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Abstract—With the advances in Internet of Things (IoT) and
mobile connectivity, location-based services (LBSs) are increas-
ingly popular and continue to enhance our experience. Multiple
antennas have been pivotal for the provision of reliable wireless
communications and high-resolution localization. However, in the
real world, mobile handsets tend to have very limited space and
the incorporation of multiple antennas hardly obeys the rule of
half-wavelength separation between antenna elements, resulting
in complex mutual coupling. More often than not, antennas are
placed not to affect negatively the artistic design and handling of
the device. The irregular 3D radiation pattern of each antenna
element further impairs the capability of the antenna array for
localization. In this paper, we propose a generic parametric model
that can incorporate the actual antenna responses into the angle-
of-arrival (AoA) estimation. As a result, we present an efficient
algorithm to enable 3D AoA estimation on mobile phones based
on the proposed model, and test it on a 5G phone at a midband
spectrum with 100MHz channel bandwidth. Our results reveal
promising performance with over 90% scenarios where the AoA
estimation errors are lower than 10◦ on a mobile phone.

Index Terms—5G new radio, angle-of-arrival estimation, chan-
nel state information, indoor localization, mobile device.

I. INTRODUCTION

The increasing popularity of mobile devices, coupled with
the rise of the Internet of Things (IoT), has resulted in the
prevalence of location-based service (LBS) applications, e.g.,
emergency calls, navigation, object tracking, marketing, and a
range of information services [1–3]. Global positioning system
(GPS) is currently the de facto positioning technology, with
approximately 10m accuracy in outdoor environments but its
performance in indoor environments is severely degraded due
to the lack of line-of-sight (LoS) of the satellites.

For most LBSs, the required indoor positioning accuracy is
typically less than 3m, which is unfortunately very difficult to
achieve by GPS. To overcome this problem, researchers have
investigated many indoor positioning systems (IPSs) in recent
years [1–13]. The considered media for IPSs include RF-based
signals (e.g., 5G, Wi-Fi, Bluetooth, ZigBee, and LPWAN) [1,
2, 4] and non-RF-based signals (e.g., Li-Fi, optical camera
communication, and light detection and ranging) [14, 15].
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A. Related Work

RF-based positioning is achieved by extracting the location-
bearing parameters from the received radio signals. One way
is to intersect the time-of-arrival (ToA) or time-difference-of-
arrival (TDoA) to find the location of, say a user equipment
(UE), through three or more base stations (BSs). Such timing-
based positioning technologies usually rely on the support of
standards and are radio access technology-dependent (RAT-
dependent). For example, 802.11az standardizes a fine timing
measurement protocol [16] that enables a pair of devices to
estimate their round trip time (RTT). The 3rd Generation Part-
nership Project (3GPP) New Radio (NR) supports observed
TDoA in Release 15 [17] and multi-cell RTT in Release 16
[18]. However, IEEE802.11az is not yet widely used in com-
mercial UE. In addition, the TDoA technique relies on tight
synchronization among BSs, whereas the BS synchronization
techniques applied by GPSs have clock synchronization errors,
causing 30− 50m errors in positioning [19].

Another common approach bases positioning on angle-of-
arrival (AoA) or angle-of-departure (AoD) estimation. Com-
bining direction information using a triangulation process can
provide a location estimate without the need of synchroniza-
tion. The 3GPP NR supports the downlink AoD (DL-AoD) and
uplink AoA (UL-AoA) in Release 16 [18]. For DL-AoD, the
BS transmits a set of reference signals with beam sweeping.
The UE of interest then measures the received signal quality
of each beam and reports the measurements to the BSs. On the
other hand, for UL-AoA, the BS performs AoA estimations
based on the uplink sounding signals sent by the UE. These
processes are conducted through the location management
function at the core network, and thus are RAT-dependent.

In NR or Wi-Fi, multiple antennas are employed on mobile
phones to support enhanced mobile broadband. As such, AoA
information can also be available at the UE side without being
RAT-dependent. On the one hand, the AoA information can as-
sist the positioning process by combining the information from
the RAT-dependent schemes. On the other hand, performing
localization from the UE side preserves privacy. Nevertheless,
UE tends to have only a limited number of antennas due to
their precious space, making it hard to derive precise AoAs.
Several AoA estimation techniques based on Wi-Fi and 5G
NR have therefore been introduced recently in [20–33].

In particular, ArrayTrack in [20] uses a custom-made WiFi
access point (AP) consisting of eight antenna elements and
applies MUSIC and spatial smoothing techniques to estimate
the AoAs of direct and reflected paths from the UE. Then in
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Fig. 1: (a) Measurement setup for antenna response in the anechoic chamber. (b) Original responses. The x-axis is the amplitude
of the response, whereas the y-axis is the time difference between ToA and the responses. (c) Aligning the time difference of
the responses.

[21], SpotFi employs a typical Wi-Fi AP with three antenna
elements and applies MUSIC with a modified spatial smooth-
ing technique to obtain the AoAs and ToAs of the UE. More
recently in [22], RoArray which used commercial WiFi AP
like SpotFi was also proposed to estimate the AoA and ToA
using sparsity-based regularized minimization. It was shown
that RoArray outperformed SpotFi at medium or high signal-
to-noise ratios (SNRs). Moreover, most recently, [28] proposed
MonoLoco to use direct path and multipath reflection from the
UE to a single AP for multipath triangulation. BiLoc [29] and
SR-PLoc [30] suggested the use of a specific distributed AP for
applications with a single-antenna UE to estimate additional
ToAs instead of the AoD of the UE for localization.

