADPKD** |
| **ESAs** | • Adherence can be monitored with in-clinic administration
• Extensive clinical experience | • Treatment requires self-injection or regular clinic visits
• Resistance in chronic inflammatory states
• Risk of enhancing tumor growth
• **Antibody-mediated pure red cell aplasia (rare)** |
| **Iron compounds** | • No serious adverse effects of oral iron | • If PO, risk of poor gastrointestinal tolerance and non-adherence to therapy
• If IV, risk of allergic/anaphylactic reaction
• If IV, **potential** risk of increasing oxidative stress
• If IV, **potential** risk of hemosiderosis |
Table 2: Efficacy data from phase 3 HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease

| Study; Location | Sponsor | Study design; No. of patients, randomization | Treatment, starting dose, study duration | Primary efficacy outcomes: Differences in mean Hb and/or ΔHb from baseline to evaluation period | Hb targets and Hb response rate

Daprodustat (GlaxoSmithKline)

Nangaku et al., 2021²⁰ (NCT02791763); Japan

- R, OL, AC; ESA-naive and ESA-treated; n = 299, 1:1
- DAPRO 2 and 4 mg QD^c for ESA-naive and 4 mg QD^c for ESA-users vs EBP, 52 weeks
- Difference in mean Hb, weeks 40-52:
 - DAPRO: 12 g/dl
 - EBP: 11.9 g/dl
 - Difference: 0.1 (-0.1, 0.3) g/dl
- Hb within target range (11–13 g/dl) during weeks 40–52:
 - DAPRO: 92%
 - EBP: 92%

ASCEND-ND²¹ (NCT02876835); Global

- R, OL, AC; ESA-naive and ESA-treated; n = 3872, 1:1
- DAPRO 2-4 mg QD^c for ESA-naive and 1-4 mg QD^d for ESA-users vs DPO, 148 weeks
- Difference in mean ΔHb, weeks 28-52:
 - DAPRO: 0.74 g/dl
 - DPO: 0.66 g/dl
 - Difference: 0.08 (0.03, 0.13) g/dl
- Hb target (10-11 g/dl)

Desidustat (Cadila Healthcare Ltd.)

DREAM-ND²² (NCT04012957); India, Sri Lanka

- R, OL, AC; ESA-naive; n = 588, 1:1
- DESI 100 mg TIW vs DPO, 24 weeks
- Difference in mean ΔHb, weeks 16-24:
 - DESI: 1.95 g/dl
 - DPO: 1.83 g/dl
 - LSMD: 0.11 (–0.12, 0.35) g/dl
- Hb target range (10–12 g/dl) during weeks 16–24:
 - DESI: 77.78%
 - DPO: 68.48%

Enarodustat (Japan Tobacco Inc.)

SYMPHONY ND²³ (JapicCTI-183870); Japan

- R, OL, AC; ESA-naive and ESA-treated; n = 216, 1:1
- ENARO 2 mg QD vs DPO, 24 weeks
- Difference in mean Hb, weeks 20–24:
 - ENARO: 10.96 g/dl
 - DPO: 10.87 g/dl
 - Difference: 0.09 (–0.07, 0.26) g/dl
- Hb within target range (10–12 g/dl) during weeks 4–24:
 - ENARO: 88.6%
 - DPO: 87.9%

Molidustat (Bayer Yakuhin, Ltd.)

MIYABI ND-C²⁴ (NCT03350321); Japan

- R, OL, AC; ESA-naive; n = 162, 1:1
- MOLI 25 mg QD vs DPO, 52 weeks
- Difference in mean Hb, weeks 30-36:
 - MOLI: 11.28 g/dl
 - DPO: 11.70 g/dl
 - Difference in mean ΔHb, weeks 30-36:
 - MOLI: 1.32 g/dl
 - DPO: 1.69 g/dl
 - LSMD: –0.38 (–0.67, –0.08) g/dl
 - Hb within target range (11–13 g/dl), responder rate during weeks 30–36:
 - MOLI: 59.8%
 - DPO: 82.5%
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Design</th>
<th>Treatment</th>
<th>Weeks</th>
<th>Hb target</th>
<th>Endpoint</th>
<th>Odds Ratio</th>
<th>LSMD</th>
<th>Hb increase</th>
<th>Responder Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIYABI ND-M<sup>25</sup></td>
<td>Japan</td>
<td>R, OL, AC; ESA-treated; n = 164, 1:1</td>
<td>MOLI 25 mg or 50 mg QD<sup>d</sup> vs DPO, 52 weeks</td>
<td>Difference in mean Hb, weeks 30-36: MOLI: 11.67 g/dl DPO: 11.53 g/dl Difference in mean ΔHb, weeks 30-36: MOLI: 0.36 g/dl DPO: 0.24 g/dl LSMD: 0.13 (–0.15, 0.40) g/dl</td>
<td>Hb within target range (11–13 g/dl), responder rate during weeks 30–36: MOLI: 72.0% DPO: 76.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)</td>
<td></td>
<td></td>
<td></td>
<td>Difference in mean ΔHb, weeks 7–9: ROXA: 1.9 g/dl PBO: -0.4 g/dl Difference: 2.2 (1.9, 2.6) g/dl*</td>
<td>Hb target: 10-12 g/dl; pts with >10 g/dl and increase in ΔHb of 1-2 g/dl at week 9: ROXA: 75% PBO: 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen et al., 2019<sup>26</sup></td>
<td>China</td>
<td>R, DB, PC; ESA-naive; n = 154, 2:1, n = 152 (safety population)</td>
<td>ROXA 70 or 100 mg TIW<sup>e</sup> vs PBO, 8 weeks DB, then 18 weeks OL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akizawa et al., 2020<sup>27</sup></td>
<td>Japan</td>
<td>R, OL, NC; ESA-naive; n = 99</td>
<td>ROXA 50 or 70 mg TIW<sup>c</sup>, 24 weeks</td>
<td>Difference in mean ΔHb, weeks 18-24: ROXA 50 mg: 1.34 g/dl ROXA 70 mg: 1.30 g/dl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akizawa et al., 2021<sup>28</sup></td>
<td>Japan</td>
<td>R, OL, AC; ESA-treated (DPO and EBP); n = 334, 1:1,</td>
<td>ROXA 70 or 100 mg TIW<sup>d</sup> vs DPO, 52 weeks</td>
<td>Difference in mean ΔHb, weeks 18-24: ROXA 70 mg: 0.15 g/dl DPO: 0.22 g/dl LSMD: -0.07 g/ (-0.23, 0.10) g/dl</td>
<td>Hb target: 10-12 g/dl; Hb ≥ 10 g/dl and ΔHb of ≥1 g/dl at EOT: ROXA 50 mg: 97.0% ROXA 70 mg: 100.0% for Hb ≥ 10.5 g/dl: ROXA 50 mg: 94.9% ROXA 70 mg: 98.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPS<sup>29</sup></td>
<td>Europe</td>
<td>R, DB, PC; ESA-naive; n = 594, 2:1</td>
<td>ROXA 70 or 100 mg TIW<sup>f</sup> vs PBO, 104 weeks</td>
<td>EMA endpoint, first 24 weeks: ROXA: 79.2% PBO: 9.9% Odds ratio: 34.74 (20.48, 58.93) %* FDA endpoint, weeks 28-52: ROXA: 1.99 g/dl PBO: 0.3 g/dl LSMD: 1.69 (1.52, 1.86) g/dl*</td>
<td>Hb target: 10-12 g/dl, maint.; Mean ΔHb without rescue therapy, weeks 28-36: ROXA: 2.01 g/dl (iron-replete) i PBO: 0.26 g/dl (iron-replete) i FDA endpoint, weeks 28-52: ROXA: 2.01 g/dl (non-replete) i PBO: 0.493 g/dl (non-replete) i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANDES<sup>30</sup></td>
<td>Global (no European sites)</td>
<td>R, DB, PC; ESA-naive; n = 922, 2:1</td>
<td>ROXA 70 or 100 mg TIW<sup>g</sup> vs PBO, 52 weeks</td>
<td>EMA endpoint, first 24 weeks: ROXA: 86.0% PBO: 6.6% Odds ratio: 37.27 (20.12, 68.91) %* FDA endpoint, weeks 28-52: ROXA: 2.00 g/dl PBO: 0.16 g/dl LSMD: 1.88 (1.73, 2.04) g/dl*</td>
<td>Hb target: 10–12 g/dl, maint.; Mean ΔHb without rescue therapy, weeks 28-36 (exploratory): ROXA: 2.02 g/dl PBO: 0.20 g/dl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Design</th>
<th>Treatment</th>
<th>Comparator</th>
<th>Endpoint</th>
<th>Weeks</th>
<th>ΔHb</th>
<th>LSMD</th>
<th>Hb Target</th>
<th>Hb at Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nangaku et al., 2021<sup>33</sup> (NCT03329196); Japan</td>
<td>R, OL, AC; ESA-naïve and ESA-treated; n = 304, 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 52 weeks</td>
<td>Difference in mean Hb, weeks 20 and 24:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hb within target range (11-13 g/dl) at week 52 (ESA-naïve</td>
<td>ESA-treated)</td>
</tr>
<tr>
<td>PROTECT<sup>34</sup> (NCT02648347); Global</td>
<td>R, OL, AC; ESA-naïve; n = 1751, 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 168 weeks</td>
<td>Difference in mean ΔHb, weeks 24-36:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hb target range: US, 10-11 g/dl / non-US, 10-12 g/dl; Hb at target, weeks 24-36:</td>
<td>VADA: 50.4%</td>
</tr>
<tr>
<td>PROTECT<sup>34</sup> (NCT02680574); Global</td>
<td>R, OL, AC; ESA-treated; n = 1725, 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 168 weeks</td>
<td>Difference in mean ΔHb, weeks 24-36:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hb target range: US, 10-11 g/dl / non-US, 10-12 g/dl; Hb at target, weeks 24-36:</td>
<td>VADA: 60.1%</td>
</tr>
</tbody>
</table>

Adapted from Haase.⁹ Funding sources are indicated either with drug name or with individual studies. 95% confidence intervals are shown in brackets.

