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ABSTRACT: The accurate determination of relative phase stabilities
using DFT methods is a significant challenge when some of these can
vary by only a few kJ/mol. Here, we demonstrate that for a selection of
oxides (TiO2, MnO2, and ZnO) the inclusion of dispersion interactions,
accomplished using the DFT-D3 correction scheme, allows for the
correct ordering and an improved calculation of the energy differences
between polymorphic phases. The energetic correction provided is of
the same order of magnitude as the energy difference between phases.
D3-corrected hybrid functionals systematically yield results closest to
experiment. We propose that the inclusion of dispersion interactions
makes a significant contribution to the relative energetics of
polymorphic phases, especially those with different densities, and
should therefore be included for calculations of relative energies using
DFT methods.

■ INTRODUCTION
Density functional theory (DFT) has become a regular
contributor in modern solid state chemistry, as it gives valuable
insight into atomic and electronic properties of solids as well as
their functional behavior, complementary to experimental
results.1,2

The prediction of novel materials and their design requires the
calculation of thermodynamic stability to a high level of
precision, a need that is accentuated in materials with rich
polymorphism, where differences in phase energies can be only a
few kJ/mol.3 This has been a long-standing issue with DFT, as
the choice of functional has a strong influence on the calculated
formation energies and relative phase stabilities. No functional
to date has produced consistent and reliable phase ordering for
materials with different polymorphic forms.4,5 Hybrid exchange
functionals (HF-DFT functionals), the current state-of-the-art
for accuracy, resolve the self-interaction error (SIE) of local
DFT functionals, but do not include dispersion forces.6 These
are typically considered to be negligible in magnitude compared
with the total cohesive energy of ceramic materials, dominated
by Coulomb and exchange interactions. However, despite
dispersion interactions representing only a small fraction of the
total binding energy in solids, their energetic contribution is of
the same order of magnitude as the difference in cohesive energy
between different polymorphic phases.

For reliable determination of these relative phase stabilities,
higher levels of theories can be employed such as second-order
Møller−Plesset perturbation theory (MP2),7 Quantum Monte
Carlo (QMC),8 Random Phase Approximation (RPA),9 or even
Configuration Interaction (CI).10 However, these methods

come at a significantly higher computational cost, which
effectively limits their application to systems possessing only a
few atoms. These methods also show conflicting results, with
QMC-based studies predicting the correct energetic ordering
only between certain TiO2 polymorphs, for example.8,9 In recent
literature, SCAN (Strongly Constrained and Appropriately
Normed functional) and other meta-GGA functionals11,12 have
gained attention in relation to their successful prediction of
relative phase stability in compounds, such as MnO2.

13

However, they are still affected by the SIE. This can be palliated
by the inclusion of empirical parameters, such as the HubbardU
term, but this naturally leads to a degree of empiricism and poor
transferability of results.14

Prediction of the relative stability of TiO2 polymorphs is a
long-standing issue for DFT calculations; this has been
attributed to DFT’s inability to resolve the SIE arising from
systems with localized d/f-electrons, despite the formal d0

electronic configuration of the fully oxidized Ti4+ cation,4,15−19

which makes the addition of a U term less justifiable. The order
of stability found in the experiment,20 i.e., rutile < brookite <
anatase is not reproduced correctly by standard GGA DFT.21,22

To resolve this issue, researchers have typically relied on two
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main solutions: the inclusion of the Hubbard U term or some
post-SCF dispersion correction.4,18,23−30

The Hubbard U term15,31 introduces on-site Coulomb and
exchange terms in parametric form to account for noninteger or
double occupation of a subset of states such as highly localized d-
and f-electron shells.32 A number of studies justify its use in the
calculation of the relative polymorphic stability of TiO2 through
the correction of the unphysical delocalization of Ti 3d electron
states. Indeed, most studies using DFT+U report an ordering of
polymorph internal energies which matches experimental
findings. However, all studies recognize that the use of DFT
+U is only a temporary solution, as not only does the inclusion of
the U term tend to worsen the accuracy of other calculated
properties, but it is also a system-specific solution.14,33−36

Over the past decade, DFT methods and published literature
have allowed for a quantitative understanding of dispersion
interactions, with the DFT-D semiempirical schemes proposed
by Grimme being among the most widely applied.37 These
treatments have shown to accurately describe the structural
properties of layered materials and have proven to be especially
important for calculations involving molecular crystals or low-
dimensional systems, as the London dispersion interaction
allows for a correct description of the intermolecular forces
involved, thus producing equilibrium structures and energetic
values significantly closer to experiment.38−41 The DFT-D
schemes use damped interatomic potentials corresponding to
the instantaneous dipole-induced dipole interaction so that the
dispersion corrected energy becomes