For 5G NR, [32] proposed to estimate the AoAs with an
adjacent angle power difference method based on orthogonal
matching pursuit (OMP). Compared with MUSIC, the ap-
proach in [32] improved the estimation accuracy and stability.
Finally, [33] estimated AoAs for the user-centric ultra-dense
network architecture based on an edge cloud.

B. Motivation and Contributions

Despite the progress made so far, it is important to note that
in most of the studies, the antennas are tailored specifically
for the purpose of positioning, which unfortunately does not
reflect the reality when the localization method is used in the
real world. In particular, a regular antenna array with spacing
of half a wavelength between elements is often assumed. This
is however hardly the case in practice due to the limited space
at UE. While the antennas on a mobile phone are configured to
have low correlation and high isolation, the spacing between
the antennas is usually irregular and is not an integer multiple
of half a wavelength. Besides, the antennas are connected to a
ground plane which makes the response of each antenna highly
complex. It is not known how these practical complications
can be incorporated into the AoA estimation.

Specifically, our aim is to answer the following questions:

What are the technical challenges brought by prac-
tical antennas, and how can 3D AoA estimation be
achieved on commodity devices indoors?

To answer these questions, we consider a practical mobile
phone system with four antennas and analyze the antenna re-
sponses through the over-the-air measurement in the anechoic
chamber, as illustrated in Figure 1(a). We then tailor a super-
resolution AoA extraction algorithm in the anechoic chamber
to analyze the antenna responses. Figure 1(b) shows a single-
path producing multiple responses, and that the gain and the
number of the responses vary at different antennas and angles.
This effect is attributed to the fact that the antennas are close
and connected to a ground plane; thus, mutual coupling occurs.
The estimation of ToAs and AoAs faces not only the multipath
effect resulting from the propagation environment but also the
antenna itself. We overcome these challenges by developing a
super-resolution AoA estimation algorithm taking into account
of the actual antenna responses, implement it on a commodity
device and demonstrate the performance using experiments.

In summary, our main contributions are as follows:
• Generic model for practical antennas. We study the an-

tenna response and present a novel parameterized model
that can integrate the multipath effects resulting from the
propagation environment and the antenna responses. The
model is universal and includes the conventional ideal
antenna as a special case. The model can easily decouple
the two multipath sources and therefore, we can use it to
develop efficient ToA and AoA estimation algorithms.

• Efficient algorithm for AoA estimation. We devise a two-
stage algorithm that allows efficient 3D AoA estimation
on commodity devices. In the offline stage, we measure
the antenna responses at every angle in the anechoic
chamber and parameterize them into a 3D table based
on the proposed antenna model. In particular, we tailor a
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Fig. 2: URA spatial signal model.

super-resolution AoA extraction algorithm for this offline
stage. In the online stage, we use this table to synthesize
the steering vector for the phone antennas and then apply
the synthesized steering vector to identify the AoA of
the strongest path from the measured multipath channel.
We then remove the identified path and its corresponding
antenna responses from the measurement. This procedure
is repeated until all the multipaths are extracted. The
algorithm can systematically separate all the multipaths
and jointly estimate multi-dimensional channel parame-
ters, such as AoAs and ToAs of the multipaths.

• Implementation on 5G NR. We implement the algorithm
on a 5G NR mobile phone at 3.9GHz band with 100MHz
channel bandwidth. We evaluate the effectiveness of the
algorithm in indoor environments extensively using both
experiments and ray tracing-based computer simulations.
Our results suggest that though practical phone antennas
lead to complex antenna responses, the phenomenon also
diversifies the angular pattern, thereby reducing angular
ambiguity. Consequently, the antenna effect is not always
a disadvantage but can be desirable to AoA estimation.

The rest of this paper is organized as follows. In Section
II, we describe the antenna responses on a mobile phone and
introduce our parameterized model for the antenna responses.
Section III introduces the proposed estimation algorithm. The
measurement and simulation results are shown in Section IV.
Finally, in Section V, we provide our concluding remarks.

II. SYSTEM AND ANTENNA MODEL

We consider the transmission system using orthogonal
frequency-division multiplexing (OFDM), where the trans-
mission band comprises N subcarriers. The transmitter (Tx)
is equipped with a single antenna, and the receiver (Rx)
is equipped with M antennas. When the signal propagates
through a multipath channel, the channel frequency response
(CFR) at the n-th subcarrier of the m-th antenna can be
modeled as

hn,m =

L∑
l=1

gle
−j2π(n−1)∆fτlam(θl), (1)

where L is the number of the propagation paths, gl is the
complex gain of the l-th path, ∆f is the subcarrier spacing, τl
is the ToA of the l-th path, θl is the AoA of the l-th path, and
am(·) is the antenna response of the m-th antenna. We have

normalized the antenna response of the first antenna to be 1
and absorbed the phase response into the complex gain gl.

If Rx is equipped with a uniform rectangular array (URA)
(Figure 2), then the antenna response of the m-th antenna
of the AoA with the incident path at azimuth angle θa and
elevation angle θe can be represented as [34]

aURA,m(θa, θe) = e
−j2π

(
mxd
λ sin θa cos θe+

myd

λ cos θa cos θe
)
,
(2)

where d = λ/2 is the minimum spacing between two adjacent
antennas along the x- or y-axes, mx and my are the integer
multiples of the spacing along the x-axis and y-axis of the m-th
antenna, and λ is the wavelength of the signal. For the URA,
the antenna response reflects the phase differences between
antenna elements. However, equipping a URA on a compact
phone is difficult. The antennas are usually designed with a
particular distribution to be installed on a small-volume phone
device and to have low correlation and high isolation. In this
case, the spacing between two adjacent antennas is different,
and mx and my might not be integer values.

