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a b s t r a c t 

Existing whole-brain models are generally tailored to the modelling of a particular data modality (e.g., fMRI or MEG/EEG). We propose that despite the differing 
aspects of neural activity each modality captures, they originate from shared network dynamics. Building on the universal principles of self-organising delay-coupled 
nonlinear systems, we aim to link distinct features of brain activity - captured across modalities - to the dynamics unfolding on a macroscopic structural connectome. 

To jointly predict connectivity, spatiotemporal and transient features of distinct signal modalities, we consider two large-scale models - the Stuart Landau and 
Wilson and Cowan models - which generate short-lived 40 Hz oscillations with varying levels of realism. To this end, we measure features of functional connectivity 
and metastable oscillatory modes (MOMs) in fMRI and MEG signals - and compare them against simulated data. 

We show that both models can represent MEG functional connectivity (FC), functional connectivity dynamics (FCD) and generate MOMs to a comparable degree. 
This is achieved by adjusting the global coupling and mean conduction time delay and, in the WC model, through the inclusion of balance between excitation and 
inhibition. For both models, the omission of delays dramatically decreased the performance. For fMRI, the SL model performed worse for FCD and MOMs, highlighting 
the importance of balanced dynamics for the emergence of spatiotemporal and transient patterns of ultra-slow dynamics. Notably, optimal working points varied 
across modalities and no model was able to achieve a correlation with empirical FC higher than 0.4 across modalities for the same set of parameters. Nonetheless, 
both displayed the emergence of FC patterns that extended beyond the constraints of the anatomical structure. Finally, we show that both models can generate MOMs 
with empirical-like properties such as size (number of brain regions engaging in a mode) and duration (continuous time interval during which a mode appears). 

Our results demonstrate the emergence of static and dynamic properties of neural activity at different timescales from networks of delay-coupled oscillators at 
40 Hz. Given the higher dependence of simulated FC on the underlying structural connectivity, we suggest that mesoscale heterogeneities in neural circuitry may be 
critical for the emergence of parallel cross-modal functional networks and should be accounted for in future modelling endeavours. 

1

 

1  

a  

t  

c  

a  

(  

o  

p  

r  

a  

d

h
R
A
1

. Introduction 

The art of large-scale modelling has been in practice since the
940s ( McCulloch and Pitts, 1943 ; Shimbel and Rapoport, 1948 ; Uttley
nd Matthews, 1955 ). However, with the progression of cutting-edge
echnology and advanced neuroimaging techniques, an unprecedented
omputational power and spatiotemporal resolution of data has been
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chieved, leading to the establishment of a methodological framework
 Coombes, 2005 ; Deco et al., 2008 ; Honey et al., 2007 ). The purpose
f large-scale modelling is to provide a parsimonious and precise ex-
lanation of data features, striking a balance between complexity and
ealism. It takes a biophysical approach to investigate how the inter-
ction between structural connectivity and local dynamics gives rise to
istinctive spatiotemporal oscillatory patterns. 
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Thus far, the most precise approximation of the structural organisa-
ion of the brain – the “connectome ” – is represented by inter-regional
onnectivity patterns between anatomically defined brain regions. Long
xonal projections mediate long-range interactions between distant neu-
onal ensembles, which can be non-invasively and in-vivo registered us-
ng diffusion MRI ( Conturo et al., 1999 ; Hagmann et al., 2008 ; Sporns
t al., 2005 ). The need for such comprehensive mapping has motivated
esearchers to make the structural description more and more detailed,
iming to depict brain structure at multiple levels and across different
pecies ( Alexander et al., 2007 ; Glasser et al., 2016 ; Hagmann et al.,
008 ; Ranzenberger and Snyder, 2022 ; Zalesky et al., 2010 ). This de-
ailed structural mapping will serve to delineate the space of possibilities
n which nodes and their interactions can be modelled as a network. 

Models of brain oscillations aim to capture the relationship between
ynchronisation mechanisms and collective behaviour, as well as their
eliance on coupling strength. Computational models of dynamical sys-
ems - such as the models of coupled phase ( Kuramoto, 1975 ), limit
ycle (Stuart Landau ( Sreenivasan et al., 1987 )), and chaotic ( Rössler,
976 ) oscillators, have been increasingly employed to study the evolv-
ng network dynamics emerging from the structural framework ( Cabral
t al., 2022 , 2011 ; Cofré et al., 2020 ; Deco et al., 2008 ). In 1975, Ku-
amoto presented a reduced-order model that characterises the within-
imit-cycle behaviour of nodes, representing the activity of each oscilla-
or in terms of its circular phase ( Bick et al., 2020 ; Kuramoto, 1975 ; Park
nd Lefebvre, 2020 ). Moving beyond the limit cycle, Andronov and col-
eagues proposed models that include both phase and amplitude modu-
ation ( Andronov et al., 1966 ). amongst those, the Stuart-Landau equa-
ion has been used to describe the appearance of an oscillatory mean
eld from a noisy dynamical unit ( Pikovsky et al., 2003 ; Pikovsky and
osenblum, 2015 ). 

Governed by the same underlying principles, neural mass models
NMMs) have facilitated valuable insights into meso ‑ and macroscopic
ynamics of excitatory and inhibitory neuronal populations, with the
im of achieving neurobiological realism at a different scale ( Beurle and
atthews, 1956 ; Wilson and Cowan, 1972 ). Contrasting with single os-

illator models, NMMs depict each brain region as a group of interacting
eurons whose oscillatory dynamics can be explained by their mutual
nteraction. In both cases, by finely tuning the model parameters, the
ystem dynamics undergo a phase transition from a noisy to an ordered
tate. By coupling an ensemble of oscillators/NMMs, the simulated local
ctivity depends not only on the intrinsic node dynamics in the presence
f stochastic perturbations, but also on the interactions with other ele-
ents in the network ( Breakspear, 2017 ). 

A wealth of research shows that the neocortex maintains a so-called
-I balance - a delicate equilibrium between excitatory and inhibitory
ctivity ( Dehghani et al., 2016 ; Froemke et al., 2007 ; Sprekeler, 2017 ;
ao and Poo, 2005 ; Xue et al., 2014 ). This balance is crucial for op-
imal cortical function ( Amil and Verschure, 2021 ; Litwin-Kumar and
oiron, 2014 ; Mariño et al., 2005 ; Páscoa Dos Santos and Verschure,
021 ; Puigbò et al., 2018 ; Rubin et al., 2017 ; van Vreeswijk and Som-
olinsky, 1996 ; Vogels et al., 2011 ; Wehr and Zador, 2003 ). Importantly,
t is sustained through homoeostatic plasticity mechanisms that adjust
he strength of synapses onto pyramidal neurons to stabilise firing rates
 Ma et al., 2019 ; Turrigiano, 2011 ; Turrigiano et al., 1998 ; Vogels et al.,
011 ). One hypothesis is that inhibitory synaptic plasticity (ISP) plays
 key role in balancing E-I inputs and stabilising firing rates whenever
he E-I balance is disrupted by perturbations at the level of incoming
xcitation. By dynamically adapting synaptic weights ( Landau et al.,
016 ; Litwin-Kumar and Doiron, 2012 ), ISP regulates local activity and
enerates more realistic functional patterns, as demonstrated in MEG
 Abeysuriya et al., 2018 ) and fMRI models ( Hellyer et al., 2016 ; Rocha
t al., 2018 ; Vattikonda et al., 2016 ). Such modulation is crucial for the
e-emergence of such patterns following substantial damage to underly-
ng structural networks ( Páscoa dos Santos et al., 2022 ). 

Large-scale brain network models can not only accurately repre-
ent empirical data but also reveal structural-functional, and subsequent
2 
tatic-dynamic, relationships. Structural and functional neuroimaging
echniques allow us to model anatomical connections and statistical in-
eractions between brain regions ( Friston, 1994 ). To explore the com-
lex interplay between structural and functional connectivity, differ-
nt modelling approaches have been used, ranging from biophysical
 Breakspear, 2017 ; Deco et al., 2009 , 2014 ; Honey et al., 2007 ; Pinotsis
t al., 2012 ; Sanz Leon et al., 2013 ) to statistical methods (i.e., ( Raj
t al., 2020 ), see ( Raj et al., 2022 ) for a comprehensive review). They
hare the notion of high-order neural phenomena going beyond the lo-
al geometrical clustering but also illustrate how the interplay between
ocal dynamics and the large-scale anatomical framework gives rise to
esting-state brain activity ( Cabral et al., 2011 ; Deco et al., 2013 , 2014 ).

Although functional connections between brain regions can exist
ven in the absence of structural connections ( Hermundstad et al., 2014 ;
oney et al., 2010 ), they are still constrained by the brain’s anatomi-
al framework ( Friston, 1997 ; Hutchison et al., 2013 ). Indeed, on slow
ime scales FC indirectly reflects the underlying SC ( Honey et al., 2010 ).
n the context of modelling, it has been observed that when the brain
s close to a phase transition – a state where the system is highly sen-
itive to minor changes, and small perturbation can lead to significant
ffects – the statistical dependence between different brain regions is
trongly influenced by the underlying anatomy of the network, the sys-
em is highly sensitive to small changes. This demonstrates a dynamic
alance between integration and segregation, as well as an enhanced
bility for spontaneous reconfiguration ( Schirner et al., 2022 ). The con-
epts of bifurcation and phase transitions extend to the study of critical-
ty, which refers to the dynamical regime of networks near the bifurca-
ion point. Criticality has been measured extensively in brain dynamics
 Cocchi et al., 2017 ) and has been shown to optimize functions such
s information storage and transmission ( Beggs and Timme, 2012 ). Re-
ent findings also suggest that the brain homeostatically regulates local
ynamics to maintain criticality ( Ma et al., 2019 ). 

This suggests that the optimal working point, linking function to
tructure, is at the edge of criticality ( Cocchi et al., 2017 ). While this in-
estigation has been well-established in fMRI, it has only recently been
pplied to electromagnetic data such as MEG/EEG ( Cabral et al., 2022 ;
eco et al., 2017 ; Rabuffo et al., 2021 ; Roberts et al., 2019 ). 

Moreover, the dynamic nature of functional connectivity has gained
ncreasing attention due to its rich and transient reconfiguration over
ime ( Cabral et al., 2017a ; Deco et al., 2017 ; Hutchison et al., 2013 ),
ith changes in this dynamic connectivity reflecting cognitive or neu-

ological dysfunction ( Bonkhoff et al., 2021 ; Cabral et al., 2017b ; Filippi
t al., 2019 ; Lombardo et al., 2020 ; Polverino et al., 2022 ). While large-
cale models exist for explaining the possible mechanisms behind the
ransient motifs of metabolic signals, such as synchronisation, sponta-
eous oscillatory activity, E-I neurons interaction, myelination and net-
ork topology ( Deco et al., 2017 , 2021 ; Vohryzek et al., 2020 ), few at-

empts have been made in the realm of electrophysiological data ( Cabral
t al., 2022 , 2014 ; Deco et al., 2017 ). Various models have attempted to
lucidate the mechanisms underlying each modality, such as ( Glomb
t al., 2022 ) for EEG, ( Abeysuriya et al., 2018 ; Cabral et al., 2022 ;
adida et al., 2018 ; Raj et al., 2020 ; Tewarie et al., 2019 ) for MEG,
 Atasoy et al., 2016 ; Cabral et al., 2011 ; Deco et al., 2009 , 2021 ; Honey
t al., 2007 ; Roberts et al., 2019 ) for fMRI. However, the characteri-
ation of features detected across modalities by large-scale modelling
pproaches has only recently been initiated ( Rabuffo et al., 2021 ). In
articular, Rabuffo et al. (2021) demonstrated how neuronal cascades
an be a major determinant of spontaneous fluctuations in brain dy-
amics captured with simultaneous EEG and fMRI. Nonetheless, the re-
ationship between large-scale oscillations and their organisation across
cales is yet to be thoroughly explored. 

In this work, we apply a multi-modal and multi-model approach to
ecover the underlying neurodynamical genesis of neuroimaging sig-
als. We aim to contribute to the broad repertoire of generative models
y proposing a comparative analysis between two large-scale models,
dentifying advantages and limitations, and testing their applicability in
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isclosing the network properties of haemodynamic and electrophysio-
ogical brain activity. This paper starts with a concise exposition of the
heoretical underpinnings of generative modelling and proceeds to a de-
cription of complementary modelling techniques applied to empirical
ata. These analyses provide the basis for a comparative evaluation of
ifferent modelling strategies, thereby facilitating the identification of
heir key functional forms. 

. Methods 

.1. Phase-amplitude model: stuart-landau 

The Stuart-Landau (SL) equation ( Eq. (1) ) is the canonical form
or describing the behaviour of a nonlinear oscillating system near an
ndronov-Hopf bifurcation ( Andronov et al., 1966 ; Cocchi et al., 2017 ).

t describes systems that have a static fixed point but respond to per-
urbation (i.e., noise, impulse, specific waveform) with an oscillation,
hich may be damped or self-sustained depending on the operating
oint of the system with respect to the bifurcation (Supplementary Ma-
erial (SM), Section I, Figure S1). 

Our analysis is based on a system of N = 78 SL oscillators coupled
n the connectome, considering both the connectivity strength, 𝐶 𝑛𝑝 , and
he conduction delays, 𝜏𝑛𝑝 , between each pair of brain areas 𝑛 and 𝑝 . The
onduction delays are defined in proportion to the fibre lengths between
rain areas, assuming a homogenous conduction speed 𝑣 , such that 𝜏𝑛𝑝 =
 𝑛𝑝 ∕ 𝑣 , where 𝐷 𝑛𝑝 is the real fibre length detected between brain areas 𝑛
nd 𝑝 . To simulate how the activity in node 𝑛 is affected by the behaviour
f all other nodes ( 𝑝 ∈ 𝑁 ∧ 𝑝 ≠ 𝑛 ) , we describe the interaction between
odes in the form: 

𝑑 𝑍 𝑛 

𝑑𝑡 
= 𝑍 𝑛 

[
𝑎 + 𝑖𝜔 − 

|||𝑍 

2 
𝑛 

|||] + 𝐾 

𝑁 ∑
𝑝 ≠𝑛 

𝐶 𝑛𝑝 

[
𝑍 𝑝 

(
𝑡 − 𝜏𝑛𝑝 

)
− 𝑍 𝑛 ( 𝑡 ) 

]
+ 𝛽𝜂1 + 𝑖𝛽𝜂2 

(1) 

here the complex variable 𝑍 𝑛 ( 𝑡 ) describes the state of the 𝑛 𝑡ℎ oscillator
t time t. 

