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ABSTRACT: Fast and accurate estimation of electronic coupling matrix
elements between molecules is essential for the simulation of charge
transfer phenomena in chemistry, materials science, and biology. Here
we investigate neural-network-based coupling estimators combined with
different protocols for sampling reference data (random, farthest point,
and query by committee) and compare their performance to the physics-
based analytic overlap method (AOM), introduced previously. We find
that neural network approaches can give smaller errors than AOM, in
particular smaller maximum errors, while they require an order of
magnitude more reference data than AOM, typically one hundred to
several hundred training points, down from several thousand required in
previous ML works. A Δ-ML approach taking AOM as a baseline is
found to give the best overall performance at a relatively small
computational overhead of about a factor of 2. Highly flexible π-conjugated organic molecules like non-fullerene acceptors are found
to be a particularly challenging case for ML because of the varying (de)localization of the frontier orbitals for different intramolecular
geometries sampled along molecular dynamics trajectories. Here the local symmetry functions used in ML are insufficient, and long-
range descriptors are expected to give improved performance.

■ INTRODUCTION
Charge transport simulations in biology and materials science
typically begin with the calculation of electronic coupling
matrix elements, or transfer integrals.1−5 There have been
significant advances in computing electronic couplings in the
last 20 years. Depending on the requirements of the problem at
hand, a large number of techniques are now available. The
choice of method is dictated by various factors, most
importantly by the right balance between accuracy and the
associated computational cost. A number of approaches can be
employed to accomplish this task: from high accuracy yet
expensive ab initio calculations6−8 to density functional theory
(DFT) calculations (e.g., time-dependent DFT,9 constrained
DFT,10−15 projector operator-based diabatization,16−18 frag-
ment-orbital DFT,19,20 and frozen density embedding),21,22 to
fast semiempirical density functional tight binding
(DFTB),7,8,23 to the analytic overlap method (AOM).24,25

For a typical simulation of charge carrier transport in soft
condensed media (e.g., organic and biological semiconductors)
using, e.g., Kinetic Monte Carlo (KMC),26−29 transient
localization theory,30,31 or non-adiabatic molecular dynamics
(NAMD) simulations,32−35 a very large number of transfer
integrals must be evaluated before the simulation of charge
mobility is converged. Some time ago, our group introduced
the analytic overlap method (AOM), an ultrafast approach for
the calculation of electronic coupling matrix elements for
electron transfer between π-conjugated molecules. AOM

allows one to estimate couplings to a useful degree of accuracy
and about 105 times faster than with DFT calculations.24 This
method proposes to substitute the computationally expensive
calculation of charge transfer integrals by an efficient
calculation of the frontier molecular orbital (FMO) overlap
integrals, multiplied by a suitable linear scaling coefficient. The
FMOs are constructed using an optimized Slater-type orbital
(STO) basis set, allowing ultrafast analytical calculations of
FMO overlap integrals and electronic couplings for a variety of
dimers.24,36

While AOM predicts electronic couplings to a useful degree
of accuracy for applications in, e.g., KMC or NAMD32

simulations, they are associated with an error because the
relation between overlap and coupling is not strictly linear and
the data exhibit a fair amount of scatter (see, e.g., Figure 2).
Apart from this, challenging cases for AOM are flexible
molecules that may adopt configurations that lead to significant
changes in the localization/delocalization of the FMO. In this
case the expansion coefficients of the FMOs have to be

Received: February 13, 2023

Articlepubs.acs.org/JCTC

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acs.jctc.3c00184

J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 o
n 

Ju
ly

 5
, 2

02
3 

at
 1

3:
07

:3
2 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Roohollah+Hafizi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jan+Elsner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jochen+Blumberger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.3c00184&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00184?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00184?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00184?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00184?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00184?fig=tgr1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00184?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


reoptimized using expensive DFT calculations, which is not
desirable. Besides, there may be distinct dimers in a unit cell
with significantly different chemical interactions, necessitating
multiple linear scaling constants. One such case, discussed
below, is O-IDTBR, a molecule that belongs to the class of
non-fullerene acceptors, a promising molecule for the organic
photovoltaics industry. The purpose of this study is to explore
the potential of atomic neural networks for machine learning of
electronic couplings and for error estimation of the physics-
based AOM (Δ-ML).