E E EDFT D DFT disp= + (1)

where EDFT is the usual mean-field DFT energy and Edisp is an
empirical dispersion correction that is defined in the latest DFT-
D implementation developed for solids at the time of study,
DFT-D3, as the sum of two- and three-body energies, i.e., Edisp =
E2 + E3. The most important two-body term is given by
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The first sum spans all atomic pairs in the system, while Cn
AB

represents the averaged (isotropic) nth-order dispersion
coefficient for atom pair AB, and rAB is their internuclear
distance. fd,n(rAB) denotes the damping function applied to the
energy correction. We can easily see from the representation of
this sum that as rABn tends to 0, the entire sum will tend toward
infinity, which will in turn theoretically infinitely increase the
contribution of the two-body term toward the total dispersion
correction energy EDFT‑D3. E3 has a general expression of the
form C6/r6 and C9(3 cos θa cos θb cos θc + 1)/(rABrBCrCA)3 and is
further defined in ref 40. The magnitude of the dispersion
correction depends on interatomic distances and hence on the
density of the studied materials.

The effect of dispersion on the formation energy of phases has
been calculated and discussed in previous work,6,42 notably on
the phase stabilities of various cesium halides.43−45 Similar to
TiO2, the phase stabilities of alkali-metal halides have been a
long-standing problem for DFT and their nature as simple,
benchmark ionic structures spurred researchers to investigate
the effects of dispersion as a computationally cheap solution to
the problem. Although the importance of dispersion has been
discussed for clays,46 metal−organic frameworks, and zeo-
lites,42,47 the main focus there was on the adsorption of
molecules rather than polymorphic stability. While dispersion
interactions are known to be of key importance in the structural
chemistry of molecular and low-dimensional crystals, they are
often overlooked when considering bulk solids with strong ionic
or covalent bonding. Few papers touch upon the inclusion of
dispersion interactions in already established functionals as a
beneficial tool toward the correct calculation of the energetic
ordering of TiO2 polymorphs.39,48−50 There is no follow-up
research on other compounds.

Figure 1. Unit cells of the different studied TiO2 polymorphs
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With the goal of identifying a low computational overhead
method able to reproduce the polymorphic energy ordering of
TiO2, as found in experiment, we present here a study of the
relative stability of TiO2 polymorphs spanning a variety of
functionals, which include the GGA functional PBE51 and the
hybrid HF-DFT functionals B3LYP,52,53 HSE06,54 and PBE0,55

along with all their DFT-D340 equivalents. The DFT-D3
correction scheme was chosen as the representative of
dispersion correction methods in solids; it was shown to provide
better accuracy than DFT-D2 due to the latter’s overestimation
of dispersion interactions and arguably the absence of a three-
body term.6 The study was extended to MnO2 and ZnO, both
with a richness of crystalline polymorphs, to probe for wider
applicability.

■ METHOD
All first-principles calculations were performed using the
CRYSTAL1756 code, in which crystalline orbitals are expanded
as a linear combination of atom-centered Gaussian basis sets.
For each material investigated, calculations were performed
using PBE, B3LYP, HSE06, and PBE0, with and without
Grimme’s D3 correction. The basis sets chosen to represent the
different atomic species were all of triple valence plus
polarization quality selected from the CRYSTAL Basis Set
database and consistently used throughout. The basis sets used
are O-8-411d1,57 Ti-86-411(d31),57,58 Mn-86-411d41G,59 and
Zn-86-411d31G.60

All structures studied have been fully optimized in the space
group (SG) indicated by experimental studies. CRYSTAL1756

default tolerances have been used for the selection of integrals,
SCF convergence and geometry optimization. Reciprocal space
integration has been performed via a Monkhorst−Pack mesh61

using an 8 × 8 x 8 grid of points for all phases.
Our calculations focus on internal energies only and do not

include contributions from zero-point energy (ZPE) and
vibrational entropy. All previous studies that estimated the
effect of ZPE and vibrational entropy on the polymorphic phase
ordering of TiO2 show that the impact of these effects are
negligible and are unable to modify the predicted relative
stability between rutile and anatase.9,12,24,30,33−35,50,62 ZPE and
vibrational entropy effects were thus also neglected for MnO2
and ZnO.

For the comparison of ferromagnetic and antiferromagnetic
orders in MnO2 polymorphs, calculations employed a broken-
symmetry approach and were initiated from an ionic solution,
where each Mn4+ ion was assigned a spin-up (α) or spin-down
(β) state as required by the magnetic order studied.