The first term in Eq. (1) describes the intrinsic dynamics of each unit
hat is the natural excitability of neuronal assemblies, where 𝜔 = 2 𝜋∗ 𝑓 𝑓 
s the angular frequency, with 𝑓 𝑓 as the fundamental frequency. As in
 Cabral et al., 2022 ), we set all nodes with identical natural frequency
 0 = 2 𝜋∗ 40 𝐻𝑧 , representing the ability of a neural mass to engage in
amma-frequency oscillations. 

The parameter 𝑎 determines the position of each unit with respect to
he limit cycle. For 𝑎 > 0 , a stable limit cycle appears via a superciritical
opf bifurcation, while when 𝑎 < 0 there is only a stable fixed point at

he origin 𝑍 𝑛 = 0 , so the bifurcation point is at 𝑎 = 0. Importantly, if
 is negative but sufficiently close to the bifurcation, the system is still
eakly attracted to the limit cycle and damped oscillations emerge in

esponse to external input, with a decay time scaled by 𝑎 . 
The second term represents the total input received from other brain

reas, scaled by parameter 𝐾, which sets the strength of all network
nteractions with respect to the intrinsic node dynamics. Because we fo-
us on the nonlinear phenomena introduced by time delays, we model
he node-to-node interactions using a particular linear diffusive coupling ,
s the simplest approximation of the general coupling function, consid-
ring delayed interactions. The last term of Eq. (1) represents the real
nd imaginary part of uncorrelated white noise, where 𝜂1 and 𝜂2 are
ndependently drawn from a Gaussian distribution with mean zero and
tandard deviation 𝛽 = 0 . 001 . The parameters chosen in this study are
resented in Table 1 . For a detailed exploration and dynamical analysis
f SL model see ( Cabral et al., 2022 ; Choe et al., 2010 ; Powanwe and
ongtin, 2021 ). 

.2. Neural mass model 

Neural mass-models are mean-field approaches that function under
he assumption that the activity of a discrete population of neurons, or
3 
eural mass, can be abstracted to its mean, or any other statistic of inter-
st, at a given time ( Breakspear, 2017 ). In our work, to simulate activity
f parcellated cortical regions, we make use of one of such approaches:
he Wilson-Cowan model of coupled excitatory and inhibitory popula-
ions ( Wilson and Cowan, 1972 ). The Wilson-Cowan model describes the
ring-rate dynamics of two recurrently connected populations of exci-
atory ( 𝑟 𝐸 ) and inhibitory ( 𝑟 𝐼 ) neurons, being, for this reason, ideal to
epresent local excitatory-inhibitory balance ( Abeysuriya et al., 2018 ).
he dynamics of these two variables can then be described as: 

𝐸 

𝑑𝑟 𝐸 
𝑛 
( 𝑡 ) 

dt 
= − 𝑟 𝐸 

𝑛 
( 𝑡 ) + 𝐹 

×

[ 

𝑐 EE 𝑟 
𝐸 
𝑛 
( 𝑡 ) − 𝑐 EI , 𝑛 ( 𝑡 ) 𝑟 𝐼 𝑛 ( 𝑡 ) + 𝐾 

𝑁 ∑
𝑝 =1 

𝐶 np 𝑟 
𝐸 
𝑝 

(
𝑡 − 𝜏np 

)
+ 𝜉( 𝑡 ) + 𝑃 

] 

(2) 

𝐼 

𝑑𝑟 𝐼 
𝑛 
( 𝑡 ) 

𝑑𝑡 
= − 𝑟 𝐼 

𝑛 
( 𝑡 ) + 𝐹 

[
𝑐 𝐼𝐸 𝑟 

𝐸 
𝑛 
( 𝑡 ) + 𝜉( 𝑡 ) 

]
(3)

here 𝜏𝐸 and 𝜏𝐼 represent the characteristic time constants of the excita-
ory and inhibitory populations, respectively, 𝑐 𝑋𝑌 describes the coupling
rom population y to x (e.g., 𝑐 𝐸𝐼 represents the inhibitory to excitatory
oupling) and 𝐾 is a scaling factor for structural connectivity, hereby
eferred to as global coupling. 𝐶 𝑛𝑝 represents the structural connection
through white-matter tracts) between nodes 𝑛 and 𝑝 and is based on hu-
an structural connectivity data derived from diffusion tensor imaging

see Structural Connectivity , Methods). In turn, 𝜏𝑛𝑝 , describes the con-
uction delay between nodes 𝑛 and 𝑝 and is calculated by dividing em-
irically derived tract lengths by a given conduction speed. Notably,
hese long-range connections are only implemented between local exci-
atory populations, in accordance with the evidence that long-range con-
ections in the human cortex are predominantly excitatory ( Tremblay
t al., 2016 ) and in line with the state-of-the-art in large-scale mod-
lling ( Abeysuriya et al., 2018 ). As in Abeysuriya et al. (2018) , we add
 parameter 𝑃 to the description of 𝑟 𝐸 , regulating the excitability of
xcitatory populations (SM, Section I, Figure S1). 

To describe the response of neural masses to external input, we use
he function 𝐹 ( 𝑥 ) . Shortly, 𝐹 ( 𝑥 ) can be roughly equated to the F-I curve
f a given population of neurons, and is described as: 

 ( 𝑥 ) = 

1 

1 + 𝑒 
− 𝑥 − 𝜇

𝜎

, (4)

here 𝜇 represents the input level at which the neural mass reaches
alf of its maximum response and can be understood as regulating its
xcitability, and 𝜎 is the approximate slope of the function at that point,
quating to the sensitivity of the neural mass to external input. In ad-
ition, both excitatory and inhibitory populations receive uncorrelated
dditive noise, drawn at each time point from a Gaussian distribution
ith mean 0 and standard deviation 0.01. For the chosen parameters
escribing local interactions ( 𝑐 𝑋𝑌 ) (( Abeysuriya et al., 2018 ), Table 1 ),
he uncoupled Wilson-Cowan node behaves as a Hopf-Bifurcation be-
ween a low-activity steady-state and a limit-cycle ( Wilson and Cowan,
972 ). Therefore, if the system is close to the bifurcation point, it will
ransiently exhibit noise-driven oscillations. While the bifurcation point
s determined by 𝜏𝐸 

𝜏𝐼 
, the intrinsic frequency of oscillation depends, in-

tead, on 𝜏𝐸 𝜏𝐼 . Since cortical networks are thought to generate intrinsic
amma oscillations through the recurrent interaction between pyrami-
al cells and fast-spiking inhibitory interneurons ( Buzsáki, 2006 ), we
hose 𝜏𝐸 and 𝜏𝐼 so that the characteristic frequency of isolated neural
asses is within the gamma range ( ∼40 Hz) (see SM, Section I, Figure

2). In addition, to control the level of input necessary for the phase
ransition between stable activity and the limit cycle to occur, we regu-
ate the excitability of the neural masses through the parameters 𝜇 and
 . Here, we chose parameters so that an isolated neural mass, with no
xternal input, is in the subcritical regime but sufficiently close to the



F. Castaldo, F. Páscoa dos Santos, R.C. Timms et al. NeuroImage 277 (2023) 120236 

c  

c

2

 

l  

m  

a  

b  

t  

s  

(  

t  

r  

l  

t

𝜏  

w  

m  

b  

(  

o  

a  

i  

t  

t  

r  

(  

h  

I

2

T

T  

W

2

 

e  

d  

W  

e  

i  

c  

u  

e  

m  

s  

I  

I  

0  

t

2

 

(  

a  

fi  

W  

u  

t  

1  

c  

e  

p
 

t  

a  

f  

t  

𝑐  

t  

w  

m  

s  

i  

i  

p  

H  

o  

0
 

t  

t  

e  

2  

S  

d  

m  

c  

s  

S  

(  

m  

M  

f  

M  

v  

s  

I  

m  

d  

o  

m

ritical bifurcation point, so that damped oscillations emerge when re-
eiving input from other nodes. 

.3. Homoeostatic plasticity 

To study the effect of balancing excitation and inhibition at the
evel of single Wilson-Cowan nodes, we implemented a homoeostatic
echanism known as synaptic scaling of inhibitory synapses ( Maffei

nd Turrigiano, 2008 ; Vogels et al., 2011 ). This type of approach has
een previously implemented in large-scale models of the human cor-
ex ( Abeysuriya et al., 2018 ) and inhibitory synaptic scaling has been
hown to play an essential role in cortical function and homoeostasis
 Ma et al., 2019 ). Therefore, we implemented homoeostatic plasticity
o adjust local inhibitory weights so that excitatory activity ( 𝑟 𝐸 ) is cor-
ected towards a given target firing rate ( 𝜌). Therefore, the dynamics of
ocal inhibitory couplings 𝑐 𝐸𝐼,𝑖 can be described by the following equa-
ion, following ( Vogels et al., 2011 ): 

ℎ𝑜𝑚𝑒𝑜 

𝑑 𝑐 𝐸𝐼,𝑖 

𝑑𝑡 
= 𝑟 𝐼 

𝑖 

(
𝑟 𝐸 
𝑖 
− 𝜌

)
, (5)

here 𝜏ℎ𝑜𝑚𝑒𝑜 is the time constant of plasticity. In the cortex, the ho-
oeostatic mechanisms that are responsible for the maintenance of E-I

alance are known to operate in slow timescales, often hours to days
 Turrigiano, 2011 ). However, to ensure the computational tractability
f our simulations, we chose 𝜏ℎ𝑜𝑚𝑒𝑜 = 2 . 5 𝑠 . This choice is unlikely to
ffect our results significantly, since the influence of 𝜏ℎ𝑜𝑚𝑒𝑜 in our system
s in determining how quickly local inhibitory weights evolve towards
heir steady state. In fact, if homoeostatic plasticity is sufficiently slow
o be decoupled from fast dynamics of intrinsic oscillations, 𝑐 𝐸𝐼 will
each nearly the same steady state, independently of the time constant
SM, Section I, Figure S3). We also ran simulations not considering
omoeostatic plasticity to pursue a comparative analysis (SM, Section
, Figure S4). 

.4. Models parameters 

Table 1 

able 1 

able of parameters, values and descriptions for both large-scale modes. a.
ilson-Cowan model’s parameters. b. Stuart Landau model’s parameters. 

a. Wilson-Cowan 

Parameter Value Description 

K [0.1, 14] Global coupling, scaling factor of structural connectivity 
Mean Delay [0, 15] (ms) Mean conduction delay across non-zero connections 
𝜏𝐸 2.5 (ms) Time constant of excitatory population 
𝜏𝐼 5 (ms) Time constant of inhibitory population 
𝑐 𝐸𝐸 3.5 Recurrent coupling of excitatory populations 
𝑐 𝐼𝐸 3.75 Coupling from excitatory to inhibitory populations 
P 0.31 Adjusts excitability of excitatory population 
𝜇 1 Firing threshold of activation function F(x) 
𝜎 0.25 Sensitivity of activation function F(x) 
𝜏ℎ𝑜𝑚𝑒𝑜 2500 (ms) Time constant of homoeostatic plasticity 
𝜌 0.22 Target firing rate of homoeostatic plasticity 
𝜉 N (0,0.01) Additive gaussian noise 

b. Stuart-Landau 

Parameter Value Description 

K [4.0, 2000] Global coupling, scaling factor of structural connectivity 
Mean Delay [0, 15] (ms) Mean conduction delay across non-zero connections 
a − 5 Bifurcation parameter 
𝜔 2 𝜋∗ 40 (radians) Intrinsic frequency of oscillation 
𝛽 0.001 Standard deviation of additive gaussian noise 

.5. Hemodynamic model 

To extract a blood-oxygenation-level-dependant (BOLD) signal
quivalent from our simulations, we make use of a forward hemo-
4 
ynamic model ( Friston et al., 2000 ), that incorporates the Balloon-
indkessel model ( Friston et al., 2003 ). In short, hemodynamic mod-

ls describe how population firing rates (a proxy for neuronal activity)
nfluence the vasculature, which in turn affects blood flow, inducing
hanges in blood vessel volume and deoxyhemoglobin content, which
nderlie BOLD signals. In our work, we chose to use the activity from the
xcitatory populations ( 𝑟 𝐸 ) only as the input of the Balloon-Windkessel
odel. This choice is unlikely to influence the final results, given the

imilarity between 𝑟 𝐸 and 𝑟 𝐼 in the Wilson-Cowan model (SM, Section
, Figure S1). All of the parameters were taken from ( Friston et al., 2003 ).
n addition, we down-sample the simulated BOLD signals to a period of
.72 s to equate the sampling frequency of the empirical data used in
his work (see fMRI , Methods). 

.6. Model optimisation 

We performed model optimisation by treating the global coupling
K) and mean delay (mean tract length divided by conduction velocity)
s free parameters for both models. For the Wilson-Cowan model, we
xed the target firing rate ( 𝜌) of homoeostatic plasticity at 0.22 (a.u.).
e also ran simulations for different 𝜌 values (see SM, Section I, Fig-

re S7). We performed a grid search for both models over the men-
ioned free parameters, with 25 logarithmically spaced values of K and
6 values of mean delays in steps of 1 ms. Parameter ranges can be
onsulted in Table 1 . For the SL model, simulations with the two high-
st values of K explored led to instability and results are, therefore, not
resented. 

For the WC simulations, due to the dynamics of homoeostatic plas-
icity, there was a need to ensure that local inhibitory weights reached
 stable or quasi-stable steady state before activity was recorded. There-
ore, during simulations, we record 𝑐 𝐸𝐼 weights every 10 s, enough
o capture their slow dynamics. We then monitor the evolution of
 𝐸𝐼 and allow simulations to run for either 500 min of simulation
ime or until local weights converged to a steady state for all net-
ork nodes, evaluated via the condition described in supplementary
aterial (SM, Section I, Figure S4). After ensuring that 𝑐 𝐸𝐼 reached a

teady state, we disable plasticity and record 20 min of model activ-
ty. Although the slow dynamics of E-I homoeostasis prevent it from
nteracting with the fast dynamics of neural activity, we follow this
rocedure similarly to previous approaches ( Abeysuriya et al., 2018 ;
ellyer et al., 2016 ). Regarding the SL model, we run and record 20 min
f simulation. We ran simulations with an integration time step of
.2 milliseconds. 