Various machine learning methods have been used to model
the electronic coupling between molecular pairs. Musil et al.37

used the Gaussian process (GP) to predict electronic couplings
between rigid molecules based on their relative positions and
orientations. A similar approach was taken by Lederer et al.,38

who employed kernel ridge regression (KRR) to target rigid
molecules. In a study by Bag et al.,39 feature vectors were
extracted from DNA via a coarse-grained model, and a neural
network was trained to evaluate electronic couplings. Wang et
al.40 and Caylak et al.41 used Coulomb matrices (CMs) as the
molecular descriptor for training GP and deep neural networks,
respectively. Also, Miller et al.42 tried many ML methods,
compared their performances, and suggested random forests as
the most effective method. There are a number of short-
comings in previous ML models, including either a lack of
accuracy in predictions, the necessity to freeze some degrees of
freedom of the system, or the requirement for a large number
of training (reference) data. We aim in this paper to address all
of these issues by “semi-physical” modeling of electronic
couplings and to compare our model’s performance to that of
previous models. The term “semi-physical” refers to the fact
that we approximate electronic couplings as the sum of atomic
contributions which are modeled by neural networks. At the
current stage, ML models predict couplings only between
chemically identical molecules, but in arbitrary atomic
configurations. In other words, the ML model is not intended
to make predictions for molecules other than those for which it
has been trained but has the potential to be generalized.

In the following, after a short introduction to the methods, a
protocol is developed for sampling reference data points
required for the ML model that ensures completeness of

sampling with the least number of data points. Figure 1 shows
a schematic of the methods used in this work to predict
electronic couplings. Two neural network models of electronic
couplings of dimers are then trained on (1) DFT reference
data points (Figure 1, blue) and (2) the difference between
DFT reference data points and AOM (Figure 1, green) in a
process called Δ-ML. Results are compared to those from the
AOM model (Figure 1, purple). Using a rubrene dimer data
set, these models are compared in terms of their performance.
We then use the best model to study a challenging molecule
for electronic coupling estimation, O-IDTBR. As a point of
clarification, throughout the text, the terms “electronic
coupling” and “transfer integral” are synonymous.

■ METHODS
The AOM method assumes a linear relationship between
electronic coupling Hab of two diabatic wavefunctions, ψa and
ψb,

H Hab a b= | | (1)

where H is the electronic Hamiltonian, and the corresponding
wavefunction overlap,

Sab a b= | (2)

such that

H CSab ab= (3)

Full calculation of eq 2 is computationally expensive, since it
requires explicit diabatic wave functions ψa and ψb, for
example, approximated by Kohn−Sham determinants obtained
from constrained density functional theory.15 Instead, the
assumption is made that charge transport is mediated solely by
the frontier molecular orbitals (FMOs) of the isolated
molecules, ϕ′DN and ϕ′AN (notation as in refs 24 and 25). In
the case of hole (electron) transport, these will correspond to
the HOMO (LUMO) orbitals of the molecules. To further
increase the efficiency of calculations, the FMOs are expressed
in a minimum Slater-type orbital (STO) basis. The FMO of a
single representative molecule, ϕ′lN (l = D or A), is calculated

Figure 1. Three models are used in this work to calculate electronic coupling values between dimer molecules: (AOM, purple) The electronic
overlap between approximated frontier molecular orbitals is determined, and utilized to estimate electronic couplings between dimer molecules.
(ML, blue) The coordinates of dimer atoms are used to calculate the symmetry function and estimate the reference coupling value. (Δ-ML, green)
A neural network is employed to correct the AOM model estimations to the reference values. To optimize the number of training points for each
model, a few data sampling methods are studied.
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from an explicit DFT calculation once and is projected onto a
minimal STO basis to yield ϕ̅′lN:

cl
N

k
k k l

N| = | |
(4)

where |χk⟩ is the kth STO orbital and ck is the corresponding
expansion coefficient. This allows for an ultrafast analytic
calculation of the orbital overlap S̅ab = ⟨ϕ̅′DN|ϕ̅′AN⟩ , since the
overlap of STO basis functions is known analytically. Further
details concerning the DFT calculation and projection to the
STO basis can be found in refs 24 and 25. Importantly, orbital
expansion coefficients are kept constant for different dimer
geometries, while the direction of STO orbitals is updated
according to the geometry of the molecule. The validity of this
final approximation depends on the extent to which the
localization/delocalization of the FMO is preserved for
different molecular configurations and will be discussed further
below. To account for our representation of the FMO in the
STO basis, eq 3 is rewritten as

H CSab ab= (5)

where C̅ is obtained from a best fit of S̅ab to Hab reference data
computed at the explicit electronic structure level, typically
DFT.

