
CONTINUOUS INTERIOR PENALTY STABILIZATION FOR

DIVERGENCE-FREE FINITE ELEMENT METHODS

GABRIEL R. BARRENECHEA†, ERIK BURMAN‡, ERNESTO CÁCERES§,
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Abstract. In this paper we propose, analyze, and test numerically a pressure-
robust stabilized finite element for a linearized problem in incompressible fluid
mechanics, namely, the steady Oseen equation with low viscosity. Stabilization
terms are defined by jumps of different combinations of derivatives for the con-
vective term over the element faces of the triangulation of the domain. With the
help of these stabilizing terms, and the fact the finite element space is assumed

to provide a point-wise divergence-free velocity, an O
(
hk+ 1

2
)

error estimate in

the L2-norm is proved for the method (in the convection-dominated regime), and
optimal order estimates in the remaining norms of the error. Numerical results
supporting the theoretical findings are provided.
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1. Introduction

The design and analysis of accurate and robust computational methods for high
Reynolds flow remains a challenging topic in computational mathematics. An im-
portant difficulty is to find a dissipative mechanism that is sufficiently strong to
eliminate underesolved high frequency content, and prevent unphysical transport
velocities, while having minimal effect on the resolved scales. One approach that
has proven successful is to use stabilized finite element methods to counter unphys-
ical fine scale accumulation of energy. Such stabilized finite element methods using
continuous approximation spaces include the Streamline Upwind Petrov Galerkin
method [9], the Subgrid Viscosity methods [26], the Orthogonal Subscale method
[15], the Local Projection method [6, 8] (or its residual version [4, 2]) and the Con-
tinuous Interior Penalty (CIP) method [18, 11]. In the case of discontinuous approx-
imation spaces the use of penalty on the solution jump (or upwind flux) provides
a similar stabilizing mechanism [37]. From the theoretical point of view one may
prove on linear scalar model problems that in the high Péclet regime such stabi-

lized methods satisfy an O(hk+ 1
2 ) bound (here k denotes the polynomial order of

the approximation space) for the error in the L2-norm in parts where the solution
is smooth [36, 39, 27, 12, 17]. This means that the method is close to optimal for
smooth solutions and that rough features in the solution cannot spuriously influence
the approximation in the smooth zone. It is also known that for scalar model prob-
lems the discontinuous Galerkin method using penalty on the solution jumps and
the stabilized methods have superior dispersion properties compared to the standard
Galerkin method [43, 44]. In the case of the equations of incompressible flow only
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global estimates in the L2-norm of O(hk+ 1
2 ) for smooth solutions have been proved in

the case of equal order interpolation [38, 30, 10, 22], or by adding bubble functions to
the finite element space [42]. Nonwithstanding the lack of theoretical foundations in
the nonsmooth case, there is ample computational evidence that stabilized methods
indeed performs well also in the case of turbulent flows [34, 25, 33, 5, 44]. In view of

this it does not seem to far fetched to use the O(hk+ 1
2 ) estimate for smooth problems

as a theoretical proxy for good performance for general high Reynolds flows.
Recently there has been a surge of interest in methods that allow for a pointwise

divergence free approximation [35]. This means that mass conservation is satisfied
exactly. It has been argued that such methods have advantages in the situation
where the viscosity becomes small, however in the discussion most often the convec-
tive term has been omitted and a degenerate Stokes’ problem considered instead.
This is not physically realistic, since as the Reynolds number increases the convec-
tive term dominates. Nevertheless an appealing feature of such methods is that
the error bounds for the velocity are independent of the Sobolev norm on the pres-
sure, which in general scales as µ−1, where µ is the viscosity. The methods are
therefore said to be pressure robust. For the Oseen equation it was noticed in [14]
that the application of standard stabilized finite element methods to such pressure
robust discretizations was not straightforward. In particular the fact that the ap-
proximate solution was constrained to be in the divergence free space blocked the

derivation of the O(hk+ 1
2 ) estimate if standard stabilization methods such as the

CIP method were applied. Only recently was O(hk+ 1
2 ) L2-error estimates proven

for pressure robust discretizations of incompressible flow. The first instance was
for H(div) conforming approximation spaces [3] where a linear inviscid problem in
incompressible flow was considered, showing that earlier results for the incompress-

ible Euler equations [28] indeed also enjoys the O(hk+ 1
2 ) estimate (see also [29] for

the time-dependent Navier-Stokes equations). In this case the upwind flux provides
the stabilizing mechanism. Computational evidence of the good performance of
methods using H(div) conforming approximation for high Reynolds number flows
have already been reported in [47, 48, 46, 40, 41, 28, 45]. A second approach using
H1-conforming approximation followed, using Galerkin Least squares stabilization
in the vorticity equation [1], where the method was presented and analyzed for the
Oseen equation. It was later shown in [13] that in the lowest order case of piece-
wise affine velocity approximation this type of stabilization could be related to the
classical Smagorinsky turbulence model. The stabilizing term in [1] consisted in a
residual term in the bulk, supplemented with jump terms on the skeleton. When
the time-dependent case is considered, the fact that the bulk term is residual can
constrain the choice for time discretization severely.

A parallel development in the isogeometric community has been to introduce ver-
sions of the CIP methods where jumps of higher order derivatives are penalized
over the skeleton [31, 32]. In the context of the modelling of high Reynolds flows
this connects with earlier ideas related to time relaxation methods [7], where sta-
bility was obtained by penalizing the L2-distance to a smoother approximation of
the flow, hence penalizing the jumps in all derivatives. Apart from the obvious con-
nection to the CIP method pointed out in [7], when finite elements are used, so far
there has been no numerical analysis of these high order skeleton stabilized methods.
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Recently such a skeleton stabilization was proposed also for divergence-conforming
B-spline approximations of incompressible flows [49], also in this case without theo-
retical justification. Interestingly, the method presented in [49] is closely related to
the classical CIP method when C0 splines (i.e., classical conforming finite element
spaces) are used.

The objective of the present paper is to revisit the stabilization of [1] and show
that using the ideas of the analysis of the CIP stabilization the bulk term can
be eliminated by replacing it with two skeleton based stabilization terms. This
sheds some light on the precise quantities that need to be controlled on the faces of
the mesh skeleton in order to prove improved error estimates for the velocity in a
pressure-robust way. Our notations and analysis follow from [1], as both methods
add stability by controlling the curl of the convective term, but significant differences
appear in the definition of the method, and its analysis.

