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We report on a systematic study on the entanglement between helicity degrees of freedom generated at
tree level in quantum electrodynamics two-particle scattering processes. We determine the necessary and
sufficient dynamical conditions for outgoing particles to be entangled with one another, and expose the
hitherto unknown generation of maximal or nearly maximal entanglement through Bhabha and Compton
scattering. Our work is an early step in revisiting quantum field theory and high-energy physics in the light
of quantum information theory.
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I. INTRODUCTION

Quantum information theory, i.e. the study of informa-
tion processing based on quantum mechanics (QM) rather
than classical laws, has brought to the fore a number of
interesting facets whereby QM deviates dramatically from
its classical predecessor. One such information-related
nonclassical aspect is certainly quantum entanglement, that
is, the occurrence of correlations in quantum systems that
cannot be reproduced in classical systems, leading to the
violation of Bell inequalities. As was often remarked in
various forms, quantum entanglement is the fundamental
distinguishing feature that sets quantum theory apart from
classical phenomena, and has drawn an enormous amount
of attention over the past 25 years, both in blue sky research
and as a key ingredient in quantum technologies, central to
quantum teleportation [1], cryptography [2], computation
[3] and metrology [4]. On the other hand, the most
fundamental expression of quantum mechanical dynamical
laws is given by quantum field theory (QFT), the relativistic
formulation of quantum dynamics, where particles and
interactions are depicted via fields spanning through all of
spacetime.
Notwithstanding the centrality of the notion of entangle-

ment, the role of entanglement in QFT is still relatively little
studied. Typically, past research has focused on scaling
laws, for bosonic and more general field theories [5] as well
as conformal field theories [6] and black holes, bearing

significant foundational consequences in the context of the
AdS-CFT correspondence [7–9] and quantum gravity [10].
In the more specific context of high-energy physics,

entanglement has mostly been considered through the study
of Bell inequalities as tests fo discrete fundamental sym-
metries, notably time-reversal, charge conjugation and
parity. Kaonic systems are usually examined for such
theoretical explorations [11–15], and are used as probes
of special relativity via the experimental tests of the CPT
theorem at B and Φ factories [16,17]. Spin correlations and
the violation of Bell-like inequalities in Bhabha scattering
have been discussed in [18,19]. Entanglement has also been
investigated in quantum chromodynamics [20], for gluon
pairs [21,22] and deep inelastic scattering [23,24], and in
neutrino oscillations [25–31]. The von Neumann entropy of
entanglement has been evaluated in some scattering proc-
esses as well, in ϕ4 theory [32], quantum electrodynamics
(QED) [33], and in QFT more generally [34]. A related
analysis of entanglement in relativistic quantum mechanics
has been performed in [35], and it was found that the
nonlocal nature of entanglement is consistent with relativ-
istic causality, which has been illustrated in the context
of QED.
A more systematic inquiry into the generation of

entanglement in QED processes at tree level has been
carried out more recently by Cervera-Lierta and coworkers
[36,37], with an emphasis on the conditions to generate
maximal entanglement between helicity degrees of free-
dom, partly extended to the electroweak sector too, which
is then speculated to form a fundamental “it from bit”
principle for fundamental interactions.
In the present paper, we will expand on the work of

Cervera-Lierta et al. by providing a detailed, comprehen-
sive analysis of the entanglement generated at all energies
and for pure and mixed final states in QED two-particle
scatterings at tree level, for arbitrary initial mixtures of
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helicity states. Thus, we will shed light on hitherto
unknown generation mechanisms involving only dominat-
ing t or u channels. Further to probing the nontrivial
structure of quantum correlations in ubiquitous, elementary
electromagnetic interactions in their most primitive descrip-
tion, an endeavor of fundamental significance, our results
may also indirectly contribute to the ongoing debate on the
certification of the quantum nature of fundamental forces,
such as gravity.

II. SETTING AND PRELIMINARIES

Wewill consider the scattering of two incoming particles
into two outgoing particles interacting through QED
vertices, followed by an arbitrarily sharp filtering of the
outgoing particles in momentum space, without resolving
their internal (helicity or polarization) degrees of freedom.
The result of such an idealized measurement is a four-
dimensional final density matrix (i.e., a two-qubit state,
each qubit being embodied by the helicity of one of the
outgoing particles), which will be reconstructed to the
lowest perturbative order. Hence, the necessary and suffi-
cient Peres-Horodecki separability criterion, and the related
evaluation of the logarithmic negativity, will be applied on
the final state to qualify and quantify its entanglement.
Note that, although the momentum filtering we shall

assume is idealized, the entanglement we will calculate
between the helicity degrees of freedom at given momenta
is still a fundamental property of the output state of the
quantum field upon scattering. In practice, such filtering
would correspond to collimating the output particles’
trajectories.