For both models, after obtaining 20 min of simulations, we passed
he simulated activity through a haemodynamic model to obtain a syn-
hetic BOLD signal and remove the first and last 2.5 s to avoid boundary
ffects, thus obtaining 15 min of BOLD signal timeseries ( Friston et al.,
000 ). To represent MEG signals, we considered node activity, for the
L model, and activity from excitatory populations, for the WC model),
ownsampled to 250 Hz. We compared simulated and empirical FC
atrices (see Data and Model Analysis , Methods) through the correlation

oefficient between their upper triangular parts, and FCD and MOM
ize (see Data and Model Analysis , Methods) through the Kolmogorov-
mirnov (KS) distance between simulated and empirical distributions
 Lopes et al., 2007 ). To identify an optimal working point for each
odel and each measured modality (BOLD, MEG theta, MEG alpha and
EG beta – see below for details), we iterate over a range of thresholds

or FC correlation ( 𝑐𝑐 ≥ 𝑡 ℎ 𝐹𝐶 ), FCD KS distance ( 𝐾𝑆 ≤ 𝑡 ℎ 𝐹𝐶𝐷 ) and
OM size KS distance ( 𝐾𝑆 ≤ 𝑡 ℎ 𝑀𝑂 𝑀 𝑠𝑖𝑧𝑒 

) and identify the maximum
alue of 𝑡 ℎ 𝐹𝐶 − 𝑡 ℎ 𝐹𝐶𝐷 − 𝑡 ℎ 𝑀𝑂 𝑀 𝑠𝑖𝑧𝑒 

for which the three conditions can be
atisfied by at least one point in the parameter space (see SM, Section
II, Figure S9). We then define our model’s working point, for each
odality, as the combination of parameters (global coupling and mean
elay) that satisfies those specific thresholds. Since we primarily focus
n the representation of relevant FC patterns, we impose 0.4 as the
inimum 𝑡 ℎ . 
𝐹𝐶 
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.7. Data collection and processing 

.7.1. Ethics statement 

All human data used in this study is from the public repository of the
uman connectome Project (HCP) ( https://www.humanconnectome.
rg ), which is distributed in compliance with international ethical guide-
ines. 

.7.2. Structural connectivity 

The NxN matrices of structural connectivity, C, and distances, D,
sed in the brain network model were computed from diffusion spec-
rum and T2-weighted Magnetic Resonance Imaging (MRI) data ob-
ained from 32 healthy participants scanned at the Massachusetts Gen-
ral Hospital centre for the Human connectome Project ( http://www.
umanconnectome.org/ ). 

Briefly, the data were processed using a generalised q-sampling
maging algorithm implemented in DSI Studio ( http://dsi-studio.
absolver.org ). A white-matter masque, derived from the segmentation
f the T2-weighted anatomical images, was used to co-register the im-
ges to the b0 image of the diffusion data using the SPM12 toolbox
 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ ). In each partici-
ant, 200,000 fibres were sampled within the white-matter masque. Fi-
res were transformed into Montreal Neurological Institute (MNI) space
sing Lead-DBS ( Horn and Blankenburg, 2016 ) . 

The connectivity matrix C was obtained by counting the number
f fibres detected between each pair of N = 78 brain areas defined in
he Automated Anatomical Labelling (AAL) parcellation scheme. Sim-
larly, the distance matrix D was obtained by computing the mean
ength of all fibres detected between each pair of N = 78 cortical brain
reas. 

.7.3. fMRI 

Empirical fMRI data from healthy subjects was obtained from the
ublic database of the Human Connectome Project (HCP), WU-Minn
onsortium (Principal Investigators: David Van Essen and Kamil Ugur-
il; 1U54MH091657) funded by the 16 NIH Institutes and Centers
hat support the NIH Blueprint for Neuroscience Research, and by the
cDonnell centre for Systems Neuroscience at Washington University

 Van Essen et al., 2013 ). More specifically, this data was obtained from
9 unrelated subjects (mean age 29.5, 55% females). Each subject un-
erwent four resting-state fMRI sessions of around 14.5 min on a 3-T
onnectome Skyra scanner (Siemens) with the following parameters:
R = 0.72 s, echo time = 33.1 ms, field of view = 208 ×180 mm, flip
ngle = 52º, multiband factor = 8, echo time = 33.1 with 2 × 2 × 2
sotropic voxels with 72 slices and alternated LR/RL phase encoding. For
urther details, on the standard processing pipeline for HCP data, please
onsult ( Glasser et al., 2016 ) and https://www.humanconnectome.org/
tudy/hcp-young-adult/data-releases . In this work, we use the data from
he first session of the first day of scanning only. 

We further parcellate voxel-based data into 90 anatomically segre-
ated cortical and subcortical regions, excluding the cerebellum, using
he anatomic Automatic labeling (AAL) atlas. Given that we focus on
ortical dynamics, we exclude the 12 subcortical regions, and perform a
oxel-wise average of BOLD signals associated with each of the remain-
ng 78 cortical regions, reducing the size of our data to 78 areas x 1200
R timeseries. 

.7.4. MEG 

Pre-processed sensor level MEG data, along with a defaced structural
RI and the appropriate affine transformation matrix mapping between

he MRI and MEG spaces were downloaded from the HCP data repository
Wu-Minn HCP 1200 Subjects Data Release). Each of the 89 subjects un-
erwent 6-minute resting state scans (where they were instructed to lie
till and keep their eyes open), giving a total of 267 datasets. Full details
f the pre-processing steps performed by the HCP team can be found
n the HCP manual ( https://www.humanconnectome.org/storage/app/
5 
edia/documentation/s1200/HCP_S1200_Release_Reference_Manual. 
df ). 

All processing steps were carried out in FieldTrip (Oostenveld et al.,
011) in MATLAB 2021b. The anatomical MRI was linearly transformed
rom the native MRI space to the MEG scanner space, before being seg-
ented into grey matter, white matter, and cerebral spinal fluid. This

egmentation informed the construction of a Nolte single shell head
odel ( Nolte, 2003 ). A common template array of voxels (isotopically
istributed on a grid with 8 mm separation, confined to lie within the
rain) was non-linearly aligned from MNI space to each of the individ-
al subject’s anatomical images using SPM8’s “old normalise ” function
 Ashburner and Friston, 2005 ). This meant that there was a “standard ”
ource model used in the pipeline, with one-to-one correspondence be-
ween sources across subjects. 

Nearest-neighbour interpolations between this template grid and the
tlases that we used in this study were applied, facilitating the parcel-
ation of voxels into anatomically defined brain regions. A volumetric
ead field matrix was calculated for each of the voxel locations. We col-
apsed the rank of the lead field for each voxel from three to two by
 singular value decomposition (SVD), thus eliminating any sensitivity
o the weakly contributing radial component of the lead field ( Ahlfors
t al., 2010 ; Hämäläinen et al., 1993 ). 

The pre-processed sensor level MEG recordings were further band-
ass filtered between 1 and 45 Hz and downsampled to 250 Hz. These
ata were used to construct a covariance matrix for the construction
f linearly constrained minimum variance (LCMV) beamformer weights
 Van Veen et al., 1997 ). This matrix was regularised by adding 1% of the
verage eigenvalue to the diagonal to improve numerical stability and
oost the reconstruction accuracy of the estimated time series ( Van Veen
t al., 1997 ). At each voxel location, a separate SVD was run on the 3-
imensional vector time series to extract the optimal lead field orien-
ation in order to maximise the SNR of beamformer weights ( Sekihara
t al., 2004 ), thus collapsing the 3 element timeseries to a single time
eries for each voxel. 

.8. Data and model analysis 

.8.1. fMRI FC 

To compute functional connectivity (FC) from BOLD signals, both
mpirical and simulated, we calculate pair-wise correlations between
ll individual timeseries from each of the 78 cortical areas of the
AL atlas, using the Pearson’s correlation coefficient. We then aver-
ged FC over the 99 subject-specific correlation matrices to obtain a
8 ×78 empirical FC matrix, against which simulated FC matrices can be
ompared. 

.8.2. MEG FC 

Upon obtaining estimates for the neural source currents, data were
arcellated into nodes pertaining to each atlas. The first principal com-
onent was extracted from all voxels within each ROI. Data were then
orrected for spurious correlations arising from source leakage between
rain regions by means of symmetric orthogonalization ( Colclough
t al., 2015 ). After bandpass filtering the data, we took the analytical
ignal of the Hilbert envelope for all brain regions. Hilbert envelopes
ere then low-pass filtered above 0.5 Hz and downsampled to 5 Hz, as

n ( Portoles et al., 2022 ). Whole brain functional connectivity networks
ere derived by calculating the pair-wise Pearson correlation between
ltered and downsampled envelopes of each network node. Finally, we
alculated the average amplitude envelope FC matrix over all subjects
nd sessions. See SM, section V, for further details on amplitude en-
elope correlation, MEG source leakage correction and beamforming
ethods. For both simulated and empirical data, we used a total of 300 s

f signal to compute FC. Simulated signals were not leakage corrected,
ince simulated data does not have source leakage ( Portoles et al.,
022 ). 

https://www.humanconnectome.org
http://www.humanconnectome.org/
http://dsi-studio.labsolver.org
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
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.8.3. fMRI functional connectivity dynamics 

While research has mostly focused of the static properties of FC,
ecent results show that functional connectivity exhibits complex spa-
iotemporal dynamics, with the transient reinstatement of connectivity
tates ( Deco et al., 2017 ). Here, to evaluate functional connectivity dy-
amics (FCD), we make use of the method presented in ( Abeysuriya
t al., 2018 ; Deco et al., 2021 , 2017 ). We first split data in N T windows
f 80 samples ( ∼1 min) with 80% overlap and compute FC within each
indow following the method described in the previous section. Then,

or all pairs of windows, we compute the Pearson’s correlation between
he upper triangle of their respective FC matrices. We thereby obtain an
 T x N T matrix containing all pairwise correlations between the win-
owed FC matrices. We then concatenate the values in FCD matrices
cross subjects to obtain an empirical distribution, against which we
ompare FCD distributions from each simulation. 

.8.4. MEG functional connectivity dynamics 

To calculate FCD from MEG signals, we follow a similar method
o the one described in the previous section, with slight modifications,
iven the nature of MEG signals. Firstly, we filter the MEG data at three
requencies (theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz) and com-
ute the frequency-specific amplitude envelopes, as described in the
nalysis section of the methods. Next, we apply a low-pass filter above
.5 Hz to the amplitude envelopes and down-sample the filtered en-
elopes to 5 Hz, using the same methods as ( Portoles et al., 2022 ). The
esulting filtered and downsampled timeseries are divided into windows
f 30 s with 80% overlap. It is not yet clear what the appropriate win-
ow size is for the calculation of FCD in MEG signals, due to the diverse
imescales of the emergence of spatiotemporal MEG patterns ( Liuzzi
t al., 2019 ). For this reason, we opted for a more conservative window
ize of 30 s, similar to ( Portoles et al., 2022 ). Finally, we use the same
rocedure as for BOLD signals, for each frequency band, to calculate
CD. We then obtain frequency-specific distributions of FCD from the
mpirical MEG data, using a total of 300 s of signal to compute the FCD
istributions, against which we compare FCD distributions from each
imulation. As there is no source leakage in simulated data, simulated
ata was not orthogonalized. 

.8.5. Metastable Oscillatory Modes 

Previous results suggest that coupled oscillators with delayed in-
eractions give rise to the emergence of metastable oscillatory modes
MOMs) ( Cabral et al., 2022 ). These MOMs consist in transient moments
f synchronisation between clusters of nodes in a network at frequencies
hat are lower than the intrinsic frequency of oscillation of uncoupled
odes. 

To detect MOMs in both empirical and simulated fMRI and MEG data
e first filter timeseries at the bands of interest (fMRI: 0.008–0.08 Hz,
EG theta: 4–8 Hz, MEG alpha: 8–13 Hz, MEG beta: 13–30 Hz). Then,
e calculate the respective Hilbert envelopes by computing the abso-

ute value of the Hilbert transform of timeseries from each individual
rea. Hilbert envelopes are then Z-scored ( 𝑍 = ( 𝑥 − 𝜇)∕ 𝜎, where 𝑥 is the
ilbert envelope, 𝜇 its mean and 𝜎 its standard deviation) and a thresh-
ld of 2 is applied for the detection of MOMs ( Fig. 2 ). While the thresh-
ld is arbitrary, assuming that data is normally distributed, a value of
 represents the threshold above which an incursion of the signal is
istinct from noise with a significance level of p < 0.05 ( Hellyer et al.,
016 ). Different thresholds were tested, leading to the same qualitative
esults when comparing simulated and empirical data (SM, Section III,
igure S12). 

While in the original approach MOMs were detected using a thresh-
ld derived from activity of models without delayed interactions ( Cabral
t al., 2022 ), we chose instead to threshold timeseries against their own
tandard-deviation. We followed this approach to compare the prop-
rties of MOMs from simulated and empirical results, since the original
ethod does not allow for the detection of MOMs in empirical data. Sim-
6 
lar methods have been applied to the detection of neural avalanches in
EG and MRI data ( Hellyer et al., 2016 ; Sorrentino et al., 2021 ). 

To quantify the properties of MOMs, similarly to ( Cabral et al.,
022 ), we use of the following metrics: 

1. Size: number of areas with amplitude higher than threshold at a
given point in time 

2. Duration: continuous time interval during which an amplitude time-
series is higher than threshold 

Furthermore, MOM sizes and durations from empirical data were
oncatenated across subjects to compute empirical distributions against
hich simulated data can be compared. 

.8.6. Modality-specific functional networks 

To assess the ability of models to represent FC within relevant func-
ional modules, or sub-networks, across modalities, we first detected
uch modules in empirical data. To do that, we detected modules from
mpirical FC averaged across subjects by using a clustering algorithm.
n short, for a pre-determined number of clusters, we applied a k-means
lustering 200 times on empirical FC and built an association matrix
here each entry 𝐴 𝑖𝑗 represents the proportion runs in which nodes i
nd j were clustered together. We then applied k-means clustering again
n the association matrix to detect modules or functional sub-networks.
o choose the appropriate number of clusters for each signal modality
e detected local minima in the cluster inertia (sum of square distances

o cluster centroid) as a function of the number of clusters. Therefore,
e obtained 6 networks for fMRI, 4 for MEG- 𝜃, 5 for MEG- 𝛼 and 5 for
EG- 𝛽 (SM, Section III, Figure S14). To evaluate model performance

n the representation of the previously obtained functional networks,
e took FC within each sub-network for simulated and empirical data
nd computed the correlation coefficient between the upper triangular
arts of both matrices. In addition, we performed the same analysis for
etween-network connectivity, by computing the correlation coefficient
etween simulated and empirical FC between nodes belonging to each
air of networks detected through the clustering algorithm defined pre-
iously. 