AC, active-controlled; DAPRO, daprodustat; DB, double-blind; DESI, desidustat; DPO, darbepoetin alfa; EBP, epoetin beta pegol; ENARO, enarodustat; EOT, end of treatment; ESA, erythropoiesis-stimulating agent; Hb, hemoglobin; LSMD, least-squares mean difference; maint., maintenance; MOLI, molidustat; NC, non-

For Peer Review Only
comparative; NR, not reported; OL, open-label; PBO, placebo; PC, placebo-controlled; QD, once daily; R, randomized; ROXA, roxadustat; TIW, three times weekly; VADA, vadadustat. ESA-naïve is defined as no use of ESA for a study-defined period of time prior to start of study.

a starting dose, then titrated to maintain target Hb levels (right column).

b proportion of patients with Hb in target range reported as secondary outcomes in most studies.

c starting dose based on baseline Hb level; for NCT02964936, Akizawa et al., 2020, starting dose is based on an algorithm that included 2 baseline Hb levels, weight and eGFR.

d starting dose based on prior ESA dose.

e weight-based dosing: 70 mg for patients weighing 40 to < 60 kg or 100 mg for ≥ 60 kg.

f weight-based dosing: 70 mg for weight of 45 to <70 kg; 100 mg for ≥70 kg.

EMA: For the European Union’s European Medicines Agency (EMA), the primary efficacy endpoint was Hb response defined as Hb ≥ 11.0 g/dl and an Hb increase from baseline by ≥1.0 g/dl in any patient with baseline Hb >8.0 g/dl, or an increase from baseline by ≥ 2.0 g/dl in any patient with baseline Hb ≤ 8.0 g/dl at two consecutive visits separated by at least 5 days during the first 24 weeks of treatment without rescue therapy (i.e., RBC transfusion, ESA or IV iron administration) prior to Hb response.

FDA: For the US Food and Drug Administration (FDA), the primary efficacy endpoint was the mean change in Hb from baseline to the average Hb level during the evaluation period (defined as Weeks 28–52), regardless of rescue therapy.

i iron status: iron replete, transferrin saturation (TSAT) ≥ 20% and ferritin ≥ 100 ng/ml; non-replete, TSAT ≤ 20% and ferritin ≤ 100 ng/ml.

j key secondary endpoint.

* Statistical significance reported.
Table 3: Efficacy data from phase 3 HIF-PHI clinical trials in patients with dialysis-dependent chronic kidney disease

<table>
<thead>
<tr>
<th>Study; Location</th>
<th>Study design; No. of pts, randomization</th>
<th>Treatment: Starting dose,* study duration</th>
<th>Primary efficacy outcomes: Differences in mean Hb and/or ΔHb from baseline to evaluation period</th>
<th>Hb targets and Hb response rateb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (GlaxoSmithKline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akizawa et al., 2020[35] (NCT02969655); Japan</td>
<td>R, DB, AC; ESA-treated, M-HD; n = 271, 1:1</td>
<td>DAPRO 4 mg QD vs DPO, 52 weeks</td>
<td>Difference in mean Hb, weeks 40–52: DAPRO: 10.9 g/dl DPO: 10.8 g/dl Adjusted difference: 0.1 (–0.1, 0.2) g/dl</td>
<td>Hb at target (10–12 g/dl) during weeks 40–52: DAPRO: 88% DPO: 90%</td>
</tr>
<tr>
<td>ASCEND-ID[36] (NCT03029208); Global</td>
<td>R, OL, AC; ESA-naïve and ESA-treated (limited exposure <6 weeks), I-DD; n = 312, 1:1</td>
<td>DAPRO 1-4 mg QD vs DPO, 52 weeks</td>
<td>Difference in mean ΔHb, weeks 28–52: DAPRO: 1.02 g/dl DPO: 1.12 g/dl Difference: 0.10 (-0.34, 0.14) g/dl</td>
<td>Hb target: 10-11 g/dl.</td>
</tr>
<tr>
<td>ASCEND-D[37] (NCT02879305); Global</td>
<td>R, OL, AC; ESA-treated, M-DD; n = 2964, 1:1</td>
<td>DAPRO 4-12 mg QD vs ESA (epoetin alfa for HD, DPO for PD, 52 weeks</td>
<td>Difference in mean ΔHb, weeks 28-52: DAPRO: 0.28 g/dl ESA: 0.10 g/dl Difference: 0.18 (0.12, 0.24) g/dl</td>
<td>Hb target: 10-11 g/dl</td>
</tr>
<tr>
<td>ASCEND-TD[38] (NCT03400033); Global</td>
<td>R, DB, AC; ESA-treated, M-DD; n = 407, 2:1</td>
<td>DAPRO 8-24 mg TIW adjusted to dose range of 2-48 mg TIW vs epoetin alfa, 52 weeks</td>
<td>Difference in mean ΔHb, weeks 28-52: DAPRO: -0.04 g/dl Epoetin alfa: 0.02 g/dl Difference: -0.05 (-0.21, 0.10) g/dl</td>
<td>Hb within analysis range of 10–11.5 g/dl during weeks 28-52: DAPRO: 80% Epoetin alfa: 64%*</td>
</tr>
<tr>
<td>Desidustat (Cadila Healthcare Ltd.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DREAM-D[39] (NCT04215120); (CTRI/2019/12/022312) India</td>
<td>R, OL, AC; ESA-naïve (n = 50) and ESA-treated, M-HD (2 or 3 x week); n = 392, 1:1</td>
<td>DESI 100 mg TIW (ESA-naïve); 100, 125 or 150 mg TIW (ESA-treated) vs epoetin alfa, 24 weeks</td>
<td>Difference in mean ΔHb, weeks 16–24: DESI: 0.95 g/dl Epoetin alfa: 0.80 g/dl LSM difference: 0.14 (–0.13, 0.42) g/dl</td>
<td>Hb within target range (10–12 g/dl) during weeks 16–24: DESI: 59.2% Epoetin alfa: 48.4%</td>
</tr>
<tr>
<td>Enarodustat (Japan Tobacco Inc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYMPHONY-HD[40] (JapicCTI-183938) Japan</td>
<td>R, DB, AC; ESA-treated; M-HD; n = 173, 1:1; FAS: n = 172</td>
<td>ENARO 4 mg QD vs DPO; 24 weeks.</td>
<td>Difference in mean Hb, weeks 20–24: ENARO: 10.73 g/dl DPO: 10.85 g/dl Difference: –0.12 (–0.33, +0.10) g/dl</td>
<td>Hb within target range (10–12 g/dl) during EOT period: ENARO: 77.9% DPO: 88.4%</td>
</tr>
</tbody>
</table>
Molidustat (Bayer Yakuhin, Ltd.)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Treatment</th>
<th>Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIYABI HD-M (NCT03543657) Japan</td>
<td>R, DB, AC; ESA-treated, M-HD; n = 229, 2:1</td>
<td>MOLI 75 mg QD vs DPO; 52 weeks</td>
<td>Difference in mean Hb, weeks 33-36: MOLI: 10.63 d/dl DPO: 10.77 g/dl Difference in mean ΔHb, weeks 33-36: MOLI: -0.14 g/dl DPO: -0.07 g/dl LSMD: -0.13 (-0.46, 0.19) g/dl Hb within target range (10-12 g/dl): MOLI: 61.2-77.8% during weeks 18-52 DPO: 68.7-88.7% during weeks 2-52.</td>
</tr>
</tbody>
</table>

Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Treatment</th>
<th>Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al., 2019 (NCT02652806); China FibroGen, Inc.</td>
<td>R, OL, AC; ESA-treated; M-DD; n = 304, 2:1</td>
<td>ROXA 100 or 120 mg TIW<sup>c</sup> vs epoetin alfa, 26 weeks</td>
<td>Difference in mean ΔHb, weeks 23–27: ROXA: 0.7 g/dl Epoetin alfa: 0.5 g/dl Difference: 0.2 (-0.02, 0.5) g/dl Hb target: 10–12 g/dl Hb of ≥ 10 g/dl, weeks 23-27: ROXA: 87.0% Epoetin alfa: 88.5%</td>
</tr>
<tr>
<td>Akizawa et al., 2020 (NCT02779764, NCT02780141); Japan Astellas Pharma, Inc.</td>
<td>R, OL, NC; I-HD (ESA-naïve, n = 75) and M-HD (>12 weeks, ESA-treated); n = 239</td>
<td>ESA-naïve: ROXA 50 or 70 mg TIW<sup>c</sup>, 24 weeks ESA-treated: ROXA 70 or 100 mg TIW<sup>d</sup>, 52 weeks</td>
<td>Difference in mean ΔHb, weeks 18-24: ESA-naïve: -2.26 g/dl ESA-treated: -0.03 g/dl Difference: 0.22 (-0.02, 0.45) g/dl Hb target: 10–12 g/dl Hb of ≥ 10 g/dl, weeks 18-24: ROXA: 90.0% Epoetin alfa: 92.2%</td>
</tr>
<tr>
<td>Akizawa et al., 2020 (NCT02780726); Japan Astellas Pharma, Inc.</td>
<td>R, OL, NC; ESA-naïve (n = 13) and ESA-treated, PD (> 4 weeks); n = 56</td>
<td>ROXA 50 or 70 mg TIW<sup>c</sup> (ESA-naïve) or ROXA 70 or 100 mg TIW<sup>d</sup> (ESA-treated), 24 weeks</td>
<td>Difference in mean ΔHb, weeks 18–24: ESA-naïve: 1.69 g/dl ESA-treated: 0.14 g/dl Hb target: 10–12 g/dl during weeks 18-24: ESA-naïve: 92.3% ESA-treated: 74.4%</td>
</tr>
<tr>
<td>Akizawa et al., 2020 (NCT02952092); Japan Astellas Pharma, Inc.</td>
<td>R, DB, AC; ESA-treated, M-HD; n = 303, 1:1</td>
<td>ROXA 70 or 100 mg TIW<sup>d</sup> vs DPO QW, 24 weeks</td>
<td>Difference in mean ΔHb, weeks 18–24: ROXA: -0.04 g/dl DPO: -0.03 g/dl Difference: -0.02 (-0.17, 0.15) g/dl Hb within target range (10–12 g/dl) during weeks 18-24: ROXA: 79.3% DPO: 83.4%</td>
</tr>
<tr>
<td>HIMALAYAS (NCT02052310); Global FibroGen, Inc.</td>
<td>R, OL, AC, ESA-naïve and ESA-limited use (≤3 weeks), I-DD; n = 1043, 1:1</td>
<td>ROXA 70-100mg TIW<sup>j, l</sup> vs epoetin alfa, 52 weeks</td>
<td>EMA endpoint,<sup>h</sup> first 24 weeks: ROXA: 88.2% Epoetin alfa: 84.3% Difference: 3.5 (-0.7, 7.7)% FDA endpoint,<sup>i</sup> weeks 28-52: ROXA: 2.57 g/dl Epoetin alfa: 2.36 g/dl LSMD: 1.18 (0.08, 0.29) g/dl* Hb at target (10-12 g/dl), first 24 weeks (US second. endpoint): ROXA: 88.2% Epoetin alfa: 84.3% Difference: 3.9 (-0.7, 8.5)% Hb target: 10-12 g/dl during weeks 28-52 (EU second. endpoint): ROXA: 2.62 g/dl Epoetin alfa: 2.44 g/dl* Hb within target range (10-12 g/dl) at weeks 28 to 36:</td>
</tr>
<tr>
<td>PYRENEES (NCT02278341);</td>
<td>R, OL, AC, ESA-treated, M-DD;</td>
<td>ROXA 100-200 mg TIW<sup>d</sup> vs ESA (epoetin alfa or f</td>
<td>Difference in mean ΔHb, weeks 28-36: ROXA: 0.43 g/dl Hb target: 10-12 g/dl during weeks 28-36: ROXA: 88.2% Epoetin alfa: 84.3% Difference: 3.9 (-0.7, 8.5)% Hb at target (10-12 g/dl) at weeks 28 to 36: ROXA: 88.2% Epoetin alfa: 84.3% Difference: 3.9 (-0.7, 8.5)%</td>
</tr>
</tbody>
</table>
Europe
Astellas Pharma, Inc.
n = 838 (836 treated), 1:1
DPO, 52–104 weeks
ESA: 0.19 g/dl
LSMD: 0.23 (0.13, 0.34) g/dl*
Difference in mean ΔHb, weeks 28-52:
ROXA: 0.36 g/dl
ESA: 0.19 g/dl
LSMD: 0.17 (0.082, 0.261) g/dl*
ROXA: 84.2%
Epoetin alfa: 82.4%

ROCKIES**(NCT02174731);
Global
AstraZeneca
R, OL, AC; ESA-naïve and ESA-treated, M-DD and I-DD (n = 416); n = 2133, 1:1
ROXA 70-200 mg TIW\(^d\) for ESA-treated and 70 or 100 mg TIW\(^d\) for ESA-naïve vs epoetin alfa, 52-164 weeks
Difference in mean ΔHb, weeks 28-52:
ROXA: 0.77 g/dl
Epoetin alfa: 0.68 g/dl
LSMD: 0.09 (0.01, 0.18) g/dl*
Proportion of time with Hb ≥ 10 g/dl during weeks 28-52:
ROXA: 79%
Epoetin alfa: 76%

SIERRAS**(NCT02273726);
United States
FibroGen, Inc.
R, OL, AC; ESA-treated, M-DD and I-DD (n = 71); total n = 741, 1:1
ROXA 70-200 mg TIW\(^i\) vs epoetin alfa, 52 weeks
Difference in mean ΔHb, weeks 28-52:
ROXA: 0.39 g/dl
Epoetin alfa: -0.09 g/dl
LSMD: 0.48 (0.37, 0.59) g/dl*
Hb target range: 10-12 g/dl
Hb ≥10 g/dl, weeks 28-52:
ROXA: 66.1%
Epoetin alfa: 58.6%

Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

Nangaku et al., 2021**
Japan
R, DB, AC; ESA-treated, M-HD; n = 323, 1:1
VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 52 weeks
Difference in mean Hb, weeks 20-24:
VADA: 10.61 g/dl
DPO: 10.65 g/dl
LSMD: -0.05 g/dl (-0.26 to 0.17)
Hb within target range (10–12 g/dl) at weeks 24 and 52:
VADA: 75.4 and 75.7%
DPO: 75.7 and 86.5%

INNO\(^2\) VATE**
Global
R, DB, AC; ESA-naïve and ESA-treated; I-DD; n = 369, 1:1
VADA 300 mg QD, then adjusted to 150, 450 or 600 mg vs DPO, 116 weeks
Difference in mean ΔHb, weeks 24-36:
VADA: 1.26 g/dl
DPO: 1.58 g/dl
LMSD: -0.05 g/dl (-0.26 to 0.17)
Hb target range: US, 10-11 g/dl / non-US, 10-12 g/dl;
Hb at target, weeks 24-36:
VADA: 43.6%
DPO: 56.9%

INNO\(^2\) VATE**
Global
R, DB, AC; ESA-naïve and ESA-treated; M-DD; n = 3554, 1:1
VADA 300 mg QD, then adjusted to 150, 450 or 600 mg vs DPO, 116 weeks
Difference in mean ΔHb, weeks 24-36:
VADA: 0.19 g/dl
DPO: 0.36 g/dl
LMSD: -0.17 (-0.23, -0.10) g/dl
Hb target range: US, 10-11 g/dl / non-US, 10-12 g/dl;
Hb at target, weeks 24-36:
VADA: 49.2%
DPO: 53.2%

Adapted from Haase.\(^9\) Funding sources are indicated either with drug name or with individual studies. 95% confidence intervals are shown in brackets.