Unlike previous attempts at ML of electronic couplings,
which map dimer descriptors in the input layer to a single value
in the output, our approach approximates the total electronic
coupling Jij as the sum of contributions of atoms in monomer i
and monomer j:

J Jij
p

p

all atoms
in dimer

=
(6)

This is in analogy to the AOM, where orbital overlap is
calculated as a sum of overlap contributions from all atom
pairs. Second-generation neural network potentials43 use a
similar approach to approximate energy. This method is
included in the open-source code n2p244 and is used to train
our neural network models. Each element (H, C, etc.) has a
network, and atoms of the same element have the same
weights and biases. The neural network of each element
consists of two hidden layers, each with 20 nodes. Following
the notation in ref 45, the neural network architecture is N−
20−20−1, where N is the length of the atomic local-
environment descriptor. The functional form of a neural
network of an element is given by eq 7, and atoms in the same
atom types share the same weights and biases. Each element
(H, C, etc.) has a separate neural network with the following
functional form:
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in which f’s are activation functions (we used f1(x) = f 2(x) =
tanh(x) and f 3(x) = x), aklij is the weight connecting node k in
layer i to node l in layer j, and bji is the bias attached to node j
in layer i. The values of the aklij and bji are fitted during the
training process. After training the network, the weights and
biases remain fixed for all predictions.

At the heart of the function defined in eq 7 lies the N-
dimensional structural descriptor vector:

G G R G R

n N

G ( , ) , ( , , , ) ,

1, ...,

p
n

p
p s p s

( ) ( ) 2 3= { } = {{ } { }}

= (8)

The structural descriptors convert each dimer’s atomic
structure into a rotation-, translation-, and permutation-
invariant input for the neural network. Within a cutoff radius
of 8 Å, each atom’s local environment is described by atom-
centered symmetry functions (SFs). The radial environment of
each atom is captured using radial symmetry functions:44,46

G f Re ( )p
q p

R R
C pq

2

all atoms
in dimer

( )pq s
2

=
(9)

where atom p is the central atom for which the symmetry
function is calculated, Rs is the shift in the center of the
Gaussian peak, η is the width of Gaussians, and f C(Rpq) is the
cutoff function:
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In order to obtain a better description of the atomic
environment, radial symmetry functions are calculated for all
element doublets (CC, CH, HC, HH, etc.) We use eight radial
symmetry functions for each pair of elements, whose η and Rs
parameters are determined using the method introduced by
Imbalzano et al.47 Thus, there are 8 × NE radial symmetry
functions for each atom in a system with NE elements. For each
element triplet, angular functions of the following form are
generated to describe the angular environment of each
atom:44,46

G

f R f R f R

2 (1 cos ) e

( ) ( ) ( )

p
q r p

q r

pqr
R R R R R R

C pq C pr C qr

3 1

,

all atoms
in dimer

( ) ( ) ( )pq s pr s qr s
2 2 2

= +

×

<

[ + + ]

(11)

where atom p is the central atom and θpqr is the angle formed
by atoms p, q, and r. Like radial symmetry functions, angular
symmetry functions are calculated for all element triplets
(CCC, CCH, CHH, etc.) to better describe the environment
around the atoms. For each element triplet, there are two Rs
values, two ζ values, and two λ values, resulting in eight angular
symmetry functions that are automatically selected.47 As there
are NE(NE + 1)/2 element triplets, each atom will have 8 ×
NE(NE + 1)/2 angular descriptors.

A total of 3612 rubrene dimer geometries were taken from
an ab initio molecular dynamics trajectory using the optPBE-
vdW density functional,48 a DZVP basis set,49 and GTH
pseudopotentials.50 Snapshots from four distinct dimer pairs
within a supercell of 12 molecules were taken at 50 fs intervals.
Further computational details can be found in ref 51. A total of
5770 O-IDTBR dimer pairs were taken from classical
molecular dynamics trajectories using a force field para-
metrized specifically for the family of IDTBR non-fullerene
acceptors.52 All reference DFT electronic couplings were
calculated using the projector-operator-based diabatization
(POD) method17 in conjunction with the Perdew−Burke−
Ernzerhof (PBE) density functional and a uniform scaling
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constant of 1.325. This is referred to as the sPOD/PBE
method. The scaling factor was obtained from the best fit to ab
initio reference values for the HAB79 database of organic
dimers.53

■ RESULTS AND DISCUSSION
Optimal Sampling Protocol for AOM Fitting. As a

starting point, we present a protocol for fitting the AOM. A
representative collection of molecular dimers is sampled from
molecular dynamics trajectories to fit the linear scaling relation
between AOM overlap and sPOD/PBE electronic coupling
(eq 5). Depending on the complexity of the physical system,
there may be hundreds to thousands of points sampled.25,32,51

For crystalline systems, the sampled dimers are arranged in a
few clusters that contain fairly similar dimers. Dimers within a
cluster may have a wide range of electronic couplings, despite
being visually similar. Consequently, chemical intuition cannot
easily determine whether the dimer space is undersampled or
oversampled. Undersampling of the data limits the validity of
the model, whereas oversampling of the data increases the cost
of reference electronic coupling calculations. A further
consequence of oversampling data is that it may result in
inconsistent AOM scaling constants depending on which part
of the dimer space has been oversampled. As a means of
addressing these issues, we propose a method of systematic
sampling that ensures convergence of the scaling factor with a
small number of samples.