. Results 

To explore the spontaneous dynamics observed in resting- state fMRI
nd MEG data from healthy individuals, we used two generative brain
etwork models of varying realism: the Stuart Landau (SL) model –
ased on a system of delayed coupled oscillators, and the extended Wil-
on and Cowan (WC) model – based on a system of coupled excitatory
nd inhibitory neural populations including delays and homoeostatic
nhibitory plasticity. We investigate three key features of the brain:
unctional connectivity (FC), functional connectivity dynamics (FCD),
nd metastable oscillatory modes (MOM) size. Fig. 1 shows the overall
ipeline. 

FC refers to the synchronised activity between different regions of
he brain. FCD, on the other hand, refers to changes in this connectiv-
ty over time, and can help to elucidate how these networks interact
nd evolve over different timescales. Finally, we also examine the size
f MOMs, which are patterns of activity that persist for some time be-
ore transitioning into a different pattern ( Cabral et al., 2022 ). To better
nderstand MOMs, we provide a detailed figure that illustrates their
efinition and significance ( Fig. 2 ). 

.1. Impact of parametrisation on models’ performance 

We assessed the models’ performance in explaining FC, FCD, and
OM size ( Fig. 3 ). Both models demonstrate comparable performance

n representing FC for individual modalities, with the key difference
eing that, while the WC performance is most dependant on conduc-
ion delays, the SL parameter space is instead shaped by the presence



F. Castaldo, F. Páscoa dos Santos, R.C. Timms et al. NeuroImage 277 (2023) 120236 

Fig. 1. Pipeline overview. a. To build our structural connectivity (SC) we use averaged diffusion tensor imaging (DTI), generated by delineating the white matter 
fibres orientation of 32 healthy subjects and a cortical parcellation (AAL) for partitioning the cortex into 78 Region of Interests (ROIs). In the final SC graph, each 
ROI becomes a node and fibres become edges. b. We use this connectome to inform both phenomenological models. Both models are characterised by non-linear 
differential equations, whose parameters are tuned according to physiological plausibility to generate the oscillatory patterns observed empirically. Building on 
previous findings, the intrinsic frequency of all units is set at 𝜔 = 40 Hz and each unit is perturbed with uncorrelated white noise for both models ( Cabral et al., 2022 ; 
Deco et al., 2009 ). In this study, we optimised two global parameters; namely, the coupling strength and the mean conduction delay, which were varied over specific 
ranges to best explain the empirical data features. For each combination of these two parameters, the models generate an oscillatory pattern. To create a BOLD signal 
from our simulations, a forward hemodynamic model is implemented, while we do not apply any additional steps to represent the simulated MEG signals. c. Both 
simulated and empirical signals follow the same pre-processing and analysis steps before being compared: for each combination of global parameters, we compute 
and compare the models’ and empirical functional connectivity, functional connectivity dynamics and properties of metastable oscillatory modes (see Methods for 
details). 
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f a delay-coupling interaction. In terms of FCD, the WC model per-
orms well across all modalities, particularly BOLD, while the SL model
xhibits limited capability. Regarding MOM size, both models perform
easonably well, although the SL model is not able to accurately mimic
OLD MOMs. Notably, delays played a significant role in both models,
articularly for the SL model in representing MOMs accurately ( Fig. 3f ).
 similar effect is also observed in the WC model, especially for higher

requency MOMs ( Fig. 3c ). Besides MOM size distributions, we also anal-
sed model performance in approximating MOM durations, that is how
ong the network is engaged in a given MOM (SM, Section III, Fig-
re S10). Both models can approximate the distribution of MOM du-
ations across modalities. Importantly, empirical MOMs have a charac-
eristic duration specific to each modality and progressively shortened
or higher frequency bands. 

Specifically, our study shows that delays impact signal features dif-
erently. In the WC model, delays have a limited fitting range, and there
s a higher tolerance for global coupling due to homoeostatic plasticity.
onversely, the SL model exhibits an interaction between coupling and
elays, with a wider delay range that narrows as frequency increases. 

Interestingly, a region of parameter space in the WC model allows
imulated haemodynamic patterns to approximate empirical patterns
ithout delays (MD WC = 0 ms, 3 < K WC < 5) ( Figs. 3a -c, i), aligning with

MRI literature ( Deco et al., 2017 ). However, it should be noted that
hen accounting for local dynamics with a higher intrinsic frequency

i.e., MEG), delays have been shown to induce much richer and more re-
listic dynamics ( Cabral et al., 2014 ; Deco et al., 2017 ). This observation
eld for both models ( Fig. 3a -c, ii). 

While the WC model has a mechanism that can regulate local dy-
amics — and ensure brain areas are poised at a point where they can
ptimally respond to perturbations — the SL model relies solely on the
nteraction between coupling and delays to reproduce these dynamics.
his suggests that the WC model’s inclusion of E-I homoeostasis facil-

tated more efficient recruitment of local dynamics, allowing for bet-
er propagation of relevant spatiotemporal patterns of network activity,
hich most likely contributed to the model’s improved performance in
7 
eproducing BOLD FCD. In addition, the contribution of local E-I bal-
nce, especially for the emergence of global dynamics, is highlighted
y the fact that the WC model without plasticity does not achieve sat-
sfactory performance in approximating empirical features. While FCD
istributions can be matched in certain regions of the parameter space,
specially for MEG, they do not co-occur with an accurate representa-
ion of FC. The most substantial effect of not accounting for E-I balance
s observed for MOM size distributions, suggesting a particular relevance
f local E-I balance for the occurrence of empirical-like oscillatory dy-
amics (SM, Section III, Figure S6). 

Having demonstrated the presence of E-I balancing mechanism on
etwork dynamics, we explore the effect of varying the target firing
ate. This identifies the “target ” (i.e., setpoint) homoeostatic mecha-
isms adapt towards. Generally, the target firing rate is a local param-
ter that plays a crucial role in allowing for a multiscale exploration of
arge-scale networks. By altering the WC model’s target firing rate, we
an reproduce network responses and the emergence of complex global
ynamics from local interactions. In this work, we explore different tar-
et firing rates ( ϱ= 0.07, 0.14, 0.28) (SM, Section III, Figure S7). Our
esults suggest that the lowest target firing rate ( ϱ= 0.07) is insufficient
or fitting our features effectively. Increasing the rate to 0.14 approaches
ptimal performance ( ϱ= 0.22) without reaching it, and for ϱ= 0.28, the
oodness of fit decreases, particularly for MOM size distributions, but
he model still fits FC and FCD. 

.2. Comparing models’ performance in simultaneously representing 

mpirical features 

In this section, we investigate the ability of the two models to con-
urrently approximate all three features (FC, FCD and MOM sizes) for
ach of the four signal modalities via cross-feature fitting. The analy-
is evaluates the model’s performance in representing the features by
omparing empirical and simulated data under specific conditions: FC
orrelation > 0.4, KS distance between FCD distributions < 0.3 and KS
istance between MOM size distributions < 0.3 ( Fig. 4 ). 
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Fig. 2. Capturing metastable oscillatory brain activity: a graphical representation. a. Identifying a metastable oscillatory mode within a brain signal: we first filter the 
timeseries for specific frequency bands, followed by calculating the amplitude envelope (Hilbert envelopes) by determining the absolute value of the Hilbert transform 

of timeseries from each individual area. Subsequently, the Hilbert envelopes are Z-scored, and a threshold of 2 is applied for detecting Metastable Oscillatory Modes 
(MOMs) – illustrated by the blue shaded area (refer to Methods for further details). b. An example of MOM across 78 cortical areas, organised in time and space. Each 
mode showcases a distinct topology, as depicted by the colour-coded representation in the bottom right corner. 
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For fMRI signals, the WC model approximates all three features
ithin the performance criteria in a region of short delays (3–4 ms)
nd moderate to high coupling. This coupling range is linked to the role
f E-I homoeostasis in regulating local dynamics to avoid saturation of
ocal populations from high levels of incoming excitation. The SL model,
n the other hand, fails to achieve satisfactory performance across all
eatures: there is no region in the parameter space where all three can
e represented to the required level of performance. It is true that in-
reasing global coupling generally improves the model performance,
specially for FC, but FCD and MOMs fitting remains suboptimal. The
ack of empirical-like spatiotemporal dynamics of BOLD signals in the
L model indicates the importance of regulatory mechanisms for local
ynamics, such as E-I homoeostasis, for slow dynamics. Additionally,
or such slow fluctuations, conduction delays do not play a significant
ole in model performance, likely due to the diffuse nature of coupling
n the SL model, which is determined by phase relations between local
scillations. 

Both models struggle to achieve optimal performance in the MEG
heta frequency band, possibly due to the inherent noisiness of the em-
irical signals. The results show that the WC model performs worse than
n the other frequency bands, with no overlap between optimal regions
or theta-band MEG signals. Although there is still a wide region where
ynamics can be reasonably fitted in terms of both FCD and MOM size,
he same is not valid for FC. In contrast, the SL model shows relevant
atterns in a wide region of the parameter space in at least two of the
8 
eatures of interest, albeit with an overlap only in a narrow region of
igh coupling and short delays. 

The optimal region for fitting dynamics within the MEG alpha fre-
uency band varies by model. For the WC model, the optimal region
ncompasses a broad range of couplings, with a concentration around
hort delays (3–4 ms). This is due to the overlap between regions of
ptimal fit for FC (which is narrower) and dynamics (which spans a
arger range of couplings and delays). Conversely, the SL model’s op-
imal region is smaller and concentrated around short delays and high
ouplings, reflecting the increased role of conduction delays for phase
nteractions. 

Lastly, in the MEG beta frequency band, no overlap exists between
he region of optimal fit for FC and dynamics. The dynamics are partic-
larly poor in the optimal FC region, leading to a single optimal point
hat is essentially random, located within the overall region where FCD
nd MOM sizes are well approximated. In contrast, the SL model ad-
eres to the principles observed in lower frequency bands, with a small
egion of overlap between the optimal regions of each feature found for
igh coupling and fast delays. 

Interestingly, the parameters corresponding to optimal fitting across
odalities and models tend to fall within a region associated with mod-

rate synchrony and high metastability (SM, Section II, Figure S5). These
esults follow previous works ( Cabral et al., 2022 ; Deco et al., 2017 )
uggesting that metastable brain dynamics are relevant to support the
patiotemporal patterns of activity observed in empirical data. Addi-
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Fig. 3. Unveiling frequency-specific connectivity and dynamic spatiotemporal patterns in model network parameter space. (a,d). Model performance in explaining 
empirical BOLD fMRI and MEG static connectivity measures for the WC model (a) and SL model (d). i) Pearson correlation between BOLD fMRI FC (averaged across 
99 HCP participants) and simulated FC for each pair of parameters (Mean Delay and Global Coupling). ii) Pearson correlation between MEG Hilbert envelope FC 
(averaged across 89 HCP participants) and simulated Hilbert envelope FC for each pair of parameters, in theta [4–8 Hz] (left), alpha [8–13 Hz] (middle), beta 
[13–30 Hz] (right). (b,e) Model performance in representing empirical BOLD fMRI and MEG dynamical connectivity measures for the WC model (b) and SL model 
(e). i) Kolmogorov-Smirnov (KS) distance between empirical BOLD fMRI FCD histograms and simulated FCD histograms for each pair of parameters. ii) KS distance 
between empirical Hilbert envelope MEG FCD histograms and simulated Hilbert envelope FCD histograms for each pair of parameters, for theta ( left ), alpha ( middle ), 
beta ( right ). (c,f). Model performance in representing empirical BOLD fMRI and MEG MOM size – that is how many areas engage in a metastable mode for the WC 
model (c) and SL model (f). i)KS distance between empirical BOLD fMRI MOM size distribution and simulated MOM size distribution for each pair of parameters 
for WC and SL model. ii) Kolmogorov-Smirnov (KS) distance between empirical MEG MOM size distribution and simulated MOM size distribution for each pair of 
parameters, for theta ( left ), alpha ( middle ), beta ( right ) frequency bands. 

9 
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Fig. 4. Ability of the models in simultaneously explaining connectivity and dynamic spatiotemporal features. The selected model parameter combinations for fMRI 
and MEG indicate the model working points (red stars), chosen through simultaneous optimisation for the representation of empirical FC, FCD and MOMs’ size, as 
described in the Methods section. 
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ionally, when measuring the global peak frequency, the models show a
ifferent behaviour across parameters. However, both achieve the high-
st performance in a region of frequency suppression (SM, Section II,
igure S5). 

Overall, our analysis unveils crucial insights into the interplay be-
ween E-I homoeostasis and delays in modelling network dynamics.
pecifically, we find that E-I homoeostasis is essential for approximating
patiotemporal dynamics, especially of slow fluctuations, but also ben-
fits fast oscillations. Moreover, delays are relevant for both models,
ut in different ways. In the SL model, no relevant feature of MEG sig-
als can emerge without delays, and delays become more crucial as we
ove towards faster frequencies. On the other hand, in the WC model,

he overlap between the optimal regions for FC and dynamics occurs in
 narrow range of delays (3–4 ms). Furthermore, coupling is less impor-
ant in the WC model due to the role of E-I homoeostasis in maintain-
ng a balance between excitation and inhibition. These findings suggest
hat understanding the interplay between E-I homoeostasis and delays
s critical for modelling large-scale network dynamics across different
requencies and modalities. 

Consequently, we identify optimal points for cross-feature represen-
ation of each of the modalities of interest (see Methods and Figure S4).
ig. 5 shows the resulting FC matrices, FCD, and MOM size distributions.

With respect to FC, all models achieve a reasonable approximation
f FC patterns at the optimal points, with most modalities achieving a
erformance of at least 0.4. Furthermore, both models maintain a fair
pproximation of network dynamics at this performance level. For FCD,
e observe a high proportion of correlations close to 0 for theta-band
CD in empirical data, indicating difficulty detecting transient FC pat-
erns across time, which can explain the poorer model performance in
his frequency band. Interestingly, the WC model’s simulated distribu-
ion is biased towards higher values, similarly to other frequency bands.