AC, active-controlled; DAPRO, daprodustat; DB, double-blind; DESI, desidustat; DPO, darbepoetin alfa; ENARO, enarodustat; EOT, end of treatment; ESA, erythropoietin-stimulating agent; FAS, full analysis set; Hb, hemoglobin; HD, hemodialysis; I-DD, incident dialysis (HD and PD); I-HD, incident hemodialysis; M-DD, maintenance/stable dialysis (HD and PD); M-HD, maintenance/stable hemodialysis; MOLI, molidustat; LSMD, least-squares mean difference; NC, non-
comparative; NR, not reported; OL, open-label; PBO, placebo; PC, placebo-controlled; PD, peritoneal dialysis; QD, once daily; QW, once weekly; R, randomized, ROXA, roxadustat; TIW, three times weekly; VADA, vadadustat. ESA-naïve is defined as no use of ESA for a study-defined period of time prior to start of study.

a starting dose, then titrated to maintain target Hb levels (right column).

b proportion of patients with Hb in target range reported as secondary outcomes in most studies.

c depending on study, starting dose is based on either recent Hb measurements or weight or both.

d initial dose according to prior ESA dose.

e Weight-based dosing (100 mg for >45 to 60 or 120 mg for ≥ 60 kg), adjusted to maintain Hb levels of 10–12 g/dl.

f all patients, full analysis set.

g dosed at 70 mg for weight of 45 to 70 kg; 100 mg for weight of >70-160.

h EMA: For the European Union’s European Medicines Agency (EMA), the primary efficacy endpoint was Hb response defined as Hb ≥ 11.0 g/dl and an Hb increase from baseline by ≥1.0 g/dl in any patient with baseline Hb >8.0 g/dl, or an increase from baseline by ≥ 2.0 g/dl in any patient with baseline Hb ≤ 8.0 g/dl at two consecutive visits separated by at least 5 days during the first 24 weeks of treatment without rescue therapy (i.e., RBC transfusion, ESA or IV iron administration) prior to Hb response.

i FDA: For the US Food and Drug Administration (FDA), the primary efficacy endpoint was the mean change in Hb from baseline to the average Hb level during the evaluation period (defined as Weeks 28–52), regardless of rescue therapy.

j titrated to achieve a Hb level of 11 g/dl and to maintain Hb levels of 10–12 g/dl.

k key secondary endpoint.
Table 4: Iron parameters from phase 3 HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease

<table>
<thead>
<tr>
<th>Study; Location</th>
<th>Entry criteria</th>
<th>Iron strategy</th>
<th>Iron utilization</th>
<th>Changes in markers of iron metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (GlaxoSmithKline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCEND-ND21 (NCT02876835); Global N=3872</td>
<td>ESA naïve and Hb 8-10 g/dl or ESA treated and Hb 8-11 g/dl eGFR <60 ml/min/1.73 m(^2) Hb <10 g/dl Ferritin >100 ng/ml TSAT >20%</td>
<td>Iron starting criteria: ferritin ≤100 ng/ml or TSAT ≤20% Iron stopping criteria: ferritin ≥800 ng/ml and TSAT ≥20% or TSAT ≥40% Route of iron administration based on local clinical practice</td>
<td>IV iron 13% in HIF-PHI vs. 11% in ESA between weeks 36-48</td>
<td>Hepcidin: decreased from median (IQR) 105.6 (61.7-165.9) to 82.7 (43.0-142.4) ng/ml in HIF-PHI vs. 105.3 (61.2-169.8) to 120.1 (66.5-201.1) ng/ml in ESA TSAT: 30.0% (24.0-37.0) to 29.0 (22.0-35.0) in HIF-PHI vs. 29.0% (23.0-36.0) to 32.0 (24.0-41.0) in ESA Ferritin: Median (IQR) 267.0 (164.0-456.0) to 240.0 (135.0-425.0) nmol/l in HIF-PHI vs. 275.0 (171.0-449.0) to 262.0 (150.5-447.5) nmol/l in ESA TIBC: 45.0 (40.0-50.0) to 50.0 (45.0-55.0) mmol/l in HIF-PHI vs. 44.0 (40.0-49.0) to 44.0 (39.0-49.0) mmol/l in ESA Iron: 13.0 (10.0-16.0) to 14.0 (11.0-17.0) mmol/l in HIF-PHI vs. 13.0 (10.0-16.0) to 14.0 (11.0-18.0) mmol/l in ESA</td>
</tr>
<tr>
<td>Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPS29 (NCT01887600); Europe Astellas Pharma, Inc. N=594</td>
<td>eGFR <60 ml/min/1.73 m(^2) ESA naïve Ferritin ≥30 ng/ml TSAT ≥5%</td>
<td>Oral iron recommended IV iron as rescue if Hb <8.5 g/dl and ferritin <100 ng/ml or TSAT <20%</td>
<td>Not reported</td>
<td>Hepcidin: decreased from 37.9 (36.6) to 24.6 (30.1) mg/l in HIF-PHI and from 41.2 (37.6) to 39.4 (37.8) mg/l in placebo Ferritin: 112.6 ng/ml (IQR 76.8-198.6 to 82.8 ng/ml (IQR 48.0-170.1) in HIF-PHI and from 111.6 ng/ml (IQR 78.2-205.3) to 100.2 ng/ml (IQR 66.5-182.1) in ESA TIBC: increased in HIF-PHI but not ESA</td>
</tr>
<tr>
<td>ANDES30 (NCT01750190); Global (no European sites) FibroGen Inc. N=922</td>
<td>ESA naïve eGFR <60 ml/min/1.73 m(^2) Hb ≤10 g/dl Ferritin ≥30 ng/ml TSAT ≥5%</td>
<td>Oral iron encouraged IV iron rescue</td>
<td>% receiving IV iron 2.5% HIF-PHI vs. 4.9% placebo; HR 0.39 (95% CI 0.15-0.81)</td>
<td>Hepcidin: -22.1 (80.9) mg/l in HIF-PHI and 3.9 (80.9) mg/l in placebo; LSM difference of -25.7 μg/l (95% CI -38.5 to -12.9) TIBC: increased in HIF-PHI and decreased in placebo; LSM difference 38.65 μg/dl (95% CI 31.9-45.5) TSAT: LSM difference 0.1%, 95% CI (-2.0, 1.7) Iron: LSM difference 8.3 mg/l (95% CI 2.9, 13.6)</td>
</tr>
<tr>
<td>Study</td>
<td>Treatment</td>
<td>ESA naïve</td>
<td>eGFR <60 ml/min/1.73 m²</td>
<td>Mean of 2 recent Hb ≤10 g/dl</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>OLYMPUS</td>
<td>Global AstraZeneca</td>
<td>N=2781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOLOMITES</td>
<td>Europe Astellas Pharma, Inc</td>
<td>N=616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO2TECT</td>
<td>Global</td>
<td>N=1751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO2TECT</td>
<td>Global</td>
<td>N=1725</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>ESA naïve</th>
<th>eGFR <60 ml/min/1.73 m²</th>
<th>Mean of 2 recent Hb ≤10 g/dl</th>
<th>Ferritin ≥100 ng/ml</th>
<th>TSAT ≥20%</th>
<th>Iron supplementation encouraged to maintain ferritin ≥100 ng/mL or TSAT ≥20%</th>
<th>Not reported</th>
<th>Not reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRO2TECT</td>
<td>Global</td>
<td>N=1751</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO2TECT</td>
<td>Global</td>
<td>N=1725</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Iron parameters from phase 3 HIF-PHI clinical trials in dialysis-dependent chronic kidney disease