1.1. Outline of the paper. The paper is organized as follows: the introduction
is completed by one short section regarding the motivation and background for the
new proposed method, and some preliminary results about vector potentials for
divergence-free functions and their regularity. In Section 2, we introduce the finite
element method used in this work. Additionally, we introduce abstract properties
that the discrete spaces must satisfy to ensure well-posedness of the discrete problem
and optimal error estimates for the velocity with respect to a norm that is induced
by the discrete bilinear form. We finish Section 2 with the definition of the stabilized
finite element method. In Section 3, we prove an error estimate for the velocity with
respect to the aforementioned norm. In Section 4 we make a precise choice for the
finite element spaces, namely, we focus on the Scott-Vogelius element and prove the
hypotheses introduced earlier for a barycentrically refined mesh linking it to the
lowest order Clough-Tocher space. We finish the paper in Section 5 by showing
numerical examples showing both convergence of the finite element solution in the
case of a smooth solution, and in the stabilization properties of the present method
in the presence of sharp layers showing, in particular, that the use of CIP alone is
not sufficient to stabilize layers, and justifying the addition of the extra terms to the
method.

1.2. Background and preliminary results. In this work we adopt standard no-
tation for Sobolev and Lebesgue spaces, aligned, e.g., with [20]. More precisely,
for D ⊆ Rd, 1 ≤ d ≤ 3 will be denoted by (·, ·)D (if D ⊆ Rd−1 the inner product
will be denoted by 〈·, ·〉D). The norm in L2(D) will be denoted by ‖ · ‖0,D, and for

m ≥ 0, p ∈ [1,∞] the norm (seminorm) in Wm,p(D) will be denoted by ‖ · ‖m,p,D
(| · |m,p,D). If p = 2 as usual we denote Hm(D) = Wm,2(D) with norm (seminorm)

denoted by ‖ · ‖m,D (| · |m,D). No distinction will be made between inner products

and norms for scalar and vector (or tensor)-valued functions.
We consider a linearized version of the stationary Navier–Stokes equations, namely

Oseen’s problem, posed on a polyhedral, bounded, connected and Lipschitz domain
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Ω:

−µ∆u+ (β · ∇)u+ σu+∇p = f in Ω ,

divu = 0 in Ω ,(1.1)

u = 0 on ∂Ω .

Here, µ > 0 denotes the viscosity coefficient, σ > 0 is the reactive coefficient, and the
convective term β is assumed to satisfy divβ = 0. The standard weak formulation
of (1.1) is: find (u, p) ∈ V ×Q := H1

0 (Ω)d × L2
0(Ω) such that

(1.2)

{
a(u,v) + b(p,v) = (f ,v)Ω ,

b(q,u) = 0 ,

for all (v, q) ∈ V ×Q, where the bilinear forms are defined as

a(u,v) := (σu+ (β · ∇)u,v)Ω + µ(∇u,∇v)Ω ,(1.3)

b(q,v) := − (q,div v)Ω .(1.4)

Defining the space

(1.5) V(Ω) = {v ∈ H1
0 (Ω)d : div v = 0 in Ω} ,

then we can also write the following pressure-independent weak formulation of Os-
een’s problem: Find u ∈ V(Ω) such that for all v ∈ V(Ω) the following holds

(1.6) µ(∇u,∇v)Ω + ((β · ∇)u,v)Ω + σ(u,v)Ω = (f ,v)Ω.

While (1.2) is the formulation that is used computationally, (1.6) is very helpful to
carry out the analysis in some instances, as both formulations are equivalent. The
mixed formulation (1.2) is well-posed in H1

0 (Ω)d ∩V(Ω)× L2
0(Ω) by Lax–Milgram’s

lemma and Brezzi’s theorem for all µ > 0 (for details in these last two points, see,
e.g., [24]).

Assuming that the domain Ω is contractible and Lipschitz, it is known that we
can associate a potential to every divergence-free function in Ω. The space that
capture the kernel of the divergence operator is

Z := {z : components of z belong to H1(Ω), curl z ∈ H1
0 (Ω)d}.

When d = 3, z is a vector-valued function whereas when d = 2, z is a scalar function
for. Also, here when d = 2 the curl operator maps a scalar to a vector: curl v =
(∂x2v,−∂x1v)T . We stress the fact that the boldface notation is being used for d = 2
and d = 3, even when z is a scalar for d = 2. We have additional regularity for z if u
is more regular. In particular, since Ω is contractible and Lipschitz, if u ∈ Hr(Ω)d∩
H1

0 (Ω)d with divu = 0 then there exists z ∈ Z with components in Hr+1(Ω) [16]
such that curlz = u with the following bound ‖z‖Hr+1(Ω) ≤ C‖u‖Hr(Ω).

Finally, below when d = 2 we will also need the scalar curl operator which maps a
vector to a scalar: curl v = ∂x2v1−∂x1v2. Hence, when d = 2 the curl operator must
be interpreted appropriately, depending if it is acting on a scalar or vector-valued
function.
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2. The stabilized finite element method

2.1. Finite element spaces. Let {Th}h>0 be a family of shape-regular triangula-
tions of Ω. The elements of Th will be denoted by T , with corresponding diameter
hT := diam(T ) and maximal mesh width h = max{hT : T ∈ Th}. Given T ∈ Th, we
denote by FT the set of its facets. The collection of facets from the triangulation
Th is denoted by F, and Fi will denote the interior facets . For F ∈ F we define
hF = diam(F ), and denote by |F | the (d − 1)-dimensional measure of F . For a
vector valued function v we define the tangential jumps across F = T1 ∩ T2 with
T1, T2 ∈ Th as

[[v × n]]|F := v1 × n1 + v2 × n2,

where vi = v|Ki and ni is the unit normal pointing outwards Ti. If F is a boundary
face then we define

[[v × n]]|F := v × n.
The following broken inner products for regular enough functions u, v (here G ⊂ F)
will be needed

(2.1) (v, w)h :=
∑
T∈Th

(v, w)T ,
〈
v, w

〉
G

:=
∑
F∈G

〈
v, w

〉
F

with associated induced norms ‖ · ‖h, ‖ · ‖G, respectively. We also consider, for all k,
the semi-norms

|u|k,h :=
∑
|α|=k

‖Dαu‖h.

Regarding finite element spaces, we define, for s ≥ 1, the standard piecewise
polynomial Lagrange space:

(2.2) W s
h := {w ∈ H1

0 (Ω)d : w|K ∈ Ps(K)d for all K ∈ Th},

and for s ≥ 0, the DG space

Ds
h :={w ∈ L2(Ω)3 : w|K ∈ Ps(K)3 for all K ∈ Th}, when d = 3,(2.3a)

Ds
h :={w ∈ L2(Ω) : w|K ∈ Ps(K) for all K ∈ Th}, when d = 2.(2.3b)

Over the triangulation Th, and for k ≥ 1, we assume that there exist finite element

spaces Vh ⊂ H1
0 (Ω)d, Qh ⊂ L2

0(Ω), along with the discrete subspace of divergence-
free functions arising from the primal weak formulation (1.6) of Oseen’s problem
(1.1):

(2.4) Vh := {vh ∈ Vh : such that div vh = 0 in Ω} .