From a geometrical perspective, the AOM reference data set
should represent all possible dimers. It is therefore necessary to
use a geometrical descriptor that is capable of accurately
capturing the similarity of the structures in order to select the
most different structures. In this study, we utilize the average
minimum distance (AMD),54 a geometrical descriptor that has
recently been proposed. AMD is rotation-, translation-, and
permutation-invariant; it is also stable and computationally
efficient. As a test of its quality, we clustered rubrene dimers
extracted from an ab initio MD simulation trajectory for a
rubrene molecular crystal at room temperature.51 The result of
clustering using the HDBSCAN clustering algorithm55 are shown
in Figure 2.

In HDBSCAN, the distance metric is the Euclidean distance
between AMD descriptors. The data set contains 3612 data
points arranged in two clusters with size 1806. These two
clusters represent the electronic couplings in the a and b
crystallographic directions, respectively; they are shown by
circles and squares in Figure 2. Using the AMD descriptor,
HDBSCAN divides the data set into two clusters indicated by the
green and blue colors. It is important to note that no data
points remain unclustered and that both clusters are detected
correctly without any errors, indicating that AMD is a good
descriptor to capture the underlying order of the data.

To sample the reference data points for AOM fitting, AMD
is used as a descriptor, and the farthest point sampling (FPS)
algorithm56,57 is applied. This is an iterative optimization
strategy that selects the most diverse data points from already-
selected data. With a good descriptor, such as AMD, the dimer
configurational space will be sampled in a uniform manner
such that oversampling and undersampling are prevented. This
allows us to sample dimers with the greatest geometric
diversity with the smallest number of data points. Figure 3a
illustrates the convergence of fitting the AOM’s scaling factor,
C̅, with respect to the size of the training set when data points
are sampled randomly (black) or by AMD+FPS (red). As the

number of data points sampled by FPS is increased from 32 to
64, the fitted C̅ value differs by less than 1%, and the value can
be considered converged for any practical purposes. The C̅
value obtained from random sampling depends strongly on the
particular sample chosen, especially when training set sizes are
small. In Figure 3a we plot the average C̅ value obtained from
10 random samples for each training set size, and the root-
mean-square deviation of the C̅ value across these 10 samples
is indicated by error bars. The data show that random sampling
can lead to large errors and cannot guarantee a reliable C̅ value,
while FPS is very robust, even at small sample sizes, and
provides an optimal sampling strategy. The completeness of
the sampled set is also verified by the convergence of the mean
absolute error (MAE), the maximum absolute error (MAX),
and the mean unsigned relative error (MURE) in Figure 3b−d.
Errors were calculated over 30% of the data that was not used
for sampling the training set for fitting C̅. The protocol for
optimal sampling for AOM is summarized as follows:

1. Run a long-enough MD simulation, on the order of 100
ps to 1 ns.

2. Sample dimers at a frequency which accurately samples
the fluctuations of electronic couplings, typically on the
order of 100 fs for molecular crystals.

3. Sort the initial data set by FPS using AMD geometrical
descriptor.

4. Pick n new data points from the sorted list, calculate the
reference ab initio electronic couplings, and include
them in the AOM reference data.

5. Fit the scaling constant of AOM, C̅.
6. Repeat steps 4 and 5 until the change in C̅ is less than

1%.
Using this method, the smallest set of structures with
maximum geometrical diversity is collected for AOM, thereby
saving a considerable amount of computational time.
Machine Learning Models.While FPS is a good sampling