In addition to the irregular antenna spacing, the practical
phone antenna brings other issues. To better understand the
effects due to a practical phone antenna, we show an ex-
perimental result. In the experiment, Rx is equipped with
four antennas, and Tx is equipped with a horn antenna as
illustrated in Figure 1(a). Given that the measurement is
conducted around microwave absorbers to provide a non-
reflecting environment, the phone antennas can only receive
the line-of-sight (LoS) signal without multipath. We show
the responses of every antenna at an angle of incidence. For
ease of notation, we use θ = (θa, θe) to denote the angle of
incidence. In Figure 1(b), we can observe that the location
of the antennas causes different delays to their first response,
and the received signal power is also different. In addition
to the first impulse response, we find other responses that are
elicited from the design of the antennas or the mutual coupling
effect. The antenna responses will change in different angles
of incidence. These effects are not a concern when using an
ideal antenna.

To reflect the effects due to phone antennas, the antenna
response of the m-th antenna is modeled as

aPRA,m(θ) =

Jm(θ)∑
j=1

|rm,j(θ)|e−j2π(n−1)∆fεm,j(θ), (3)

where Jm(θ) is the number of the response, |rm,j(θ)| repre-
sents the amplitude of the j-th response, and εm,j(θ) is the
time difference between ToA and the j-th responses. Notably,
these parameters are functions of θ, which implies that these
parameters will vary in different angles of incidence. The
expression of (3) is general and can include (2) as a special
case. For example, in the case of using an ideal URA, the
received signal causes only one response for every antenna.
Given that Jm(θ) = 1 for every m, rm,j(θ) and εm,j(θ) in
(3) can be simplified as rm(θ) and εm(θ). In addition, the
received signal power is equal to every antenna, so we obtain
that |rm(θ)| = 1 for every m. The time difference εm(θ) is
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only caused by the location of the URA and can be written as

εm(θ) =
mxd sin θa cos θe +myd cos θa cos θe

(n− 1)∆fλ
. (4)

Substituting the above conditions, (3) reduces to (2).
For ease of modeling, we assume the number of the re-

sponses is J for every antenna and every angle, which can
be determined by selecting the maximum values of Jm(θ)
∀m, θ. Moreover, we align the sampling points of the antenna
responses among antennas. In particular, as in Figure 1(c), we
let εm,j(θ) = ε′m,j(θ) + φj(θ), and rewrite (3) as

aPRA,m(θ) =

J∑
j=1

rm,j(θ)e
−j2π(n−1)∆fφj(θ), (5)

where rm,j(θ) = |rm,j(θ)| e−j2π(n−1)∆fε′m,j(θ) has included
the amplitude and phase differences among antennas. The an-
tenna response (5) can be regarded as a time-invariant system,
which introduces additional multipath at Rx. Combining the
channel and the additive noise, the received signal at the n-th
subcarrier of the m-th antenna can be expressed as

yn,m = hn,m + zn,m, (6)

where hn,m is defined by (1) with the parameterized antenna
response aPRA,m(θ) given in (5), and zn,m is the additive
white Gaussian noise (AWGN).

III. AOA ESTIMATION

Our goal is to estimate the channel parameters (gains, ToAs,
AoAs) from cluttering multipaths through measurement yn,m.
Clearly, the antenna response introducing additional multipaths
makes this task more challenging. However, notably, the
antenna responses, namely, rm,j(θ) and φj(θ) in (5), are not
environmental invariant. Thus, they can be determined through
an offline measurement in a chamber. The ToA and AoA
estimation from the channel with phone antenna is carried
out in two stages: offline and online. In the offline stage, the
antenna responses at every angle are measured and gathered
into a lookup table. In the online stage, we use this table
to synthesize a steering vector and then estimate ToAs and
AoAs. Both stages apply the Newtonized OMP (NOMP) [35]
principle to extract the relevant parameters.

A. Offline Stage: Antenna Response Measurement

In the offline stage, our target is to measure the antenna
response at every angle, namely, gathering the parameters of
(5). Given that no multipath occurs in the chamber, we set
L = 1 and simplify g = g1, τ = τ1, and θ = θ1 in (1),
leading to

hn,m =

J∑
j=1

pm,j(θ)e
−j2π(n−1)∆fδj(θ), (7)

where

pm,j(θ) = g · rm,j(θ), δj(θ) = τ + φj(θ). (8)

To extract the antenna responses, we keep the distance between
Tx and Rx the same at every angle of incidence, so g and τ

are unchanged during the measurement. Given that g and τ are
angular independent, their values do not affect the ToAs and
AoAs estimates in the online stage. Therefore, after estimating
pm,j(θ) and δj(θ), we can obtain rm,j(θ) and φj(θ) by simple
normalization and alignment to eliminate g and τ , respectively.

The way to estimate pm,j(θ) and δj(θ) is detailed. Given
that the estimation is performed for every angle of incidence,
we remove the argument θ from pm,j(θ) and δj(θ) to make
notation concise. From (7), we stack the received signals of N
subcarriers of the m-th antenna and express them as a vector
form

ym =

J∑
j=1

pm,js(δj) + zm, (9)

where

s(δ) =
[
1, e−j2π∆fδ, . . . , e−j2π(N−1)∆fδ

]T
. (10)

Particularly, our goal is to estimate

δ = [δ1, δ2, . . . , δJ ] (11)

and

P =


p1,1 p2,1 · · · pM,1

p1,2 p2,2 · · · pM,2

...
...