■ RESULTS
TiO2. Polymorphs.We have investigated nine polymorphs of

TiO2 whose unit cells are illustrated in Figure 1. Table 1 displays
a summary of information on the Ti local environment, space
group, and references for the initial structures used in our
geometry optimizations. In most phases, Ti is 6-coordinated and
in an octahedral (Oh) environment. TiO6 octahedra connect in
the lattices by a varied extent of corner and edge sharing, giving
rise to tetragonal, orthorhombic, and monoclinic unit cells. The
exceptions to the 6-coordination of Ti are baddeleyite and
cotunnite, which have Ti in 7- and 9-fold coordinated
environments, respectively. Rutile is known to be the ground
state polymorph of TiO2 from experiment.20 The other

considered polymorphs are formed at different experimental
conditions according to the TiO2 phase diagram.33

Relative Stability. In this section, we focus exclusively on
energetics. Structural parameters such as lattice parameters and
bond distances are reported in the SI and only discussed in a
global comparison of results. A collection of relative energies for
all 9 TiO2 polymorphs from experimental and computational
literature, as well as values calculated in the present work using
all standard and D3-corrected functionals is provided in Table 2.
All energies refer to that of rutile, the experimental ground state
of TiO2 at ambient pressure.20 Different functionals provide
energy estimates that differ widely not only in magnitude but
also in sign, a situation that is not supportive of predictive and
transferable applications. Reliable thermochemical measure-
ments are available for only a subset of the TiO2 polymorphs;
these are rutile, anatase and brookite20 i.e. the three polymorphs
observed at ambient pressure. There are several calorimetry
experiments providing relative stability data between these
polymorphs (Table 2). Here, we consider the latest and most
accurate measurements provided by Ranade et al.20 Of all the
previous computational literature data considered, only the PBE
+U study of ref 35 identifies rutile as the ground state, although it
misrepresents the relative energy of brookite. RPA results
instead find rutile to be stable over anatase, but with an energy
difference of only +3.2 meV/f.u. compared to the +27.1 meV/
f.u. from experiment. Results of our calculations indicate that the
inclusion of dispersion through the DFT-D3 post-SCF method
substantially modifies the relative stability. Indeed, while for all
uncorrected functionals anatase and brookite are stable over
rutile, the inverse is true upon inclusion of dispersion. In Figure
2, we examine in diagrammatic form the relative stability of the
rutile, anatase, brookite and TiO2-B phases, grouping calculated
results into standard and D3-corrected functionals. All the
“standard” functionals incorrectly predict rutile as the least
stable of these four polymorphs. On the other hand, all hybrid
HF-DFT D3-corrected functionals (B3LYP-D3, HSE06-D3,
and PBE0-D3) correctly reproduce the experimental order of
phase stability.

From a quantitative point of view, the HSE06-D3 functional
provides the most accurate estimate of relative energy compared
to experiment.20 Indeed, the HSE06-D3 errors are of only +2
and −6 meV/f.u. for brookite and anatase, respectively. Before
corrections, the corresponding HSE06 errors are −28 and −85
meV/f.u.. The above comparison indicates that dispersion
contributes as much as +87 and +42 meV/f.u to the energy of
anatase and brookite relative to rutile, i.e., its quantitative
influence is of the same order of magnitude as the energy
difference between polymorphs and, as such, shows that

Table 1. Space Group (SG), Ti−O Coordination Number
(CN), Atomic Density (ρ) in Atoms per Cubic Ångstro ̈m
(a.Å−3) from Experiment and Reference Structural Data

SG CN ρ/a.Å−3 ref.

rutile P42/mnm 6 0.0320 63

anatase I41/amd 6 0.0293 64

brookite Pbca 6 0.0311 65

TiO2-B C2/m 6 0.0283 66

columbite P21/c 6 0.0328 67

baddeleyite P21/c 7 0.0384 68

hollandite I4/m 6 0.0313 69

ramsdellite Pnma 6 0.0361 70

cotunnite Pnma 9 0.0435 71
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dispersion interactions cannot be neglected in the prediction of
the relative stability of TiO2 polymorphs. It is encouraging to
observe that DFT-D3-corrected functionals predict the correct
energy ordering for, at least, the rutile, anatase, brookite, and
TiO2-B polymorphs. Similar quantitative effects of dispersion
are observed for the HSE06, PBE, and PBE0 functionals, while
for B3LYP the effect of dispersion on relative energies is even
stronger. While inclusion of dispersion resolves the energetic
order of the phases considered, it does still yield incorrect results
for columbite. This polymorph is more stable than rutile before
accounting for dispersion and inclusion of dispersion enhances

the energy difference due to the higher density of columbite
relative to rutile (Table 1).