method for selecting data to parametrize the AOM, it is not the

Figure 2. Clustering of the rubrene DFT reference data set using
HDBSCAN and AMD descriptor. Two clusters are detected and shown
as green squares and blue circles, corresponding to orbital overlap
(S̅ab) and electronic coupling (Hab) in rubrene dimers along the
crystallographic directions a and b, respectively.
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best algorithm for preparing the training set for neural network
(NN) models where larger amounts of data are required
compared to the AOM. This was determined by comparing the
learning curve of a neural network model for electronic
couplings between rubrene dimers when the training set was
sampled randomly versus when it was sampled by FPS, as
described in the previous section. This comparison is shown in
Figure 4 and indicates only a very slight difference between
random sampling (black) and FPS sampling (red). FPS
sampling was also performed with atomic descriptors based on
symmetry functions, and the results were minimally improved
compared to random sampling (see Figure S2). In addition to
having no advantage over random sampling, FPS sampling also
results in larger errors when training sets are small.
Consequently, sampling training sets based on geometrical
diversity does not necessarily result in improved neural
networks. It is evident that both the black and red learning
curves show that the NN is capable of achieving a higher level
of accuracy than the AOM model (Figure 4, data in purple), in
particular with regard to the MAX error, which is reduced by a
factor of about 2. However, a rather large reference data set of
more than 1000 DFT electronic couplings is needed to
outperform AOM. While for rubrene dimers this is computa-
tionally manageable, for larger molecules or for systems with a

larger number of nearest-neighbor couplings, a more data
efficient NN method is desirable.

Active learning methods, in particular committee neural
networks (cNN),58 can often provide greater data efficiency.
For this purpose, a committee of N neural networks are trained
on slightly differing training sets in order to sample different
parts of the hyperdimensional space of neural network weights.
The committee is used to make predictions on data that have
not been incorporated into the training set. Those data points
with the highest level of disagreement, as measured by the
standard deviation of the committee’s prediction, are added to
the training set. This so-called query by committee (QbC)
process is repeated iteratively until the disagreement between
committee members on the pool of unseen data converges to
that of the training set. Detailed information about the
approach can be found in the work of Schran et al.58

In this study, we utilize a committee of eight neural networks
in order to learn the electronic couplings of rubrene dimers;
70% of the data is used for training, and 30% is used for testing.
Initially, 20 dimers are selected randomly from the training
pool. Each committee member is trained on 80% of this data
(16 data points out of 20), such that each committee member
sees a slightly different training set. The committee members
are applied to the remainder of the training pool, and the 20
structures with the highest disagreement between committee
members are added to the committee training pool. This

Figure 3. Convergence of AOM scaling constant C̅ in rubrene and
error metrics with training set size: (a) the scaling constant of the
AOM model, (b) the mean absolute error of predictions on the test
set, (c) the maximum error of predictions, and (d) the mean unsigned
relative error of predictions using either random sampling (black) or
the FPS algorithm (red). An error bar indicates one standard
deviation based on 10 randomly selected training sets of the
corresponding size.

Figure 4. ML of electronic couplings of rubrene dimers. (a) MAE, (b)
MAX, and (c) MURE vs training set size when electronic couplings
are evaluated by AOM model (purple), a neural network with
randomly sampled training set (black), a neural network with FPS-
sampled training set (red), a QbC-sampled committee neural network
(cNN) (blue), and a QbC-sampled cNN trained on the difference
between reference data and AOM values (green).
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procedure is repeated iteratively until the disagreement
between committee members on the training pool and training
set data converges. We differ from the work of Schran et al.58

in that our disagreement score is based on the standard
deviation of predicted electronic couplings.

Query by committee takes 2−3 times less data to beat AOM
in terms of MAE than random sampling (Figure 4, blue lines).
In addition, the cNN method allows us to achieve lower MAE
than random sampling: ∼3.2 meV with around 1600 data
points selected by the cNN versus ∼3.8 meV when all the
training data are included. This indicates that there is hidden
redundancy in the data set that biases the model to specific
dimer configurations when all of the data are used. The MAX
and MURE also decrease faster when QbC is used.

The linear relationship between electronic coupling and
orbital overlap shown in Figure 2 indicates that the underlying
assumptions of the AOM are a good approximation for this
system. However, there is still some scatter. In a Δ-ML
approach, we use AOM as a baseline and attempt to learn the
difference between DFT electronic coupling and AOM values
(scatter or deviation from linear relation) using neural
networks. This approach has proven very successful when
there is a high correlation between a computationally
inexpensive baseline and the target accuracy.59 AOM provides
an excellent baseline for this purpose due to its high correlation
with the reference data, R2 = 0.992, as shown in Figure 2.

A cNN model is trained on the difference between DFT
electronic couplings and the AOM value (Δ-ML) using the
iterative QbC sampling approach described above. The
learning curves are shown in Figure 4 (green lines); about
an order of magnitude less data than using standard cNN is
required to outperform AOM, a significant improvement.
Furthermore, with only 500 dimers used for training, this is the
only model that achieves a better MURE (∼11%) than AOM
(∼14%). It is worth noting that if the test set includes many
reference values close to zero, the MURE will be very large,
since small absolute error translates into a large relative error.
This is less of a problem for AOM, since the assumed AOM
relation eq 5 passes through the origin. We therefore benefit
from using AOM as a baseline in order to improve the MURE
of predictions.