. . .
...

p1,J p2,J · · · pM,J

 . (12)

Toward this end, we use the maximum likelihood (ML)
estimate

(P̂, δ̂) = argmin
P,δ

M∑
m=1

∥∥∥∥∥∥ym −
J∑
j=1

pm,js(δj)

∥∥∥∥∥∥
2

. (13)

Given the difficulty of estimating the parameters of J
responses simultaneously, we first consider the estimation
for a single response, then expand the calculation to all the
responses. The ML estimate for one response can be written
by

(p̂, δ̂) = argmin
p,δ

M∑
m=1

‖ym − pms(δ)‖2, (14)

where p is the first row of (12), and we have removed index
1 from pm,1. The solution of (14) can be obtained when
maximizing the following cost function

S(p, δ) =

M∑
m=1

2<
{
pmyH

ms(δ)
}
− |pm|2 ‖s(δ)‖2. (15)

For any given δ, we can obtain the optimal solution of pm
that maximizes (15) with least square (LS) estimation

pm =
s(δ)Hym

‖s(δ)‖2
. (16)

Substituting (16) into (15) yields the cost function for δ

δ̂ = argmax
δ

M∑
m=1

∣∣s(δ)Hym
∣∣2

‖s(δ)‖2
. (17)

This estimation is performed through two steps: orthogonal
matching pursuit (OMP) and Newtonized refinement (NR)
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steps. We refer to the entire step sequence as one NOMP
iteration. In the OMP step, we build a finite discrete set for δ

Ω =

{
k

(
2π

γN

)
: k = 0, 1, · · · , γN − 1

}
(18)

where γ is the over-sampling rate relative to the grid. The
rough solution of δ is found by substituting all the elements
of set Ω into (17), and the relative solution of p is obtained
by substituting δ̂ into (16) for every m. In the NR step, we use
Newton’s method to iteratively refine the rough solution of δ
to avoid the off-grid effect. The (i+ 1)-th refinement iteration
calculates

δ̂i+1 = δ̂i − Ṡ(p̂i, δ̂i)

S̈(p̂i, δ̂i)
(19)

where (p̂i, δ̂i) is the refined result from the i-th iteration, and
Ṡ(p, δ) and S̈(p, δ) are the first and second partial derivative
of S(p, δ) with respect to δ, which are

Ṡ(p, δ) =
M∑
m=1

<
{

(ym − pms(δ))
H
pm

∂s(δ)

∂δ

}
, (20)

S̈(p, δ) =

M∑
m=1

<
{

(ym − pms(δ))
H
pm

∂2s(δ)

∂δ2

}
−|pm|2

∥∥∥∥∂s(δ)

∂δ

∥∥∥∥2

.

(21)

The relative solution of p̂i+1 is obtained when substituting
δ̂i+1 into (16).

After t iterations of refinement, we denote (p̂t, δ̂t) as
(p̂1, δ̂1) to represent the estimation of the first response. We
obtain the residual channel by reducing the CFR of the first
response from the channel

Yr = Y − s(δ̂1)p̂1, (22)

where
Y = [y1,y2, · · · ,yM ] . (23)

Thus, we finish the first iteration of NOMP. The residual
responses are determined by repeating the OMP and NR steps
with (J − 1) iterations, but the following NR step is slightly
different from the first iteration. Given that a single response
estimation in an iteration is affected by the previous iteration
and the residual responses in the channel, once we estimate a
new response, we cyclic refine each estimated response again
by using the NR step. Whenever we remove the estimated
responses at the end of the iteration, we refine P̂ with LS
estimation

P̂ =
[
S(δ̂)

H
S(δ̂)

]−1

S(δ̂)
H

Y, (24)

at the t-th NOMP iteration, where

S(δ̂) =
[
s(δ̂1), s(δ̂2), · · · , s(δ̂t)

]
. (25)

This LS refinement ensures that the power of the residual
signal is minimized.

After estimating (P, δ) from every angle, we normalize P
and align δ to obtain the synthesized antenna response for
every angle. We assume that δ1 is almost equal to τ , so we

obtain φj with
φ̂j = δj − δ1, ∀j (26)

at every angle. In addition, we obtain rm,j with

r̂m,j =
pm,j√∑M

m′=1

∑J
j′=1 |pm′,j′ |2

, ∀m, j. (27)

The measured antenna response aPRA,m(θ) is finally obtained
by substituting (26) and (27) into (5). We gather the gain,
delay, and phase (GDP) of the antenna responses for every
angle, i.e., (26) and (27), into a table, termed the GDP table. In
the online stage, we use the GDP table to synthesize a steering
vector to identify AoAs from cluttering multipath parameters.

