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1 Likelihood inference for univariate extremes

1.1 Density and distribution function checks

We performed some sanity checks for various maximum likelihood estimation routines
and parametric model implementations. Specifically, we verified that density functions
are non-negative and evaluate to zero outside of the domain of the distribution, and
that distribution functions are non-decreasing and map to the unit interval.

The generalized Pareto distribution has lower bound at the location parameter
u and is bounded above at u − σ/ξ whenever ξ < 0. Many software implementations
forgo the location parameter, since for modelling large quantiles of a random variable Y

above threshold u, it suffices to look at threshold exceedances Y −u > 0. No threshold
exceedance should be exactly equal to zero so the value of the density at that point is
immaterial, even if it should be set to zero in practice.

Certain packages, listed in Table 1.1 and Table 1.2, have incorrect implementations
of density and distribution functions.

1.2 Optimization routines

We compared the maximum likelihood estimates returned by default estimation pro-
cedures for different packages for simulated data, checking that the value returned is a
global optimum and the gradient is approximately zero whenever ξ̂ > −1.
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Table 1.1: Evaluation of generalized Pareto model density and distribution functions.

package location density distribution function

eva yes correct correct
evd yes incorrect for x = u correct
evir yes incorrect for x < u incorrect outside support
extraDistr yes incorrect for x = u correct
extRemes yes incorrect for x = u correct
fExtremes yes incorrect for x = u correct
lmom yes incorrect outside support
lmomco yes correct incorrect outside support
mev yes correct correct
POT yes incorrect for x = u correct
QRM no incorrect for x = u correct
qrmtools no correct correct
ReIns yes correct correct
Renext yes incorrect for x = u correct
revdbayes yes correct correct
SpatialExtremes yes incorrect for x = u correct
tea yes correct correct
texmex yes correct correct
TLMoments yes correct correct

Table 1.2: Evaluation of generalized extreme value density and distribution functions.

package density distribution function

EnvStats correct correct
evd correct correct
evir
extraDistr correct correct
ExtremalDep
extRemes correct correct
fExtremes correct correct
lmomco incorrect for x < µ incorrect for x < µ
mev correct correct
QRM correct correct
qrmtools correct correct
revdbayes correct correct
SpatialExtremes correct correct
texmex correct correct
TLMoments correct correct

1.2.1 Generalized Pareto distribution

For threshold exceedances, we simulated 50 exceedances from a generalized Pareto dis-
tribution GP(σ = 1000, ξ = −0.5) and from an exponential distribution with σ = 1000.
The large scale value is intended to check the robustness of gradient-based algorithms;
from an optimization perspective, it is wise to ensure that the gradient of each compo-
nent, scale and shape, are not magnitudes apart. The data can easily be scaled prior
to the optimization in case this is problematic.

Figure 1.1 shows the distribution of the score vector, i.e., the gradient of the log
likelihood. The latter should vanish when evaluated at the maximum likelihood esti-
mator (σ̂, ξ̂) provided ξ̂ > −1. Most instances of non-zero gradient are attributable
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Fig. 1.1: Magnitude of the shape component of the score vector at the value returned by
the optimization routine. The density plots are based on 1000 samples simulated from
a generalized Pareto distribution with shape ξ = −0.5 and scale σ = 1000, split by
simulations yielding a boundary case (ξ̂ = −1, gray) and regular case (ξ̂ > −1, black);
the y-axis scale for each package is different to ease visualization. Results for samples
for which the numerical routines failed to converge or the gradient is unevaluated are
not shown.

to boundary cases with ξ̂ = −1 not accounted for. Other discrepancies are due to
numerical tolerance for convergence, but the differences in log likelihood relative to
the maximum over all routines are negligible in most non-boundary cases investigated.
Some routines, based on Nelder–Mead simplex algorithm, do not check the gradient
but this is immaterial if the value of the function is nearly identical to that at the
maximum likelihood estimate.

Figure 1.2 shows these differences through survival function plots, highlighting
instances where the package fails to return correct values. Most packages do fine, except
for a handful: evd, extRemes and POT (which uses routines from evd) stand out of the
lot.

We can figure out the source of some of these oddities by plotting the distribution
of the shape parameter estimates over all 1000 replications (see Figure 1.3). Both
POT and evd return sampling distributions that are underdispersed relative to other
implementations, while ercv and extRemes both have a large number of runs that
return exactly zero for the shape parameter. The QRM package has unexpectedly small
spread and a positive bias for estimation of ξ, different from other packages because
it fails more often when ξ is negative. Both ercv and extRemes routines return zero
shape estimates, leading to noticeable point masses. Only SpatialExtremes and mev
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Fig. 1.2: Differences between the likelihood evaluated at the parameters returned by the
routines and the maximum likelihood over all routines for generalized Pareto samples
with negative shape (ξ = −0.5, left) and exponential samples (right), both with large
scale parameter σ = 1000. Results for samples for which the numerical routines failed
to converge are not shown. Only packages with 90% percentile giving a discrepancy
larger than 10−4 are shown.
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Fig. 1.3: Dot plots of shape parameter estimates returned by optimization routine
for generalized Pareto samples with negative shape (ξ = −0.5, left) and exponential
samples (right). Results for samples for which the numerical routines failed to converge
are not shown.

correctly return ξ = −1, while Renext returns a hard-coded lower bound which can
also be set to ξ = −1.