In Table 2, we also include the relative stability provided by
single-point energy calculations using the D3 functionals on
geometries previously optimized with the equivalent standard
functionals. These data are indicated with the acronym SEP-D3.
The results in Table 2 indicate that the change in relative energy
arises mostly from the D3 dispersion correction, while structural
changes resulting from the inclusion of dispersion play only a
minor role.
MnO2. Many more ceramics are known to have a similar

richness of polymorphic phases as TiO2. Here, we extend our
study to MnO2 and ZnO compositions to verify whether the
trends observed in TiO2 have more general validity. MnO2
shows polymorphism from various packings of MnO6 octahedra
and is of interest for a variety of energy and environmental
applications.75 There has been some amount of work on the
phase ordering of MnO2 polymorphs, although most papers
focus on a single form and all use “standard” DFTmethods.76−81

Estimating the effect of dispersion in MnO2 is complicated by
the additional contribution of the magnetic order, a recognized
shortcoming of local DFT functionals due to the SIE, which is
usually corrected through DFT+U. However, HF-DFT func-
tionals also fail to accurately reproduce the energetic ordering of
MnO2 polymorphs from experiment, despite resolving the SIE
inherent to GGA DFT. Previous studies have attributed this
failure to several interdependent factors such as the artificial

Table 2. Relative Stability of TiO2 Polymorphs (meV/TiO2 Formula Unit (f.u.)) from Experimental and Computational
Literature and Values Calculated in the Present Worka

literature R A Bro. TiO2-B Col. Bad. H Rams. Cot. ref.

expt. 0 +27.120 +7.420,72 20

expt.2 0 +33.872 72

Expt.3 0 +68.173 73

HF 0 −111.9 4

DFT/LDA 0 −12.1 −17.4 −20.2 35

B3LYP 0 −198.2 4

HSE06 0 −86.6 −38.3 −85.5 +122.1 19

PBE 0 −81.1 −40.7 −4.2 +93.6 19,35

PBE+U 0 +33.7 +35.6 +42.7 35

PBE-D3 0 −8.3 −15.5 39

PBE0 0 −61.2 −28.0 39

PBE0-D3 0 +18.7 +2.1 39

RPA 0 +3.2 9

DMC 0 −40.8 +0.3 74

SCAN 0 −25.0 −15.0 −5.3 +89.3 19

Current Work
B3LYP 0 −95.1 −19.1 −72.0 −7.3 +166.5 +130.7 +122.0 +947
HSE06 0 −58.1 −21.0 −26.8 −10.0 +93.0 +142.4 +128.1 +743.1
PBE 0 −56.8 −15.2 −46.7 −17.5 +86.5 +120.1 +107.7 +690.7
PBE0 0 −67.0 −26.5 −50.2 −12.8 +82.2 +135.8 +121.0 +727.9
B3LYP-D3 0 +54.2 +15.5 +115.5 −31.6 +63.0 +397.7 +240.7 +638.1
B3LYP-SEP-D3 0 +51.0 +29.0 +115.0 −33.0 +80.0 +404.0 +285.0 +560.0
HSE06-D3 0 +20.7 +9.0 +73.3 −28.9 +26.1 +326.1 +221.2 +535.5
HSE06-SEP-D3 0 +17.0 +5.0 +90.0 −22.0 +28.0 +323.0 +212.0 +560.0
PBE-D3 0 +12.6 −7.7 +50.5 −34.3 +30.8 +253.3 +166.6 +522.2
PBE-SEP-D3 0 +14.0 +8.0 +51.0 −30.0 +34.0 +263.0 +180.0 +532.0
PBE0-D3 0 +11.7 +2.8 +57.6 −31.3 +23.3 +300.4 +213.9 +553.2
PBE0-SEP-D3 0 +7.0 −1.0 +56.0 −25.0 +24.0 +296.0 +201.0 +561.0

aCorresponding shorthand notations: rutile (R), anatase (A), brookite (Bro.), columbite (Col.), baddeleyite (Bad.), hollandite (H), ramsdellite
(Rams.), and cotunnite (Cot.).

Figure 2. Stability of the anatase, brookite, and TiO2-B polymorphic
phases of TiO2 relative to the experimental ground state rutile20 (ΔE in
meV/f.u. TiO2) calculated with the different “standard” and dispersion-
corrected functionals. Bar numbers 1−4 refer to “standard” functionals
(1: B3LYP, 2: HSE06, 3: PBE, 4: PBE0), 5−8 refer to their dispersion-
corrected counterparts (5: B3LYP-D3, 6: HSE06-D3, 7: PBE-D3, 8:
PBE0-D3), and 9 refers to experiment where available.20
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underbinding of O2− ligands and/or an inadequate description
of exchange and correlation in the MnO2 polymorphs.81

Contrarily to TiO2, no research has applied methods beyond
DFT to resolving the energetic ordering of MnO2 polymorphs,
due to dispersion being considered of minor importance
compared to the clarification of magnetic order. However, the
SCAN functional is shown to be the method of choice to yield
the correct ordering of polymorphic stability, as it is the only one
to predict β-MnO2, the experimental ground state,82 as more
stable than ramsdellite (R) MnO2.