B. Online Stage: ToA and AoA Estimation

In the online stage, the signal is received through the
multipath channel as given by (1). We stack the received
signals of N subcarriers and M antennas and express the
multipath CFR as a vector form

h = [h1,1, . . . , hN,1, . . . , h1,M , . . . , hN,M ]
T
,

=

L∑
l=1

glv(τl, θl), (28)

where
v(τ, θ) = a(θ)⊗ s(τ) (29)

with ⊗ being the Kronecker product and

a(θ) = [a1(θ), a2(θ), · · · , aM (θ)]
T
. (30)

Here, a(θ) is the synthesized steering vector with the antenna
response am(·) given by (5), and we have removed the sub-
script “PRA” from am(·) and a(·) to make the notation concise.
Accordingly, the received signal vector is now modeled as

y =

L∑
l=1

glv(τl, θl) + z. (31)

The ML estimation for online stage is(
ĝ, τ̂ , θ̂

)
= argmin

g,τ ,θ

∥∥∥∥∥y −
L∑
l=1

glv(τl, θl)

∥∥∥∥∥
2

, (32)

where
ĝ = [ĝ1, ĝ2, · · · , ĝL] , (33)

τ̂ = [τ̂1, τ̂2, · · · , τ̂L] , (34)

θ̂ =
[
θ̂1, θ̂2, · · · , θ̂L

]
. (35)

We still first consider single path estimation, so the ML
estimation of one path can be represented as(

ĝ, τ̂ , θ̂
)

= argmin
g,τ,θ

‖y − gv(τ, θ)‖2. (36)

The solution of (36) can be obtained when maximizing the
following cost function

S(g, τ, θ) = 2<
{
yHgv(τ, θ)

}
− |g|2‖v(τ, θ)‖2. (37)
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For any given τ and θ, we can obtain the optimal solution of
g that maximize (37) with LS estimation

ĝ =
v(τ, θ)Hy

‖v(τ, θ)‖2
(38)

Substituting (38) into (37) yields the cost function for (τ, θ)

(τ̂ , θ̂) = argmax
τ,θ

∣∣v(τ, θ)Hy
∣∣2

‖v(τ, θ)‖2
. (39)

This estimation is also performed through the OMP and NR
steps similar to those in Section III.A with a slight variant. In
the OMP step, the rough solutions of τ and θ are found by
substituting subsets from Ω and the synthesized steering vector
from the GDP table into (39), and the relative solution of g
is obtained when substituting (τ̂ , θ̂) into (38). Given that the
synthesized steering vector cannot be written as an analytic
function, we cannot obtain the partial derivative of S (g, τ, θ)
with respect to θ. Therefore, in the NR step, we only refine τ̂
with Newton’s method

τ̂ i+1 = τ̂ i − Ṡ(ĝi, τ̂ i, θ̂i)

S̈(ĝi, τ̂ i, θ̂i)
, (40)

where (ĝi, τ̂ i, θ̂i) is the refined result of the i-th iteration,
and Ṡ(g, τ, θ) and S̈(g, τ, θ) are the first and second partial
derivative of S(g, τ, θ) with respect to τ , respectively. Then,
we substitute τ̂ i+1 and the antenna response from the mea-
sured dataset into (39) to refine θ and obtain θ̂i+1. Finally, we
substitute (τ̂ i+1, θ̂i+1) into (38) to obtain ĝi+1.

After t iterations of refinement, we denote (ĝt, τ̂ t, θ̂t) as
(ĝ1, τ̂1, θ̂1) to represent the estimation result of the first path.
We calculate the residual channel by removing the CFR of the
first path from the channel

yr = y − ĝ1v(τ̂1, θ̂1). (41)

The residual paths are obtained by repeating the NOMP
iterations. Before reducing the estimated path, we refine ĝ
with LS estimation

ĝ =
[
V(τ̂ , θ̂)

H
V(τ̂ , θ̂)

]−1

V(τ̂ , θ̂)
H

y (42)

at the t-th NOMP iteration,

V(τ̂ , θ̂) =
[
v(τ̂1, θ̂1),v(τ̂2, θ̂2), · · · ,v(τ̂t, θ̂t)

]
. (43)

The iteration stops when the residual signal power is less than
the threshold.

As mentioned in Section III.A, the estimation for a single
path is also affected by the previous iteration and the residual
paths in the channel. Remarkably, in the case of using the
URA, a propagation path only causes one response on an
antenna, so the interference between every iteration can be
avoided by using the cyclic NR step. However, the phone
antenna elicits multiple responses as shown in Figure 1(b).
If the antenna responses of a propagation path do not be
completely removed in an iteration, the extra responses would
cause serious interference in the estimation of other paths in
the online stage. Therefore, exhausting all the components of
the antenna response at every angle in the offline stage is

Ant 3 Ant 2

Ant 1

Ant 4

(a) (b)

Fig. 3: Antennas used in the measurement. (a) Ground plane
with four antennas equipped at Rx. (b) Omnidirectional an-
tenna equipped at Tx.

crucial.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we conduct experiments and simulations to
evaluate the proposed AoA estimation algorithms. To imitate
a real phone, we develop four antennas following the form
factor of a mobile phone, as shown in Figure 3(a). The
size of the ground plane is the same as a smartphone 8 mm
thick with a 6.22 inch screen. The spacing between two
adjacent antennas is different. If we set (mx,my) of antenna
1 as (0, 0), (mx,my) of antennas 2− 4 are (0.1898,−0.33),
(−1.5,−0.2), and (0,−3.77), respectively. In both the mea-
surements and the simulations, the OFDM-based 5G NR wave-
form is used with the maximum available channel bandwidth
at 3.9 GHz, i.e., frequency range 1. A channel bandwidth
of 100 MHz with subcarrier spacing of 60 kHz is used.
Specifically, we consider an NR frequency-domain resource
grid with N = 1, 644 active subcarriers in one OFDM symbol.

We gather the measured antenna responses at every angle by
using the technique in Section III.A in an anechoic chamber.
Then, we use the established GDP table to estimate AoAs
in a classroom. We also combine the GDP table with ray-
tracing Wireless InSiter [36] software to synthesize multipath
channels in an office, allowing us to evaluate the proposed
algorithms in a big environment.

