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Quantifying cell biology in space and time requires computational methods to
detect cells, measure their properties, and assemble these into meaningful
trajectories. In this aspect, machine learning (ML) is having a transformational
effect on bioimage analysis, now enabling robust cell detection in
multidimensional image data. However, the task of cell tracking, or
constructing accurate multi-generational lineages from imaging data, remains
an open challenge. Most cell tracking algorithms are largely based on our prior
knowledge of cell behaviors, and as such, are difficult to generalize to new and
unseen cell types or datasets. Here, we propose thatML provides the framework to
learn aspects of cell behavior using cell tracking as the task to be learned. We
suggest that advances in representation learning, cell tracking datasets, metrics,
and methods for constructing and evaluating tracking solutions can all form part
of an end-to-endML-enhanced pipeline. These developments will lead theway to
new computational methods that can be used to understand complex, time-
evolving biological systems.
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1 Introduction

Understanding how cells self-organize to become tissues and whole organisms is one of
the most fundamental questions of biology. Indeed, single cell biology has the potential to
illuminate processes from development and regeneration to diseases such as cancer. A
predicate of quantifying cell biology in space and time is a suite of computational tools that
can extract measurements from the myriad sources of experimental data. These include
algorithms to detect cells, measure properties such as shape, morphology, or biochemical
activity and to link these observations over time into biologically meaningful trajectories.
Recent advances in optical imaging methods such as light-sheet microscopy now allow
researchers to capture volumetric (3D + t) timelapse image data at high-frame rates, with
multiple biochemical reporters (Dunsby, 2008; Chen et al., 2014; Kumar et al., 2014;
Sapoznik et al., 2020; Yang et al., 2022). As such, we are now in an era where we can
generate vast volumes of information-rich experimental imagery more easily than we can
extract meaning from the data.

In recent years, machine learning (ML) has had a transformational effect on
microscopy data analysis; common image processing tasks such as cell
segmentation, image denoising, feature extraction and cell state classification now
routinely use a variety of ML-based algorithms (Moen et al., 2019a). ML algorithms can
leverage experimental image data to improve robustness and accuracy in the task.
However, despite major efforts in developing cell tracking algorithms, extraction of
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high-fidelity, multi-generational lineages remains a major
bottleneck in microscopy image analysis (reviewed in (Wolf
et al., 2021)). Most current approaches use the tracking-by-
detection paradigm, i.e., that the tracking problem is
decomposed into two steps i) detection of cells then ii)
linking these over time into trajectories.

With the advent of convolutional neural networks (CNNs,
(Lecun et al., 1998)), the cell detection step has seen significant
progress in recent years. Generalised segmentation and detection
algorithms such as U-Net (Ronneberger et al., 2015), Mask
R-CNN (He et al., 2017), YOLO (Joseph et al., 2015), Segment
Anything (Kirillov et al., 2023) or more specialized cell-specific
algorithms such as DeepCell (Van Valen et al., 2016), Cellpose
(Stringer et al., 2020) and StarDist (Schmidt et al., 2018) are now
able to detect cells with great accuracy, even in complex
multidimensional data.

In contrast, many tracking-by-detection algorithms have been
designed using heuristics based on our prior knowledge of what cells
look like, and simple cellular behavior like cell division. As powerful
as this approach is, it is often not flexible enough to deal with new or
unseen data, and accurate tracking is not the end goal; rather,
quantifying the underlying cell biology is. Perhaps a more
appealing idea, and the central thesis here, is that advances in
ML can be leveraged to learn models of cell behavior by posing
cell tracking as the task to be learned.

2 Training and validation data

Annotated data are the essential requirement for ML
algorithm development, either for training supervised models
or evaluating real-world performance. For cell tracking, two types
of annotations are required; i) the annotation of individual cells,
marking their locations in space and time and ii) annotations
describing how these are linked over time. However, acquisition
of manual annotations is laborious, time-consuming, with
various studies reporting weeks, months or even years of
dedicated time spent annotating a medium-sized dataset
suitable for model training (Wolff et al., 2018; Caicedo et al.,
2019; Ulicna et al., 2021; Malin-Mayor et al., 2022). Ground truth
annotations for 3D + t datasets are even more limited as their
annotation complexity increases; they are often sparsely
annotated or provide a “gold standard” instead. This means
that newly-developed tracking approaches are, by definition,
benchmarked and validated exclusively against the few tracks
included in the gold standard selection, and the model
performance is not extensively measured on the entire dataset
where it may exhibit some improvements over known tools. For
example, the choice of the lineages included in the gold standard
could be task-specific, including favouring long, narrow yet
complete trees over broken, but richer and wider lineages
capturing the diversity of cellular behavior.