Some packages have routines that fail to converge often when the shape is nega-
tive; the most likely culprit for this is poor starting values. The routines in ercv and
fExtremes (same as evir) fail often in small samples: for n = 20 exceedances, the
function returned an error in 225 simulations. For the latter, the error is due to poor
implementation of the log-likelihood that leads to infinite finite differences between
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Fig. 1.4: Differences between the likelihood evaluated at the parameters returned by
the routine and the maximum likelihood over all routines for generalized extreme value
samples with negative shape (left) and exponential samples (right), both with large
scale parameter σ = 1000. Results for samples for which the numerical routines failed
to converge are not shown. Only packages with 90% percentile giving a discrepancy
larger than 10−4 are shown.

estimates. For QRM, the choice of starting values, which cannot be modified by the user,
is not adequate with strong negative shapes: it failed in more than 50 (n = 20), 122
(n = 50), 169 (n = 100) and 253 (n = 1000) times for negative shapes, indicating that
the issue is not sample size. The qrmtools package, which supersedes QRM, has no such
problems.

1.2.2 Generalized extreme value distribution

The optimization routines for the generalized extreme value distribution with scale
σ = 1000 and shape parameters ξ ∈ {−0.5, 0, 0.5} are better behaved and nearly all
packages give identical results: only evd and texmex failed to converge and returned
abnormally high shape values in a handful of instances out of 1000 simulations.

Unsurprisingly, the portrait (see Figures 1.4 and 1.5) is the same for the general-
ized extreme value distribution when it comes to boundary constraints: for example,
climextRemes does not return shapes less than or equal to −1. extRemes has odd be-
haviour with a visible point mass at ξ = 0 in the simulations, even when this value has
measure zero. Only mev and SpatialExtremes handle the boundary constraints. Fig-
ure 1.4 shows the difference in maximum likelihood returned by the packages, excluding
cases with ξ̂ = −1 for which the log likelihood becomes unbounded for combinations
of σ and ξ < −1. Some packages, such as evd, also sometimes return a local opti-
mum (perhaps due to use of the BFGS routine) and this in turn leads to erroneous
comparisons of nested models.

Table 1.4 gives a breakdown of the number of instances for which the maximisation
routine failed: two packages, climextRemes and EnvStats, stand out for negative shapes
and the percentage of failures increases with the sample size.
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Table 1.3: Number of failures for the optimization routine for maximum likelihood-
based estimation of the generalized Pareto model (out of 1000 simulations).

(a) bounded tail (ξ = −0.5)

20 50 100 1000

evir 225 15 0 0
fExtremes 225 15 0 0
QRM 50 122 169 253

(b) exponential (ξ = 0)

20 50 100 1000

evir 37 0 0 0
fExtremes 37 0 0 0
QRM 4 12 7 0

(c) heavy tail (ξ = 0.5)

20 50 100 1000

evir 7 0 0 0
fExtremes 7 0 0 0
QRM 1 0 0 0

Table 1.4: Number of failures for the optimization routine for maximum likelihood-
based estimation of the generalized extreme value model (out of 1000 simulations).

(a) bounded tail (ξ = −0.5)

100 1000 20 50

climextRemes 151 200 172 127
EnvStats 156 215 100 131
evir 0 0 27 0
fExtremes 23 0 92 28
ismev 0 0 4 0
mev 0 0 11 0
texmex 0 0 3 0

(b) light tail (ξ = 0)

100 1000 20 50

climextRemes 0 0 4 0
EnvStats 0 0 4 0
fExtremes 0 0 1 0

(c) heavy tail (ξ = 0.5)

100 1000 20 50

climextRemes 2 0 1 1
EnvStats 9 1 10 10
evir 0 0 4 0
fExtremes 2 0 5 3
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Fig. 1.5: Dot plots of shape parameter estimates returned by optimization routines for
generalized extreme value samples with negative shape (ξ = −0.5, left) and Gumbel
samples (right). Results for samples for which the numerical routines failed to converge
are not shown.
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2 Bayesian univariate inference for extremes