A. Continuity of Antenna Responses

In this paper, we measure the antenna responses of the
phone antennas at azimuth 0◦, 1◦, 2◦, . . . , 359◦ and elevation
0◦, 5◦, 10◦, . . . , 30◦ and gather total 2, 520 angles into the
GDP table. However, we find that this offline measurement
stage can be done more efficiently by using the continuity
property of the antenna responses.

To illustrate this property, we show in Figure 4 the magni-
tude and phase of the measured steering vector at 11 continu-
ous azimuths. We observe that the antenna responses in (3) are



7

200 400 600 800 1000 1200 1400 1600
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Subcarrier

P
h

as
e
 o

f 
C

h
a
n
n
el

 F
re

q
u
en

c
y
 R

es
p
o
n

se

 

 

200 400 600 800 1000 1200 1400 1600
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Subcarrier

M
ag

n
it

u
d

e 
o
f 

C
h

an
n
e
l 

F
re

q
u
en

cy
 R

es
p
o

n
se 0˚ 

1˚
2˚
3˚
4˚
5˚
6˚
7˚
8˚
9˚
10˚

(a)

0˚ 
1˚
2˚
3˚
4˚
5˚
6˚
7˚
8˚
9˚
10˚

(b)

Fig. 4: (a) Magnitudes and (b) phases of the CFRs at 11
continuous azimuths.

continuous at every angle. The continuity property only can be
observed after aligning the initial phase of every measurement.
Taking advantage of this continuous property, we can measure
the CFRs in a wider azimuth spacing and interpolate the CFRs
for other azimuths to save the data collection time in the offline
stage. With the CFRs for other azimuths, we can obtain the
artificial antenna responses of these azimuths by using the
parameter extracting technique in Section III.A.

Using the measurements of every 5◦ of azimuth and the
interpolated results, we evaluate the AoA estimation per-
formance in the anechoic chamber. The estimation error at
every angle is less than 2◦. The result demonstrates that the
performance with the interpolate method remains relatively
good, while the time for establishing the lookup table can
be significantly reduced. The saving of the offline stage also
means that the calibration time of a phone in a factory can be
reduced.

B. Measurement Results

The measurements were conducted in an indoor classroom,
at the National Sun Yat-sen University, Taiwan, as shown in
Figure 5. The classroom is approximately 9.5 m × 9.6 m with
a ceiling height of 2.9 m. To easily move the instruments,
we put all the desks against the wall. We use an SGT100A
radio frequency vector signal generator equipped with a single
omnidirectional antenna in Figure 3(b) as Tx and fix it in the

middle of the classroom. The height of the Tx antenna is 1.6
m. We use an RTO2000 digital oscilloscope equipped with the
phone antennas in Figure 3(a) as Rx and make the Rx movable.
The height of the Rx antenna is 1.23 m. The measurements are
conducted with a distance step of 1 m between two adjacent
Rx points and provide a total of 64 sets of measurements. For
ease of reference, the row is indexed by A,B, . . . ,H, while
the column is indexed by 1, 2, . . . , 8. If we set the coordinate
of the lower-left corner of the classroom as (0 m, 0 m), then
the coordinate of the Rx point A1 is (1.2 m, 8.4 m). Given that
we perform the synchronization through the synchronization
signal in 5G NR, the estimated ToA has clock bias and is
not the true ToA of the propagation path. Therefore, in the
following measurements, we only discuss the performance of
the AoA estimation.

We repeat the measurement process 200 times at each Rx
point and show the estimation results in Figure 6. Figure 6(a)
shows the average SNR of the four antennas. When the Rx
is closer to the Tx, the Rx has the higher SNR. We pick
the strongest estimated path as the LoS path and show the
average estimation error of azimuth AoA in Figure 6(b). We
find significant errors when the Rx points are near the walls.
The reasons for this effect are two reasons. First, the delay
between the LoS signal and reflected signals from walls and
desks are moving closer; the two paths might be estimated
as the same path and cause estimation error on the LoS AoA.
Second, when the power of the LoS signal becomes lower and
the estimated gain of the reflected signal is comparable to the
LoS signal, we could not distinguish the LoS signal. Figure
6(b) also shows significant errors of certain Rx points that are
not near the walls, such as B3 and C6. This error is due to
the similarity of the antenna responses. To reflect this effect,
we calculate the correlation value

R(θ̂1, θ1) = |a∗m(θ̂1)am(θ1)| (44)

where θ̂1 is the estimated LoS AoA and θ1 is the ground
truth LoS AoA. If R(θ̂1, θ1) is close to one but θ̂1 6= θ1,
then estimation ambiguity will occur. Figure 6(c) shows the
correlation values of every estimated LoS azimuth AoA and
ground truth LoS azimuth AoA at elevation 0◦. For example,
θ1 = 180◦ is easily ambiguous with θ̂1 = 270◦. The
correlation value of the steering vector of these two angles is
0.96. The ambiguity also exists between different elevations.