In terms of MOM size distributions, while empirical distributions for
OLD signals lack scale-free properties observed, for example, in neu-
al avalanches ( Sorrentino et al., 2021 ), there is still no characteristic
ize (that is, a peak in the size distribution). Conversely, for MEG signals
cross frequency bands, empirical MOMs distributions have a character-
10 
stic size of around 7–9 areas. The WC model reveals no characteristic
ize in slow dynamics (i.e., BOLD fMRI), with a more pronounced char-
cteristic size for higher frequencies. Furthermore, while we focus on
he assessment of the simultaneous emergence of all the relevant fea-
ures in our models, it is important to stress that, when optimised for
ny given feature in isolation, both models can generally attain consid-
rably higher levels of performance (SM, Table S1). 

Assessing the impact of integrating delays, quantitative results for
ull-delay scenarios are presented ( Table 1 ). Interestingly, the role of
elays becomes more evident when optimising individual features (SM,
ection III, Table S1-S2) Table 2 . 

.3. Comparing models’ performance in simultaneously representing brain 

ignals 

To summarise both models’ ability to replicate connectivity and spa-
iotemporal fMRI/MEG patterns, we perform a cross-modality analysis
o search for a region of conjunction ( Fig. 6 ). 

In terms of FC, the WC model requires a specific range of delays to
t FC patterns across modalities, limiting overlap regions. In contrast,
he SL model performs better in reproducing empirical FC across modal-
ties, with a broader range of parameter space for adequate FC in each
odality. The SL model’s optimal parameters lie between 1 and 4 ms and
igh couplings, where cross-modality performance aligns. However, no
oint in either model’s parameter space accurately represents FC across
ll modalities. 

For FCD, the SL model performs considerably worse in the cross-
odality analysis, with no point in the parameter space performing well

or more than two modalities simultaneously. Conversely, the WC model
xhibits a wide region of the parameter space where FCD fits reason-
bly across modalities, especially with increased global coupling and
ean delays. This result suggests that the WC model’s local dynamics

re regulated towards a common target across the brain, through E-I ho-
oeostasis, which renders its dynamics more robust to changes in global
arameters. 
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Fig. 5. Optimal model performance in simultaneously capturing static and dynamic features: a comparative analysis of Wilson-Cowan and Stuart landau model in 
relation to empirical fMRI and MEG data. a. Empirical and simulated fMRI BOLD and MEG FC for 78 AAL cortical brain areas in the optimal points for the WC model. 
i) The selected optimal parameters for BOLD fMRI are C = 0.780, MD = 3 ms, with correlation of cc = 0.430. ii) The selected WC parameters for MEG are C = 1.183, 
MD = 3 ms for theta; C = 0.344, MD = 3 ms for alpha; C = 2.19, MD = 8 ms for beta with correlation values of cc 𝜃 = 0.414, cc 𝛼 = 0.424, cc 𝛽 = 0.401. b. Empirical and 
simulated fMRI BOLD and MEG FCD distribution in the optimal point for the WC model. i) The optimal parameters for BOLD fMRI are C = 0.780, MD = 3 ms, with 
ks-distance value of ks = 0.094. ii) The optimal parameters for MEG are C = 1.183, MD = 3 ms for theta; C = 0.344, MD = 3 ms for alpha; C = 2.19, MD = 8 ms for beta 
with ks-distance values of ks 𝜃 = 0.550, ks 𝛼 = 0.123, ks 𝛽 = 0.221. c. Empirical and simulated BOLD fMRI and MEG MOM size distribution in the optimal point for the 
WC model. i) The optimal parameters for BOLD fMRI are C = 0.780, MD = 3 ms, with ks-distance value of ks = 0.018. ii) The optimal parameters for MEG are C = 1.183, 
MD = 3 ms for theta; C = 0.344, MD = 3 ms for alpha; C = 2.19, MD = 8 ms for beta with ks-distance values of ks 𝜃 = 0.118, ks 𝛼 = 0.120, ks 𝛽 = 0.032. d. Empirical and 
simulated fMRI BOLD and MEG FC in the optimal points for the SL model. i) The selected optimal parameters for BOLD fMRI are C = 1194.16, MD = 5 ms, with 
correlation of cc = 0.469. ii) The selected optimal WC parameters for MEG are C = 711.32 MD = 2 ms for theta; C = 711.32, MD = 4 ms for alpha; C = 252.4, MD = 2 ms 
for beta with correlation values of cc 𝜃 = 0.415, cc 𝛼 = 0.471, cc 𝛽 = 0.454. e. Empirical and simulated fMRI BOLD and MEG FCD distribution in the optimal point for the 
SL model. i) The optimal parameters for BOLD fMRI are C = 1194.16, MD = 5 ms, with ks-distance value of ks = 0.489. ii) The optimal points for MEG are C = 711.32, 
MD = 2 ms for theta; C = 711.32, MD = 4 ms for alpha; C = 252.4, MD = 2 ms for beta with ks distance values of ks 𝜃 = 0.220, ks 𝛼 = 0.078, ks 𝛽 = 0.127. f. Empirical and 
simulated BOLD fMRI and MEG MOM size distribution in the optimal point for the SL model. i) The optimal parameters for BOLD fMRI are C = 1194.16, MD = 5 ms, 
with ks-distance value of ks = 0.193. ii) The optimal points for MEG are C = 711.32, MD = 2 ms for theta; C = 711.32, MD = 4 ms for alpha; C = 252.4, MD = 2 ms for 
beta with ks distance values of ks 𝜃 = 0.026, ks 𝛼 = 0.149, ks 𝛽 = 0.204. 
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Table 2 

Performance values, optimised for FC, FCD and MOMs size. a. Performance values in presence of delays. b. Performance values in absence of delays. Note that 
for Pearson correlation a greater value corresponds to a better fit whereas for KS distance it is the opposite. 

a. 
Best fit with delays, optimised across features 
(FC) 

Best fit with delays, optimised across features 
(FCD) 

Best fit with delays, optimised across features 
(MOM size) 

fMRI MEG 𝜃 MEG 𝛼 MEG 𝛽 fMRI MEG 𝜃 MEG 𝛼 MEG 𝛽 fMRI MEG 𝜃 MEG 𝛼 MEG 𝛽

WC 0.430 0.414 0.424 0.401 0.094 0.550 0.123 0.221 0.018 0.118 0.120 0.032 
SL 0.469 0.415 0.471 0.454 0.454 0.220 0.078 0.127 0.193 0.026 0.149 0.204 

b. Best fit without delays, optimised across features 
(FC) 

Best fit without delays, optimised across features 
(FCD) 

Best fit without delays, optimised across features 
(MOM size) 

fMRI MEG 𝜃 MEG 𝛼 MEG 𝛽 fMRI MEG 𝜃 MEG 𝛼 MEG 𝛽 fMRI MEG 𝜃 MEG 𝛼 MEG 𝛽

WC 0.419 0.246 0.290 0.258 0.268 0.478 0.225 0.152 0.084 0.074 0.134 0.462 
SL 0.458 0.165 0.267 0.460 0.584 0.366 0.735 0.126 0.205 1.000 1.000 1.000 

Fig. 6. Ability of the models in explaining connectivity and dynamic spatiotemporal features across modalities. Agreement plots indicating the number of modalities 
(BOLD, MEG theta, MEG alpha, MEG beta) with correlation between empirical and simulated FC above 0.4 and KS distance below 0.3 (FCD and MOM size) for 
Wilson and Cowan and Stuart Landau model. 
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Regarding MOM size, both models perform relatively well, still with
ifferences in behaviour. The WC model approximates MOM size dis-
ributions across modalities for a broad range of parameters, and this
egion becomes wider as the global couplings and delays increase. In
ontrast, the SL model depends on global coupling for determining the
ize of MOMs across modalities. This result seems to contradict the find-
ngs of ( Cabral et al., 2022 ), where delays were shown to play an impor-
ant role in the emergence of MOMs. Nevertheless, it is essential to note
hat the threshold for detecting MOMs in Cabral and Castaldo’s study
as obtained from a point in the parameter space without delayed in-

eractions, while our MOM detection criterion involves comparing in-
tantaneous fluctuations with the level of variability of the signal itself.
herefore, given that local dynamics are essential in determining how
odes can engage in network events, our conception of MOMs is more
ependant on the interplay between local and global dynamics and less
irectly on the presence of delayed interactions. However, the impor-
ance of delays is still evident in our results, as MOM-like dynamics can
nly emerge from the SL model with delays. 
12 
Overall, both models perform similarly in fitting FC across modali-
ies, but the WC model holds a clear advantage in spatiotemporal and
scillatory dynamics, likely due to the homoeostatic effect of E-I bal-
nce, which transverses the local scale into global dynamics. 

.4. Functionally relevant sub-networks 

In the previous results section, we discovered both models’ unsat-
sfactory performance in representing FC across modalities. We further
nvestigate by measuring their performance in fitting FC sub-networks,
dentifying sub-networks from empirical data using a clustering method
n averaged FC matrices (see Methods). 

Empirical data-derived sub-networks analysis focused on six clus-
ers of connectivity in the BOLD data, which are remarkably similar
o the canonical resting-state networks (RSNs) ( Lee et al., 2013 ; Power
t al., 2011 ). For example, networks 1 and 2 correspond to visual and
ensorimotor RSNs, respectively, while networks 4 and 6 relate to de-
ault mode and limbic networks, respectively. The sub-networks’ sim-
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Fig. 7. Assessing frequency-specific network correspondence between empirical and simulated functional connectivity. a. BOLD fMRI Resting state networks obtained 
with k-means clustering following the elbow method to choose the right number of clusters (k). b. MEG Resting state networks obtained with k-means clustering 
following the elbow method to choose the right number of clusters (k), for each frequency of interest. c. Network-wise functional correspondence (Pearson Correlation) 
for empirical and WC simulated data for BOLD fMRI. On its left side, bar plot of the values on the diagonal of the correlation matrix (highlighted in red). d. Network- 
wise functional correspondence for empirical and WC simulated data for MEG in theta (left), alpha (middle) and beta (right) bands (FC normalised between 0 and 1) 
with their correspondent bar plot of the values in the diagonal of the correlation matrix. e. Network-wise functional correspondence for empirical and SL simulated 
data for BOLD fMRI. On its left side, bar plot of the values on the diagonal of the correlation matrix. f. Network-wise functional correspondence for empirical and 
SL simulated data for MEG in theta (left), alpha (middle) and beta (right) bands with their correspondent bar plot of the values in the diagonal of the correlation 
matrix. 
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larity to canonical RSNs suggests that our extraction method is able
o capture the underlying functional architecture of the hemodynamic
ignals. 

MEG networks, however, show no resemblance to canonical RSNs,
ppearing more spatially constrained and less distributed than some of
he canonical RSNs like the default mode network (DMN) or frontopari-
tal network. Specifically, although the number of networks varied for
ll frequency bands, they appear to be distributed along an occipital-
rontal axis with minimal spatial overlap. 

We then evaluate both model’s performance in representing connec-
ivity within and between RSNs from empirical data. To do this, we
se the FC matrices displayed in Fig. 5 . Our analysis indicates that both
odels display similar performance in representing within-network and

etween-network connectivity. This suggests that the issues with func-
ional connectivity in the models are not related to the level of detail in
ocal dynamics or inter-areal communication, but rather to the under-
ying anatomical framework. We discuss this in more detail in the fol-
owing section. Generally, both models perform better in fitting within-
etwork connectivity compared to between-network connectivity. This
s consistent with the modularity of brain structural and functional net-
orks, where connections within networks tend to be stronger than

hose between networks. We observed a similar distribution of perfor-
ance across networks for both models, as shown in the matrices in

ig. 7c -f. However, connections between networks are generally weaker
nd more susceptible to noisy estimates, which can make them more dif-
cult to represent accurately in models. 

To further analyse the models’ performance in representing FC
ithin and between networks, we delve into the details for each modal-

ty. For BOLD, both models perform remarkably poorly in representing
etwork 2 (or sensorimotor), which was also poorly represented in MEG
eta (Network 3). This may be related to the area’s high myelination,
hich is not currently considered in our models ( Paquola and Hong,
023 ). Interestingly, both models performed better in representing more
istributed BOLD fMRI networks (3 and 4) than more localized ones (1,
, and 6). In the context of MEG, the WC model has better performance
n representing between-network connectivity, particularly in theta and
13 
lpha frequencies, while within-network frequency remains similar for
oth models. Another interesting feature, observed in both models but
ore strongly in the SL, was a decrease in performance from more pos-

erior to more anterior regions across frequencies. 
In summary, we observe varying performance depending on the net-

ork and modality. However, no salient differences in FC pattern ap-
roximation exist between models, even at this level of detail, suggest-
ng that the limitations in accurately representing FC are likely related
o the underlying anatomical framework, rather than the level of detail
n local dynamics. 

.5. The role of the connectome 

The repertoire of functional networks lies upon the hidden structural
rchitecture of connections that facilitates hierarchical functional inte-
ration (Park and Friston 2013). Here, we explore the performance of
wo large-scale generative models, with the goal of understanding the
nderlying processes giving rise to coherent large-scale functional net-
orks. Nonetheless, both models have the human DTI-based structural

onnectome as the only empirically derived element. Such models can
lso be understood as a nonlinear system which, taking the connectome
s the input, can be used to evaluate the possible causal mechanisms for
 phenomenon of interest to emerge (i.e., FC patterns). Given the limita-
ions of both models in the representation of empirical FC, particularly
t the level of its subnetworks, we investigate the non-trivial structure-
unction relationship. The magnified correlation between simulated FC
nd SC ( Fig. 8 ) may explain the models’ predictive ability not reaching
igher performance levels. 