<table>
<thead>
<tr>
<th>Study; Location</th>
<th>Entry criteria</th>
<th>Iron strategy</th>
<th>Iron utilization</th>
<th>Changes in markers of iron metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (GlaxoSmithKline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCEND-D<sup>37</sup> (NCT02879305); Global Prevalent dialysis N=2964</td>
<td>ESA users ferritin >100 ng/ml TSAT >20%</td>
<td>Iron supplementation protocol to maintain ferritin 100-800 ng/ml and TSAT 20-40%</td>
<td>Mean monthly IV dose: 139.2 (171.1) to 90.8 (SE 3.3) mg HIF-PHI vs. 137.4 (174.7) to 99.9 (SE 3.3) mg ESA. Difference: -9.1 mg (95% CI -18.4, 0.2)</td>
<td>Hepcidin: decreased more in HIF-PHI than ESA. TIBC: increased more in HIF-PHI than ESA. Ferritin: slight decrease in both groups. TSAT: decreased slightly in both groups.</td>
</tr>
<tr>
<td>ASCEND-ID<sup>36</sup> (NCT03029208); Global Incident Dialysis N=312</td>
<td>ESA naïve ferritin >100 ng/ml TSAT >20%</td>
<td>Iron starting criteria: ferritin ≤100 ng/ml or TSAT ≤20% Iron stopping criteria: ferritin ≥800 ng/ml and TSAT ≥20% or TSAT ≥40% Route of iron administration based on local clinical practice</td>
<td>Mean monthly IV dose: 159.3 (207.1) to 142 (161) mg HIF-PHI vs. 180.1 (209.9) to 128 (137) mg ESA. Difference: 19.4 mg/mo (95% CI -11.0, 49.9)</td>
<td>Hepcidin: decreased from 112.6 ng/ml (IQR 76.8-198.6) to 82.8 ng/ml (IQR 48.0-170.1) in HIF-PHI and from 111.6 ng/ml (IQR 78.2-205.3) to 100.2 ng/ml (IQR 66.5-182.1) in ESA. TIBC: increased in HIF-PHI but not ESA. Ferritin: decreased in both groups. TSAT: decreased in both groups. Iron: stable in both groups.</td>
</tr>
<tr>
<td>ASCEND-TD<sup>38</sup> (NCT03400033); Global Prevalent HD N=407</td>
<td>ESA treated Hb 8-11.5 g/dl Ferritin >100 ng/ml TSAT >20%</td>
<td>Iron was administered if ferritin ≤100 ng/ml or TSAT ≤20%; Iron was stopped if: ferritin >800 ng/ml and TSAT >20% or TSAT >40%</td>
<td>Mean monthly dose: Weeks 28-52: 104.9 (222.5) mg HIF-PHI vs. 103.1 (244.7) mg ESA. Weeks 1-52: 99.0 (187.1) HIF-PHI vs. 104.4 (210.8) ESA. Mean treatment difference: -8.1 (95% CI -45.7, 29.4)</td>
<td>Hepcidin: declined at a similar rate in both arms during the trial. TIBC: increased in HIF-PHI by week 4 and remained higher than ESA throughout the trial. Ferritin: declined at a similar rate in both arms during the trial. TSAT: similar between groups throughout the trial. Iron: increased in HIF-PHI by week 4 and remained higher than ESA throughout the trial.</td>
</tr>
</tbody>
</table>
Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>ESA users/ferritin/TSAT requirements</th>
<th>Oral iron/IV iron use</th>
<th>HIF-PHI vs. ESA outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIMALAYAS46</td>
<td>ESA use ≤3 weeks; Mean of last 2 Hb ≤10 g/dl; ferritin ≥100 ng/ml; TSAT ≥20%</td>
<td>Oral iron encouraged; IV iron allowed if Hb response inadequate and ferritin ≤100 ng/ml and TSAT <20%</td>
<td>Mean monthly IV dose difference -4.4 (95% CI -20.7, 12.0) mg</td>
</tr>
<tr>
<td>N=1043</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hepcidin: -64.8 (95% CI -74.3, -55.3) mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HIF-PHI vs. -54.1 (95% CI -63.4, -44.7) mg/l ESA; difference -10.7 (95% CI -23.2, 1.77) mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ferritin: -191.3 (95% CI -234.4, -148.2) ng/ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HIF-PHI vs. -130.0 (95% CI -172.9, -87.2) ng/ml ESA; difference -61.3 (95% CI -117.0, -5.6) ng/ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TSAT: -2.7% (95% CI -3.9, -1.5) HIF-PHI vs. -2.2% (95% CI -3.4, -1.1) ESA; difference -0.5% (95% CI -2.0, 1.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TIBC: 37.7 (95% CI 33.3, 42.1) mg/dl HIF-PHI vs. 1.7 (95% CI -2.7, 6.0) mg/dl ESA; difference 36.1 (95% CI 30.2, 41.9) mg/dl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Iron: 2.1 (95% CI -1.2, 5.5) mg/dl HIF-PHI vs. -4.7 (95% CI -8.0, -1.5) mg/dl ESA; difference 6.9 (95% CI 2.4, 11.3) mg/dl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYRENEES47</td>
<td>ESA users; ferritin ≥100 ng/ml; TSAT ≥20%</td>
<td>For patients on HIF-PHI, oral iron was permitted. IV iron was allowed only if Hb did not respond adequately after 2 consecutive dose increase or if the maximum dose was reached and ferritin <100 ng/ml or TSAT <20% or the patient was intolerant to oral iron</td>
<td>Mean monthly IV dose HIF-PHI: 21.6 mg ESA: 53.5 mg Difference: -31.9 (95% CI -41.4, -22.4) mg</td>
</tr>
<tr>
<td>(NCT02278341)</td>
<td></td>
<td></td>
<td>Hepcidin: -32.7 (42.3) HIF-PHI vs. -17.5 (47.3) ESA at week 52</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td>Ferritin: lower in HIF-PHI and TSAT levels similar; exact changes not reported</td>
</tr>
<tr>
<td>Astellas Pharma, Inc.</td>
<td></td>
<td></td>
<td>TIBC: 10.0 (8.8) mmol/l HIF-PHI vs. 2.7 (6.4) mmol/l ESA</td>
</tr>
<tr>
<td>Prevalent HD</td>
<td></td>
<td></td>
<td>Iron: -0.3 (7.4) mmol/l HIF-PHI vs. -1.2 (6.3) mmol/l ESA</td>
</tr>
<tr>
<td>N=3188</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCKIES48</td>
<td>ESA naïve and Hb <10 g/dl or ESA user and Hb <12 g/dl; ferritin ≥100 ng/ml; TSAT ≥20%</td>
<td>Oral iron permitted in both groups. In HIF-PHI, IV iron permitted if Hb did not increase sufficiently after ≥2 doses and ferritin <100 ng/ml or TSAT <20%</td>
<td>Mean monthly IV dose HIF-PHI: 58.7 mg ESA: 91.4 mg Difference: -32.7 (95% CI -41.4, -22.4) mg</td>
</tr>
<tr>
<td>(NCT02174731)</td>
<td></td>
<td></td>
<td>Hepcidin: -45.0 (95% CI -57.5, -32.5) ng/ml</td>
</tr>
<tr>
<td>Global</td>
<td></td>
<td></td>
<td>HIF-PHI vs. -16.8 (95% CI -29.2, -4.4) ng/ml ESA; difference: -18.2 (95% CI -42.0, -14.5) ng/ml</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td></td>
<td></td>
<td>Ferritin: -104.5 (95% CI -126.2, -82.8) mg/l HIF-PHI vs. -41.2 (95% CI -62.1, -20.3) ESA; difference -63.3 (95% CI -87.4, -39.2) mg/l</td>
</tr>
<tr>
<td>Prevalent dialysis</td>
<td></td>
<td></td>
<td>TIBC: 35.0 (95% CI 31.8, 38.2) mg/dl HIF-PHI vs. -2.4 (95% CI -5.5, 0.7) mg/dl ESA;</td>
</tr>
</tbody>
</table>
SIERRAS
(NCT02273726); United States
FibroGen, Inc.
Prevalent HD
N=741

| ESA users | Ferritin ≥100 ng/ml | TSAT ≥20% | Oral iron encouraged if oral not tolerated or if iron deficient | *Mean monthly IV dose* | Hepcidin: decreased in both groups; difference: -19.12 (95% CI -39.52, 1.28)
Ferritin: decreased in both groups; difference: -41.71 (95% CI -96.51, 13.09) ng/ml Iron: increased in roxadustat; difference: 6.33 (95% CI 2.20, 10.45) mg/dl TSAT: decreased in both groups; difference: 2.18% (95% CI 0.16, 4.20) |
|-----------|---------------------|-----------|---|------------------------|---|
| HIF-PHI vs. ESA | 6.6 (95% CI 4.5, 8.7) mg/dl | -5.5 (95% CI -7.6, -3.5) mg/dl | difference: 12.1 (95% CI 9.8, 14.5) mg/dl | 17.1 (53.4) mg HIF-PHI vs. 37.0 (106.8) mg ESA | Changes from baseline to weeks 40-52
Hepcidin: 193.9 (140.1) ng/ml to 137.4 (119.9) ng/ml in HIF-PHI vs. 190.4 (135.9) to 158.2 (123.4) in ESA Ferritin: 846.8 (562.7) to 787.3 (550.2) ng/ml in HIF-PHI vs. 840.7 (538.5) to 828.9 (565.8) ng/ml in ESA TSAT: 38.1% (13.5) to 34.1% (21.4) in HIF-PHI vs. 37.6% (13.2) to 36.6% (14.3) in ESA | 37.4 (95% CI 33.8, 41.0)
Iron: 6.6 (95% CI 4.5, 8.7) mg/dl HIF-PHI vs. -5.5 (95% CI -7.6, -3.5) mg/dl ESA; difference 12.1 (95% CI 9.8, 14.5) mg/dl |

Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

| INNO2VATE (NCT02865850); Global Prevalent dialysis N=3554 | ESA users and ESA-naive Hb 8-11 mg/dl in US or 9-12 mg/dl in non-US ferritin ≥100 ng/ml | Encouraged iron supplementation to maintain ferritin ≥100 ng/ml or TSAT ≥20% | Not reported | Changes from baseline to weeks 40-52
Hepcidin: 122.4 (109.5) to 95.7 (72.1) ng/ml in HIF-PHI vs. 126.9 (111.2) to 101.1 (95.6) in ESA Ferritin: 469.7 (316.9) to 555.5 (453.2) ng/ml in HIF-PHI vs. 527.8 (401.1) to 559.4 (458.5) ng/ml in ESA TSAT: 31.3% (9.5) to 33.1% (12.0) in HIF-PHI vs. 34.2% (12.7) to 35.6% (13.8) in ESA |
|---------|-----------------|----------------------|-----------------|---|
| Hb 8-11 mg/dl ferritin ≥100 ng/ml TSAT ≥20% | Encouraged iron supplementation to maintain ferritin ≥100 ng/ml or TSAT ≥20% | Not reported | 193.9 (140.1) ng/ml to 137.4 (119.9) ng/ml in HIF-PHI vs. 190.4 (135.9) to 158.2 (123.4) in ESA Ferritin: 846.8 (562.7) to 787.3 (550.2) ng/ml in HIF-PHI vs. 840.7 (538.5) to 828.9 (565.8) ng/ml in ESA TSAT: 38.1% (13.5) to 34.1% (21.4) in HIF-PHI vs. 37.6% (13.2) to 36.6% (14.3) in ESA | 37.4 (95% CI 33.8, 41.0)
Iron: 6.6 (95% CI 4.5, 8.7) mg/dl HIF-PHI vs. -5.5 (95% CI -7.6, -3.5) mg/dl ESA; difference 12.1 (95% CI 9.8, 14.5) mg/dl |