In order to increase the quantity and quality of annotated data,
there are an increasing number of efforts to crowd-source
annotations (Sullivan et al., 2018; Moen et al., 2019b). These
efforts have also highlighted the need for active label cleaning for
improved dataset quality (Bernhardt et al., 2022). However, with
these, and other efforts, the number of high quality datasets is

increasing with time, and popular repositories include the Cell
Tracking Challenge (CTC), with data from several microscopy
modalities (Ulman et al., 2017; Martin et al., 2023)1 and the
Multiple Object Tracking (MOT) benchmark data capturing
diverse cell types from range of model organisms (Anjum and
Gurari, 2020)2.

3 The tracking problem

The tracking data can be represented as a directed acyclic graph
(DAG), where the set of cell detections are vertices (V, also known as
nodes). The graph is directed and acyclic due to the arrow of time,
and is well suited to representing cell division events. Without any
prior knowledge, edges (E) are constructed between vertices in
successive time points, such that every vertex at time t is
connected to every vertex at t + 1, and so forth. In this case, the
full graph of all possible solutions isGhypothesis = 〈V, E〉. The goal of a
tracking algorithm is to identify a subgraph (Gsolution ⊂ Ghypothesis)
that minimises the tracking error and captures the motion and key
events, such as mitosis and apoptosis, of every cell in the system.
There are two closely related key challenges: (i) detection linking
(§3.1) and (ii) lineage reconstruction (§3.2).

3.1 Vertices and edges: detection linking

The simplest formulation of the tracking-by-detection paradigm
uses a greedy assignment strategy. In this case, a cost matrix (C) is
constructed for all edges between the vertices at time t and t + 1
(Crocker and Grier, 1996; Jaqaman et al., 2008). Here, C yields a
simplified version of Ghypothesis; it only considers a successive pair of
time points. The goal is to find the optimal set of edges (Gsolution)
linking vertices, that minimizes the total cost. This is commonly
solved as a Linear Assignment Problem (LAP), using combinatorial
optimization algorithms such as the Hungarian algorithm (also
known as the Kuhn–Munkres algorithm (Munkres, 1957)) or the
variant Jonker-Volgenant (Jonker and Volgenant, 1987) algorithm.
The time complexity of these algorithms is typically O (n3) making
the naïve assignment a costly operation for large numbers of cells.

A central consideration is how to construct the cost matrix C.
The simplest formulation uses the spatial (L2, Euclidean) distance
between the two vertices. However, this naïve assumption does not
capture the heterogeneity of behavior typical in real data, and can
produce errors in dense cell populations. More sophisticated cost
functions can be formulated, for example, by using the predicted
motion of the cell via a Kalman filter (Kalman, 1960; Bise et al., 2011;
Bove et al., 2017; Ulicna et al., 2021; Ershov et al., 2022),
incorporating local flow (Malin-Mayor et al., 2022) or visual
features (He et al., 2015; Bove et al., 2017; Ulicna et al., 2021).
However, it seems that there is ample room to incorporate
additional features in the construction of C. In general, this
approach is known as local tracking, as although the algorithm is

1 http://celltrackingchallenge.net/datasets/

2 https://motchallenge.net/data/CTMC-v1/

Frontiers in Bioinformatics frontiersin.org02

Soelistyo et al. 10.3389/fbinf.2023.1228989

http://celltrackingchallenge.net/datasets/
https://motchallenge.net/data/CTMC-v1/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1228989


global in space, it is not so in time. In contrast, global tracking
approaches, consider the full hypothesis graph (all time points)
while identifying the optimal set of edges (discussed further in §5.2).

3.2 Lineage assembly

In addition to reconstructing cell tracks which follow single-cell
trajectories over their lifetime (Figures 1A–C), it is essential to
correctly identify cell divisions and the relationships between
related cells to precisely reconstruct cell lineages. The lineage is a
hierarchical organization of single-cell tracks over time, recording
the cell division history over up to several generations. Lineages are
usually visualized in form of lineage trees (Sandler et al., 2015; E
Kuchen et al., 2020), i.e., planar graphical representations from
which the ancestral (mother, grandmother, etc.) as well as
generationally-equal (sister, cousins, etc.) relationships can be
read (Figure 1D).

Compared to the task of reconstructing single-cell tracks,
accurate lineage reconstruction is the most error-prone stage of
cell tracking in long-movies. The fidelity of lineage assembly
depends on the success of two steps: (i) the formation of full (or
partial) trajectories, ideally capturing the cell from division to
division, and (ii) the organization of those trajectories into

parent-to-children assignments. This process critically depends
on the fidelity of object detection, and methods to construct a
hypothesis graph that can be evaluated to identify branching
events such as mitosis.