These spaces must satisfy very similar assumptions to the ones [1], (below, and in
the rest of the manuscript, C will denote a positive constant, independent of h and
the viscosity µ):

(A1) It holds divVh ⊂ Qh.
(A2) The pair (Vh, Qh) is inf-sup stable.
(A3) The inclusions W k

h ⊂ Vh ⊂W r
h hold for some r, k ≥ 1.

(A4) There exists a finite element space Zh ⊂ Z such that curlZh = Vh.
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(A5) Let Ph be the orthogonal projection onto Zh defined by

(2.5) (v − Phv,ψh)Ω = 0 ∀ψh ∈ Zh .

Then, the following error estimate holds: for all z ∈ Z with components in
Hk+2(Ω) and |α| ≤ k + 1, it holds

‖h|α|∂α(z − Phz)‖h ≤ Chk+2‖z‖k+2,Ω.

In fact, (A1)-(A4) exactly appear as assumptions in [1]. The Assumption (A5) is
slightly different than the one in [1]. Here we use the L2-projection Ph instead of
minimizing over the space. Additionally, as our goal is to remove bulk stabilization
terms and use facet-based stabilization terms instead, the following approximation
property involving the spaces Zh and Dr−2

h is going to be needed for the analysis:

(A6) For any wh ∈Dr−2
h , it holds

inf
mh∈Zh

‖h3/2(wh −mh)‖h ≤ C(‖h2[[wh]]‖Fi + ‖h3[[∇wh]]‖Fi).

2.2. The discrete method. The finite element method analyzed in this work reads
as follows: find (uh, ph) ∈ Vh ×Qh such that

(2.6)

{
a(uh,vh) + b(ph,vh) + S(uh,vh) = (f ,vh)Ω ∀vh ∈ Vh ,

b(qh,uh) = 0 ∀ qh ∈ Qh ,

where the bilinear forms a and b are defined in (1.3) and (1.4), respectively, and the
stabilizing bilinear form S is given by

(2.7) S(uh,vh) := ‖β‖−1
0,∞,Ω

3∑
j=1

δjSj(uh,vh),

where S1, S2 and S3 are given by

S1(uh,vh) :=
〈
h2[[(β · ∇)uh × n]], [[(β · ∇)vh × n]]

〉
Fi ,(2.8)

S2(uh,vh) :=
〈
h4[[Buh]], [[Bvh]]

〉
Fi , and(2.9)

S3(uh,vh) :=
〈
h6[[∇Buh]], [[∇Bvh]]

〉
Fi ,(2.10)

and the stabilization parameters δ1, δ2 and δ3 are nondimensional and will be set
later on. For equations (2.9) and (2.10) we define (Bw)|T := curl

(
(β · ∇)w

)
|T for

each T ∈ Th. For the analysis we introduce the following mesh-dependent norm

(2.11) |||v|||2 := ‖σ
1
2v‖20,Ω + ‖µ

1
2∇v‖20,Ω + |v|2S ,

where |v|2S := S(v,v). In particular, since divβ = 0 we have that

(2.12) |||vh|||
2 = (a+ S)(vh,vh) ∀vh ∈ Vh .

In addition, Assumption (A2) ensures the well-posedness of Problem (2.6). More-

over, assuming that β · ∇u ∈ H5/2+ε(Ω)d, ε > 0, method (2.6) is strongly consistent
for smooth enough (u, p), this is

(2.13)

{
a(u− uh,vh) + S(u− uh,vh) + b(p− ph,vh) = 0 ∀vh ∈ Vh ,

b(qh,u− uh) = 0 ∀ qh ∈ Qh .
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3. Error estimates

To avoid technical diversions, in the analysis below we will assume that the family
of meshes {Th}h>0 is quasi-uniform (nevertheless, all of the results below can be
extended to the more general case by arguing locally). In the error analysis, the
following local trace inequality will be used repetitively: there exists C > 0 such
that for any T ∈ Th, F ∈ FT , and for any v ∈ H1(T ), it holds

(3.1) ‖v‖0,F ≤ C
(
h
− 1

2
T ‖v‖0,T + h

1
2
T |v|1,T

)
.

Also, we recall the inverse inequality: for all nonnegative integers `, s,m such that
0 ≤ ` ≤ s ≤ m and for all q ∈ Pm(T ) there exists C > 0 such that

(3.2) |q|s,T ≤ Ch`−sT |q|`,T .
Finally, as our goal is to obtain error estimates for the velocity with respect to

the mesh size h and the viscosity µ, we will not track their dependency on β, or σ.
Additionally, and for simplicity, we set the stabilization parameters δj , j = 1, 2, 3 in
(2.7) to 1 throughout this section.

3.1. An error estimate for the velocity. In order to capture all the terms in-
volving the bilinear forms a and S, we define the following norm for a regular enough
function z:

(3.3) ‖z‖2? := |||curl z|||2 + (h+ µ)
4∑
s=0

h2s−4‖Dsz‖2h .

Next, we state that the approximation of u with respect to the norm |||·||| given by
(2.11) is as good as the approximation of z with respect to the norm ‖ · ‖? given by
(3.3), which corresponds to the analogue of [1, Theorem 6].

Theorem 3.1. Let u ∈ H1
0 (Ω)d be the solution to (1.1) and let z be its corre-

sponding potential. Let us assume in addition that β and u are such that β · ∇u ∈
H5/2+ε(Ω)d, ε > 0, and β|K ∈ W 3,∞(K)d for all K ∈ Th. Let (uh, ph) be the solu-
tion of (2.6). In addition, we assume that β · n = 0 on ∂Ω. Then, the following
error estimate holds for a constant C independent of h and µ:

(3.4) |||u− uh||| ≤ C‖z − Phz‖?
where Phz stands for the L2 orthogonal projection onto Zh defined in (2.5).

Proof. Let e = u − uh, ψh = Phz and set wh := curlψh. We note that wh ∈ Vh
and then, using the Galerkin orthogonality (2.13) we have

(3.5) |||e|||2 = a(e,u−wh) + S(e,u−wh).

We furthemore decompose e = eh + ηh where eh = wh −uh and ηh = u−wh, and
then bound the right-hand side of (3.5) term by term. For the rest of the proof,
ε > 0 is arbitrary and will be chosen later. Using Cauchy–Schwarz’s and Young’s
inequalities, and the definition of the norms |||·||| and ‖ · ‖?, we see that

(3.6) S(e,u−wh) ≤ ε|||e|||2 + C|||u−wh|||2 ≤ ε|||e|||2 + C‖z −ψh‖2?.
Then, it only remains to bound a(e,u−wh). By definition

(3.7) a(e,u−wh) = (σe,u−wh)Ω + (µ∇e,∇(u−wh))Ω + ((β · ∇)e,u−wh)Ω.
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To bound the first and second term on the right-hand side of (3.7), we use the
Cauchy-Schwarz inequality and Young’s inequality:

(σe,u−wh)Ω + (µ∇e,∇(u−wh))Ω ≤ ε|||e|||2 + C|||u−wh|||
2.