More specifically, as shown in Fig. 8c /f, the functional topology pat-
erns appear largely constrained by structure, regardless of the model
mplemented — the relationship between FC and SC remains the same
or both models. Furthermore, relating simulated FC with more detailed
raph properties of the underlying might help elucidate generative pro-
esses in our models that might hinder the representation of relevant FC
atterns (SM, Section IV, Figure S16). For the SL model, structural com-
unicability (reflective the efficiency with which information can be
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Fig. 8. The role of the connectome. a. Scatter plot of empirical BOLD fMRI Functional Connectivity (FC) versus Structural connectivity (SC) with a correlation value 
of cc = 0.33. b. Left - Scatter plot of MEG theta FC versus SC with a correlation value of cc = 0.42. Middle - Scatter plot of MEG alpha FC versus SC with a correlation 
value of cc = 0.39. Right - Scatter plot of MEG beta FC versus SC with a correlation value of cc = 0.44. Brain plots showing the 5% strongest connections of empirical 
FC. c. Scatter plot of simulated WC BOLD fMRI FC versus SC, with a correlation value of cc = 0.53. d. Left - Scatter plot of simulated WC MEG theta FC versus SC, with 
a correlation value of cc = 0.63. Middle - Scatter plot of simulated WC MEG alpha FC versus SC, with a correlation value of cc = 0.50. Right - Scatter plot of simulated 
WC MEG beta FC versus SC, with a correlation value of cc = 0.30. e. Scatter plot of simulated SL BOLD fMRI FC versus SC, with a correlation value of cc = 0.48. f. Left 

- Scatter plot of simulated SL MEG theta FC versus SC, with a correlation value of cc = 0.49. Middle - Scatter plot of simulated SL MEG alpha FC versus SC, with a 
correlation value of cc = 0.46. Right - Scatter plot of simulated SL MEG beta FC versus SC, with a correlation value of cc = 0.42. Brain plots showing the 5% strongest 
connections of simulated FC. 
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ommunicated between two give nodes) ( Estrada et al., 2012 ), appears
o be the most consistent defining factor of simulated FC, highlighting
he role of diffuse interactions in shaping model activity ( Fornito et al.,
016 ). Conversely, for the WC model, the picture is more complex. In
eneral, we observe a stronger correlation between FC and SC, associ-
ted to a high correlation with Euclidean distance between nodes, ei-
her stronger or quantitatively similar to the values in empirical data.
he exception is beta band connectivity, where the highest correlation

s found with communicability. However, we stress the fact that, due
o our cross-feature optimization, the particular working point chosen
or the models is optimised not only for FC, but also dynamics. This is
videnced especially in the beta-band, where the optimal regions do not
verlap significantly, and the chosen point is more optimised for dynam-
cs. Therefore, results in the beta-band should be interpreted with care.
mportantly, these findings are stronger when optimising both models
or FC only (SM, Section IV, Figure S17). To conclude, the SL model is
ostly constrained by the communicability of the underlying SC, while

C in the WC model is more reflective of the weight of structural connec-
ions, including the known exponential decay rule (EDR) of connectivity
ith distance ( Ercsey-Ravasz et al., 2013 ). 

On another note, similar conclusions can be drawn when observ-
ng the topography of the most descriptive spatial patterns of MOMs
SM, Section III, Figure S13). While empirical MOMs reflect the canon-
cal RSNs, in BOLD signals, and the same spatially constrained net-
orks observed for static MEG connectivity across frequency bands,

he same patterns are not observed in simulated data. Conversely, the
OM patterns generated by both models are not as reflective of the

esting-state networks. More specifically, we mainly observe MOMs
hat are spatially constrained across all modalities, where activity is
onfined within a well-defined region of the human cortex (such as
he occipital or temporal lobes). In addition, the measured patterns
or BOLD and all three MEG bands are considerably more similar be-
ween each other than the ones observed in empirical data, suggesting a
trong role of structural connectivity in defining simulated MOMs across
odalities. 
m  

14 
Nonetheless, despite the constraints imposed by SC, realistic
etween-area connections are still a relevant piece in biophysical mod-
ls, since without the right structure (e.g., shuffling SC connections
hile maintaining the distribution of weights and symmetry), there can
e no emergence of function (SM, Section IV, Figure S15). 

. Discussion 

MEG and BOLD signals are believed to reflect two different aspects
f neural activity, occurring at timescales that are orders of magnitude
part. While BOLD signals are thought to represent changes in haemody-
amics ( Hillman, 2014 ) — likely triggered by synaptic transmission, the
ost energy intensive process in the human brain ( Harris et al., 2012 )
, MEG signals reflect changes in magnetic fields created by dipole cur-

ents that flow along neuronal processes ( Lopes da Silva, 2013 ). These
ipole currents depend on dendritic synaptic input ( Lopes da Silva,
013 ) and are, therefore, related to the same processes involved in the
eneration of BOLD signals. Nonetheless, even though both modalities
hare the same neural substrate, large-scale models, to date, are usually
ailored to represent only one modality at a time. A common example
s the practice of tuning the intrinsic frequency of oscillation of local
opulations to the frequencies of interest in the respective modalities
e.g. ∼10 Hz for MEG, < 0.01 Hz for BOLD) ( Abeysuriya et al., 2018 ;
eco et al., 2017 , 2017 ). In this work, we argue that models should
e able to simultaneously generate multiresolution modalities with the
ame underlying generative (neuronal) mechanisms, without tuning pa-
ameters a priori to selectively reproduce features of interest. Combining
ultiresolution multimodal data with large-scale modelling, potentially

llows one to disentangle the generative mechanisms behind brain func-
ion and its dynamical underpinnings from its multiscale expression in
arious measurement modalities. 

Our first step towards cross-modality convergence involves impos-
ng an intrinsic oscillation frequency of ∼40 Hz, in the gamma range.
amma rhythms in the human cortex are believed to be generated by a
yriad of mechanisms, including reciprocal interactions between pyra-
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idal neurons and fast-spiking interneurons ( Buzsáki, 2006 ) ( Buzsáki
nd Wang, 2012 ). Indeed, BOLD signal fluctuations have been hypothe-
ised to emerge from changes in synchrony between gamma-band oscil-
ations ( Deco et al., 2009 ). Moreover, recent findings suggest that func-
ional networks in lower-frequency bands (i.e. theta, alpha and beta)
an be generated through delayed interactions between gamma oscilla-
ors ( Cabral et al., 2022 ). Therefore, multiresolution recordings might
eveal distinct facets of gamma activity, and models with local gamma
scillations might reproduce empirical properties of both BOLD and
EG FC. Our approach extends beyond assessing model performance

cross modalities. Although the field of large-scale modelling has pri-
arily focused on reproducing functional connectivity ( Cabral et al.,
011 ; Coombes, 2005 ; Deco et al., 2008 ; Deco et al., 2013 ; Honey et al.,
007 , 2010 ), research indicates that functional networks are, in fact,
ynamic ( Schirner et al., 2022 ; Vidaurre et al., 2017 ) and that FC dy-
amics are linked to healthy brain function features, such as metasta-
ility ( Deco et al., 2017 ), and might support crucial cognitive processes
 Bonkhoff et al., 2021 ; Filippi et al., 2019 ). In addition, recent results
how network-wide engagement in transient oscillatory modes as an im-
ortant emergent feature of brain networks ( Cabral et al., 2022 ). Con-
equently, we argue that brain network models should reflect not only
tatistical dependencies amongst brain signals (i.e., FC), but also the
ynamics underlying the spontaneous and transient appearance of func-
ional networks. Hence, we examine model performance in representing
ot only FC, but also dynamics (FCD) and transient oscillatory modes
MOMs), exploring the role of properties such as axonal conduction de-
ays and local E-I balance in representing static and dynamic network
eatures. 

.1. Role of delayed interactions 

Conduction delays have been shown to provide a rich dynamic
ramework for the emergence of resting brain oscillations ( Abeysuriya
t al., 2018 ; Cabral et al., 2014 ; Petkoski and Jirsa, 2019 ). Building on
rior research ( Cabral et al., 2022 ), incorporating delays significantly
mproves model performance in explaining empirical MEG static and
ynamic patterns. 

A notable aspect of the SL model in our results is the diminishing role
f delays for the emergence of network features of slower fluctuations.
e posit that the decreased dependence of low-frequency oscillatory

atterns on the mean delay (for the explored range) is related to the ra-
io between oscillations’ period and the delay itself. For instance, while
 10 ms change in the mean delay represents 25% of a beta rhythm cycle
 ∼25 Hz, 40 ms period), the same change accounts for only 0.01% of a
lower BOLD rhythm cycle ( ∼0.01 Hz, 100 s period). Thus, we hypoth-
sise that, for higher frequency bands, changes in conduction velocity
ave a more substantial impact on the ability of regions to synchronise
t those frequencies due to larger phase-relationship alterations. 

On this note, for the WC model, the relevance of delays is evident
cross all the analysed modalities, emphasising their importance for gen-
rating even slow signals, such as BOLD fluctuations, when implement-
ng neural mass models with “synaptic-like ” communication between
odes (i.e., WC models). Accordingly, previous research using similar
odels informed by a macaque connectome ( Deco et al., 2009 ) revealed

hat BOLD signal fluctuations could be generated by transient synchroni-
ation of coupled Wilson-Cowan nodes resonating at 40 Hz. Importantly,
he same model was sensitive to changes in conduction velocity, show-
ng an optimal range of conduction speeds, even without modelling local
-I balance. 

Overall, these results emphasise the importance of delayed inter-
ctions, especially when seeking a unified explanation for static and
ynamic features across various neuroimaging modalities. Within our
ulti-modal framework, founded on underlying interactions between

amma oscillators, it becomes evident that inter-areal conduction plays
 complex and crucial role in the emergence of relevant spatiotemporal
ynamics. 
15 
Our conclusions align with previous modelling results suggesting
hat deficits in the regulation of axonal myelination could significantly
mpact the ability of coupled oscillators to synchronise at high fre-
uencies ( Pajevic et al., 2014 ). Furthermore, the profound importance
f modelling conduction delays was established using Bayesian model
omparison (comparing models with and without delays) at the incep-
ion of dynamic causal modelling for fast, event-related responses as
easured with EEG ( David et al., 2006 ). 

The importance of modelling delays raises questions about their role
n the brain. Our results suggest that conduction delays underscore the
mergence of relevant dynamics, especially when in frequency-specific
scillatory bands (high-frequency in SL, across frequencies for WC).
herefore, it is reasonable to expect axonal conduction velocities to be
recisely structured in the human brain. However, empirical data re-
eal a high level of heterogeneity in the distribution of axonal diam-
ters and levels of myelination, both of which determine conduction
peeds ( Saab and Nave, 2017 ; Sorrentino et al., 2022 ), with complex
nteractions between the two ( Waxman, 1980 ). Moreover, research sug-
ests a dynamical regulation of myelination, at least in sensory systems
 Saab and Nave, 2017 ). We suggest that such heterogeneities, includ-
ng activity-dependant myelination ( Noori et al., 2020 ; Pathak et al.,
022 ), are crucial aspects of computational architectures and message
assing in the brain. Accounting for heterogeneous conduction veloci-
ies could help large-scale models — such as the ones implemented here

to better explain empirical patterns of MEG connectivity, which are
ess clearly constrained by structural connectivity. 

.2. Role of E-I balance 

The well-documented significance of excitatory-inhibitory (E/I) bal-
nce for cortical function ( Dehghani et al., 2016 ; Froemke et al., 2007 ;
áscoa dos Santos et al., 2022 ; Sprekeler, 2017 ; Tao and Poo, 2005 ;
ue et al., 2014 ), and the presence of synaptic plasticity in response to
erturbations and developmental changes ( Ma et al., 2019 ; Turrigiano,
011 ; Turrigiano et al., 1998 ; Vogels et al., 2011 ) underpins the ex-
ended WC approach, building upon established work on neural-mass
odels with excitatory and inhibitory populations ( Abeysuriya et al.,
018 ; Deco et al., 2019 ; Hellyer et al., 2016 ). Furthermore, since our
ortical connectome has a wide range of node degrees (sum of incoming
onnections to a node) — which vary by at least one order of magnitude

nodes receive varying levels of excitatory input. Therefore, through
he process of E-I homoeostasis local dynamics are adapted to such dis-
repancies, allowing cortical areas to maintain their responsiveness to
etwork level events and supporting balanced propagation of activity
 Hellyer et al., 2016 ; Ma et al., 2019 ). Indeed, our results suggest that
eglecting local E-I balance in the WC model strongly affects the mod-
ls’ ability to exhibit empirical-like network dynamics (SM, Section III,
igure S6). The pronounced impact of MOMs underscores the pivotal
ole of local E-I balance in supporting network-wide events, likely by
ptimising the responsiveness of cortical networks at the mesoscale. 

Furthermore, the WC model with plasticity reproduces FCD features
ore robustly than the SL, particularly regarding BOLD signals, which

he SL model fails to replicate. In fact, relevant patterns of BOLD FCD
ould not be observed in the SL model, for any combination of parame-
ers within the explored range. Although the WC model fails to approxi-
ate MEG theta FCD when optimising for all measured features ( Fig. 3),

t performs equitably or better than the SL model when optimising for
CD or MOM sizes individually (SM, Section III, Table S1-S2). More
mportantly, when optimising models across modalities, the WC model
onsistently outperforms the SL by enabling a larger region in the param-
ter space where relevant network dynamics manifest across frequency
ands and signal modalities ( Fig. 6 ). This confirms the pivotal role of
ocal E-I homoeostasis for global dynamics - especially in slow fluctu-
tions - extending its influence beyond the mesoscale and toward the
mergence of global spatiotemporal dynamics. Given the demonstrable
elevance of FCD ( Deco et al., 2017 ) and metastable oscillatory dynam-
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cs ( Cabral et al., 2022 ) for distributed neural processes associated with
igher-order cognition ( Deco et al., 2021 , 2017 ; Filippi et al., 2019 ), we
uggest mesoscale E-I balance as one of the fundamental mechanisms
hat scaffold large-scale brain dynamics. 

.3. Structure-function relationship 

In modelling large-scale brain activity on a structural connectome
ubstrate, it is vital for models to support the emergence of functional
tructures beyond those dictated solely by the structural connectome.
y contrasting the correlation between FC and SC in both empirical and
imulated data, our results show that, while both models can reasonably
pproximate empirical FC (Table 2 and SM, Section III, Table S1), simu-
ated FC is considerably more correlated with SC than what is observed
or empirical data. More specifically, the most defining patterns of func-
ional connectivity, in both models and across modalities, strongly re-
ect the underlying anatomical framework, instead of the particular spa-
ial organisation that we find in empirical data (e.g., strong beta band
onnectivity around the pre-central gyrus) ( Fig. 8 ). More relevantly, our
nalysis reveals the nature of structural constraints imposed by SC in
ach of the models. FC patterns in the WC model are more reflective of
he weights of the underlying SC, and thus also display a clearer rela-
ionship with Euclidean distance between nodes, which is characteristic
f the structural connectome ( Ercsey-Ravasz et al., 2013 ). Conversely,
C in the SL model is strongly correlated with communicability, which
s a metric of the efficiency in communication between two given nodes
 Estrada et al., 2012 ). Since communicability reflects diffusive interac-
ions between nodes ( Fornito et al., 2016 ), we argue that this effect is
ikely a consequence of the implementation of diffusive coupling in the
L model (see Methods). Nonetheless, even though both models show
ifferent structure-function relationships, we argue that the constraints
mposed by structural connectivity on each model affect the approxima-
ion of empirical FC to a comparable degree. 