To corroborate the importance of the established GDP
table, we compare the AoA estimation performances over
three different lookup tables: the 3D GDP table, the two-
dimensional (2D) GDP table, and the formula 3D table. The
3D GDP table is obtained through the proposed procedures
presented in Section IV.A. The 2D GDP table is obtained
from the 3D GDP table by extracting the antenna responses in
elevation 0◦. The formula 3D table is obtained by substituting
the positions of the antennas, that is, (mx,my), into (2).
Compared with the 3D GDP table, the formula 3D table only
reflect the phase differences between antenna elements and
does not consider the practical antenna responses, such as
the different amplitude and delay responses among antennas.
We calculate the LoS azimuth AoA estimation error with
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the three tables for the 200 measurements at every Rx point
and present the cumulative distribution function (CDF) of
estimation error in Figure 7. We can observe that the 3D
GDP table achieves the highest accuracy, with 82.5% and
91.8% probabilities that the errors are lower than 5◦ and 10◦,
respectively. The 2D GDP table ignores the elevation AoAs
resulting in performance degeneration. Specifically, for the 2D
GDP table, the probability that the errors are lower than 5◦

and 10◦ are 68.5% and 81.3%, respectively. The formula 3D
table has the worst performance because it completely ignores
the effects of antenna responses, resulting in probabilities of
only 27.9% and 38.8% that the errors are lower than 5◦ and
10◦, respectively.

Next, we evaluate the AoA estimation performance under
a moving scenario. We move the Rx along three straight line
trajectories: from A8 to H8 in path 1, from A7 to H7 in path
2, and from A6 to H6 in path 3. To obtain the ground-truth
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Fig. 8: Ground truth, original estimated, and corrected estimated LoS azimuth AoA on the (a) path 1 (b) path 2 and (c) path
3.

AoAs, we attempt to maintain a constant speed during the
movement. The estimation results of the three trajectories are
shown in Figure 8. Except for a few clustered errors appearing
in certain segments, the estimation results (yellow solid line)
correspond to the ground truths (black solid line) in most of the
cases. We find significant estimation errors at the beginning
and end of the three paths, which result from the fact that
the Rx moves close to the walls and desks, thereby receiving
many reflections. We analyze these estimated AoAs and realize
that some of the reflections have a larger path gain than the
LoS path, thereby resulting in the LoS identification error. This
phenomenon is reasonable because the practical phone antenna
may have different magnitude responses for different AoAs.
The LoS path might not always correspond to the strongest
path, especially when the LoS path and the reflection path
have similar traveling distances. Therefore, we identify the
LoS path with the aid of ToA. Specifically, when the second
estimated path has a shorter delay than the first estimated
path, we choose the second estimated path to be the LoS path.
Given this modification, we find that some of the estimation
errors (red dashed line) can be corrected. For example, many
estimation errors are corrected for the data indexes from 400 to
the end of the three trajectories. Other estimation errors might
result from the ambiguity of the steering vector. For example,
we have mentioned in Figure 6(b) that phase ambiguity occurs
around area C6. Therefore, when Rx is passing through the

area around C6, corresponding to the data indexes from 90 to
150 in path 3, considerable amounts of estimation error occur.

C. Simulation Results

To understand the performances of the proposed methods
in wide scenarios, we combine the 3D GDP table with the
realistic ray-tracing simulations obtained by Wireless InSite
software. The layout in these simulations, which is an office
with a ceiling height of 2.62 m, is shown in Figure 9. The
office has three types of walls, namely, a glass wall 3 cm thick,
a wooden wall 6 cm thick, and concrete walls. The concrete
wall in the middle of the office is 15 cm thick, and other
concrete walls are 30 cm thick. The height of the wooden
desks in the office is 0.75 m. We set three Txs equipped with
omnidirectional antennas on the ceiling in different locations:
one is in a spacious place, and the others are set in a narrow
corridor. The transmit power is 20 dBm. A total of 6, 890
Rx points are used with an antenna height of 1.2 m, and the
distance between two adjacent Rx points is 0.2 m. The number
of allowed interactions is limited to six reflections and five
penetrations, and the number of received rays is limited to
250. When a signal transmits through a glass wall, wooden
wall, or 15 cm thick concrete wall from the vertical direction
of the wall, the signal attenuation is 0.15, 0.51, and 10.27
dB respectively. The default antennas in Wireless InSite do
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not reflect the responses of the phone antenna. Given that the
antenna responses are time-invariant systems, we substitute the
3D GDP table into (5) to generate the synthesized steering
vector of the rays and obtain the CFRs of the phone antenna.

We fixed the noise power for all Rx points at a certain
level, resulting in an SNR of approximately 15 dB near the
Tx. The azimuth AoA estimation error of the phone antenna
by using the 3D GDP table is shown in Figure 9. A darker
color represents a larger estimation error. The error occurs
is regardless of the clockwise or counterclockwise direction,
so the minimum and maximum errors are 0◦ and 180◦. As
the distance increases, the error becomes larger. Furthermore,
the Rx points near the walls have significant errors. These
phenomena are consistent with the measurement results. We
also evaluate the estimation performance with the 3D GDP
table, the 2D GDP table, and the formula 3D table. In addition,
we consider the fourth lookup table: a phone with four ideal
isotropic antennas. An ideal isotropic antenna elicits only one
response from a single-path signal, and the power of the
antenna response is equal at every angle. The ideal isotropic
antenna can be regarded as the benchmark of a phone antenna
in terms of communication performance. We generate the
channel for the ideal antennas and evaluate the estimation
performance with the formula 3D table.

We evaluate the performance of the estimated azimuth AoA

for the four lookup tables at four specific scenarios. Table
I shows the corresponding results, namely, the probabilities
that the errors are lower than 5◦ and 10◦. In the following
descriptions, we simply call “the probabilities that the errors
are lower than 5◦ and 10◦” the probabilities. In the first three
scenarios, we only consider those Rx points that the LoS
signal is the strongest power among the multipath. Scenario 1
considers the cases under different Tx-Rx distances when Tx
1 is used to transmit the signal. Given that Tx 1 is located at a
spacious place, and the area within 10 m has fewer obstacles
and walls, this area has the highest probability. In the area
beyond 10 m, the power of the LoS signal remains the largest
yet has decreased during the transmission and penetration,
finally becoming similar to the reflected signal. Thus, this area
has a lower probability.