For the last term in (3.7), we integrate by parts and obtain

((β · ∇)e,u−wh)Ω = T1 + T2,(3.8)

where

T1 :=
〈
[[(β · ∇)e× n]], z −ψh

〉
F
, and T2 := (Be, z −ψh)h.

To bound T1, since β · n = 0 and e = 0 on ∂Ω, we have β · ∇e = 0 on ∂Ω, and
consequently 〈

[[(β · ∇)e× n]], z −ψh
〉
F

=
〈
[[(β · ∇)e× n]], z −ψh

〉
Fi .

Then, we use Young’s inequality and the local trace theorem (3.1) to get

T1 =
〈
[[(β · ∇)e× n]], z −ψh

〉
Fi ≤ ε ‖h[[(β · ∇)e× n]]‖2Fi + C‖h−1(z −ψh)‖2Fi

≤ ε |e|2S + C h

1∑
s=0

h2s−4‖Ds(z −ψh)‖2h

≤ ε |||e|||2 + C‖z −ψh‖2?.

(3.9)

To bound T2, we further decompose e := eh + ηh, where eh = wh − uh and ηh :=
u−wh. We then write

T2 = T3 + T4,

where

T3 := (Bηh, z −ψh)h, and T4 := (Beh, z −ψh)h.

Then, we have by using Young’s inequality and taking the product rule into account
that

T3 =
(
curl

((
β · ∇)ηh

)
, z −ψh

)
h

≤ h3
∣∣(β · ∇)ηh

∣∣2
1,h

+ h−3‖z −ψh‖2h
≤ C‖β‖20,∞,Ωh3|u−wh|22,h + C‖β‖21,∞,Ωh3|u−wh|21,h + h−3‖z −ψh‖2h
≤ C‖β‖21,∞,Ωh3|z −ψh|23,h + C‖β‖21,∞,Ωh3|z −ψh|22,h + h−3‖z −ψh‖2h
≤ C‖z −ψh‖2? .

In order to bound T4, we introduce the approximation βh of β as the lowest order
Raviart-Thomas interpolant of β (see, [20, Chapter 16]), that is, a piecewise constant
function that belongs to H(div,Ω), and that satisfies div βh = 0 in Ω. Then, we
define Bh for any T ∈ Th by

Bhw|T := curl
(
(βh · ∇)w|T

)
.

Then, we decompose

T4 := T5 + T6,

where

T5 := (Beh −Bheh, z −ψh)h and T6 := (Bheh, z −ψh)h.
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To bound T5, we integrate by parts and use that on each element T ∈ Th, the
estimate ‖β − βh‖∞,T ≤ ChT ‖β‖1,∞,T holds, local trace and inverse estimates.
Also, since we do not track the dependence of error estimates on σ, we have the
estimate

(3.10) ‖ηh‖h = ‖u−wh‖h = ‖curl (z−ψh)‖h ≤ C|||curl (z −ψh)||| ≤ C‖z−ψh‖?.

Then, using the above and the estimate for ‖h−1(z − ψh)‖h,Fi already derived in
(3.9), we arrive at

T5 =
(
(β − βh) · ∇eh, curl (z −ψh)

)
h

+
〈
[[(β − βh) · ∇eh × n]], z −ψh

〉
Fi

≤ Ch‖β‖1,∞,Ω‖∇eh‖h‖z −ψh‖? + Ch2‖β‖1,∞,Ω‖∇eh‖h,Fi‖h−1(z −ψh)‖Fi

≤ C‖eh‖h‖z −ψh‖? + Ch1/2‖eh‖h‖h−1(z −ψh)‖Fi

≤ C‖eh‖h‖z −ψh‖? + Ch1/2‖eh‖h‖z −ψh‖?
≤ C

(
‖e‖h + ‖ηh‖h

)
‖z −ψh‖?

≤ ε|||e|||2 + C‖z −ψh‖2? .

To bound T6 we observe that since ψh = Phz and Ph is the L2 orthogonal projection
onto Zh, we have for any mh ∈ Zh that

T6 = (Bheh, z −ψh)h

= (Bheh −mh, z −ψh)h

≤
∥∥h3/2(Bheh −mh)

∥∥
h

∥∥h−3/2(z −ψh)
∥∥
h
.

Therefore, taking the infimum over mh ∈ Zh, we get

T6 ≤ inf
mh∈Zh

‖h3/2(Bheh −mh)‖h‖h−3/2(z −ψh)‖h,

and using that Bheh ∈D
r−2
h and Assumption (A6), we have that

T6 ≤ C(‖h2[[Bheh]]‖Fi + ‖h3[[∇Bheh]]‖Fi)‖h−3/2(z −ψh)‖h.

In order to bound the jump terms from the above estimate, we add and substract B
and use local trace inequalities. We will need to bound |(B−Bh)eh|`,h for ` = 0, 1, 2.
To do so, we use the product rule and inverse estimates repeatedly. Since βh is
piecewise constant, we have that

‖(B−Bh)eh‖h ≤ C‖β‖1,∞,Ω|eh|1,h +C‖β−βh‖0,∞,Ω|eh|2,h ≤ Ch−1‖β‖1,∞,Ω‖eh‖h.

Similarly, we have that

|(B−Bh)eh|1,h ≤ C‖β‖2,∞,Ω|eh|1,h + C‖β‖1,∞,Ω|eh|2,h + C‖β − βh‖0,∞,Ω|eh|3,h
≤ Ch−2‖β‖2,∞,Ω‖eh‖h.

More generally, we have for ` = 0, 1, 2 that

(3.11) |(B−Bh)eh|`,h ≤ Ch−1−`‖β‖1+`,∞,Ω‖eh‖h.
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Therefore, by local trace estimates and (3.11), we get

‖h2[[Bheh]]‖2Fi + ‖h3[[∇Bheh]]‖2Fi

≤ C‖h2[[(B−Bh)eh]]‖2Fi + C‖h3[[∇(B−Bh)eh]]‖2Fi + C|eh|2S
≤ C‖h3/2(B−Bh)eh‖2h + C|h5/2(B−Bh)eh|21,h

+ C‖h5/2∇(B−Bh)eh‖2h + C|h7/2∇(B−Bh)eh|21,h + C|eh|2S
≤ Ch‖β‖23,∞,Ω‖eh‖2h + C|eh|2S
≤ C|||eh|||
≤ C|||e|||+ C|||ηh|||
≤ C|||e|||+ C‖z −ψh‖?.