Two potential, non-exclusive interpretations arise from this result.
irst, both modelling approaches are overly constrained by the struc-
ural connectome, which lacks information about the strength of effec-
ive connectivity and the direction of connectivity (e.g., forwards ver-
us backwards). In addition, research suggests that there are gradients
n microcircuitry organisation, such as asymmetries in laminar-specific
orward and backward connections and recurrent excitation or the dis-
ribution of inhibitory interneurons ( Wang, 2020 ), that reflect the hi-
rarchical organisation of the human cortex ( Felleman and Van Essen,
991 ). Not only is this hierarchical organisation functionally relevant for
rocesses such as perception ( van Vugt et al., 2018 ; Wyss et al., 2006 )
nd memory ( Froudist-Walsh et al., 2021 ), but recent modelling results
how that accounting for these asymmetries improves the reproduction
f FC and FCD, while allowing for the emergence of important (i.e., non-
issipative) features of brain activity, such as ignition dynamics ( Deco
t al., 2021 ). Furthermore, the spatial distribution of such asymmetries
nd variations in synaptic time constants might explain why particular
requency bands are more prominent in certain anatomical regions, as
s the case of beta in the parietal cortex and alpha in the occipital lobe.
ndeed, myelination imaging indicates that these regions include areas
ith the highest myelin content ( Glasser et al., 2016 ; Rowley et al.,
015 ), which could relate to higher conduction speeds ( Saab and Nave,
017 ), favourable to the emergence of relevant functional networks at
hese higher frequencies. Second, structural connections may be under-
stimated using tractography. One example is the limited ability of DTI
o estimate interhemispheric white matter tracts, leading to a difficulty
n reproducing the strong homotopic interhemispheric functional corre-
ations present in fMRI ( Deco et al., 2013 ). Additionally, recent results
how that communication between cortical areas at different frequency
ands has varying degrees of dependence on the underlying anatomy
 Vezoli et al., 2021 ), suggesting that empirical FC reflects processes that
o beyond structure. 
16 
Furthermore, our exploration of model performance in the repre-
entation of FC at the sub-network level ( Fig. 7 ) reveals varying lev-
ls of performance for specific networks. In fMRI, the representation of
etworks associated with visual (Net. 1) and, especially, motor areas
Net. 2) is particularly low. For MEG signals, we found a general de-
rease in performance along the occipital-frontal axis across all three
requency bands. We suggest that both issues can be reflective of the
ack of empirically derived sources of heterogeneity in cortical circuitry.
irst, visual and motor areas are associated with increased myelination
 Glasser et al., 2016 ; Rowley et al., 2015 ), the lack of which could af-
ect model performance in representing these networks. Second, the fact
hat adjustments in microcircuitry across the cortical hierarchy ( Wang,
020 ), such as increased recurrent excitation in more frontal areas, were
ot accounted for might explain the decreased performance for more
rontal networks of MEG FC. Importantly, both models reveal a similar
ehaviour in the representation of FC sub-networks ( Fig. 7 ), suggesting
hat the discussed issues arise from the underlying structural framework,
hich is common to the two models. 

Nonetheless, both models can account for emergent properties of
uman FC not solely captured by structural connectivity. Besides stress-
ng the role of non-linear dynamics and interactions in brain networks,
his further establishes the validity of integrating delayed interactions
n models for the prediction of even static FC ( Cabral et al., 2011 ; Deco
t al., 2009 ). In fact, although there is an established exponential rela-
ionship between connection strength and distance ( Ercsey-Ravasz et al.,
013 ), there are exceptions to this rule, shown to be relevant for large-
cale functional networks ( Deco et al., 2021 ). Therefore, we argue that
he conduction delays between areas enrich models beyond the under-
ying structural framework. Furthermore, although the WC model with
lasticity performed better when reproducing dynamical spatiotempo-
al features (FCD and MOMs), especially for BOLD, its added complexity
id not guarantee a better approximation of functional patterns. This
uggests that models could benefit from the inclusion of more detailed
mpirically-derived information about sources of heterogeneity such as
ocal microcircuitry ( Wang, 2020 ) or myelination ( Boshkovski et al.,
021 ) as discussed above. 

.4. Metastable Oscillatory Modes 

Analysis of recurrent metastable oscillatory modes (MOMs) may elu-
idate the mechanisms behind the functional integration - segregation
elationship ( Friston, 1997 , 2000 ). As shown in recent work ( Cabral
t al., 2022 ), and further validated in the current study, when the cou-
ling is sufficiently strong, the emergent dynamics will start to resemble
he complex and intermittent dynamics observed in neuronal timeseries.
s we further increase the extrinsic coupling of our models, the sys-

em locks into a regime of complete entrainment losing the frequency-
pecific intermittency. 

Our results suggest that self-limiting transient oscillations are also
etectable in signals with spontaneous sustained periodicity, such as
MRI timeseries. This is in line with the notion that synchronisation un-
erscores fMRI correlations ( Lu et al., 2007 ) and the potential of fMRI to
ap neural oscillations ( Lewis et al., 2016 ), suggesting the possible co-

xistence of both transient events and sustained oscillations in the brain
 van Ede et al., 2018 ). 

In this work, we focus on the distributions of MOM sizes (that is,
he number of regions engaged in a MOM at a given point in time) as a
oint of comparison between empirical and simulated data. Importantly,
hile still reflective of network dynamics, this approach differs funda-
entally from FCD since MOM sizes are not directly informative of the

patial topology of transient oscillatory modes, but instead of the statis-
ics of their propagation through the network. Nonetheless, since models
onstrained by a shuffled connectome (while maintaining the same dis-
ribution of weights) are not able to approximate empirical MOM size
istributions, particularly the characteristic sizes of MEG MOMs (SM,
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ection IV, Figure S15), we argue that the statistics observed in empiri-
al data are still informed by the architecture of functional interactions.

Conversely, we perform a similar analysis for MOM durations (i.e.,
ow long the network is engaged in a MOM). In general, model per-
ormance is satisfactory across the parameter space, given that delayed
nteractions are considered for all modalities. This might suggest that the
istribution of MOM durations, and particularly their characteristic val-
es (corresponding to peaks in the probability distribution), are inherent
roperties of how MOMs are extracted from the data. Indeed, higher-
requency MOMs show shorter characteristic durations and, when plot-
ed as the number of cycles, the characteristic duration of MOMs falls
etween 0.5 and 2 cycles for all modalities (SM, Section III, Figure S11).
herefore, MOM size distributions are more closely related to the net-
ork architecture and better evaluate model performance in fitting em-
irical spatiotemporal dynamics. In addition, the topography of empir-
cal MOMs is also reminiscent of general principles of the functional
rganisation of the brain, such as the canonical BOLD fMRI RSNs (SM,
ection III, Figure S13). 

On another note, the relevance of local E-I balance in the emergence
f empirical-like MOM dynamics is evidenced through the deteriora-
ion of performance in the WC model when plasticity is removed (SM,
ection III, Figure S6) and the balanced WC model outperforming the
L in representing MOMs across modalities ( Fig. 3 ). That said, while it
s known that cortical neurons maintain E-I balance through a variety
f homoeostatic mechanisms ( Turrigiano, 2011 ), crucial for regulating
esoscale dynamics ( Ma et al., 2019 ), our results suggest that these bal-

ncing mechanisms might have broader implications on a larger scale,
ffecting micro to macroscale dynamics. Nonetheless, our results do not
etract from the relevance of conduction delays, since they are still re-
uired in the SL model for the generation of MOMs and become increas-
ngly important in the WC model as we move towards higher frequency
ands (both for sizes and durations) ( Cabral et al., 2022 ). Therefore,
e argue that, while it is true that local E-I balance facilitates the oc-

urrence and propagation of MOMs, appropriate inter-areal conduction
elays are nonetheless an essential factor in shaping the patterns of os-
illatory interaction observed in large-scale cortical dynamics. 

On a different note, both models include noise. This may lead to
uestioning if the observed transient stability of oscillatory modes is
enuinely due to intrinsic metastability or rather due to noise-driven
ransitions between multiple stable attractors. However, we underline
hat the properties of the MOMs vary across the parameter space ( Fig. 3 ),
uggesting that the emergence of empirical-like oscillatory transients is
ot solely reliant on noise-driven oscillations but also on the interac-
ion of global parameters and local E-I balance (for the WC model).
urthermore, previous studies have found that at the border between
ynchrony and asynchrony, coupled oscillator systems with heteroge-
eous delays exhibit non-steady order parameters even in the absence
f noise, and the system switches constantly between different coherent
seudo-attractors, never setting in a given attractor ( Lee et al., 2009 ;
iebur et al., 1991 ). 

Given the similar properties of the oscillatory modes observed in sim-
lations in both models and in real data, we keep the term Metastable
scillatory Modes, assuming the universality of this phenomenon to
ore complex models even in the presence of low levels of noise. 

. Limitations and future work 

.1. Averaging (over subjects) 

We used the structural connectome - derived from the average of 32
TI scans - in this work to define the connectivity matrix. These data
ere acquired as part of a study separate from the MEG and fMRI HCP
ata. Averaging over subjects in DTI studies is deemed a necessary step
n order to reduce the effect of signal loss due to changes in local mag-
etic susceptibility, which can lead to the aberrant inferences about dif-
17 
usion direction being estimated and false positives and false negatives
 Damoiseaux and Greicius, 2009 ). 

In effect, we used the average structural connectivity matrix derived
rom one group to reproduce functional data similar to another group.

e suspect that this may have limited our ability to find better correla-
ions between the real and synthetic FCs. This issue suggests a similar
nalysis, in the future, where an individual’s tractography image is used
o predict that subject’s MEG and fMRI features. In order to leverage the
mproved SNR of group-average data while accommodating heterogene-
ty over subjects ( Quinn et al., 2021 ; Wens et al., 2014 ), a hierarchical
odel could be entertained. 

.2. MEG source reconstruction 

Beamformers are a popular method for source reconstruction within
he field of MEG, and have been used in FC studies (e.g. ( Baker et al.,
014 ; Brookes et al., 2011 ; Hipp et al., 2012 ; Liuzzi et al., 2017 ). Often,
hey are chosen because of their ability to suppress sources of interfer-
nce from outside source space ( Boto et al., 2021 ; Cheyne et al., 2007 ;
itvak et al., 2010 ). 

Despite their simplicity and popularity, beamformers are limited in
he sense that they are, fundamentally, a spatial filter and therefore lack
 generative model. This can make comparisons between alternative
ource inversion results non-trivial. Moreover, beamformers are known
o suppress brain areas which exhibit high areas of zero-phase-lag (in-
tantaneous) connections, i.e. correlated sources ( Van Veen et al., 1997 ).
ecent work has shown that using a beamformer to study the default
ode network (DMN) at rest can be pernicious ( Sjøgård et al., 2019 ).
his provides an argument for using a source inversion algorithm with
 full generative (i.e., forward) model which can account for correla-
ions between brain areas in the source space, e.g. CHAMPAGNE ( Owen
t al., 2012 ) or Multiple Sparse Priors (MSPs) ( Friston et al., 2008 ). How-
ver, at the time of writing, MSPs has been primarily optimised for time-
veraged data and cannot readily be applied to resting-state scans. 

An alternative approach - that we could have adopted in this work
 would have been to side-step the ill-posed inverse problem altogether
nd instead focus efforts on maximising the similarity between sensor
evel covariance matrices (or some other statistic) of the simulated and
eal MEG datasets. This would have removed the confound of source
eakage during the model screening process, although we would have
o have accounted for variations in head position and greater levels of
ensor noise which the beamformer implicitly reduces. 

.3. MEG FC and FCD 

In MEG, FC quantifies how the brain organises itself into macroscopic
unctional networks across and within frequency bands (Sadaghiani
t al., 2022). In this work, we use the amplitude-envelope-correlation
AEC) to quantify FC, a metric which assesses the correlation between
he power envelope of two neural signals from different brain regions.
ere, MEG AEC is measured as the correlation of the slow temporal
uctuations (envelope) of the orthogonalized MEG signals (for a com-
rehensive review, refer to (O’Neill et al., 2018). This method has an es-
ablished reliability and reproducibility in FC research ( Colclough et al.,
015 ). It has been used in biophysical generative modelling ( Abeysuriya
t al., 2018 ; Cabral et al., 2022 , 2014 ; Schirner et al., 2022 ), and has
njoyed widespread use within the M/EEG FC literature ( Brookes et al.,
011 ). This metric of FC enables us to compare outcomes amongst
iverse large-scale modelling approaches, making it a suitable bench-
ark for comparing the number of connections detected across models

nd modalities. Moreover, we sought a method that has proven reli-
ble for extracting a variety of features measured in our work, such
s FC ( Colclough et al., 2015 ), FCD ( Liuzzi et al., 2019 ) and MOMs
 Cabral et al., 2022 ). Additionally, studies examining MEG FC and its
elationship to fMRI (de Pasquale et al., 2010; Liu et al., 2010) have
oth employed amplitude envelope-based measurements. This evidence
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urther bolstered our choice of AEC methodology. Whilst reliable, the
EC method is blind to non-linear interactions between source envelope

imeseries, as well as phase information. The question of whether incor-
orating this type of information enhances the robustness of connectiv-
ty measures and model performance remains a subject of debate. Some
tudies have demonstrated the benefits of utilising measures such as
ulti-scale Rank-Vector Entropy ( Godfrey and Singh, 2021 ) and phase-

ased measures ( Abeysuriya et al., 2018 ), suggesting that these methods
an provide valuable additional information. However, a recent analyt-
cal study argues that the AEC measure contains highly physiologically
elevant information about the co-occurrence of bursts that might be
issed when using phase-based measures alone ( Hindriks and Tewarie,
023 ). This implies that the AEC method has unique merits in capturing
ertain aspects of brain connectivity that cannot be fully represented by
hase-based measures. 