4 Measuring performance

Measuring tracking errors is critical; metrics are also essential in
the design of an effective ML training loop as part of the objective
function.

4.1 Common tracking errors

Several common errors are observed in automated tracking
pipelines (Figure 1E). Fundamentally, any tracking-by-detection
algorithm is limited by the accuracy of object detection; errors
arising from under- and over-segmentation or hallucination, can
lead to false negative and false positive cell detections that
dramatically impact the construction of Ghypothesis and therefore
the feasibility of potential tracking solutions. For example, missing
edges or mitotic detections are common examples of false negatives.
A false negative branch occurs when one of the children cells is

FIGURE 1
Examples of automated cell tracking and lineaging and evaluation using BTRACK. (A) Tracking MDCK cells in culture (image data from Ulicna et al.
(Ulicna et al., 2021)) (B) Tracking cells inC. elegans early embryo development (image data fromMurray et al. (Murray et al., 2006)). (C) Tracking cells inD.
melanogaster embryo development (image data from Amat et al. (Amat et al., 2014)). (D) Example BTRACK (Ulicna et al., 2021) lineage output, using default
tracking parameters, on the C. elegans dataset from Murray et al. (Murray et al., 2006). The manually annotated ground truth tree is shown for
reference. The propagation of a single tracking error, highlighted as a red arrow is shown, demonstrating the complexity of the tracking and lineaging
problem. (E) Examples of typical errors in automated cell tracking. Vertices are denoted as circles, and correct edges are shown as bold black arrows,
errors as red arrows and dashed arrows indicate the ground truth where errors have occurred.

Frontiers in Bioinformatics frontiersin.org03

Soelistyo et al. 10.3389/fbinf.2023.1228989

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1228989


falsely linked to the parent track, while the other child is initialized as
a new track without information about its ancestry. As a result, the
tree branches are erroneously prolonged, and the leaf (terminal) cells
of the downstream lineage tree path would be determined to reach a
lower, and incorrect, generational depth.

On the other hand, it is critical to produce tracks which are not
prematurely terminated or truncated, as those could become
putative parents (false positive branch), by falsely linking to other
tracks arising in their close neighbourhood. In this case, the lineage
would incorrectly reach a higher generational depth. Establishing a
suite of metrics (See §4.2) is essential for identifying these tracking
errors and to enable training new ML models.

4.2 Metrics

A fewmetrics have been proposed for assessing the performance
of cell tracking algorithms. Ulman et al. (Ulman et al., 2017) propose
a definition of “tracking accuracy” that is based on representations of
the ground-truth and predicted cell lineages as DAGs, where
accuracy is calculated using a matching measure that assesses the
divergence between the ground-truth and predicted graphs (Matula
et al., 2015). They also use a “complete tracks”metric that is based on
the number of the ground-truth tracks that are correctly tracked, i.e.,
where a predicted track follows the same cell through all frames of
the ground-truth track (Kang et al., 2008).

Further, lineage-specific metrics are required for cell tracking
evaluation. For example, Bise et al. (Bise et al., 2011) define mitotic
“branching correctness” (MBC) as the proportion of ground-truth
cell divisions that are predicted by the tracking model, where a
prediction is considered successful if it captures the correct mother-
daughter relationship between the cells concerned and, moreover,
predicts the timing of the division within a certain tolerance. The
MBC and leaf retrieval score (LRS, (Ulicna et al., 2021)) are lineage
scale metrics. Importantly, in studies where retrieval of the cell
relationships is desired, an LRS of 0.75 (i.e. 3 out of 4 leaf cells are
tracked correctly from start to end of imaging) is more intuitive to
the user to benchmark the tracking performance than an often used
MOT accuracy metric of 0.97 vs. 0.99. Many of these cell tracking
specific metrics are implemented in open-source packages such as
Traccuracy3.

5 Leveraging ML to enhance cell
tracking

Naïvely, tracking as few as 10 cells in a movie of 10 frames in
length yields a hypothesis graph (Ghypothesis) with a total of 109

possible solutions for each cell. With larger datasets, this naïve
approach is computationally infeasible. Luckily, there are
constraints on the problem, and not all of these hypotheses are
physically possible; cells conform to a set of “rules” defining their
behavior, such as movement and division. Rather than “hard-code”
these rules into an algorithm, we might approach it as a data-driven

problem. Here, ML provides a potential framework to learn these
and other cell behaviors. Given a dataset and a set of metrics to
enable optimization, tracking can be posed as a learnable task. In
addition to detection, a putative model needs two components: i) A
way to represent cells from the imaging data and ii) A method of
constructing the hypothesis graph from which the tracking solution
can be identified.