Creating a benchmark for Bayesian univariate analysis of extremes is complicated be-
cause approximate posterior samples returned by Markov chain Monte Carlo are au-
tocorrelated so we cannot rely only on speed of execution or correctness. The effective
sample size, which measures the equivalent number of independent draws from the pos-
terior, is a better unit than the number of draws returned. We also factor in the amount
of time it takes for the algorithm to proceed, but note that higher initialization costs
may make such comparisons unfair if the cost of setup is larger than that of sampling.
The different packages use different sampling algorithms: those that are implemented
in low-level programming languages like C are inherently faster. Most packages that
uses random walk Metropolis–Hastings steps discard initial draws during the so-called
burn-in period (sometimes to tune proposal standard deviations, mostly to let the
chain reach the posterior distribution and reduce impact of starting values). Other
considerations include flexibility of methods, the choice of likelihood or the possibility
to include covariates.

– In the texmex package, users can run multiple chains with burn-in and thinning, but
iterations are preserved (which results in a heavier memory footprint). The choice
of prior is restricted relative to most other packages. Rather than random walk
Metropolis steps, proposals are drawn independently from a distribution which is
centered at the maximum a posteriori, with a scale matrix matching the Hessian at
the mode. This allows for good mixing, at the expense of a preliminary optimization
(and tentatively terrible results should the latter fail to converge to the maximum
a posteriori distribution).

– The evdbayes package has a comprehensive documentation, but some of its features
are unconventional: the generalized Pareto model includes a location parameter that
is modeled along as the threshold, but this is typically fixed. This leads to many
proposals for the random walk Metropolis–Hastings ratio that lead to negative
infinity, so we discard this altogether from the comparison. It can lead to adaption
of the proposal.

– While very flexible, extRemes is noticeably slower than other packages and par-
ticularly inefficient with the default options (not setting proposalParams leads to
effective sample sizes that are insufficient for any analysis to be reliable in our
examples). It can be somewhat customized (and includes more flexible prior speci-
fication), but there is limited documentation on how to complete this in the package
itself (but see the accompanying Journal of Statistical Software paper). The current
options for evaluating the marginal likelihood in BayesFactor are unreliable and
shouldn’t be used (e.g., Neal, 2018).

– The ExtremalDep package also allows for estimation of the generalized extreme
value distribution with potential covariates for the location parameter and cen-
soring below a marginal threshold, using a random walk Metropolis-Hastings algo-
rithm. However, the user needs to provide starting values and default values for the
variances of the multivariate normal proposals, sig0, and the code returns an error
if there is no censoring and covariates are provided. The output is less user-friendly
than other packages, as there are no methods associated with the returned list.

– revdbayes provides independent draws from the posterior at a fraction of the costs
of the other packages. Unless one has to include covariates in the parameters, it is
the recommended approach.

https://www.jstatsoft.org/article/view/v072i08
https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/
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Table 2.1: Effective sample size divided by the number of iterations (percentage).

(a) nonstationary generalized extreme value model

package loc loc (trend) scale shape

evdbayes 10.1 4.6 9.5 13.2
extRemes 6.1 6.9 6.9 4.9
STAN 90.0 86.3 100.0 69.7
texmex 6.6 7.0 7.0 7.2

(b) generalized Pareto model

package scale shape

extRemes 4.5 4.3
MCMC4extremes 6.6 7.1
STAN 48.3 43.8
texmex 12.4 10.3

2.1 Evaluation of effectiveness

We look at computation time (Figure 2.1) and effectiveness (Table 2.1) of algorithms
as measured by the effective sample size, computed using the coda method (based
on autocorrelation of the chains). Alternative better methods exist based on running
multiple chains, but we forgo these.

The revdbayes implementation is exact and fastest, thus should be privileged in
any problem not involving covariates. Stan simulates posterior samples using a Hamil-
tonian Monte Carlo algorithm. The latter is much more efficient than Metropolis-
Hastings random walk proposals since it uses information about the geometry of the
posterior distribution: the programming language requires bespoke definitions of the
extreme value models and some care is necessary for shapes close to zero for the GEV
distribution.

Of all the remaining packages, texmex gives the best performance because it uses
proposals informed by the maximum a posteriori estimate. This wouldn’t necessarily
work with a multimodal objective function, but seems to do a good job in the simple
scenarios we considered (and which are supported by the package). While we can-
not know if we have converged to the target posterior distribution, the chains appear
stationary.

The algorithm for MCMC4Extremes is fast, considering the number of observations
it samples, but the implementation is crude and inefficient, including a burn-in period
of 50K simulations, contrary to what the documentation states. The function is also
not customizable.