(3.12)

Therefore, using Young’s inequality, we arrive at

T6 ≤ ε|||e|||2 + C‖z −ψh‖2?.
Hence, inserting the bounds for T1, . . . , T6 into (3.5) yields

|||e|||2 ≤ Cε|||e|||2 + C‖z −ψh‖2?.
Taking ε sufficiently small and re-arranging terms finishes the proof. �

As a consequence of the above result, the following estimate follows from (A5)
and (A6) assuming that the solution u ∈ H1

0 (Ω)d ∩Hk+1(Ω)d:

(3.13) |||u− uh||| ≤ Chk
(
h

1
2 + µ

1
2
)
‖u‖k+1,Ω,

where the constant C > 0 is independent of h and µ. In the convection-dominated

case µ ≤ C h, the above estimate gives, in particular, an O(hk+ 1
2 ) error estimate for

the L2(Ω)-norm of the velocity error. In addition, this estimate is pressure robust.

Remark 3.2. The need for Assumption (A6) in the last proof appears in the bound for
the term T6. In there, the convective field had to be approximated by a C1 piecewise
polynomial function, which prompted the introduction of (A6). In addition, this
assumption dictates the exact shape of the extra terms added to the CIP method in
order to allow for the proof of the improved error bound in Theorem 3.1.

3.2. An error estimate for the pressure. For regular enough solutions and data,
we prove an error bound for the pressure. This estimate includes, in the convection-
dominated regime, a superconvergence result between the discrete pressure and the
orthogonal projection of the exact pressure into the finite element space for p. As a
consequence, an optimal-order error estimate for p arises, with constants indepen-
dent of the viscosity µ. We denote by πh : L2(Ω) → Qh the orthogonal projector
onto Qh, and prove the analogue of [1, Theorem 8] for the present stabilization
terms.

Theorem 3.3. Assume the hypotheses of Theorem 3.1 hold. Then, there exists
C > 0, independent of h and µ, such that

(3.14) ‖πhp− ph‖0,Ω ≤ C
(
1 + µ

1
2 + h

1
2 )|||u− uh|||.
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As a consequence, the following error estimate follows for the pressure

(3.15) ‖p− ph‖0,Ω ≤ C hk |p|k,Ω + C
(
1 + µ

1
2 + h

1
2 )|||u− uh||| ,

where C > 0 does not depend on h, or µ.

Proof. Since the pair (Vh, Qh) is inf-sup stable due to assumption (A2), we guarantee
the existence of xh ∈ Vh such that

(3.16) divxh = πhp− ph and ‖∇xh‖0,Ω ≤ C‖πhp− ph‖0,Ω ,

where C depends only on Ω. So, using both statements in (3.16), Assumption (A1),
the L2(Ω)-orthogonality property of πh, and the first equation from the Galerkin
orthogonality (2.13) for vh = xh, we get

‖πhp− ph‖20,Ω = (πhp− ph,divxh)Ω

= (p− ph, divxh)Ω

= a(u− uh,xh) + S(u− uh,xh)

≤ C|||u− uh||| |||xh||| −
(
(β · ∇)xh,u− uh

)
Ω
.

Therefore, according to (3.14), it only remains to estimate |||xh||| in terms of the
error ‖πhp− ph‖0,Ω. By the definition of the norm |||·||| and the Poincaré inequality,
and the fact that we dependency of σ on the constant C > 0 is not being tracked,
we have that

(3.17) C|||xh||| ≤
(
1 + µ

1
2
)
‖πhp− ph‖0,Ω + |xh|S ,

so that we only have to estimate |xh|S in terms of ‖πhp − ph‖0,Ω. Recalling the

definition of Sj , j = 1, 2, 3 given by (2.8)–(2.10), we have by the trace and inverse
inequalities that

S1(xh,xh) ≤ C
∑
T∈Th

(
hT ‖(β · ∇)xh‖20,T + h3

T |(β · ∇)xh|21,T
)

≤ C
∑
T∈Th

(
hT ‖β‖0,∞,T ‖∇xh‖20,T + hT (1 + h2

T )‖β‖21,∞,T ‖∇xh‖20,T
)

≤ Ch‖∇xh‖2h ≤ Ch‖πhp− ph‖20,Ω .(3.18)

For S2, we similarly have that

S2(xh,xh) ≤ C
∑
T∈Th

(
h3
T |(β · ∇)xh|21,T + h5

T |(β · ∇)xh|22,T
)

≤ C
∑
T∈Th

‖β‖22,∞,T
(
hT ‖∇xh

∥∥2

0,T
+ h3

T ‖∇xh‖21,T + h5
T ‖∇xh‖22,T

)
≤ C‖β‖2,∞,Ω

∑
T∈Th

(hT + h3
T + h5

T )‖∇xh‖20,T

≤ Ch‖∇xh‖2h ≤ Ch‖πhp− ph‖20,Ω .(3.19)
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Finally, and proceeding similarly as in (3.19),

S3(xh,xh) ≤ C
∑
T∈Th

(
h5
T |(β · ∇)xh|22,T + h7

T |(β · ∇)xh|23,T
)

≤ C‖β‖3,∞,Ω
∑
T∈Th

(hT + h3
T + h5

T + h7
T )‖∇xh‖20,T

≤ Ch‖∇xh‖2h ≤ Ch‖πhp− ph‖20,Ω .(3.20)

Putting estimates (3.18)–(3.20) together, we obtain

|xh|S ≤ Ch
1
2 ‖πhp− ph‖0,Ω,

and combining this with (3.17), we have the desired result. �

Remark 3.4. The analysis carried out in the last section hinges on the regularity
of the convective term β · ∇u. Although this is a restriction for certain flows, it
is worth making the following remark about this requirement. If we think about
the Oseen problem as a simplified model for the Navier-Stokes equation, then it is
expected that the convective field β has the same regularity as the exact velocity
u. In addition, in order to prove optimal error estimates (not only the ones proven
in this paper, but even standard error estimates), the velocity is required to belong
to, at least, Hk+1(Ω)d whenever discrete velocities of degree k are used. Hence,
for polynomial degrees k ≥ 4 the exact velocity is assumed to belong to, at least,
H5(Ω)d, and in such a case the convective term is regular enough so the strong
consistency (2.13) holds. So, the regularity required in the convective term is, in
theory, only a restriction for the cases k = 2, 3. We want to stress that the hypotheses
imposed in this work are with the aim of proving the enhanced error estimates from
Theorems 3.1 and 3.3, and not to prove standard estimates, or even convergence of
the method.