Changes from baseline to weeks 40-52

- **Hepcidin:**
 - **HIF-PHI:** 193.9 (140.1) ng/ml to 137.4 (119.9) ng/ml in HIF-PHI vs. 190.4 (135.9) to 158.2 (123.4) in ESA
 - **ESA:** 122.4 (109.5) to 95.7 (72.1) ng/ml in HIF-PHI vs. 126.9 (111.2) to 101.1 (95.6) in ESA
- **Ferritin:**
 - **HIF-PHI:** 846.8 (562.7) to 787.3 (550.2) ng/ml in HIF-PHI vs. 840.7 (538.5) to 828.9 (565.8) ng/ml in ESA
 - **ESA:** 469.7 (316.9) to 555.5 (453.2) ng/ml in HIF-PHI vs. 527.8 (401.1) to 559.4 (458.5) ng/ml in ESA
- **TSAT:**
 - **HIF-PHI:** 38.1% (13.5) to 34.1% (21.4) in HIF-PHI vs. 37.6% (13.2) to 36.6% (14.3) in ESA
 - **ESA:** 31.3% (9.5) to 33.1% (12.0) in HIF-PHI vs. 34.2% (12.7) to 35.6% (13.8) in ESA
Table 6: Cardiovascular safety data from phase 3 non-inferiority HIF-PHI clinical trials in non-dialysis-dependent chronic kidney disease

<table>
<thead>
<tr>
<th>Study; Location; Sponsor</th>
<th>Study design; No. of patients, randomization</th>
<th>Treatment, starting dose, study duration</th>
<th>Primary outcome hazard ratio; non-inferiority margin (95% confidence interval)</th>
<th>Other outcome hazard ratios (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (GlaxoSmithKline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCEND-ND<sup>21</sup> (NCT02876835); Global</td>
<td>R, OL, AC; ESA-naive and ESA-treated; n = 3872, 1:1</td>
<td>DAPRO 2-4 mg QD<sup>b</sup> for ESA-naive and 1-4 mg QD<sup>c</sup> for ESA-users vs DPO, 148 weeks</td>
<td>First occurrence of adjudicated MACE (composite of death, nonfatal myocardial infarction, or nonfatal stroke): HR 1.03, 95% CI 0.89-1.19</td>
<td>Noninferiority margin: HR 1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>On-treatment MACE: HR 1.40, 95% CI 1.17-1.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MACE or hospitalization for heart failure: HR 1.09, 95% CI 0.95-1.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MACE or thromboembolic event: HR 1.06, 95% CI 0.93-1.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All-cause death: HR 1.03, 95% CI 0.87-1.20</td>
<td></td>
</tr>
<tr>
<td>Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPS<sup>29</sup> (NCT01887600); Europe Astellas Pharma, Inc.</td>
<td>R, DB, PC; ESA-naive; n = 594, 2:1</td>
<td>ROXA 70 or 100 mg TIW<sup>d</sup> vs PBO, 104 weeks</td>
<td></td>
<td>MACE+ (composite of death, nonfatal myocardial infarction, nonfatal stroke, unstable angina and hospitalization for heart failure): HR 1.07, 95% CI 0.93-1.21</td>
</tr>
<tr>
<td>ANDES<sup>30</sup> (NCT01750190); Global (no European sites) FibroGen Inc.</td>
<td>R, DB, PC; ESA-naive; n = 922, 2:1</td>
<td>ROXA 70 or 100 mg TIW<sup>d</sup> vs PBO, 52 weeks</td>
<td>Pooled analysis of ALPS, ANDES, OLYMPUS: time to first MACE (composite of death, nonfatal myocardial infarction, or nonfatal stroke): HR 1.10, 95% CI 0.96-1.27</td>
<td>MACE, on treatment + 7d: HR 1.38, 95% CI 1.11-1.70</td>
</tr>
<tr>
<td>OLYMPUS<sup>31</sup> (NCT02174627); Global AstraZeneca</td>
<td>R, DB, PC; ESA-naive; n = 2781, 1:1</td>
<td>ROXA 70 mg TIW vs PBO, 164 weeks</td>
<td>Noninferiority margin: HR 1.30</td>
<td>Myocardial infarction: HR 1.29, 95% CI 0.90-1.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stroke: HR 1.25, 95% CI 0.82-1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unstable angina: HR 0.56, 95% CI 0.22-1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Congestive heart failure: HR 0.93, 95% CI 0.75-1.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All-cause death: HR 1.08, 95% CI 0.93-1.26</td>
</tr>
</tbody>
</table>
Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>ESA Status</th>
<th>Baseline Hb</th>
<th>Treatment</th>
<th>Comparator</th>
<th>Endpoints</th>
</tr>
</thead>
</table>
| PRO2TECT³⁴
(NCT02648347); Global | R, OL, AC; ESA-naïve; n = 1751, 1:1 | VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 168 weeks | (Pooled analysis of ESA-naive and ESA-treated subjects) | Time to first MACE (composite of death from any cause, nonfatal myocardial infarction, or nonfatal stroke): HR 1.17 (1.01 to 1.36) | MACE plus hospitalization for either heart failure or a thromboembolic event HR 1.11, 95% CI 0.97 -1.27 |
| PRO2TECT³⁴
(NCT02680574); Global | R, OL, AC; ESA-treated; n = 1725, 1:1 | VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 168 weeks | | Noninferiority margin: HR 1.25 (USA) and HR 1.30 (EMA) | Death from cardiovascular causes: HR 1.01, 95% CI 0.79-1.29 |

Adapted from Haase.⁹ Funding sources are indicated either with drug name or with individual studies. 95% confidence intervals are shown in brackets. AC, active-controlled; DAPRO, daprodustat; DB, double-blind; DPO, darbepoetin alfa; EBP, epoetin beta pegol; EOT, end of treatment; ESA, erythropoiesis-stimulating agent; Hb, hemoglobin; HR, hazard ratio; LSMD, least-squares mean difference; maint., maintenance; NC, non-comparative; NR, not reported; OL, open-label; PBO, placebo; PC, placebo-controlled; QD, once daily; R, randomized; ROXA, roxadustat; TIW, three times weekly; VADA, vadadustat. ESA-naïve is defined as no use of ESA for a study-defined period of time prior to start of study.

a starting dose, then titrated to maintain target Hb levels (right column).
b starting dose based on baseline Hb level; for NCT02964936, Akizawa et al., 2020, starting dose is based on an algorithm that included 2 baseline Hb levels, weight and eGFR.
c starting dose based on prior ESA dose.
d weight-based dosing: 70 mg for weight of 45 to <70 kg; 100 mg for ≥70 kg.
Table 7: Cardiovascular safety data from phase 3 non-inferiority HIF-PHI clinical trials in dialysis-dependent chronic kidney disease