The performance of extRemes is more dependent on tuning parameters than other
implementations. Initial trials with the default parameter revealed problems: while
the model starts at the MLE (so close to the stationary distribution), the default
standard deviation of the normal random walk proposals are particularly ill-suited
to the Venice sea level example. Trace plots (not shown) revealed lack of stationarity
with default tuning parameters. With adapted proposals (and vague priors), the output
seems satisfactory, but the effective sample size is subpar compared to other methods.

The evdbayes package includes a generalized Pareto model, but the latter also has
a location parameter so is not directly comparable with other outputs.
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Fig. 2.1: Swarm plot of execution time (including preliminary optimization if neces-
sary) of different numerical routines for a generalized extreme value model with linear
trend in location fitted to the Venice sea level data (left) and the generalized Pareto
distribution fitted to the Eskdalemuir rainfall data (right).

Data availability

The datasets analysed in Section 2 are available from the mev package.

https://github.com/lbelzile/mev/tree/main/data
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3 Software version

Package Version License Package Version License

BMAmevt 1.0.5 GPL (≥ 2) jointPm 2.3.2 GPL (≥ 2)
climextRemes 0.3.0 BSD-3-clause, † laeken 0.5.2 GPL (≥ 2)
coda 0.19-4 GPL (≥ 2) lax 1.2.0 GPL (≥ 2)
CompRandFld ⋆ 1.0.3-6 GPL (≥ 2) lite 1.1.0 GPL (≥ 2)
copula 1.1-2 GPL (≥ 3), † lmom 2.9 CPL-1.0
CTRE ⋆ 0.1.0 GPL-3 lmomco 2.4.7 GPL
ercv 1.0.1 GPL (≥ 2) Lmoments 1.3-1 GPL-2
erf ♯ 0.0.1 GPL-3 lmomRFA 3.5 CPL-1.0
eva 0.2.6 GPL (≥ 2) loo 2.6.0 GPL (≥ 3)
evd 2.3-6.1 GPL-3 longevity ♯ 2023.03.22 GPL-3
evdbayes 1.1-3 GPL (≥ 2) MCMC4Extremes 1.1 GPL-2
evgam 1.0.0 GPL-3 mev 1.15 GPL-3
evir 1.7-4 GPL (≥ 2) mgcv 1.8-42 GPL (≥ 2)
evmix 2.12 GPL-3 mvPot 0.1.5 GPL-2
evtclass 1.0 GPL-3 POT 1.1-10 GPL (≥ 2)
exdex 1.2.1 GPL (≥ 2) ptsuite 1.0.0 GPL-3
ExtremalDep 0.0.4-0 GPL (≥ 2) QRM 0.4-31 GPL (≥ 2)
extremefit 1.0.2 GPL-2 qrmtools 0.0-16 GPL (≥ 3), †
ExtremeRisks 0.0.4 GPL (≥ 2) RandomFields ⋆ 3.3.14 GPL (≥ 3)
extRemes 2.1-3 GPL (≥ 2) rbm ♯ 1.0.0 MIT
extremeStat 1.5.5 GPL (≥ 2) ReIns 1.0.12 GPL (≥ 2)
extremis 1.2.1 GPL (≥ 3) Renext 3.1-3 GPL (≥ 2)
extremogram 1.0.2 GPL-3 revdbayes 1.5.1 GPL (≥ 2)
EVcopula ♯ 0.1 GPL-3 RobExtremes 1.2.0 LGPL-3
evt0 1.1-4 GPL (≥ 2) RTDE 0.2-1 GPL (≥ 2)
ev.trawl ⋆ 0.1.0 MIT † SimCop 0.7.0 GPL (≥ 2)
fCopulae 4022.85 GPL (≥ 2) spatialADAI ♯ 0.1.0 none
fExtremes 4021.83 GPL (≥ 2) SpatialExtremes 2.1-0 GPL (≥ 2)
futureheatwaves 1.0.3 GPL-2 SpatialGEV 1.0.0 GPL-3
GEVcdn 1.1.6-2 GPL-3 tailDepFun 1.0.1 GPL-3
graphicalExtremes 0.2.0 GPL-3 tea 1.1 GPL-3
gremes ⋆ 0.1.1 GPL-2 texmex 2.4.8 GPL (≥ 2)
hkevp 1.1.5 GPL threshr 1.0.3 GPL (≥ 2)
IDF 2.1.2 GPL (≥ 2) TLMoments 0.7.5.3 GPL (≥ 2)
INLA ♯ 22.12.16 GPL-2 tsxtreme 0.3.3 GPL (≥ 2)
ismev 1.42 GPL (≥ 2) VaRES 1.0.2 GPL (≥ 2)

Table 3.1: List of R packages, software licenses and version numbers at the time of the
review. Additional file licenses are denoted with a † and packages archived from CRAN
at the time of writing are denoted with a star ⋆. Packages available only from Github
repository or personal websites are denoted with a ♯
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