Synthesis and antitubercular activity of novel 4-arylalkyl substituted thio-, oxy- and sulfoxy-quinoline analogues targeting the cytochrome bc1 complex

Robert Murnanea, Mire Zlohb,c, Sangeeta Tannaa, Renee Allend, Felipe Santana-Gomezd, Tanya Parishd, Federico Brucolia,*

a Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
b UCL School of Pharmacy, University Business Academy, Novi Sad 2100, Serbia
c UCL School of Pharmacy, UCL, London WC1N 1AX, UK
d Center for Global Infectious Disease Research, Seattle Children’s Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, USA

ARTICLE INFO

Keywords:
Anti-microbial resistance
Quinoline
Tuberculosis
Oxidative phosphorylation
Bc1-aa3 super complex
QcrB mutants

ABSTRACT

A library of 4-substituted quinolines was synthesised based on the structural features of the privileged 4-(benzylthio)-6-methoxy-2-methylquinoline scaffold. Quinoline-based chemical probes have proven to be effective anti-tuberculosis agents with the ability of inhibiting components of Mycobacterium tuberculosis (MTB) respiratory chain including the b subunit of the cytochrome bc1 complex. Novel 4-(arylalkyl)-thio-, -oxy and sulfoxoy-quinoline analogues were tested for their ability to inhibit the growth of MTB H37Rv and QcrB mutant strains, and the compounds mode of action was investigated. Members of the 4-substituted thio- and sulfoxoy-quinoline series exhibited significant growth inhibitory activity in the high nanomolar range against wild-type MTB and induced depletion of intracellular ATP. These probes also showed reduced potency in the QcrB T313I mutant strain, thus indicating the cytochrome bc1 oxidase complex as the molecular target. Interestingly, new 4-(quinolin-2-yl)oxy-quinoline 4i was more selective for the QcrB T313I strain compared to the wild-type strain.

1. Introduction

Tuberculosis (TB) is an ancient infectious disease caused by Mycobacterium tuberculosis that remains a threat to global health. In 2021, TB killed 1.6 million people and an estimated 10.6 million people contracted this disease worldwide, although there was a significant reduction in reported cases (from 7.1 million to 5.8 million) between 2019 and 2020 due to disruptions caused by the COVID-19 pandemic on TB services including cases notifications [1]. Notably, the TB incidence rate increased by 3.6% between 2020 and 2021 inverting the 2% yearly decline observed in the past two decades [1]. Most cases were in the WHO regions of South-East Asia (43%) and Africa (25%), and Western Pacific (18%), with lower percentages in Europe (2.3%). Amongst the top 50 high TB burden countries, eight accounted for the total number of cases worldwide, e.g., India, China, Indonesia, the Philippines, Pakistan, Nigeria, Bangladesh and South Africa [1]. However, TB is also a healthcare challenge in Europe, where 230,000 new cases with an estimated 20,000 deaths were reported in 2021. Further, an estimated 73,000 new cases of rifampicin-resistant and multidrug-resistant TB (RR/MDR TB) were reported in 2021 [1]. This is about 16% of the 450,000 RR/MDR TB cases worldwide in 2021 and Europe has the highest MDR TB rates in the world (SURVEILLANCE REPORT. Tuberculosis surveillance and monitoring in Europe 2018 (europa.eu)).

During the COVID-19 pandemic in 2020, TB was the second leading cause of death by infectious disease after COVID-19, and the annual number of estimated global TB deaths increased by 7.45% for the first time since 2005 from a previous year (i.e., from 1.2 million in 2020 to 1.3 million in 2021) [1]. This spike in TB deaths was linked to the restrictions put in place during the COVID-19 pandemic, which hamstrung the services required to fight TB due to lack of funding and focus, distribution of essential treatments and delays in initial diagnosis. Notwithstanding the COVID-19 pandemic, the progress made against the goals laid out in 2014 by the World Health Assembly has been very disappointing, as incident and mortality rates were expected to be reduced by a minimum of 20% and 35% respectively from the initial 2015 rates by 2021. However, both rates fell by only a fraction of the...
desired goal, with the rate of incident in 2021 falling only by 11% and mortality falling by 9.2% [2].