In the current work, the electronic coupling has been
approximated as a sum of atomic contributions, which is the
most straightforward approximation if one writes the density in
terms of a sum of atomic densities (with any partitioning
algorithm). The works of Wang et al.40 and Caylak et al.41 are
similar in this regard, as both use Coulomb matrices60 (CMs)
as descriptors. CMs describe a system via inverse distances
between atoms but do not include higher-order terms. This
method is fast to compute and easy to implement, and it allows
the reconstruction of an atomistic system using a least-squares
approach.60 Although it uses atomic numbers directly to
encode elements, it suffers from discontinuities in the sorted
version or from information loss in the diagonalized version
since its eigenspectrum is not unique. We instead assign
different symmetry functions to different element pairs and
triplets depending on their type, both for pairwise radial (G2)
and triplewise angular (G3) symmetry functions. The use of
such descriptors allows for a more accurate description of the
chemical environment and thus for a faster and better training
of the corresponding model. As opposed to the findings of
Musil et al.,37 we demonstrated that active learning by QbC is
a more successful sampling strategy than FPS, at least when

neural networks are the ML method of choice. As shown in
Figures 4 and S2, the use of FPS did not provide any significant
improvement over random sampling when geometrical
descriptors, such as AMD and SFs, were used as the input.
A Challenging Case: O-IDTBR. A case study is presented

to illustrate the use of the presented machine learning
approach to estimate electronic couplings in O-IDTBR. This
material belongs to the class of non-fullerene acceptors
(NFAs), which have recently attracted significant interest in
organic photovoltaics (OPVs). Their contribution to record
OPV efficiencies (currently 19%) results from a number of
inherent, desirable NFA characteristics, such as synthetically
tunable optical properties, improved long-term morphological
stability, and high charge carrier mobility (μ).61,62 In
comparison with other NFAs, O-IDTBR exhibits a superior
structure/packing motif, resulting in a relatively high electron
mobility for this class of materials.63

A total of 5770 dimer configurations were taken from
classical molecular dynamics trajectories using a force field
specifically parametrized for the family of IDTBR NFAs.52

This data set contains four distinct dimer types, the structures
of which are shown in Figure S4. Figure 5 shows electronic

Figure 5. (a) Chemical structure of O-IDTBR. (b) Scatter plot of
electronic coupling from DFT calculations (sPOD method) vs orbital
overlap from reconstructed FMOs with fixed expansion coefficients.
Calculations were carried out for dimers extracted from classical MD
simulation of the O-IDTBR crystal. D1 to D4 denote different dimer
orientations in the crystal structure.
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coupling versus orbital overlap for the data set, where overlap
values were calculated using the fixed expansion coefficients of
the O-IDTBR molecule at the minimum-energy configuration.
Different dimer types are labeled by color. Due to a large
center-of-mass distance between monomers, overlaps and
electronic couplings for D4 dimers are close to zero. Clearly,
the deviation from the linear relationship between overlap and
coupling is now very significant, and the scatter is much larger
than for rubrene. Moreover, it appears that the data would be
better described by two slopes, one for dimer geometries
labeled D3 and another for the other dimer types. The physical
reason for the large scatter is discussed below. We would
expect ML models to give a more significant improvement over
AOM than for rubrene.

We started by testing the AMD descriptor’s ability to assign
molecular dimers to one of the four dimer types. We used the
HDBSCAN algorithm, AMD descriptors, and Euclidean distances
as described previously, results of which are presented in
Figure S5. Once again, clustering is successful without any
errors or unclustered data points. By randomly assigning 5270
data points to the training set and the remaining 500 data
points to the test set, we applied the sampling protocol
introduced previously to fit the AOM model. A converged C̅
value of −7070 meV was obtained after adding 200 dimers to
the training set (see Figure S7). This model results in an MAE
of 12.4 meV, a MAX of 94 meV, and a MURE of 62% on the
test set (see Figure 6, purple lines).