A. Derivation of the density matrix from
the scattering matrix elements

In order to study quantum entanglement we will need to
access all the off-diagonal elements of the final helicity
density matrix (its “coherence,” so to speak) after scattering
and momentum filtering. This is hardly ever considered
in traditional approaches to quantum field theory, whose
ultimate focus is on scattering amplitudes, but can of course
be accomplished in terms of Feynman diagrams [38,39].
The time evolution of a density matrix is given by

ρt ¼ Uðt; t0Þρt0U†ðt; t0Þ; ð1Þ

where Uðt; t0Þ is the time-evolution operator. When
we study scatterings in QFT, the initial system is considered
at time t ¼ −∞ whilst the system after the scattering
is at t ¼ þ∞, with the S-matrix operator defined as
S ¼ limt→þ∞limt0→−∞Uðt; t0Þ, so through a scattering, a
density matrix evolves as

ρþ∞ ¼ Sρ−∞S† ¼
X
λ

pλSjp; λihp; λjS†; ð2Þ

where p stands for a configuration of momenta while λ
stands for a configuration of helicity eigenstates (for both
particles) and we have assumed a generic diagonal mixtureP

λ pλjp; λihp; λj as the initial state, with
P

λ pλ ¼ 1.
Momentum filtering along momenta q is described by

applying the positive operator valued measure element
Πq ¼

P
η jq; ηihq; ηj on such a final state, obtaining the

output, two-qubit helicity state

ρout ¼
Πqρ∞Πq

Tr½Πqρ∞Πq�

¼
P

λ;η;η0 pλjq; ηihq; ηjSjp; λihp; λjS†jq; η0ihq; η0jP
λ;η pλhq; ηjSjp; λihp; λjS†jq; ηi

¼
X
λ;η;η0

ρη;η0 jq; ηihq; η0j: ð3Þ

Up to normalization, which can always be restored a poste-
riori, this expression yields the final filtered state in terms of
S-matrix elements Sqp ¼ hq; ηjSjp; λi, which correspond to
Feynman diagrams and can be evaluated through Feynman
rules at a certain order. In keepingwith the standard notation,
we shall in the following report scattering amplitudes Mfi,
related to Sqp via Sqp ¼ ið2πÞ4δ4ðp − qÞMfi. Note that by
working in the center of mass frame only two dynamical
parameters (a scattering angle and the magnitude of incom-
ing three-momentum) will determine the scattering ampli-
tudes and the ensuing entanglement.
In what follows, we shall adopt a standard “left/right,” L,

R, notation for the helicity eigenstates, whereby the helicity
labels above will take the four values LL, LR, RL, and RR.
We shall also adopt the notations jLLi, jLRi, jRLi, and
jRRi for the helicity eigenstate at given momenta, which
will be known from context; in the same basis, the
maximally entangled Bell states will also be defined as
jϕ∓i¼ðjLLi∓ jRRiÞ= ffiffiffi

2
p

and jψ∓i¼ðjLRi∓ jRLiÞ= ffiffiffi
2

p
.

B. Evaluation of two-qubit entanglement and entropy

A separable state is one which can be created by local
operations and classical communication (LOCC) and can
therefore be written as

ρsep ¼
X
j

pjρAj ⊗ ρBj; ð4Þ

where ρAj and ρBj are density matrices for the reduced states
for systems A and B, respectively. An entangled state is one
that is not separable. If one applies partially (that is, on only
one of the systems) a positive (P) but not completely positive
map Γ on a separable state ρsep, one gets

ð1 ⊗ ΓÞρsep ≥ 0; ð5Þ
since a density matrix must be positive semidefinite. Thus, a
sufficient condition for ρ to be entangled is
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ð1 ⊗ ΓÞρ≱ 0: ð6Þ

Transposition is one such map, so its partial action on the
quantum state, the “partial transposition”

ρTB ¼ ð1 ⊗ TÞρ ð7Þ

yields a general sufficient criterion for entanglement, called
the positivity of the partial transpose (PPT) or Peres-
Horodecki criterion [40,41]. For both two-qubit and 1 qubit
þ1 qutrit systems, the Peres-Horodecki criterion turns out to
be both necessary and sufficient for entanglement.
The computation of the eigenvalues of the partially

transposed density matrix is also helpful to quantify the
amount of entanglement of the system, via the so-called
negativity

N ðρÞ ¼
X
i

jλij − λi
2

; ð8Þ

where the λi are the eigenvalues of the partially transposed
density matrix. The logarithmic negativity, defined as