An effective strategy to arrest the growth of actively replicating and dormant M. tuberculosis might consist in targeting components of the oxidative phosphorylation pathway (Fig. 1) [3]. The chain is comprised of several plasma membrane proteins including the cytochrome bc1, which is part of the cytochrome bc1-a3 super complex [4]. The latter is involved in electron transfer processes, e.g., the oxidation of ubiquinone and reduction of cytochrome in bacterial oxidative phosphorylation chains [5] and is a potential TB drug target that can be inhibited by different chemotypes [6]. The menaquinol-binding (Qp) site of the QcrB subunit of cytochrome bc1 seems to be the preferred target of the cytochrome bc1-a3 inhibitors reported to date including, but not limited to, 2-(quinolin-4-yloxy)acetamides (QOAs) [7–12], lan
soprazole [13], imidazo[4,5-c]pyridine [14] and imidazo[1,2-a]pyridines amides (IPAs) [15], e.g., Q203 [16,17] and ND-008454 [18], morpholino thiophenes [19], anilinyl-analogues of phenox
yalkylbenzimidazoles (PABs) [20] and triazolopyrimidines, such as TPN-006239 [21] (Fig. 2).

Q203 has recently completed phase II clinical trials [22] for TB treatment (https://clinicaltrials.gov/ct2/show/NCT03563599) and was found to be effective against MDR and XDR TB by targeting cytochrome bc1. Mutations T313I or T313A (e.g., mutation of T313 to isoleucine and alanine, T313I and T313A, respectively) within QcrB were found to be cause of resistance against Q203 [23], whereas a L176P mutation was responsible for the resistance to lansoprazole [13].

The remarkable anti-tubercular activity of previously reported 4-substituted oxy- and thio-quinolines, such as 4-((4-(tert-butyl)benzyl)thio)-6-methoxy-2-methylquinoline (1, also referred to as 5a in this study), and their facile synthesis, prompted us to further investigate the mechanism of action of this class of compounds [8,24]. Given the structural analogy of 4-thio-quinolines and their oxy- and sulfoxy-analogues with the QOA scaffolds, we postulated, along with other research groups, [8] that 4-substituted quinoline-compounds might exert their anti-tubercular activity by targeting the QcrB unit of the cytochrome bc1 oxidoreductase complex.

Here, a library of 4-substituted sulfoxide-, oxy- and thio-quinoline analogues was synthesised and evaluated for their ability to inhibit the growth of M. tuberculosis wild-type and T313I mutant strains. The library included both previously reported oxy- and thio-quinolines [8,24] and novel derivatives containing an expanded range of aryl moieties, e.g., pyridine, quinoline, indole and meta-chloro substituted methoxybenzyl rings, attached to the quinoline unit of the final products. Moreover, sulfoxo- and oxy-quinoline derivatives were tested for antitubercular activity for the first time. In general, QcrB mutant strains were resistant to the 4-substituted thioquinoline compounds, which induced depletion of intracellular ATP, thus showing evidence of target
grouping the cytochrome bc1 oxidase complex. On the other hand, 4-oxyquinoline and sulfoxo-quinoline derivatives were less active against M. tuberculosis H37Rv compared to the thio-quinoline class. However, two novel derivatives, 4i and 5g, had greater growth inhibitory properties against the QcrB mutant strains, with the 4-quinolinyl-oxy-quinoline compound 4i showing 6.5-fold higher selectivity for the QcrB T313I mutant strain compared to the wild-type, indicating QcrB as the cellular target.

2. Results and discussion

2.1. 4-Aryl-substituted-thioquinolines disrupt energy metabolism in M. Tuberculosis

To test our hypothesis that aryl thiol ether quinolines target the M. tuberculosis H37Rv bc1 complex, we synthesised previously reported anti-tubercular agent 1 (5a) [24]. Compound 1 (5a) was evaluated for cytotoxicity in HepG2 cells and growth inhibitory activity against mutant strains expressing QcrB7313I or QcrB5342T. Analogue 1 (5a) was...
Fig. 2. Structures of lead compound 1, which emerged from a GSK phenotypic screening campaign, and chemical scaffolds targeting \textit{M. tuberculosis} QcrB unit of the menaquinol cytochrome \textit{c} oxidoreductase (\textit{bc\textsubscript{1}} complex), which is part of the \textit{bc\textsubscript{1}-aa\textsubscript{3}}-type cytochrome oxidase complex. Scaffolds include 2-(quinolin-4-yl)acetamides (QOAs), lansoprazole, imidazo[4,5-c]pyridine and imidazo[1,2-c]pyridines amides (IPAs), anilinyl-analogues of phenoxyalkylbenzimidazoles (PABs) and triazolopyrimidines.