13,83 The only calorimetric
measurements available are for the β-/R-MnO2 comparison.82

PBEsol, unlike other GGA functionals, shows the correct order
of phase stability.13,83 References 13 and 83 also show that the
inclusion of the Hubbard U term can cause errors in
hybridization between O 2p and Mn 3d valence orbitals,
resulting in unfavorable distortions of the MnO6 octahedra.
Polymorphs. We study six polymorphs of MnO2 shown in

Figure 3: rutile-structured pyrolusite (β-MnO2), the hollandite
α form, the intergrowth γ form, the orthorhombic ramsdellite
(R) form, the spinel λ form, and the layered δ form. Mn is 6-
coordinated in all polymorphs. Table 3 displays information

relating to the local environment of Mn, atomic density, space
group, and references for the initial structures used in our
geometry optimizations. Full structural information for the
optimized phases can be found in the SI.

All calculations concerning MnO2 polymorphs were per-
formed with the ground state antiferromagnetic (AFM) order,
known from experiment.13,76,84−86 The energetic importance of
magnetic coupling in MnO2 has been explicitly discussed in refs
13, 77, and 85−87. The energetics associated with magnetic
order in MnO2 are greater or of the same order of magnitude as
those involved with dispersion interactions and previous DFT
studies have shown that choosing a ferromagnetic (FM) order

yields incorrect results for lattice energies that the inclusion of
dispersion corrections would be unable to palliate (ΔEFM/AFM ∼
150 meV/f.u. within the same polymorph using GGA func-
tionals such as PBE).78,81 This was confirmed by our calculations
as exemplified by Table 4.

Relative Stability. Following the discussion on TiO2, we
evaluate here the effect of dispersion on the energies of the
MnO2 polymorphs. A summary of literature data and values
from our study is given in Table 4. Pyrolusite (β-MnO2) is
shown from experiment to be the ground-state polymorph82 and
will thus be our reference for the relative stability.

All “standard” functionals find α-MnO2 to bemore stable than
the experimental ground state. However, similar to the TiO2
results, the incorrect ordering is reversed upon inclusion of
dispersion interactions. Although “standard” PBE, HSE06, and
B3LYP functionals correctly predict β-MnO2 to be stable over δ-
MnO2, their D3-corrected counterparts yield a significantly
larger energy difference. Both sets of D3-corrected results for the
α- and δ-MnO2 polymorphs match experimental observations.82

Results are incorrect when considering R-MnO2, with the
exception of B3LYP-D3. R-MnO2 is calculated as stable relative
to β-MnO2, even after inclusion of dispersion. The energy
difference, however, is substantially improved by including
dispersion.

Similar to TiO2, in MnO2 the energy contribution of
dispersion interactions is also of the same order of magnitude
as the energetic difference between polymorphic phases and
contributes to a much improved estimate of relative energies.
The case of R-MnO2 may be influenced by the more complex
crystal structure that contains two nonequivalent O sites,
pyramidal and planar O, both with a CN of 3 but differentiated
by their different bonding angles. The more distorted
topological connectivity of Opyr, and thus its different relation
to Mn cations compared to Oplan, may provide an enhanced
stabilization of electrostatic nature paired with the structural
complexity leading to magnetic coupling interactions that are
misrepresented by DFT, even when using hybrid exchange
functionals. Similar arguments have been proposed in refs 13,
78, and 93. The results for columbite TiO2 and R-MnO2 thus
highlight that the inclusion of dispersion interactions needs to be
paired with an already accurate estimation of polymorphic
stability to have an impact on results, especially when energetic
contributions of the same magnitude or larger, such as magnetic
coupling or change in coordination environment of some of the
ions, may affect relative stabilities.

Figure 3. Unit cells of the different studied MnO2 polymorphs.

Table 3. Space Group (SG), Mn−O Coordination Number
(CN), Atomic Density (ρ) in Atoms per Cubic Ångström
(a.Å−3) from Experiment and Reference Structural Data

SG CN ρ/a.Å−3 ref.

β P42/mnm 6 0.0359 87

α I4/m 6 0.0292 88

δ 2/m 6 0.0321 89

γ Pnma 6 0.0344 90

λ Fd3m 6 0.0306 91

R Pnma 6 0.0338 70
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ZnO. Studied Polymorphs. The third system we consider is
ZnO, of interest among other applications as a photocatalyst.93

ZnO crystallizes as hexagonal wurtzite (HW) and cubic zinc-
blende (ZB) at standard conditions, with the former being the
ground state.94 We also include, for comparison, two high
pressure phases, rocksalt-type (RS) and CsCl-type ZnO shown
in Figure 4. Table 5 displays structural information relating to
the ZnO polymorphs studied here. Full structural information
on the optimized structures is provided in the SI. Studies on the
relative stability of ZnO polymorphs include DMC95 and RPA96

calculations as well as “standard” DFT-GGA techniques.97−99

All calculations find wurtzite as the ground state, however the
relative energy of rocksalt-type ZnO is largely overestimated,
and there is as yet no estimate of dispersion contribution on
polymorph stability. This is an interesting topic to examine as,
unlike MnO2 polymorphs where Mn is always in an octahedral
environment, in ZnO the CN of Zn changes from 4 to 6 and 8 in
the phases studied.