4. Verifying Assumptions (A1)–(A6) for the lowest order
Scott–Vogelius elements on Clough-Tocher triangulations

In this section we will verify (A1)-(A6), for the Scott–Vogelius finite element
spaces on Clough-Tocher triangulations. To obtain a Clough-Tocher triangulation,
we start with a shape-regular family of meshes

{
T̃h
}
h>0

. Then, we refine each mesh
by adding the barycenter of each triangle to the set of vertices and connecting it
to the vertices of that triangle. We denote the resulting mesh by

{
Th
}
h>0

. The

elements of T̃h will be named macro-elements and will be denoted by K, while the
elements of Th will be denoted by T . The meshes Th are used in the analysis above
and numerical experiments in Section 5.

Let us first define the velocity and pressure spaces for k ≥ 2:

V k
h :=W k

h = {v ∈ H1
0 (Ω)2 : v|T ∈ Pk(T )2, ∀T ∈ Th}

Qk−1
h :={q ∈ L2

0(Ω) : q|T ∈ Pk−1(T ), ∀T ∈ Th}.
The potential space is given by

Zk+1
h =

{
zh ∈ C1(Ω) : zh|K ∈ Zk+1(K) for all K ∈ T̃h

}
,
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Figure 1. Initial mesh T̃h (left) and its barycentric refinement Th (right).

where

Dm(K) := {p ∈ L2(K) : p|T ∈ Pm(T ) for all T ∈ Th such that T ⊂ K}, and

Zm(K) := Dm(K) ∩ C1(K).

We argue here that the triple Zh = Zk+1
h ,Vh = V k

h , Qh = Qk−1
h satisfies Assump-

tions (A1)-(A6). The Assumptions (A1)-(A4) were already discussed for these spaces
in [1]. In particular, (A4) follows form the exact sequence properties of spaces on
Clough-Tocher splits; see for example, [21, p. 1068] for a general result in any spa-
tial dimension on Alfeld splits, which coincides with the Clough-Tocher split in two
dimensions. Assumption (A5) can be proved if we assume for instance that T̃h is
quasi-uniform. Indeed, in this case we can use inverse estimates, the stability of the
L2 projection, and approximation properties of C1 Clough-Tocher finite elements
given in [19, Theorem 2].

The remaining Assumption (A6) follows from a slightly more general result.

Lemma 4.1. Let m ≥ 3. There exists C > 0, independent of h, such that for all
wh ∈Dm

h , it holds

inf
mh∈Zm

h

‖h3/2(wh −mh)‖h ≤ C(‖h2[[wh]]‖Fi + ‖h3[[∇wh]]‖Fi).

We will prove this result for the particular case m = 3. The extension to the
general case m ≥ 3 can easily be extended, however, the main idea of the proof is
captured in the case m = 3. This will allow us to avoid more complicated notation
and technical diversions. Our result is a slight generalization to a result found in
[23]. The only difference is that wh|K ∈ Pm(K) in [23] instead of Dm(K). Naturally,
our proof will follow closely the corresponding proof in [23].

We recall that F denotes the set of edges of the mesh Th. For a macro–element
K ∈ T̃h, we let

Eih(K) := {e ∈ F : e ⊂ K and e 6⊂ ∂K}.

We let Vh(T̃h) denote all the vertices of the mesh T̃h and Mh(T̃h) all the midpoints

of all the edges of T̃h. Furthermore, we denote by Vh(K) the three vertices of K,
and by Mh(K) the three mid-points of the three edges of K.
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The degrees of freedom of the space Zm(K) for m ≥ 3 are given in classical
references, for example [19, p. 229]. In particular, a function zh ∈ Z3(K) is uniquely
determined by the following degrees of freedom:

a) zh(x) for x ∈ Vh(K).
b) ∇zh(x) for x ∈ Vh(K).
c) ∇zh(x)n for x ∈Mh(K).

We will use the following broken norm ‖ · ‖h,K for K ∈ T̃h in what follows:

(4.1) ‖v‖2h,K :=
∑

{T∈Th:T⊂K}

‖v‖20,T .

A result regarding equivalence on D3(K) between the norm (4.1) and a norm
involving jumps over interior facets and the degrees of freedom arising from Z3(K)
will be needed for the subsequent analysis. Given x ∈ K and wh ∈ D3(K), we set
x̂ = x/hK and ŵh(x̂) = wh(x). Then, we observe that the functional

‖ŵh‖2D3(K̂)
:=‖[[ŵh]]‖2

Ei
h(K̂)

+ ‖[[∇ŵh]]‖2
Ei
h(K̂)

+
∑

x̂∈Vh(K̂)

∑
{T̂⊂K̂: x̂∈T̂}

∣∣ŵh|T̂ (x̂)
∣∣2 +

∣∣∇ŵh|T̂ (x̂)
∣∣2

+
∑

x̂∈Mh(K̂)

∣∣∇ŵh|K̂(x̂)n
∣∣2,

is a norm over D3(K̂). Indeed, if [[ŵh]] and [[∇ŵh]] vanish on all the edges of Eih(K̂)

then ŵh ∈ Z3(K̂). Moreover, if the other terms appearing in the definition of

‖ŵh‖D3(K̂) vanish then given the degrees of freedom of Z3(K̂), ŵh vanishes.

By scaling we have

‖wh‖2h,K = h2
K‖ŵh‖2h,K̂ ,

and by the equivalence of norms on the finite dimensional space D3(K̂) we have

‖ŵh‖2h,K̂ ≤ CK̂‖ŵh‖2D3(K̂)
.

We assume that the constants CK̂ are uniformly bounded over all K ∈ T̃h as is
commonly done; see for example [19, p. 239]. We therefore have the following
estimate for all wh ∈ Z3(K):

‖wh‖2h,K ≤C(‖h1/2
K [[wh]]‖2

Ei
h(K) + ‖h3/2

K [[∇wh]]‖2
Ei
h(K))

+ C
( ∑
x∈Vh(K)

∑
{T⊂K:x∈T}

h2
K

∣∣wh|T (x)
∣∣2 + h4

K

∣∣∇wh|T (x)
∣∣2)

+ C
∑

x∈Mh(K)

h4
T

∣∣∇wh|K(x)n
∣∣2.

We can now prove Lemma 4.1 in the case of m = 3.

Proof. (Lemma 4.1, m = 3) For x ∈ Vh(T̃h) ∪Mh(T̃h), we define

ωx := {T ∈ Th : x ∈ T},
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with |ωx| denoting the cardinality of ωx. We then define E : D3
h → Z3

h. If x ∈
Vh(T̃h),

E(wh)(x) =
1

|ωx|
∑
T∈ωx

(
wh|T

)
(x), and ∇E(wh)(x) =

1

|ωx|
∑
T∈ωx

∇
(
wh|T

)
(x),

and if x ∈Mh(T̃h), we define(
∇E(wh)n

)
(x) =

1

|ωx|
∑
T∈ωx

(
∇(wh|T )n

)
(x).