Fig. 3. Compounds 4\textsubscript{a}, 4\textsubscript{b}, 4\textsubscript{d}, 4\textsubscript{i} and 5\textsubscript{a} induced depletion of intracellular ATP levels. ATP concentrations were measured using the BacTiter Glo assay kit in \textit{M. tuberculosis} after incubation with the quinoline compounds for 24 h.
also tested for its ability to deplete intracellular ATP levels under aerobic conditions in *M. tuberculosis* (Fig. 3). In this study, we used previously reported resistant strains T313I and M342T [18,20] that were derived from the parental strain *M. tuberculosis* H37Rv-LP (ATCC 25618) carrying single-nucleotide polymorphisms of the *qcrB* gene, which encodes a subunit of the menaquinol cytochrome *c* oxidoreductase (*bc*1) complex.

A 22-fold shift in growth inhibition was observed for 1 (5a) in the strain with QcrB_{M342T} (MIC₉₀ = 2.6 µM) and a 4-fold shift in the strain with QcrB_{T313I} (MIC₉₀ = 0.47 µM) compared to wild-type *M. tuberculosis* H37Rv (MIC₉₀ = 0.12 µM), thus confirming the activity of this thioquinoline was targeting the QcrB subunit. Compound 1 (5a) showed mild cytotoxicity in HepG2 cells cultured in both galactose and glucose media (IC₅₀ Glu = 48 µM/IC₅₀ Gal = 34 µM; Glu/Gal Ratio = 1.4).

Compounds that inhibit cytochrome *bc*1 oxidase have previously been shown to deplete intracellular ATP levels in aerobic cells [11]. Thioquinoline 1 (5a) was able to reduce ATP levels within 24 h of exposure under aerobic conditions. Q203, a known cytochrome *bc*1 inhibitor, was used as the control.

After establishing that 4-substituted thio-quinolines targeted respiratory processes in *M. tuberculosis*, we set out to prepare a library of compound 1 analogues to gather structural activity relationship data. In addition to novel quinoline-based probes, the library included a number of previously reported derivatives, which were synthesised and screened to gather further information about the ability of variously substituted quinoline-including compounds to target respiratory processes in *M. tuberculosis* strains. The probes were tested against strains carrying the QcrB mutation at T313I. This is one the most common mutations that causes resistance to inhibitors [21].

2.2. Synthesis of quinoline-compound analogues

The structure of 6-methoxy-2-methylquinolin-4-ol (2) was synthesised from ethyl acetoacetate and *p*-anisidine using the Conrad-
Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>M. tuberculosis (Wild-type)</th>
<th>M. tuberculosis QcrB T313I</th>
<th>HepG2</th>
<th>Selectivity Index (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC₅₀ (µM)</td>
<td>IC₅₀ (µM)</td>
<td>IC₅₀ (µM)</td>
<td>IC₅₀ (µM)</td>
</tr>
<tr>
<td>4f</td>
<td>>100</td>
<td>>100</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>4h</td>
<td>77</td>
<td>37</td>
<td>53</td>
<td>32</td>
</tr>
<tr>
<td>4i</td>
<td>47</td>
<td>7.3</td>
<td>7.3</td>
<td>4.7</td>
</tr>
<tr>
<td>5f</td>
<td>0.78</td>
<td>0.21</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>5g</td>
<td>43</td>
<td>11</td>
<td>20</td>
<td>5.1</td>
</tr>
<tr>
<td>5h</td>
<td>24</td>
<td>11</td>
<td>18</td>
<td>8.5</td>
</tr>
<tr>
<td>5i</td>
<td>0.17</td>
<td>0.04</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>5j</td>
<td>2.7</td>
<td>0.6</td>
<td>1.5</td>
<td>0.69</td>
</tr>
<tr>
<td>6b</td>
<td>0.63</td>
<td>0.14</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>6d</td>
<td>0.7</td>
<td>0.26</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>6e</td>
<td>0.83</td>
<td>0.093</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0.0087</td>
<td>0.0044</td>
<td>0.0041</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