Figure 5 clearly shows that the correlation between the
AOM and reference couplings (R2 = 0.67) is less strong than
for rubrene (R2 = 0.99). We train cNN models using both
direct learning and Δ-learning as described previously. The
parameters for the atomic environment descriptors, i.e.,
symmetry functions, are the same as those for rubrene. O-
IDTBR consists of five chemical elements, with each element
having 40 radial and 120 angular symmetry functions.
Therefore, the dimension of the descriptor is 3 times larger
than for rubrene. In order to reduce the computational costs,
we first pruned all symmetry functions with values below 10−4.
We then trained a simple model on a small subset of the data
set and carried out a sensitivity analysis to remove those
symmetry functions for which the output layer of the NN is
less than 0.4% sensitive to their gradients. Accordingly, we
have 111, 127, 119, 85, and 128 symmetry functions for
hydrogen, carbon, nitrogen, oxygen, and sulfur atoms,
respectively. Using this set of atomic descriptors in the input
layer of committees of eight neural networks, we train two
cNN models: one is trained on electronic couplings directly,
and the other is trained on the correction to the fitted AOM
model (Δ-ML).

In the plots of Figure 6, results for the AOM, the direct
learning model (cNN), and the Δ-learning model are shown in
violet, blue, and green lines, respectively. The AOM results
converge fast when the sampling protocol for AOM fitting is
employed. Δ-ML outperforms direct learning in terms of both
convergence behavior and accuracy metrics. With less than 100
data points, Δ-ML improves on AOM in both the MAE metric
(3 meV lower than AOM) and, most significantly, in the MAX
error metric (factor of 2 lower than AOM). However, the Δ-
ML estimates have larger errors in the MURE metric
compared to AOM. As discussed above, this is due to the
fact that small absolute errors translate to large relative errors
for couplings that are close to zero. However, since the AOM
linear scaling relation passes through the origin by definition,

this problem is somewhat alleviated in this method. We find
that the large MURE comes from dimers in the D4 cluster (see
Figure S8), which have rather small couplings spread around
zero. If these dimers are excluded, the MURE drops to less
than 50% for both ML methods (Figure 6c, dashed lines in
blue and green).

We now would like to explain the large scatter between
overlap and electronic coupling shown in Figure 5. The main
reason for its limited accuracy is the use of fixed projection
coefficients (same set of ck’s in eq 4 for all geometries) in the
AOM model. O-IDTBR exhibits strong thermal fluctuations of
the dihedral angles that connect the different molecular units,
which results in significant variations in the degree of
(de)localization of the FMO along the MD trajectory.
Representing the FMOs using fixed expansion coefficients
may therefore not be as successful for O-IDTBR as for
rubrene. We have illustrated three cases in Figure 7 in which
the expansion coefficient of an sp2 carbon (marked by an
arrow) is minimum (0.077), average (0.254), and maximum
(0.409). These states correspond to configurations where the
FMO (LUMO) of the molecule is preferentially localized on
the right-hand side, approximately equally distributed, and
preferentially localized on the left-hand side. Obviously, fixed
expansion coefficients are no longer a reasonable approx-
imation for this molecule. It results in the very strong scatter
shown in Figure 5.

Figure 6. ML of electronic couplings for O-IDTBR. (a) MAE, (b)
MAX, and (c) MURE vs training set size when electronic couplings
are evaluated by AOM model (purple), a QbC-sampled committee
neural network (blue), and a QbC-sampled committee neural
network trained on the difference between reference data and AOM
values (green). Solid and dashed lines represent test sets that include
and exclude D4 dimers.
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In Figure 8, a subset of 200 randomly selected dimers from
Figure 5 are replotted (fixed expansion coefficients, panel a)
and compared to the results obtained after reoptimization of
the expansion coefficients (panel b). Using the optimized
expansion coefficients greatly reduces scatter in the data,
resulting in errors that are similar to the ones for rubrene.
However, in a charge transport simulation, it is not practical to
calculate the DFT FMOs of each monomer at each time step
due to the high computational cost involved.

Evidently, ML of the effects of variations in the orbital
delocalization on electronic coupling is more challenging than
the learning of mainly geometry-based changes as in rubrene.
This explains the larger errors for O-IDTBR on all error
metrics. The proposed ML models are based on the sum of
atomic contributions (eq 6), and the environment around each
atom is described by neighbors within the cutoff radius.
However, while the local environment of the marked atom is
very similar in all three cases of Figure 7, the character of the
FMO differs substantially. Changes in FMO may be due to
long-range effects not well described by short-range symmetry
functions. One would require a cutoff radius of at least 30 Å in
order to account for such long-range effects. However, the cost
of calculating symmetry functions is the bottleneck for the
efficiency of ML models, and such large cutoffs would not be
practical.