<table>
<thead>
<tr>
<th>Study; Location Sponsor</th>
<th>Study design; No. of patients, randomization</th>
<th>Treatment, starting dose, study duration</th>
<th>Primary outcome hazard ratio; non-inferiority margin (95% confidence interval)</th>
<th>Other outcome hazard ratios (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (GlaxoSmithKline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCEND-ID³⁶(NCT03029208); Global</td>
<td>R, OL, AC; ESA-naive and ESA-treated (limited exposure <6 weeks), I-DD; n = 312, 1:1</td>
<td>DAPRO 1-4 mg QDᵇ vs DPO, 52 weeks</td>
<td>Exploratory analysis: first occurrence of adjudicated MACE (composite of death from any cause, non-fatal myocardial infarction or non-fatal stroke): n=19 (12%) DAPRO vs n=15 (10%) DPO -- absolute rate difference/100 PYs 2.41 (95% CI−4.61 to 9.43)</td>
<td>Non-inferiority margin: N/A (not designed or powered as a non-inferiority trial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The first occurrence of MACE or a hospitalization for heart failure: n=24 (15%) DPO vs. n=18 (12%) DPO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adjusted mean difference in systolic BP: −0.09 mm Hg (95% CI, −4.72 to 4.53); diastolic BP: 1.99 mm Hg (95%CI, −0.85 to 4.82)</td>
<td></td>
</tr>
<tr>
<td>ASCEND-D³⁷(NCT02879305); Global</td>
<td>R, OL, AC; ESA-treated, M-DD; n = 2964, 1:1</td>
<td>DAPRO 4-12 mg QDᶜ vs ESA (epoetin alfa for HD, DPO for PD, 52 weeks</td>
<td>Adjudicated MACE (composite of death from any cause, nonfatal myocardial infarction, or nonfatal stroke): HR 0.93, 95% CI 0.81-1.07</td>
<td>MACE or thromboembolic event: HR 0.88, 95% CI 0.78-1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Non-inferiority margin: HR 1.25</td>
<td>MACE or hospitalization for heart failure: HR 0.97, 95% CI 0.85-1.11</td>
</tr>
<tr>
<td>ASCEND-TD³⁸(NCT03400033); Global</td>
<td>R, DB, AC; ESA-treated, M-DD; n = 407, 2:1</td>
<td>DAPRO 8-24 mg TIWᶜ adjusted to dose range of 2-48 mg TIW vs epoetin alfa, 52 weeks</td>
<td>First occurrence of adjudicated MACE: Absolute rate difference per 100 person-years (95% CI) 2.3 (−4.4, to 9.0)</td>
<td>Worsening hypertension (post-hoc): DAPRO vs. Epoetin: Relative risk 0.83 (0.50 to 1.39)</td>
</tr>
<tr>
<td>Roxadustat (FibroGen Inc.; Astellas Pharma, Inc.; AstraZeneca)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen et al., 2019⁴²(NCT02652806); China FibroGen, Inc.</td>
<td>R, OL, AC; ESA-treated; M-DD; n = 304, 2:1</td>
<td>ROXA 100 or 120 mg TIWᵈ vs epoetin alfa, 26 weeks</td>
<td>Cardiac disorders: ROXA n=5 (2.5%) and epoetin alfa n=1 (1.0%)</td>
<td>Vascular disorders: ROXA n=2 (1.0%) and epoetin alfa n=0</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Sponsor</td>
<td>Design</td>
<td>Primary Endpoints</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>HIMALAYAS</td>
<td>Global</td>
<td>FibroGen, Inc.</td>
<td>R, OL, AC; ESA-naive and ESA-limited use</td>
<td>ROXA 70-100 mg TIW(^{e,f}) vs epoetin alfa, 52 weeks</td>
</tr>
<tr>
<td>PYRENEES</td>
<td>Europe</td>
<td>Astellas Pharma, Inc.</td>
<td>R, OL, AC; ESA-treated, M-DD; n = 838 (836 treated), 1:1</td>
<td>ROXA 100-200 mg TIW(^{c}) vs ESA (epoetin alfa or DPO), 52–104 weeks</td>
</tr>
<tr>
<td>ROCKIES</td>
<td>Global</td>
<td>AstraZeneca</td>
<td>R, OL, AC; ESA-naive and ESA-treated, M-DD and I-DD (n = 416); n = 2133, 1:1</td>
<td>ROXA 70-200 mg TIW(^{c})(^{f}) for ESA-treated and 70 or 100 mg TIW(^{c})(^{f}) for ESA-naive vs epoetin alfa, 52-164 weeks</td>
</tr>
<tr>
<td>SIERRAS</td>
<td>United States</td>
<td>FibroGen, Inc.</td>
<td>R, OL, AC; ESA-treated, M-DD and I-DD (n=71); total n = 741, 1:1</td>
<td>ROXA 70-200 mg TIW(^{c})(^{f}) vs epoetin alfa, 52 weeks</td>
</tr>
</tbody>
</table>
Vadadustat (Akebia Therapeutics; Otsuka Pharmaceuticals)

<table>
<thead>
<tr>
<th>Source</th>
<th>Design</th>
<th>Treatment</th>
<th>Endpoints</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nangaku et al., 2021[^50] (NCT03439137); Japan</td>
<td>R, DB, AC; ESA-treated, M-HD; n = 323. 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 52 weeks</td>
<td>Cardiovascular event, cardiac failure</td>
<td>VADA: 13 (8.0%), DPO 15 (9.3%); Retinal disorder: VADA 21 (13.0%), DPO 16 (9.9%)</td>
</tr>
<tr>
<td>INNO2VATE[^51] (NCT02865850); Global</td>
<td>R, DB, AC; ESA-naive and ESA-treated; I-DD; n = 369, 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 116 weeks</td>
<td>MACE plus hospitalization for heart failure or thromboembolic event: HR 0.96; 95% CI, 0.84 to 1.10. Death from cardiovascular causes: HR 0.96; 95% CI, 0.77 to 1.20. All-cause death: HR 0.95; 95% CI, 0.81 to 1.12. Composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke: HR 0.95; 95% CI, 0.60 to 1.14.</td>
<td>Pooled analysis of I-DD and M-DD trials MACE (myocardial infarction, stroke, and all-cause mortality): HR 0.96, 95% CI 0.83 – 1.11. Non-inferiority margin: HR 1.25</td>
</tr>
<tr>
<td>INNO2VATE[^51] (NCT02892149); Global</td>
<td>R, DB, AC; ESA-naive and ESA-treated; M-DD; n = 3554, 1:1</td>
<td>VADA 300 mg QD, then adjusted to 150, 450 or 600 mg QD vs DPO, 116 weeks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[^50]: Adapted from Haase.[^9] Funding sources are indicated either with drug name or with individual studies. 95% confidence intervals are shown in brackets.

AC, active-controlled; DAPRO, daprodustat; DB, double-blind; DESI, desidustat; DPO, darbepoetin alfa; ENARO, enarodustat; EOT: end of treatment; ESA, erythropoietin-stimulating agent; FAS, full analysis set; Hb, hemoglobin; HD, hemodialysis; HR, hazard ratio; I-DD, incident dialysis (HD and PD); I-HD, incident hemodialysis; M-DD, maintenance/stable dialysis (HD and PD); M-HD, maintenance/stable hemodialysis; MOLI, molidustat; LSMD, least-squares mean difference; NC, non-comparative; NR, not reported; OL, open-label; PBO, placebo; PC, placebo-controlled; PD, peritoneal dialysis; QD, once daily; QW, once weekly; R, randomized; ROXA, roxadustat; TIW, three times weekly; VADA, vadadustat. ESA-naive is defined as no use of ESA for a study-defined period of time prior to start of study.

[^51]: Starting dose, then titrated to maintain target Hb levels (right column). Depending on study, starting dose is based on either recent Hb measurements or weight or both. Initial dose according to prior ESA dose. Weight-based dosing (100 mg for > 45 to 60 or 120 mg for ≥ 60 kg), adjusted to maintain Hb levels of 10–12 g/dl. Dosed at 70 mg for weight of 45 to 70 kg; 100 mg for weight of >70-160. Titrated to achieve a Hb level of 11 g/dl and to maintain Hb levels of 10–12 g/dl.
Table 8: Research recommendations

- Determine whether HIF-PHIs have an impact on progression of CKD based on severity of baseline disease, presence of proteinuria/albuminuria, or the cause of CKD
- Understand if hemoglobin targets should be the same when using HIF-PHIs versus ESAs for patients with ND-CKD and DD-CKD
- Conduct of additional trials to understand the need for iron supplementation and the appropriate iron dosing strategy with the use of HIF-PHIs, along with identification of iron targets during treatment
- Assess long-term safety for specific populations such as children, older adults, kidney transplant recipients, patients with PKD or acute kidney injury in future HIF-PHI studies
- Identification of novel biomarkers that can be used to monitor the safety of HIF-PHIs
- Ascertain variability in the risk of MACE and thrombosis with respect to region of the world, patients characteristics/subpopulations, Hb target, or rate of Hb correction
- Perform future studies to understand the effect of HIF-PHIs on HRQoL and patient-centered outcomes
- Determine whether HIF-PHIs are effective in patients with ESA hyporesponsiveness or in immunosuppressed populations, including those with kidney transplants
- Obtain longer term safety data (e.g., post-market surveillance) for HIF-PHI on risk for de novo cancer or progression of malignancy, retinopathy, and other potential adverse effects
- In regions where HIF-PHIs are available, comparative cost-effectiveness analysis should be conducted between these agents and ESAs
REFERENCES

Supplemental Table 1: Availability of HIF-PHIs (as of April 25, 2023)

<table>
<thead>
<tr>
<th>HIF-PHI</th>
<th>Approval status by countries/regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat</td>
<td>Japan, United States</td>
</tr>
<tr>
<td>Desidustat</td>
<td>India</td>
</tr>
<tr>
<td>Enarodustat</td>
<td>Japan</td>
</tr>
<tr>
<td>Molidustat</td>
<td>Japan</td>
</tr>
<tr>
<td>Roxadustat</td>
<td>China, Chile, Egypt, European Union, Japan, Kuwait, Saudi Arabia, South Africa, South Korea, Turkey, United Arab Emirates, United Kingdom</td>
</tr>
<tr>
<td>Vadadustat</td>
<td>European Union, Japan, Korea</td>
</tr>
</tbody>
</table>
Supplemental Table 2: Drug-drug interactions of HIF-PHIs

<table>
<thead>
<tr>
<th>HIF and interacting agents</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (metabolized mainly by CYP2C8)</td>
<td></td>
</tr>
<tr>
<td>CYP2C8 inhibitors</td>
<td></td>
</tr>
<tr>
<td>• Clopidogrel</td>
<td>These drugs increase circulating levels of daprodustat by inhibition of CYP2C8.</td>
</tr>
<tr>
<td>• Trimethoprim</td>
<td></td>
</tr>
<tr>
<td>Rifampicin</td>
<td>Rifampicin decreases circulating levels of daprodustat by induction of CYP2C8.</td>
</tr>
</tbody>
</table>

Enarodustat	
Phosphate binders	These drugs decrease absorption of enarodustat.
• Sevelamer	
• Bixalomer	
• Lanthanum carbonate	
Drugs containing polycations (e.g., drugs containing calcium, iron, magnesium, aluminum etc.)	