Relative Stability. A summary of relative energies from
literature and the present study is presented in Table 6. Similar
to TiO2, there are several calorimetry experiments evaluating the
relative stability of the HW and RS polymorphs. The reference
value used for comparison to experiment here is given by
Sharikov et al.,104 as previous studies105 erroneously neglect the
kinetic features of the HW to RS phase transition below 1000 K.

Table 4. Relative Stability of MnO2 Polymorphs (meV/MnO2 f.u.) from Experimental and Computational Literature and Values
Calculated in the Present Worka

literature β α δ γ λ R ref.

expt. 0 +56 82

HSE06 0 −50 +30 −50 92

PBE 0 −40 +115 −18 +155 −35 13

PBE+U 0 −88 −5 −46 +48 −65 13

PBEsol 0 +30 +245 +25 +260 +20 13

SCAN 0 +80 +300 +45 +320 +60 12

current work
B3LYP 0 −65 +32 −39 +92 −57
HSE06 0 −62 +4 −41 +55 −62
PBE 0 −70 +48 −35 +80 −68
PBE0 0 −76 −22 −62 +28 −84
B3LYP-D3 0 +84 +189 −3 +229 +7
HSE06-D3 0 +41 +102 −20 +138 −25
PBE-D3 0 +23 +148 −7 +160 −24
PBE0-D3 0 +22 +76 −42 +109 −49
ΔEPBE

FM/AFM 105.1 83.7 7.1 90.2 8.0 92.5
aΔEPBE

FM/AFM is the energy difference (meV/MnO2 f.u.) between FM and AFM phases calculated with the PBE functional.

Figure 4. Unit cells of the different ZnO polymorphs studied.

Table 5. Space Group (SG), local Zn−O Coordination
Number (CN), Atomic Density in (ρ) in Atoms per Cubic
Ångstro ̈m (a.Å−3) from Experiment and Reference Structural
Data

SG CN ρ/a.Å−3 ref.

hexagonal wurtzite P63mc 4 0.0420 100

cubic zinc-blende F43m 4 0.0421 101

rocksalt-type Fm3m 6 0.0505 102

CsCl-type Pm3m 8 0.0510 103
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All functionals find HW stable over ZB and the effect of
dispersion is negligible in the energy difference between these
two phases, which are in practice just different stacking motifs of
the same local Zn environment (also highlighted by the
polymorphs’ close to identical atomic densities). The effect of
dispersion is instead pronounced (over −100 meV/f.u. for
B3LYP, PBE, and PBE0) when considering the relative stability
of the RS polymorph, that is denser than wurtzite thanks to its
higher CN. Uncorrected DFT/HF-DFT results largely over-
estimate the calculated calorimetric value, while after the
inclusion of dispersion, the HW-RS energy difference is
significantly closer to experiment, despite showing a large
dependence on the functional. Once more, dispersion has
similar magnitude as the energy difference between polymorphs
(both of the order of 100 meV/f.u.) and must thus be accounted
for in calculated thermochemistry.
Structural Analysis. A solid structure’s local atomic

environment will have the strongest impact on the absolute
value of dispersion forces, notably due to D3 dispersion
coefficients being determined by an ion’s coordination number
and the largest contributions occurring at small interatomic
distances r with dispersion forces scaling as 1/r6. The
distribution of bond distances in the crystal lattice can be
monitored through the pair radial distribution function g(r)
(RDF). The RDFs for two pairs of phases whose relative energy
is affected by dispersion, i.e., rutile/anatase TiO2 and HW/RS
ZnO, are compared in Figure 5. As we can see from Figure 5,
there are noticeable changes in the local environment between
the polymorph pairs, including in the short-range environments
(between 2 and 4 Å). Rutile and anatase phases of TiO2 both
have Ti in 6-fold coordination and Oh environment. The Ti−O
bond distances show negligible changes in the RDF; however
the phases are differentiated by next neighbor relations. The O−
O distances within the same octahedron over the 2−3 Å range
differ between rutile and anatase, due to the more distorted
nature of the latter. This is exemplified by the three peaks at 2.4,
2.8, and 3.0 Å for anatase compared to the single, high amplitude
peak at 2.75 Å for rutile. The Ti−Ti next nearest neighbor
distances visible in the peaks between 3 and 4 Å suggest shorter
next nearest neighbor bond distances overall in rutile.

As the stabilizing contribution to the energy given by
dispersion scales as 1/r6, rutile’s more contracted local
environment explains why this phase is stabilized over anatase
when such dispersion forces are accounted for. In the two
considered ZnO phases, instead, the CN changes from 4 to 6
between the HW and RS phases. Differences in the RDF are
already obvious for the nearest Zn−O distances, but also have
appreciable contributions from further neighbor shells. The
higher overall density of the RS phase explains its stabilization by
dispersion forces relative to wurtzite.