5.1 Learned representations

Many neural network architectures, such as CNNs, operate in a
hierarchical fashion, such that high-dimensional information is
compressed into a lower-dimensional representation. This makes
them a natural tool for the extraction of features representative of the
input image data. For cells growing in populations, it is often
important to quantitatively describe their immediate
neighbourhood (Li et al., 2020; Wang et al., 2020; Fischer et al.,
2021; Stirling et al., 2021; Buchner and Valada, 2022). Moreover,
single-cell images do not have to be analysed on per-image basis.
Indeed, the advantage of time-lapse imaging is that temporal models
of cell behavior can encode (or learn) the transitions of states over
time (Held et al., 2010; Bove et al., 2017; Soelistyo et al., 2022;
Gallusser et al., 2023). Incorporating features such as local (or
collective) motion, neighbourhood embeddings or cell state
classification can be used to generate rich representations (Bove
et al., 2017; Driscoll et al., 2019; Andrews et al., 2021; Gradeci et al.,
2021; De Vries et al., 2022; Ko et al., 2022; Malin-Mayor et al., 2022;
Yamamoto et al., 2022; Viana et al., 2023). Increasingly, self-
supervised methods (such as variational autoencoders) are being
used to learn explainable representations directly from the image
data ((Zaritsky et al., 2021; Soelistyo et al., 2022;Wu et al., 2022)). As
such, the characterization of the temporal landscape of
morphological states can help to distinguish heterogeneous cell
populations (Freckmann et al., 2022) and diverse cell fates
(Soelistyo et al., 2022), or incorporate rules of the tracking
problem (Bove et al., 2017). These advances suggest that rich
representations of cells can be learned directly from the image data.

5.2 Discrete optimization

Another major advance in recent years has been the use of
discrete optimization methods to identify a globally optimal solution
graph. One early and very successful approach was to use the Viterbi
algorithm (Magnusson et al., 2015), treating cell behavior as a
hidden Markov model. Alternatively, optimization can be posed
as a Linear Programming (LP) problem, i.e., that it is defined by a set
of linear inequality constraints that define possible solutions to the
problem (Figure 2). The goal is to maximize the value of a linear
objective function given these constraints. For example, an Integer
LP (ILP) problem can be defined:

maximize ρ⊤x
subject to Ax � b

x ∈ 0, 1{ }
Effectively the matrix A and vector ρ encode a set of hypotheses

about potential edges and hyperedges (edges connecting ≥ 23 https://github.com/Janelia-Trackathon-2023/traccuracy
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vertices, such as a single cell splitting during mitosis) and the
likelihood of that hypothesis being correct respectively. Usually
this problem is formulated using heuristics, or pre-defined rules,
that enable calculation of the likelihood based on the evidence. Since
the domain of x is binary, the optimization effectively determines the
best set of hypotheses that account for all of the observations, while
maximizing the total reward. One of the earliest examples was
demonstrated by Al-Kofahi et al. (Al-Kofahi et al., 2006), where
cell specific hypotheses, such as track splitting were introduced, and
this general strategy has been successfully extended with other
hypotheses (Bise et al., 2011; Ulicna et al., 2021; Malin-Mayor
et al., 2022).

5.3 Learning an end-to-end cell tracking
model

It should be noted that the construction of ρ and A are
themselves based on reward functions and heuristics that are
user-provided and therefore parameterized based on our prior
knowledge. In BTRACK we built a hypothesis engine that constructs
A and ρ given heuristics and the data; only relevant hypotheses are
proposed to limit the size of the ILP problem. The advantage of this
approach is that it is computationally cheap and requires little data
(acknowledging the general paucity of data; see §2). The

disadvantage is that it leads to exponential complexity (ILP is
NP-hard) in cases where the problem is ill-posed. In the case of
novel or unseen datasets, if the problem is not solvable in a
reasonable amount of time, it likely means that either the
assumptions of the model are incorrect or it is poorly parameterized.

As such, a future goal of an ML system is to reduce the search
space by proposing these hypotheses; the aim is not to enumerate
all hypotheses, but intelligently suggest a subset that could
account for the data. This is analogous to a formal language
that describes both the acceptable states of a system but also,
potentially the rules that generate those states. Several recent
studies have shown that self-supervised methods can identify and
predict cellular events from image data alone (Soelistyo et al.,
2022; Gallusser et al., 2023). A putative ML-enhanced tracking
algorithm could leverage these predictions and associated
confidences to construct A and ρ respectively. Furthermore,
recent advances in the fusion of deep-learning and
combinatorial solvers provide a route towards achieving this
putative end-to-end tracking pipeline (Vlastelica et al., 2019).
One can imagine a generalized cell tracking model that has been
trained on existing data, which is then further fine-tuned for new
datasets using transfer learning. Not only does this formulation
lead to an implicitly interpretable representation (since A is by
definition a set of rules), it also enables the exciting prospect of
discovering novel cellular dynamics.