Molidustat	
HIV protease inhibitors	These drugs increase circulating levels of molidustat by inhibition of UGT1A1.
• Atazanavir	
• Ritonavir	
• Lopinavir and ritonavir	
Tyrosine kinase inhibitors	
• Sorafenib	
• Erlotinib	
• Nilotinib	
Tranilast	
Drugs containing polycations (e.g., drugs containing calcium, iron, magnesium, aluminum etc.)	These drugs decrease absorption of molidustat.

Roxadustat (substrate of CYP2C8, UGT1A9, BCRP, OATP1B1, OAT1 and OAT; roxadustat inhibits BCRP and OATP1B1)	
Phosphate binders	These drugs decrease absorption of roxadustat.
• Sevelamer	
• Bixalomer	
Drugs containing polycations (e.g., drugs containing calcium, iron, magnesium, aluminum etc.)	
HMG-CoA reductase inhibitors	Roxadustat increases circulating levels of HMG-CoA reductase inhibitors by inhibition of OATP1B1/BCRP.
• Simvastatin	
• Rosuvastatin	
• Atorvastatin, etc.	
Probenecid (UGT, OAT1/OAT3 inhibitor)	Probenecid increases circulating levels of roxadustat by inhibition of UGT/OAT. Other UGT or OAT inhibitors include: teriflunomide (OAT1/OAT3), valproate (UGT). Rifampicin is an UGT inducer.
Gemfibrozil (CYP2C8, OATP1B1 inhibitor)	Gemfibrozil increases circulating levels of roxadustat by inhibition of CYP2C8/OATP1B1. Other CYP2C8 or OATP1B1 inhibitors include: cyclosporin (OATP1B1), clopidogrel (CYP2C8). Rifampicin is a CYP2C8 inducer.
Vadadustat (substrate of OAT1 and OAT3; vadadustat inhibits BCRP and OAT3)

<table>
<thead>
<tr>
<th>Drugs containing polycations (e.g., drugs containing calcium, iron, magnesium, aluminum etc.)</th>
<th>These drugs decrease absorption of vadadustat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probenecid</td>
<td>Probenecid increases circulating levels of vadadustat by inhibition of OAT1/OAT3.</td>
</tr>
<tr>
<td>Drugs that serve as substrates of BCRP</td>
<td>Vadadustat increases circulating levels of these drugs by inhibition of BCRP.</td>
</tr>
<tr>
<td>• Simvastatin</td>
<td></td>
</tr>
<tr>
<td>• Rosuvastatin</td>
<td></td>
</tr>
<tr>
<td>• Atorvastatin</td>
<td></td>
</tr>
<tr>
<td>• Salazosulfapyridine</td>
<td></td>
</tr>
<tr>
<td>Drugs that serve as substrates of OAT3</td>
<td>Vadadustat increases circulating levels of these drugs by inhibition of OAT3.</td>
</tr>
<tr>
<td>• Furosemide</td>
<td></td>
</tr>
<tr>
<td>• Methotrexate</td>
<td></td>
</tr>
<tr>
<td>HIF-PHI</td>
<td>Approval status by countries/regions</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Daprodustat</td>
<td>Japan, United States</td>
</tr>
<tr>
<td>Desidustat</td>
<td>India</td>
</tr>
<tr>
<td>Enarodustat</td>
<td>Japan</td>
</tr>
<tr>
<td>Molidustat</td>
<td>Japan</td>
</tr>
<tr>
<td>Roxadustat</td>
<td>China, Chile, Egypt, European Union, Japan, Kuwait, Saudi Arabia, South Africa, South Korea, Turkey, United Arab Emirates, United Kingdom</td>
</tr>
<tr>
<td>Vadadustat</td>
<td>European Union, Japan, Korea</td>
</tr>
</tbody>
</table>
Supplemental Table 24: Drug-drug interactions of HIF-PHIs

<table>
<thead>
<tr>
<th>HIF and interacting agents</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daprodustat (metabolized mainly by CYP2C8)</td>
<td></td>
</tr>
<tr>
<td>CYP2C8 inhibitors
• Clopidogrel
• Trimethoprim</td>
<td>These drugs increase circulating levels of daprodustat by inhibition of CYP2C8.</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>Rifampicin decreases circulating levels of daprodustat by induction of CYP2C8.</td>
</tr>
<tr>
<td>Enarodustat</td>
<td></td>
</tr>
<tr>
<td>Phosphate binders
• Sevelamer
• Bixalomer
• Lanthanum carbonate</td>
<td>These drugs decrease absorption of enarodustat.</td>
</tr>
<tr>
<td>Drugs containing polycations (e.g., drugs containing calcium, iron, magnesium, aluminum etc.)</td>
<td></td>
</tr>
<tr>
<td>Molidustat</td>
<td></td>
</tr>
<tr>
<td>HIV protease inhibitors
• Atazanavir
• Ritonavir
• Lopinavir and ritonavir</td>
<td>These drugs increase circulating levels of molidustat by inhibition of UGT1A1.</td>
</tr>
<tr>
<td>Tyrosine kinase inhibitors
• Sorafenib
• Erlotinib
• Nilotinib</td>
<td></td>
</tr>
<tr>
<td>Tranilast</td>
<td></td>
</tr>
<tr>
<td>Drugs containing polycations (e.g., drugs containing calcium, iron, magnesium, aluminum etc.)</td>
<td>These drugs decrease absorption of molidustat.</td>
</tr>
<tr>
<td>Roxadustat (substrate of CYP2C8, UGT1A9, BCRP, OATP1B1, OAT1 and OAT; roxadustat inhibits BCRP and OATP1B1)</td>
<td></td>
</tr>
<tr>
<td>Phosphate binders
• Sevelamer
• Bixalomer</td>
<td>These drugs decrease absorption of roxadustat.</td>
</tr>
<tr>
<td>Drugs containing polycations (e.g., drugs containing calcium, iron, magnesium, aluminum etc.)</td>
<td></td>
</tr>
<tr>
<td>HMG-CoA reductase inhibitors
• Simvastatin
• Rosuvastatin
• Atorvastatin, etc.</td>
<td>Roxadustat increases circulating levels of HMG-CoA reductase inhibitors by inhibition of OATP1B1/BCRP.</td>
</tr>
<tr>
<td>Probencid (UGT, OAT1/OAT3 inhibitor)</td>
<td>Probencid increases circulating levels of roxadustat by inhibition of UGT/OAT. Other UGT or OAT inhibitors include: teriflunomide (OAT1/OAT3), valproate (UGT). Rifampicin is an UGT inducer.</td>
</tr>
<tr>
<td>Gemfibrozil (CYP2C8, OATP1B1 inhibitor)</td>
<td>Gemfibrozil increases circulating levels of roxadustat by inhibition of CYP2C8/OATP1B1. Other CYP2C8 or OATP1B1 inhibitors include: cyclosporin (OATP1B1), clopidogrel (CYP2C8). Rifampicin is a CYP2C8 inducer.</td>
</tr>
</tbody>
</table>
Vadadustat (substrate of OAT1 and OAT3; vadadustat inhibits BCRP and OAT3)

<table>
<thead>
<tr>
<th>Drugs containing polycations (e.g., drugs containing calcium, iron, magnesium, aluminum etc.)</th>
<th>These drugs decrease absorption of vadadustat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probenecid</td>
<td>Probenecid increases circulating levels of vadadustat by inhibition of OAT1/OAT3.</td>
</tr>
<tr>
<td>Drugs that serve as substrates of BCRP</td>
<td>Vadadustat increases circulating levels of these drugs by inhibition of BCRP.</td>
</tr>
<tr>
<td>- Simvastatin</td>
<td></td>
</tr>
<tr>
<td>- Rosuvastatin</td>
<td></td>
</tr>
<tr>
<td>- Atorvastatin</td>
<td></td>
</tr>
<tr>
<td>- Salazosulfapyridine</td>
<td></td>
</tr>
<tr>
<td>Drugs that serve as substrates of OAT3</td>
<td>Vadadustat increases circulating levels of these drugs by inhibition of OAT3.</td>
</tr>
<tr>
<td>- Furosemide</td>
<td></td>
</tr>
<tr>
<td>- Methotrexate</td>
<td></td>
</tr>
</tbody>
</table>