While the RDF contains the atomic-level information
necessary to rationalize the effect of dispersion on polymorph
stability, discriminating the contribution from individual atomic
pairs is challenging. It would be more useful to be able to employ
a global property of the materials to rationalize results. Atomic
density, expressed in number of atoms per unit volume, is a
simple but appropriate measure of interatomic separations in
crystal lattices. We have therefore investigated whether
correlations exist between dispersion energy and atomic density.
We first define the dispersion contribution to polymorph
stability, ΔED3, as

E E ED3 correc std= (3)

where ΔEstd represents the relative stability between two
polymorphs calculated with “standard” functionals and ΔEcorrec
represents the relative stability between two polymorphs
calculated with D3-corrected functionals. ΔED3 represents the
sum of two contributions here i.e. the influence of the D3
correction on the single-point energy of the crystal lattice and
the change in geometry stemming from the inclusion of
dispersion forces through the D3 correction.

Table 7 provides a comparison of the calculated ΔED3 for
anatase relative to rutile TiO2 and RS relative to HW ZnO using
the HSE06 functional as an example. Despite differing
contributions from dispersion based on the unit cell
composition, we observe a correlation between atomic density

Table 6. Relative Stability of ZnO Polymorphs (meV/ZnO
f.u.) from Experimental and Computational Literature and
Values Calculated in the Present Work

literature HW ZB RS
CsCl-
type ref.

expt. 0 +121.3,104 +
253.9105

104,105

HF 0 +57.0 +242.0 +1555.0 106

LDA 0 +15.0 +201.0 +4438.0 107

PBE 0 +12.8 +292.4 +1423.9 108

DMC 0 +100.0 +230.0 95

RPA 0 +20.0 +239.0 96

current work
B3LYP 0 +26.9 +352.3 +1655.9
HSE06 0 +23.5 +199.9 +1394.2
PBE 0 +11.5 +247.1 +1236.3
PBE0 0 +22.8 +197.8 +1402.2
B3LYP-D3 0 +17.2 +172.5 +1423.4
HSE06-D3 0 +23.6 +82.3 +1246.1
PBE-D3 0 +10.7 +148.1 +1106.0
PBE0-D3 0 +22.4 +88.1 +1265.7

Figure 5.RDFs of rutile and anatase TiO2 (top) and hexagonal wurtzite
and rocksalt-type ZnO (bottom) computed with the HSE06 functional.
The red lines represent rutile TiO2 and HW ZnO, respectively. The
blue lines represent the anatase TiO2 and RS ZnO, respectively.

Table 7. Comparison between the Atomic Density Values in
Atoms per Cubic Ångstro ̈m (a.Å−3; from
Experiment63,64,100,102) and the Relative Stability in meV/f.u.
TiO2/ZnO of Both TiO2 (Rutile and Anatase) and ZnO (HW
and RS) Polymorph Pairs Evaluated in This Section Using
HSE06 and HSE06-D3 (ΔED3)

ρ/a.Å−3 ΔEHSE06 ΔEHSE06‑D3 ΔED3

rutile 0.0320
anatase 0.0293 −58.1 +20.7 +78.8
HW 0.0420
RS 0.0505 +199.9 +82.3 −117.6
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and contribution from dispersion interactions. Indeed, with a
less dense cell than rutile, ΔED3 destabilizes anatase relative to
rutile, while the inverse is observed for the HW and RS ZnO
polymorphs.

Figure 6 shows plots of ΔED3 against the atomic densities for
the TiO2 polymorphs investigated in this work, using the PBE

and B3LYP functionals. Plots for other compounds (MnO2/
ZnO) along with a complete plot for TiO2 can be found in the SI.
In both cases there is a strong near-linear correlation, showing
that the dispersion contribution increases as a function of
density. The difference can be of several hundreds meV/f.u. due
to a large change in density originating from a CN change as we
can see for CsCl-type ZnO, for example. Smaller differences are
observed between phases with the same CN and similar density,
but these remain non-negligible and should therefore be
included to correctly differentiate the small energy differences
between these phases. We have performed a linear fit of the
calculated ΔED3 values as a function of the atomic density for
each combination of composition and functional. The gradients
ΔED3

avg are reported in Table 8. The slope of the best fit curve is

evidently compound and functional dependent, with the
strongest dispersion contributions occurring in TiO2 and
B3LYP results. PBE, PBE0, andHSE06 show comparable values.

The near-linear dependence on atomic density allows us to
estimate the D3 correction energy as

E E ED3 std D3
avg= + × (4)

where ΔED3
avg can be obtained from the quasi-linear relationship

between change in atomic density and calculated lattice energies
by D3-corrected functionals (gradients of the linear fit in Figure
6 and Table 8). From its definition and the definition of its
constituting parts, the calculation of ΔED3 is evidently system-
dependent and each calculated ΔED3 value for a specific oxide
will only be applicable to polymorphs of that system, as
evidenced by the results in Table 8. Despite being within the
same order of magnitude, we can observe some variations in
calculated values of ΔED3

avg between TiO2, MnO2 and ZnO.