Similar to scenario 1, scenario 2 considers using Tx 2 to
transmit the signal. Tx 2 is located in a narrow corridor be-
tween a concrete column and a wooden wall. After penetrating
the wooden wall, the signal encounters a concrete wall. These
obstacles result in similar ToA paths with the LoS path and
cause many errors in the area within 10 m. In the area beyond
10 m, especially the spacious area near Tx 1, the ToAs between
the LoS signal and the reflected signals are large. Therefore,
this area, on the contrary, has higher probability. These two
scenarios allow us to conclude that although the estimation



11

TABLE I: Probabilities of estimation error less than 5◦/10◦

for four simulated methods.

Antenna Type Phone Ideal

Table GDP Formula Formula

Dimension 3D 2D 3D 3D

Tx 1 d ≤ 10m 89 / 92 63 / 70 57 / 61 90 / 92
d > 10m 72 / 76 61 / 67 56 / 62 70 / 73

Tx 2 d ≤ 10m 74 / 83 56 / 66 41 / 51 72 / 80
d > 10m 80 / 86 73 / 80 60 / 70 78 / 85

Tx 1 Area A 91 / 92 86 / 88 75 / 77 90 / 90
Area B 60 / 63 45 / 47 16 / 17 39 / 43

Tx 3 d ≤ 10m 67 / 71 66 / 70 47 / 58 63 / 68

TABLE II: Probabilities of estimation error less than 5◦/10◦

for different bandwidth.

Bandwidth 100 MHz 50 MHz 20 MHz

Tx 1 d ≤ 10m 89 / 92 84 / 88 75 / 81
d > 10m 72 / 76 57 / 64 45 / 53

Tx 2 d ≤ 10m 74 / 83 67 / 78 59 / 71
d > 10m 80 / 86 72 / 80 61 / 71

Tx 1 Area A 91 / 92 76 / 80 57 / 63
Area B 60 / 63 39 / 47 31 / 38

Tx 3 d ≤ 10m 67 / 71 58 / 64 48 / 55

performance is affected by the distance and SNR, the reflection
paths caused by obstacles have a greater effect.

To prove this argument, in scenario 3, we use Tx 1 to
observe the Rx points in two areas with d > 10 m. These
areas are marked as areas A and B in Figure 9. Although
area A and part of area B are blocked by the glass walls, the
LoS signal is almost unaffected because the signal attenuation
caused by the signal passing through the glass wall is very
small. In this case, area A is mainly affected by the reflection
of one concrete wall, and area B is affected by the reflection
of two concrete walls. With dense reflection signals, the LoS
estimation performance is much worst in area B.

In scenario 4, we use Tx 3 to transmit the signal. Tx 3 is
located next to a concrete column, so the LoS signal of most
Rx points is blocked by the column, and the power of the LoS
signal is seriously attenuated. In the scenario, we only consider
those Rx points whose LoS signals do not have the strongest
power among the multipath within 10 m. Although we cannot
calculate the azimuth AoA estimation error of the LoS signal,
we can still calculate the azimuth AoA estimation error of the
signal with the strongest power among the multipath.

From Table I, we further observe that the AoA estimation
performance of the phone antenna with the 3D GDP table is
better than that with the measured 2D and formula 3D tables
and even slightly better than that with the ideal antennas. The
reason for this finding is that the steering vector of the phone
antennas has different amplitude responses among different
antennas, so the similarity of the steering vector of the phone
antenna at different angles is lower than that of the ideal
antenna. We calculate the correlation value of the steering
vector at every angle for the phone antennas and the ideal
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Fig. 10: CDF of correlation value of the steering vector at
every angle.

antennas and show the CDF of the correlation value in Figure
10. Consequently, although the practical phone antennas lead
to annoying antenna responses and thus challenge the AoA
estimation, this effect is not always a disadvantage to AoA
estimation.

Finally, we evaluate the performance of the phone antenna
with the 3D GDP table for different bandwidths. Given that
the subcarrier spacing is fixed at 60 kHz, we simulate a chan-
nel bandwidth of 50 MHz with N = 816 active subcarriers,
and a channel bandwidth of 20 MHz with N = 512 active
subcarriers. As shown in Table II, the large bandwidth also
allows for a better AoA estimation accuracy, and we observe
an approximately 10% area improvement with each doubling
of the bandwidth.

V. CONCLUSION

Antenna configurations in practical mobile handsets do not
conform to the idealization of zero spatial correlation between
antennas and zero mutual coupling, and the actual antenna
responses are highly complex but their impact on localization
performance is not well understood. Motivated by this, this
paper proposed a generic parameteric model that incorporates
the actual antenna responses into AoA estimation. A two-stage
algorithm was developed for efficient 3D AoA estimation for
mobile devices. During the offline stage, the parameters of the
antenna model were extracted at every angle in the anechoic
chamber and gathered into a table. Then in the online stage, we
used this table to synthesize the steering vectors and applied
them to estimate the AoAs from the multipath channel. Using
the proposed algorithm, we implemented it on a 5G NR mobile
phone at 3.9GHz band with 100MHz channel bandwidth and
assessed the estimation performance through experiments and
extensive ray tracing-based simulations. The results confirmed
great performance of the proposed and revealed that complex
antenna responses actually helped diversify the steering vector
between every angle for reducing ambiguity.
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