The development of a model to accurately and efficiently
estimate expansion coefficients is a promising avenue for
further research, based on the observed improvement in results
shown in Figure 8.
Computational Cost. Above we demonstrated that Δ-ML

provides a significant improvement to the AOM estimation of
electronic couplings. During charge transfer simulations, these
estimations are performed millions of times, so their overhead
must be kept to a minimum. To benchmark the efficiency of
ML models, the calculation time was measured on a single core
of an Intel Xeon CPU E5-2650 v4 @ 2.20 GHz. In the case of
rubrene, the trained machine learning model requires 40 ms to
evaluate electronic coupling for a single dimer, whereas AOM
requires 26 ms. This relatively small cost overhead associated
with improving accuracy will not be a bottleneck in practical
applications. To further improve efficiency, hydrogen atoms

can be removed from the current model, since they have very
small contribution to the electronic coupling and play a
negligible role in describing the local environment in symmetry
functions. The removal of hydrogens from rubrene (C42H28)
results in 40% fewer atoms being included in the summations
in eq 9 and eq 11 when SFs are calculated, resulting in a 3-fold
improvement in efficiency, i.e., 14 ms/prediction, with minimal
loss in accuracy (see Figure S3). For O-IDTBR dimers, using a
single core, the AOM takes ∼190 ms for a single electronic
coupling calculation, whereas the Δ-ML model takes ∼130 ms.
Again, the cost overhead of improving the AOM model by ML
would not be the bottleneck in practical charge transport
simulations.

Figure 7. Three cases were the LUMO of an O-IDTBR monomer is
localized mostly over the right side (top), both sides (middle), and
left side (bottom) of the monomer. Isosurfaces with isovalues of 0.015
are shown and were generated with the VESTA software.64

Figure 8. Scatter plots of Hab vs S̅ab for O-IDTBR using (a) fixed
expansion coefficients for FMO reconstruction (200 data points taken
from Figure 5b) and (b) reoptimized expansion coefficients for each
data point. Note the reduction in scatter after reoptimization.
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■ CONCLUSIONS
We have presented a set of tools that facilitate ultrafast
estimation of electronic couplings between molecules, which is
necessary for the simulation of charge transport in organic
semiconductors. Initially, a sampling protocol was developed
by combining a geometrical descriptor, AMD, and farthest
point sampling to sample the reference data for fitting AOM
models. Using this protocol ensures convergence of AOM
fitting with a small number of reference data calculations,
eliminating the need for chemical intuition. Various neural
network models and sampling methodologies were examined
to model the electronic couplings of rubrene dimers, and it was
determined that Δ-ML committee neural networks (cNNs)
and query by committee (QbC) sampling provided the most
accurate results. By exploiting the physics-motivated AOM
model as a baseline, the Δ-ML was trained on the difference
between AOM and reference data (sPOD/PBE). This
approach allows us to achieve similar or better accuracy than
previous efforts37−42 with training sets that are at least an order
of magnitude smaller than those used previously.

With this approach, the accuracy of electronic coupling
predictions is improved according to all error metrics
employed, at the cost of doubling the computational time. It
is important to note, however, that the level of improvement is
influenced by the baseline. An AOM model’s cost efficiency
comes from its use of fixed FMO projection coefficients for the
molecule in question. This is found to be a good
approximation in rubrene, where the AOM overlaps exhibit a
strongly linear correlation with reference electronic couplings.
However, in cases where the FMO character of the molecule
changes significantly during dynamics, as in O-IDTBR, the
AOM will provide a less accurate baseline. Using an additional
machine learning model to estimate the expansion coefficients
of the FMOs of molecules will provide higher-quality results
and serve as a more reliable baseline for Δ-ML. We are
currently working along these lines.

Concerning the active learning method, the use of
uncertainty as the metric or score, as in QbC, is very popular;
however, other scores can also be utilized. The expected model
output change (EMOC) is another score recently adopted in
the chemical community.65 With this method, AL will select
data points with the largest expected change in model output.
Considering that the current study does not compare active
learning methods and that QbC performs well, such a
comparison needs to be conducted in future studies.

Finally, in terms of generalizability of the model, we expect it
to be generalizable for cases such as π-conjugated molecules,
where the FMO of a molecule can be approximated by its local
geometry. When FMOs have nonlocal dependencies, however,
a new model must be trained from scratch. Constructing an
AOM+Δ-ML correction is straightforward since with the
proposed protocol for fitting AOM models and QbC sampling
for training ML models, a small number of reference data point
calculations and minimum human intervention are required. In
addition, newly visited dimer configurations will be detected
during the course of the application by examining the standard
deviation of ML predictions. The extrapolation occurrence will
be handled automatically by retraining the ML model using
such data points.
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