Discussion.Our results show that dispersion interactions are
relevant to the relative stability of crystalline oxides, due to the
energy contribution provided being of the same order of
magnitude as the lattice energy difference between polymorphs.
We have evidenced a near-linear dependence between atomic
density and the energy correction provided by dispersion
interactions (Figure 6 and eq 4). This is not surprising: the
denser a material, the shorter its interatomic distances, r,
resulting in a larger contribution from attractive dispersion
interactions. The differences are far from inconsequential, often
amounting to tens of meV/f.u..

A full list of structural parameters for the geometry optimized
structures of all compositions, phases and functionals employed
in the current work is provided in the SI. The number of results
provided is too great to examine individually; we therefore
employ a global analysis to examine the effect of dispersion on
structural information. For each composition, phase and
functional examined, we consider the error with respect to
experiment of the three lattice parameters, equilibrium volume
and shortest M−O bond distances (Δa, Δb, Δc, δV, δr),
respectively. The errors in each lattice parameter are then used
to calculate an average error, δd = a b c

3
+ + . Using the

equilibrium volume as an example, we define the mean and
absolute errors as δV = V

n i
n

i
1

1= and |δV| = V
n i

n
i

1
1 | |= ,

respectively.
Table 9 presents the calculated errors for each “standard” and

D3-corrected functional. Results presented in Table 9 are

limited to phases for which an experimental structural
determination at ambient pressure conditions is available and
correspond to static-lattice calculations. The inclusion of the D3
contribution always causes a contraction of the equilibrium
volume; for the functionals overestimating V (PBE), adding D3
improves the equilibrium geometry. If instead V is close to the
experimental value or underestimated at the DFT level (HF-
DFT), D3 causes excessive contraction and the equilibrium
volume deviates slightly from experiment. The effect on nearest
neighbor distances is negligible (δr in Table 9) and only
nonbonded distances are affected by the inclusion of D3.
Overall, the effect of D3 on geometries is small, and the
improvement yielded in relative stabilities largely outweighs any
loss of accuracy on equilibrium geometry.
Conclusions. To conclude, this work highlights the

importance of the inclusion of dispersion interactions for the

Figure 6. Energetic contribution from the DFT-D3 correction, ΔED3 in
meV/f.u. TiO2 is plotted against the atomic density in atoms per cubic
Ångström (a.Å−3) of each TiO2 polymorph for the representative
functionals, PBE and B3LYP. The data coloring is as follows: red for
PBE and blue for B3LYP.

Table 8. Dependence of ΔED3 on Atomic Density from the
Linear Fit of the Calculated ΔED3 Values (Figure 6 and SI),
ΔED3

avg in 10−4 meV/Å3

ΔED3
avg·10−4/meV·Å−3 TiO2 MnO2 ZnO

B3LYP −1.50 −0.65 −0.99
HSE06 −0.95 −0.48 −0.62
PBE −0.79 −0.41 −0.57
PBE0 −0.86 −0.50 −0.56

Table 9. Mean and Absolute Errors of the Different
Functionals and Their D3 Counterparts Used Throughout
This Study on Equilibrium Volume (δV/|δV|), Lattice
Parameters (δd/|δd|) and M−O Bond Lengths (δr/|δr|)
Compared to Experiment63−66,70,87,88,100,102 Over All
Evaluated Materials and Polymorphs Stable at Ambient
Conditions

δV (%) δd (%) δr (%) |δV| (%) |δd| (%) |δr| (%)

B3LYP +2.90 +0.95 +1.01 2.90 0.95 1.01
HSE06 +0.20 −0.16 +0.16 0.50 0.16 0.16
PBE +3.06 +0.05 +0.78 3.06 0.15 0.78
PBE0 +0.04 −0.61 −0.04 0.46 0.61 0.16
B3LYP-D3 −0.31 +1.01 +0.45 0.40 1.01 0.59
HSE06-D3 −1.48 +0.37 −0.04 1.48 0.37 0.58
PBE-D3 +1.10 −0.01 +0.37 1.10 0.13 0.37
PBE0-D3 −1.54 −0.63 −0.31 1.54 0.63 0.31
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correct computational estimate of energetic phase orderings.
This is due to both the energy differences between polymorphic
phases and the dispersion interactions’ energy contribution
being of tens of meV/f.u.. Due to the sparse availability of
measured calorimetric data, future investigations must not only
involve computational studies on an even wider range of
materials to observe how distinct the influence of dispersion is in
different compositions, but also new experimental work to
provide a more complete and reliable experimental data set. It
would also be of interest to evaluate the results obtained by
DFT-D4,109,110 the successor to DFT-D3 used in this paper or
functionals self-consistently accounting for dispersion.
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