Then, we see that E is well defined over D3
h. As it was already mentioned, the

construction of the recovery operator E is very similar to the one from [23, p. 7].
The main difference lies on the fact that wh ∈ D3(K) is discontinuous across common
edges from triangles T ⊂ K, unlike the construction from [23], where wh ∈ P3(K)
is continuous across common edges. By the equivalence of norms over D3(K) and
since [[E(wh)]] = 0 for all and [[∇E(wh)]] = 0 for all interior edges, we have that

‖wh − E(wh)‖2h,K
≤ ‖h1/2

K [[wh]]‖2
Ei
h(K) + ‖h3/2

K [[∇wh]]‖2
Ei
h(K)

+
∑

x∈Vh(T )

∑
{T⊂K:x∈T}

h2
K

∣∣wh|T (x)− E(wh)(x)
∣∣2 + h4

K

∣∣∇wh|T (x)−∇E(wh)(x)
∣∣2

+
∑

x∈Mh(T )

∑
{T⊂K:x∈T}

h4
K

∣∣∇wh|T (x)n−∇E(wh)(x)n
∣∣2.

We consider a local numbering T1, . . . , T|ωx| of the elements in ων , so that each
consecutive pair Tj , Tj+1 shares an edge. Then, we recall the arithmetic-geometric
mean inequality; if a1, . . . , an are real numbers, we have for their average ā = (a1 +
. . .+ an)/n that

n∑
j=1

(aj − ā)2 ≤ Cn
n−1∑
j=1

(aj+1 − aj)2,

for a constant Cn > 0 that depends on n only. Using the above inequality, the
constant Cn depends upon |ωx| only, that is, on the shape regularity of the mesh.
Hence, we have that∑

x∈Vh(K)

∑
{T⊂K:x∈T}

h2
K

∣∣wh|T (x)− E(wh)(x)
∣∣2

=
∑

x∈Vh(K)

∑
{T⊂K:x∈T}

h2
K

∣∣∣∣wh|T (x)− 1

|ωx|
∑
T∈ωx

wh|T (x)

∣∣∣∣2

≤ C
∑

x∈Vh(K)

h2
K

|ωx|−1∑
j=1

∣∣wh|Tj+1(x)−wh|Tj (x)
∣∣2

≤ C
∑

e∈Gh(K)

‖h[[wh]]‖20,∞,e ≤ C‖h1/2[[wh]]‖2Gh(K),
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where Gh(K) is the collection of edges belonging to Fi that touch K. For the
remaining terms involving partial and normal derivative evaluations, we proceed
similarly as the last bound and as in the proof of [23, Lemma 3.1], so we omit the

details. The proof is then complete by summing over all the macro-elements K ∈ T̃h
and putting the above estimates together. �

5. Numerical results

In this section we report the results of two test cases showcasing the performance
of the current method. In both cases we consider the domain Ω = (0, 1)2, and
the meshes have been built as follows: we divide the unit square into two triangles
starting by tracing the diagonal going from (0, 0) to (1, 1). Then, we perform a
sequence of red refinements, to obtain a sequence of shape-regular grids. We consider
structured meshes, where the vertices of triangles of these are placed uniformly on the
unit square, and non-structured meshes, where the vertices are randomly perturbed
≈ 0.07h units away by the use of a uniform distribution. The level 4 non-structured
grid considered in our experiments is shown in Fig. 2. The corresponding degrees of
freedom for the velocity and the pressure are listed next to it. In the tables below,
we use the following notations for the velocity errors:

L2(u) := ‖u− uh‖0,Ω , es(u) := |||u− uh|||,
and for the pressure errors:

L2(p) := ‖p− ph‖0,Ω , L2(πhp) := ‖πhp− ph‖0,Ω ,

where πhp is the L2(Ω)-projection of p onto Qh.
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0
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0.5

0.75

1
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1

level dofs uh dofs ph total dofs
1 354 288 642
2 1474 1152 2626
3 6018 4608 10626
4 24322 18432 42754
5 97794 73728 171522

Figure 2. Level 4 non-structured mesh (left) and number of degrees
of freedom for all refinement levels (right)

5.1. A problem with a regular solution. This example combines a planar lattice
flow with one whose convective force is constant. We fix µ = 10−9, and set the
convective term to β = u+ (0, 1)T , with chosen boundary conditions such that

u =
(

sin(2πx) sin(2πy), cos(2πx) cos(2πy)
)T
, p =

1

4

(
cos(4πx)− cos(4πy)

)
.

Note that β ·n does not vanish on the boundary as our theory required. Nonetheless,
the expected results are observed numerically as we shall see. Then, (u, p) is the
solution to the Oseen problem (1.1) with the forcing term f given by

f = σu− µ∆u+ 2π
(

sin(2πx) cos(2πy),− cos(2πx) sin(2πy)
)T
.
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The stabilization parameters δj associated to the bilinear forms Sj , j = 1, 2, 3 given
by (2.8), (2.9) and (2.10) are given by

δ1 = 1e− 2, δ2 = 1e− 5, δ3 = 1e− 4.

In Table 1 we report the errors obtained for two values of σ on non-structured or
distorted meshes, and in Table 2 we do the same on uniform meshes instead. We can
observe that the O(h2.5) rate for the error L2(u) is reached early in the calculations,
and we can also observe that the pressure converges with the orders predicted by
Theorem 3.3, including the super-convergence for ph−πh(p). In addition, numerical
results (not shown here) obtained using only the first stabilising term (that is, using
δ2 = δ3 = 0) show an order of convergence r0(u) = 2.0, further stressing the need
to add the extra terms to the CIP method in order to obtain the enhanced order of
convergence given in Theorem 3.1. The rate r1(u) is slightly below what the theory
would make us expect, but we believe this is due to a pre-asymptotic regime caused
by the very small value of the viscosity µ.