FIGURE 2
Tracking, graphs and discrete optimization. (A)A sequence of image volumes showing a singlemitotic branching event highlightedwith white circles
representing the vertices and dashed lines representing the ground truth edges. (B) A simplified directed hypothesis graph of the mitotic event. Each
vertex represents a unique cell detection. Edge weights (black and red arrows) and hyperedge weights (blue arrows) are calculated as the posterior
probability of linking and branching hypotheses given the evidence, and calculated using BTRACK. (C) There are several hypotheses to account for the
appearance of new vertices. In hypotheses 1 & 2, edges link vertex 28 and either 29 or 267 respectively. In hypothesis 3, a hyperedge links vertex 28 to both
29 and 267, representing a mitotic event. (D) A simplified ILP optimization problem using the graphical model, and possible solutions. The A matrix is
sparsewith non-zero elements colored by hypothesis type (red - edge, blue - hyperedge, grey - terminus). The rows represent individual hypotheses and
the columns are the vertex IDs forming part of the hypotheses. The optimal solution (which maximizes ρ⊤x s.t. Ax � �1) is highlighted with an asterisk.
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6 Discussion

Ultimately, the goal of our research is not to create the perfect
cell tracking algorithm, rather we want to understand cell behavior
in complex biological systems. ML provides a potential framework
to learn aspects of cell behavior by posing cell tracking as the
learnable task.

Although we have thus-far considered tracking-by-detection to be
comprised of two separate computational steps, there are efforts in the
wider computer vision community to develop end-to-end ML
tracking algorithms. In this case, detection and tracking can be
posed as a joint learning task, i.e., that the model learns to detect
objects and track them simultaneously. This has the advantage of
couplingmodel performance to both steps of the tracking-by-detection
paradigm. A recent example of this approach are global tracking
transformers (Zhou et al., 2022), that couple region proposal networks
(Ren et al., 2015) with transformers (Vaswani et al., 2017) to perform
semi-global multi-object tracking. These methods however, require
very large quantities of training data, and in their current formulation,
do not consider important hypotheses such as branching events,
making adaption to cell tracking more challenging.

A further requirement in the application of ML for scientific
enquiry, is model explainability. Deep neural networks are generally
considered “black boxes” whose behavior is difficult to explain in
human-understandable terms. Owing to their complexity, these
models can typically be explained only with reference to simpler
approximation models that mimic the general behavioral features of
the more complex model (Guidotti et al., 1802; Rudin et al., 2021).
Despite this challenge, the promise of explainable deep learning is
considerable, particularly in the domain of scientific inquiry. For
example, an explainable end-to-end cell tracking pipeline may allow
us to investigate the rules that govern cell movement and behavior. By
internalizing an external phenomenon (e.g., cell movement), the
model would thereby form a computational representation of that
phenomenon that human scientists can investigate. This framework
has already been applied with some success to the study of cell fate
determination in a cell competition context (Soelistyo et al., 2022).

Finally, the open sharing of trained models, metrics and data, is
essential to drive scientific progress. This has been a growing trend in
the machine learning community, with the appearance of publicly
available repositories such as Scivision4, Bioimage. IO (Ouyang et al.,
2022) and HuggingFace (Wolf et al., 2020). To maximize ease-of-use,
model repositories ensure that each model is accompanied by a
standardized description, which includes input and output formats,
pre-trained weights and source of training data. Ouyang et al. (Ouyang
et al., 2022) note that in order for ML models to be of use to external
communities, such as experimental microscopists, models should be
accessible viaGUI-equipped software, such as Fiji (Johannes et al., 2012)
or Napari (Sofroniew et al., 2022). Indeed, effective visualization of
tracking data is also an open challenge (examples include Napari,
TrackMate (Tinevez et al., 2017; Ershov et al., 2022) and Mastodon5).

The promise of ML to help us understand complex biological
systems is considerable. Intelligent systems can extract patterns and

insights that evade the notice of human scientists, allowing us to
investigate domains previously hindered by our limited ability to
distil scientific knowledge from large datasets. As such, advances in
ML will ultimately enable the automated discovery of novel cellular
dynamics.
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