* Inhibitory concentrations (IC₅₀) were determined after 5-day incubation period. IC₅₀ and IC₉₀ are the compound concentrations that would inhibit the growth of 90% and 50%, respectively, of the tested bacterial isolates. The parental strain is M. tuberculosis H37Rv-LP (ATCC 25618). IC₅₀ is the concentration required to reduce HepG2 cell number by 50% and was determined after 3 days of exposure to compounds. SI is the ratio between MIC and IC₅₀. H37Rv WT ND = Not Determined. Compounds' structures and antimycobacterial activity previously reported [8,24].

2.3. Anti-mycobacterial screening

Determination of activity (IC₅₀ and IC₉₀) against H37Rv wild-type M. tuberculosis strain confirmed the potency of previously reported thioquinolines 5b, 5c, 5d, 5e [24] with IC₅₀ values ranging from 0.025 – 0.63 µM (Table S2). New 4-thioquinoline analogues 5f (MIC₉₀ = 0.78 µM; MIC₅₀ = 0.21 µM), 5i (MIC₉₀ = 0.17 µM; MIC₅₀ = 0.042 µM), and pyridine-containing 5j (MIC₉₀ = 2.7 µM; MIC₅₀ = 0.6 µM) were found to be effective M. tuberculosis growth inhibitors, whereas indole (5g) and trifluoro-ethoxy pyridine-5 (5h) including analogues were mildly active (Table 1).

Generally, oxyquinoline derivatives exhibited moderate activity against the H37Rv wild-type strain. For example, 4a was found to be the most potent of this series (MIC₉₀ = 1.7 µM), whereas 4d was > 100-fold less active than its thio-quinoline counterpart 5d (Table S2).

The presence of the sulfoxide group in the quinoline scaffold structure restored the anti-tubercular activity of the compounds. Novel sulfoxide containing compounds 6b, 6d and 6e effectively inhibited the growth of M. tuberculosis H37Rv with IC₅₀ values ranging between 0.2 and 0.83 µM and IC₉₀ values ranging from 0.043 to 0.26 µM.

IC screening of the compounds against QcrB resistant mutant T313I revealed a shift in activity for selected 4-arylalkyl substituted thio- and oxy-quinolines, thus confirming our hypothesis that this class of compounds targeted mitochondrial respiration enzymes in M. tuberculosis. It was noted that there were differences between IC₅₀ and IC₉₀ values in the growth inhibitory curves of QcrB mutants. This can be partially attributed to the fact that the T313I strain grows more slowly than the wild-type M. tuberculosis strain. As a result, IC₅₀ instead of IC₉₀ values were mainly used to assess the compounds activity against QcrB mutants. A decrease in growth inhibitory activity against the mutant strain compared to wild-type H37Rv was observed for both thioquinoline, i.e., 5d (42-fold) and 5b (3-fold), and to a lesser extent for oxyquinoline, i.e., 4a (8-fold), 4b (10-fold) and 4d (5.9-fold), analogues (Table S2).

The diminished activity of 5b and 5d in the QcrB mutants might be ascribable to reduced interactions between the p-chlorophenyl group of 5d or trifluoromethyl group of 5b with the mutated aminoacid residue at position 313 of the QcrB unit.

Interestingly, quinolin-2-yl-methyl-oxyquinoline 4i and (1H-indol-3-yl)-thioquinoline 5g were the only library members tested that exhibited 1.7-fold and 2.2-fold higher activity against QcrB T313I (IC₅₀ QcrB T313I = 4.7 and 5.1 µM, respectively) compared to the wild-type strain (IC₅₀ H37Rv = 7.3 and 11 µM, respectively), thus indicating affinity toward the target within the electron transport chain of M. tuberculosis mitochondria. If the IC₅₀ values of 4i were used to compare the activity in wild-type vs mutated strains, the shift would be even more pronounced with a 6.5-fold decrease in activity against the wild-type (IC₅₀ = 47 µM) compared to T313I mutant strain (IC₅₀ = 7.3 µM).