In the context of FCD, while the methodology for its computation
s more established in fMRI research ( Deco et al., 2017 , 2021 , 2017 ;
ong et al., 2021 ), the same cannot be said for MEG signals, which not
nly display faster fluctuations, but also a wider range of timescales
ver which they occur ( Liuzzi et al., 2019 ). With that in mind, two dif-
erent approaches can be taken when measuring MEG FCD. The first is
o focus on the slow fluctuations in amplitude envelopes, as in recent
tudies ( Portoles et al., 2022 ), which means one might disregard faster
ynamics. This approach has been previously applied to compare em-
irical and simulated data ( Portoles et al., 2022 ), and offers a way of
armonising the timescale used to characterise data across frequency
ands and between BOLD and MEG signals. The second approach is
o use adaptive windows, not only dependant on the modality of in-
erest, but also dynamically changing in time, as suggested by ( Liuzzi
t al., 2019 ). This allows one to capture FC dynamics at a wider range
f timescales with fewer a-priori assumptions, but results become more
ifficult to compare across frequency bands and modalities. In our work,
e opted for the first choice, given recent papers where the same tech-
ique was used for model validation ( Portoles et al., 2022 ), and to en-
ure that the timescales that we characterised were closer to the more
stablished fMRI FCD. Our results show that the distributions of alpha
nd beta FCD have a similar shape to BOLD ( Fig. 5 ), suggesting that
hey reflect the same underlying network dynamics, albeit supported
y substantially different rhythms. Conversely, empirical theta FCD dis-
ributions were closer to what would be expected from a noisy signal
that is, centred around zero, with small peaks over higher correlations
ue to the use of overlapping windows). This is particularly evident in
he WC model, where — similarly to the other frequency bands — FCD
orrelations are biased towards correlations higher than zero. 

Numerous methods have been employed when investigating func-
ionally relevant sub-networks in resting state activity. Notably, seed-
ased methods ( Fox et al., 2006 ; Greicius et al., 2003 ; Vincent et al.,
008 ), independent components analysis (ICA) ( Brookes et al., 2011 ;
ee et al., 2012 ), graph methods ( Power et al., 2011 ), k-means cluster-
ng algorithm ( Golland et al., 2008 ; Jia et al., 2022 ), and fuzzy-c-means
lustering ( Lee et al., 2012 ) have been widely utilised. However, in the
ontext of MEG sub-networks, the use of the k-means clustering algo-
ithm for detecting resting-state networks (RSNs) has certain limitations.
hile k-means is a widely used unsupervised learning technique with

iverse applications, it necessitates the predefinition of the number of
lusters, is sensitive to the initial placement of cluster centroids, and as-
umes spherical and equally sized clusters. These assumptions may not
lways hold for RSNs. To address these issues, we have implemented
n adapted version of the k-means clustering algorithm. We utilise the
lbow method to define the appropriate number of clusters (k) without
aking a priori assumptions, and we construct an association matrix

ased on 200 runs to mitigate the impact of initial conditions. 
It is important to note that the k-means clustering algorithm lacks

emporal information, as it solely operates on spatial patterns and does
ot inherently consider the temporal dynamics of RSNs. In contrast, ICA
akes into account the dynamics of RSNs, making it a suitable alternative
18 
ethod for further validation. However, our analysis primarily focuses
n examining the performance of both models in replicating static FC.
hus, we have chosen a method to derive sub-networks based on static
C patterns, without considering the network dynamics captured by ICA.

.4. Generation of hemodynamic and electrophysiological data 

One of the main limitations of our modelling approaches is the fact
hat, although we employ a generative approach to transition from neu-
onal activity (e.g. LFPs or population firing rates) to BOLD signals
 Buxton et al., 1998 ; Friston et al., 2000 ), we do not adopt a similar
trategy for generating MEG signals. Instead, we assume that the signals
enerated by our models can be directly mapped to source-reconstructed
EG. However, the MEG/EEG inverse problem is insoluble, and all

ource inversion algorithms (beamformers, minimum norm etc.) impose
ome form of assumption. In the context of fMRI, hemodynamic models
eflect the physiological relationship between population activity and
he blood oxygenation measured through BOLD signals and those have
een extensively validated ( Buxton et al., 1998 ; Friston et al., 2000 ;
andwerker et al., 2012 ). Therefore, our results would benefit from a
omparable generative model to compute the source dipole currents de-
ected via MEG ( Lopes da Silva, 2013 ). Nonetheless, since both our mod-
ls can still reveal empirically relevant spatiotemporal patterns of MEG
ignals in a comparable manner, one might argue that this issue does
ot undermine our conclusions. 

Another relevant point is that, in the context of modelling MEG sig-
als, we did not implement the leakage correction algorithm, mainly to
ue to the effective absence of source leakage in the models. Previous
odelling studies have applied this preprocessing step to simulated data

 Abeysuriya et al., 2018 ; Hadida et al., 2018 ), particularly when using
he Wilson-Cowan model for local dynamics, arguing it ensures com-
arability between simulated and empirical results - since true zero-lag
nteractions may also be removed from empirical data. Conversely, other
tudies based on coupled oscillators did not generally apply orthogonal-
sation to simulated data (( Cabral et al., 2022 , 2014 ; Deco et al., 2017 ).
hat said, each model relies differently on true zero-lag synchronization
or the emergence of global dynamics. For the SL model, we generally
bserve short latency interactions, with a notable decay in the distribu-
ion as we move towards longer lags. In contrast, the signals generated
ith the WC model present a more complex landscape, with a significant

ncidence of correlations with longer latencies ( > 40 ms) and distribu-
ions that are either bimodal or long-tailed (Supplementary Figure S18-
19). For this reason, we have opted to not perform leakage correction
n simulated data to not affect the comparability of both models used
n this work. Nonetheless, we suggest that future modelling endeavours
hould investigate the role of zero-lag interactions in supporting net-
ork connectivity and dynamics of different modelling approaches. 

.5. Subcortical structures 

In this work, network dynamics are modelled without accounting
or the influence of subcortical nodes. The first reason is the inadequate
ubcortical resolution offered by common atlases used in our modelling
i.e., AAL, Schaefer, Desikan-Killiany). The second is related to the dif-
culty in modelling the dynamics of some subcortical structures using
he SL and WC models, which either consider nodes as oscillators or
s networks of reciprocally coupled excitatory and inhibitory neurons,
uitable for cortical dynamics. While this approach could still be valid
or structures such as the hippocampus ( Kandel, 2021 ), it would fail to
ccurately represent the dynamics of areas such as the striatum, which
s mainly composed of inhibitory neurons ( Lanciego et al., 2012 ), or the
erebellum, which has a distinct microcircuitry ( Voogd and Glickstein,
998 ). The omission of subcortical structures could impact our results,
or example by disregarding the influence of widespread thalamocorti-
al projections in the establishment of alpha rhythms ( Halgren et al.,
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019 ; Roux et al., 2013 ) and in supporting interhemispheric connectiv-
ty ( Teipel et al., 2009 ; Wang et al., 2019 ). Nonetheless, such approaches
ould require more complex models with multilevel structures ( Meier

t al., 2022 ). See ( van Wijk et al., 2018 ), for a fuller discussion of this
ssue in neural mass modelling. 

.6. E-I homoeostasis 

Regarding the implementation of E-I homoeostasis, we modelled E-
 balance through inhibitory plasticity ( Abeysuriya et al., 2018 ; Deco
t al., 2019 ; Deco et al., 2021 ; Vogels et al., 2011 ). While research shows
he importance of inhibitory connections for the maintenance of balance
 Luz and Shamir, 2012 ; Vogels et al., 2013 , 2011 ), there are other mech-
nisms in place such as scaling of recurrent excitation ( Turrigiano et al.,
998 ) or regulation of intrinsic excitability of excitatory populations
 Desai et al., 1999 ), which have not yet been explored in large-scale
odels. While the excitatory and inhibitory time constants determine

he oscillatory dynamics of WC nodes (see Neural mass model, Meth-
ds), changes in local inhibition might further affect local dynamics,
specially in highly connected nodes, which require stronger local inhi-
ition. Therefore, including additional homoeostasis mechanisms, that
ynergistically interact with each other, may reveal relevant patterns of
ocal microcircuitry, possibly related to gradients in cortical organisa-
ion ( Wang, 2020 ). That said, still on the topic of regional heterogeneity,
e stress that we implemented a universal target firing rate, following
 Abeysuriya et al., 2018 ; Deco et al., 2014 ; Hellyer et al., 2016 ). How-
ver, it is possible that regional heterogeneities are not limited to the
icrostructure of cortical networks. While studies show that the cortex
omeostatically tunes toward criticality in visual areas ( Ma et al., 2019 ),
t is possible that dynamics are adjusted differently across the cortex, es-
ecially in the higher hierarchical levels ( Felleman and Van Essen, 1991 ;
ang, 2020 ). Consequently, future models should explore the possibil-

ty of heterogeneity in target firing rates, especially as it pertains to the
ortical hierarchy. 

.7. Model optimisation 

On a more methodological level, the use of a grid search for model
ptimisation, despite being common in large-scale modelling research
 Cabral et al., 2022 ; Deco et al., 2017 ; Hellyer et al., 2016 ), is an in-
fficient method to explore the parameter space. This can be solved by
aking use of recent advances such as Bayesian optimisation ( Hadida

t al., 2018 ) and corresponding variational procedures used in dynamic
ausal modelling ( Frässle et al., 2017 ; Razi et al., 2017 ). In addition,
ifferent metrics of performance could have been used to compare em-
irical and simulated data, such as power-spectrum similarity ( Verma
t al., 2022 ), and distance measures such as KL-divergence, KS-distance
r mean-squared error between matrices ( Savva et al., 2019 ). 

.8. Relationship between BOLD and MEG signals 

One of the main perspectives offered by exploring the model per-
ormance across modalities is the fact that our models can generate
imultaneous MEG and BOLD signals. This is relevant, given that the
elationship between MEG and fMRI signals is not yet fully understood
 Garcés et al., 2016 ; Hall et al., 2014 ). In addition, recent results sug-
est that this relationship is not homogeneous across the brain, and that
t is driven by differences in local circuitry related to the cortical hier-
rchy ( Shafiei et al., 2022 ). Therefore, multimodal models might help
lucidate the interactions between the processes behind the two signals,
articularly with studies involving the perturbation of dynamics with
xternal currents. We propose future studies to focus on the mechanis-
ic relationship between MEG and fMRI, and how MEG features such as
he relative power at different frequency bands, cross-frequency inter-
ctions and synchronisation can reflect the properties of hemodynamic
19 
ignals. Please see ( Friston et al., 2019 ; Goldman et al., 2002 ; Jafarian
t al., 2020 ; Wei et al., 2020 ) for further discussion. 

.9. Model augmentation with heterogeneity 

Given our conclusions on the constraints imposed by the connec-
ome in both models we explored, a crucial future step in modelling
esearch is the inclusion of empirically derived sources of heterogeneity
n large-scale computational models. Recent endeavours have shown the
se of including transcriptomically derived differences in the excitabil-
ty of local populations in the representation of static ( Demirta ş et al.,
019 ) and dynamic ( Deco et al., 2021 ) features of large-scale brain activ-
ty. In addition, results suggest that the variations in structure-function
oupling across the cortical hierarchy are shaped by heterogeneities in
ocal E-I balance and myelination levels ( Fotiadis et al., 2022 ), or in
ortico-subcortical interactions in terms of neuroreceptors density maps
 Beliveau et al., 2017 ), temporal time-scales ( Baldassano et al., 2017 ),
ene expression ( Hawrylycz et al., 2012 ), myelin content (in terms of
1/T2-weighted MRI signal) ( Glasser and Van Essen, 2011 ) and func-
ional connectivity ( Kong et al., 2021 ) - offering further explanations as
o why empirical FC exhibits characteristics that cannot be explained
olely by SC. Therefore, we believe that it is essential for further mod-
lling studies to make use of multilevel datasets ( Arnatkevic ̆i ū t ė et al.,
019 ; Royer et al., 2022 ) to constrain models with directed connectivity
hat define cortical hierarchies ( Deco et al., 2021 ). In addition, future
venues for research should also consider that functional interactions
n the neocortex are shaped by interactions with subcortical structures,
uch as the thalamus ( Proske et al., 2011 ), or neuromodulatory systems
hat control effective interactions between cortical neuronal populations
 Amil and Verschure, 2021 ). 

. Conclusion 

In this study, we compared the performance of two large-scale mod-
ls, the Wilson-Cowan (WC) and Stuart-Landau (SL) models, in explain-
ng multiresolution empirical-like functional connectivity, functional
onnectivity dynamics, and metastable oscillatory modes. Our results
uggest that delays have distinct effects on the models’ ability to repro-
uce these features. When assessing cross-feature performance, the WC
odel can approximate all features with short delays and moderate to
igh coupling, while the SL model is unable to attain comparable perfor-
ance across all features. In terms of cross-modality performance, both
odels could explain FC across modalities. However, the WC model has
 clear advantage regarding spatiotemporal and oscillatory dynamics,
ighlighting the importance of E-I balance, which underwrites the re-
ruitment of local dynamics and propagation of relevant spatiotempo-
al patterns of network activity. When assessing the sub-networks, we
bserved varying levels of performance depending on the network and
odality of interest. The limitations observed in the reproduction of em-
irical FC and associated sub-networks may be due to excessive struc-
ural constraints: while the WC model reflects the underlying weight
nd distance dependence of SC, the SL model is mainly constrained by
ode communicability. We argue that adding sources of local hetero-
eneity might contribute to the emergence of the functional networks
bserved in empirical data. In conclusion, we have demonstrated how
he interaction between local dynamics (E-I balance), network proper-
ies (conduction delays) and the underlying structural framework shape
etwork interactions and dynamics of the neocortex. Furthermore, we
ighlight the strengths and limitations of current modelling approaches
n studying the defining principles of large-scale brain dynamics. 

ata and materials availability 

All simulations and analysis were performed in Python except for
he Source Reconstruction algorithm which was performed in MAT-
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AB2021b. The codes and materials used in this study are available at:
ttps://gitlab.com/francpsantos/whole_brain_generative_models . 
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