σ ref L2(u) r0(u) es(u) r1(u) L2(p) r0(p) L2(Πhp) r1(p)

0

1 3.53e-1 —— 1.28e+0 —— 1.11e+0 —— 1.11e+0 ——
2 4.55e-2 2.981 1.70e-1 2.937 1.17e-1 3.276 1.12e-1 3.337
3 6.80e-2 2.812 2.90e-2 2.621 1.72e-2 2.836 1.50e-2 2.984
4 1.01e-3 2.785 5.77e-3 2.366 3.05e-3 2.357 2.16e-3 2.841
5 1.41e-4 2.870 1.12e-3 2.379 6.20e-4 2.320 3.07e-4 2.838

1

1 3.01e-1 —— 1.29e+0 —— 1.04e+0 —— 1.04e+0 ——
2 3.76e-2 3.027 1.71e-1 2.941 1.16e-1 3.191 1.12e-1 3.252
3 5.34e-3 2.889 2.92e-2 2.618 1.73e-2 2.819 1.51e-2 2.964
4 7.39e-4 2.900 5.80e-3 2.373 3.06e-3 2.544 2.16e-3 2.848
5 9.54e-5 2.978 1.12e-3 2.382 6.20e-4 2.322 3.07e-4 2.841

Table 1. Error plots and rates of convergence of different norms
on different refinement levels on distorted meshes for Scott-Vogelius
with the current CIP stabilization (σ = 0 above and σ = 1 below) and
fixed viscosity µ = 10−9.
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σ ref L2(u) r0(u) es(u) r1(u) L2(p) r0(p) L2(Πhp) r1(p)

0

1 3.38e-1 —— 1.14e+0 —— 9.74e-1 —— 9.77e-1 ——
2 4.17e-2 3.014 1.15e-1 2.904 9.97e-2 3.288 9.45e-2 3.370
3 6.57e-2 2.671 2.65e-2 2.532 1.50e-2 2.730 1.23e-2 2.933
4 1.05e-3 2.644 5.35e-3 2.307 2.82e-3 2.412 1.82e-3 2.760
5 1.61e-4 2.698 1.05e-3 2.341 5.98e-4 2.237 2.66e-4 2.775

1

1 2.90e-1 —— 1.15e+0 —— 9.18e-1 —— 9.21e-1 ——
2 3.48e-2 3.060 1.54e-1 2.903 9.95e-2 3.206 9.43e-2 3.287
3 5.09e-3 2.776 2.67e-2 2.531 1.51e-2 2.718 1.24e-2 2.917
4 7.51e-4 2.760 5.38e-3 2.314 2.82e-3 2.419 1.83e-3 2.767
5 1.05e-5 2.829 1.05e-3 2.346 5.98e-4 2.239 2.66e-4 2.779

Table 2. Error plots and rates of convergence of different norms on
different refinement levels on uniform meshes for Scott-Vogelius with
the current CIP stabilization (σ = 0 above and σ = 1 below) and
fixed viscosity µ = 10−9.

5.2. A solution with a boundary layer. In this example, we illustrate why sta-
bilization is needed in order to obtain a good approximation of u and p and treat
boundary layers appropriately, as well as showing how many stabilization terms are
enough to achieve this. We fix µ = 10−8 and σ = 0, and the convective term is given
by β = (1, 0)T . The boundary conditions are chosen so that (u, p) is the solution to
the Oseen problem (1.1) with f = 0, with

u(x, y) =

(
0, x−

exp
(
x−1
µ

)
− exp

(−1
µ

)
1− exp

(−1
µ

) )T
, p(x, y) =

1

2
− y.

We observe that u is divergence-free, and that its second component experiences
very large gradients near the line x = 1. We expect that stabilization for controlling
this large magnitude derivatives will be needed. In order to show this, we choose
three different sets of stabilization parameters δj associated to the bilinear forms
Sj , j = 1, 2, 3 given by (2.8), (2.9) and (2.10). We take a mesh like in Fig. 2
with h ≈ 0.0442, and the comparisons are performed by depicting cross sections
of the second component of the velocity along the line y = 0.5. First, we consider
(δ1, δ2, δ3) = (0, 0, 0), that is, no stabilization at all. From Figure 3 (top left), we see
that the approximate solution is very oscillatory and there is pollution throughout
the domain. Then, as intermediate cases (top right and bottom left), we consider
(δ1, δ2, δ3) = (0.1, 0, 0) and the classical CIP method [11] with δ = 0.1, respectively.
By classical CIP method we mean that the stabilizing term is given by

S(uh,vh) := δ ‖β‖−1
0,∞,Ω

〈
h2[[(β · ∇)uh]], [[(β · ∇)vh]]

〉
Fi .

We observe that strong oscillations still persist for these cases. Finally, we take
(δ1, δ2, δ3) = (0.1, 0.01, 0.001) (bottom right), which is the fully stabilized method
considered in this work. For this case, although a slight oscillation localized near
the boundary layer appears, it is of a smaller magnitude than the one for the CIP
method and the partial stabilization, and there is a total absence of oscillations away
from the layer.
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From the results depicted in Figure 3 we conclude by the above experiments that
oscillations persist in both cases (δ1, δ2, δ3) = (0.1, 0, 0) and the classical CIP method
defined above. Thus, the need to add stabilization on the higher order derivatives
over the facets of the triangulation.
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Figure 3. Example 5.2. Cross sections at y = 0.5 for the Scott-
Vogelius element. No stabilization (top left), partial stabilization (top
right) (δ1, δ2, δ3) = (0.1, 0, 0), Full CIP stabilization (bottom left) and
full stabilization (bottom right) (δ1, δ2, δ3) = (0.1, 0.01, 0.001).

6. Conclusions and outlook

This work extended the applicability of the edge-based stabilization framework
to the case where the finite element spaces for the velocity lead to a pointwise
divergence-free discrete velocity. More precisely, after realizing that the classical
CIP method does not provide enough stability to prove enhanced error estimates
for the velocity (remark already hinted in [14] where the order of convergence was
limited to k, rather than the k+ 1

2 provided in this paper), we have proposed to add
two extra terms to the edge stabilization. These terms are based on jumps of higher
derivatives of the convective term. As such, the method presented in this work is an
extension of the one presented in the recent work [49]. The main result of the paper
is the improved error estimate proven in Theorem 3.1, which can only be achieved
thanks to the extra terms added to the formulation. This claim is confirmed by our
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numerical results that show that, while the current method shows the claimed order
of convergence, the classical CIP method does not.
Since this work’s goal was to show that CIP needs to be enhanced with extra terms
to achieve the right stability in the low viscosity limit, there are still several open
problems, such as:

• the possibility of lowering the regularity required to the convective. While
we believe that this is mostly an artifact of the proof, and that it is only
an issue appearing in the lower order cases, we acknowledge that this might
become important if convergence of the method for less regular solutions is
sought.
• The proof of (A6) shown in Section 4 is restricted to the case d = 2. A

similar approach using Alfeld splits can be followed, arguing as in [21], to
extend this proof to the case d = 3.
• The extension to time-dependent problems. The design of the method adds

a symmetric positive semi-definite term to the equation, which, maybe more
importantly than the symmetry itself, does not involve the residual of the
strong equation in the bulk. This last point decouples the space stabilization
from the time discretization and makes the method extensible to the time-
dependent case in a natural way using the techniques presented, e.g., in
[10].

These topics (among others) are the subject of current research, and will be reported
elsewhere.
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[36] C. Johnson, U. Nävert, and J. Pitkäranta. Finite element methods for linear hyperbolic prob-
lems. Comput. Methods Appl. Mech. Engrg., 45(1-3):285–312, 1984.
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