Selected derivatives were screened for cytotoxicity in HepG2 cells and showed moderate to low toxicity. The new thioquinolines 5i and 5j were the least cytotoxic of the tested compounds with IC₅₀ values of 33 and 72 µM, respectively, and favourable selectivity index (SI = ratio between GIC₅₀ HepG2 and the IC₅₀ H37Rv) values of 786 and 120, respectively. Novel sulfoxo-quinoline analogue 6b, which contained a trifluoromethyl-phenyl residue, showed an IC₅₀ HepG2 value of 6.8 µM and had a SI of 49, whereas 6e exhibited an IC₅₀ value of 0.093 against H37Rv and a SI of 30.

2.4. ATP depletion

Measurement of ATP production in mycobacteria can provide...
additional information on compounds’ ability to inhibit aerobic respiration processes (e.g., electron transport chain and ATP synthase). Inhibition of cytochrome bc_1 leads to reduced movement of protons across the membrane, thus resulting in less proton ions outside of the mitochondrial membrane. A low proton gradient results in a decrease of ATP production, as there are less proton ions passing through the ATP synthase, which in turn cannot catalyse the conversion of ADP to ATP. Compounds 4a, 4b, 4d, 4i and 5a were incubated with *M. tuberculosis* for 24 h and ATP levels were determined using the BacTiter-Glo assay kit (Promega). Growth was measured by optical density at 590 nm (OD$_{590}$). All of the tested compounds, including positive control Q203, were able to deplete ATP production in a dose-dependent manner at concentrations that did not inhibit *M. tuberculosis* growth (i.e., lower than IC$_{50}$ growth inhibition values) (Fig. 3). Kanamycin, which does not target electron chain transport mechanisms, did not cause ATP depletion. This constitutes further
2.5. Molecular modelling

The molecular docking results reported in Table 2 revealed that on average ligands were predicted to bind tighter into the binding pocket of the mutant QcrB protein compared to that of the WT protein. Although the analogues are closer aligned with the inactive conformation of Q203 average ligands were predicted to bind tighter into the binding pocket of the cytochrome oxidase complex. It was found that the oxyquinoline frames, might maintain activity and interactions with the molecular target in the mutated M. tuberculosis strain. Remarkably, novel quinolin-2-yl–methyl–containing derivatives 4i (oxy-quinoline series), 5i (thioquinoline series) and 6i (sulfoxiquinoline series) were predicted to bind to the T313I mutated protein with higher affinity compared to other library members. These results might in part explain the 6.5-fold higher antitubercular activity of 4i against QcrB T313I compared to the wild-type strain. As can be seen in Fig. 4, 4i has an increased number of interactions with amino acid residues at the QcrB T313I binding site. These include contacts of the 4i oxyquinoline core with mutated isoleucine 313, hydrogen bonding of tyrosine 161 with the oxygen atom of the compound’s methyl-oxo-bridge, van der Waals interactions between the phenylalanine 346 benzyl group and the quinolin-2-yl northern aryl moiety of the ligand. The full atomistic molecular dynamics simulation of mutated QcrB – 4i complex has confirmed that the key interactions between the ligand and hydrophobic residues (A179, I183 and I313) were preserved throughout the 100 ns trajectory. This suggests that the hydrophobic pocket of T313I mutant (Fig. S1) could be the target site for these novel analogues and will be subject of further studies.

3. Conclusions

The facility to access the 4-substituted quinoline framework and the remarkable anti-tubercular activity of previously reported derivatives prompted us to further investigate this scaffold by expanding the array of aryl-group positioned at the C-4 position of the quinoline unit and evaluating the ability of thio-, oxy- and sulfoxide-derivatives to inhibit electron transfer in the respiratory chain of tubercle bacilli as tool compounds to study oxidative phosphorylation processes in mycobacteria.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

We thank Lauren Ames and Quan Pham for technical assistance.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioorg.2023.106659.

References

R. Murnane et al.

Bioorganic Chemistry 138 (2023) 106659