EN ðρÞ ¼ log2ð2N þ 1Þ; ð9Þ

is also a useful mathematical object as it constitutes an
upper bound to the operationally defined distillable entan-
glement [42,43]. Such an entanglement monotone (i.e., a
quantity that decreases under LOCC) is a proper measure of
entanglement, which can be systematically evaluated for all
two-qubit states.
Another relevant information related quantity in this

context is the von Neumann entropy, defined as

SðρÞ ¼ −
X
j

νj lnðνjÞ; ð10Þ

where the νj are the eigenvalues of the density matrix. The
von Neumann entropy quantifies the purity of a state (or,
conversely, the noise that affects it); when SðρÞ ¼ 0 the
state is pure (i.e., a one-dimensional projector or, more
commonly put, a “wave function”), whilst when SðρÞ ¼
lnð4Þ the state is maximally mixed. It is worth noting that,
although the scattering evolution we consider is of course
unitary on the entire field, the final measurement leads to an
output state which does not necessarily have the same
entropy as the initial one. This occurs because the filtering
of specific momenta selects field modes that are entangled
with the remainder of the field, as a consequence of the
global unitary interaction. Yet, such a filtering is not a
projection on a one-dimensional subspace, since helicity is
not detected (otherwise, the entanglement in the helicity
basis would be compromised too), thus implying the
possibility of a mixed filtered helicity state. The inclusion

of further modes and the study of multimode entanglement
and correlation patterns in QED scattering at tree level may
well deserve further investigation in the future.

C. Method

A test of the necessary and sufficient conditions for
entanglement for any 2 → 2 scattering process in QED
goes as follows:
(a) Choose the initial state, i.e., set the parameters pλ in

Eq. (2). A common choice, which is the appropriate
assumption when nothing is known about the initial
helicity, is the maximally mixed initial state with pλ ¼
1=4 for λ ¼ 1;…; 4.

(b) Evaluate Feynman diagrams to the desired order and
so obtain the quantities hq; ηjSjp; λi in Eq. (3). Our
evaluation will be done at the lowest order, for
diagrams with no loops (i.e., at tree level).

(c) Use Eq. (3) to determine the output helicity density
matrix elements ρη;η0 .

(d) Derive the partially transposed output density matrix
and evaluate its eigenvalues. If any of them is negative,
then the state is entangled, otherwise it is separable.

(e) Employ Eqs. (8)–(10) to evaluate the logarithmic
negativity and von Neumann entropy of the final state.

The explicit expressions for the density matrix elements
would unfortunately be extremely cumbersome and not very
illuminating, so we shall not report them here although, as
noted above, they can be retrieved through Eq. (3).

D. Loop contributions

Of course, the state and hence the entanglement deter-
mined through the methodology above are only accurate to
a given perturbative order. In this paper, where only tree-
level diagrams are considered, this is to the order α2 in
terms of the fine structure constant α. Investigating the
potential to create entanglement at tree level is still an
interesting question per se, although it may not necessarily
give the full picture of quantum correlations in the out-
going state.
We may nevertheless apply the argument that higher

order corrections to the density matrix, and hence to its
partially transposed eigenvalues, are of order α3, up to
factors which will be of order unity. Therefore, when the
smallest partially transposed eigenvalue is such that
jminfλiðp; θÞgj ≫ α3, one heuristically expects the sepa-
rability or entanglement of the final state to be preserved at
higher order. When, instead, jminfλiðp; θÞgj is comparable
with α3 (say around 10−6 in natural units, allowing for a
possible factor), then it is well possible that the inclusion of
higher order terms may entangle or disentangle separable or
entangled tree-level states; we shall then say that the system
has switching potential in the corresponding region of
parameter.
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III. ENTANGLEMENT IN QED SCATTERING
PROCESSES

Let us now analyze systematically the tree-level helicity
entanglement generated in the whole gallery of 2 → 2
scatterings in QED.

A. Møller scattering

We first consider Møller scattering, that is, the process
e−e− → e−e−, for initially unpolarized particles
(pλ ¼ 1=4∀ λ). The scattering amplitudes can be deduced
from the Feynman diagrams describing this process shown
in Fig. 1, with

iMt ¼ ūðr1; q1Þð−ieγμÞuðs1; p1Þ
−igμν

ðp1 − q1Þ2
× ūðr2; q2Þð−ieγνÞuðs2; p2Þ; ð11Þ

iMu ¼ −ūðr1; q1Þð−ieγμÞuðs2; p2Þ
−igμν

ðp2 − q1Þ2
× ūðr2; q2Þð−ieγνÞuðs1; p1Þ: ð12Þ

We can then expand the total scattering amplitude M ¼
Mt þMu in the helicity basis by setting each of the s1, s2,
r1 and r2 to R and L (right- and left-handed, respectively)
so as to get MjRRi→jRRi, MjRRi→jRLi, etc. This yields the
4 × 4 scattering matrix, which we can use with Eq. (3) to
obtain ρout.
In this case, we can compute the eigenvalues of the

partially transposed density matrix analytically, and we find
that, as one should expect, they are invariant under
θ → θ þ π. It can be shown that three of these eigen-
values (which we call λ1, λ3 and λ4) are positive
∀ p ∈ Rþ; θ ∈ ½0; 2π½. However, we have

λ2 < 0 ⇔ cosð2θÞ < −
1

3
and p < 2me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðcosð2θÞ − 9Þð3 cosð2θÞ þ 1Þp j sinðθÞj − 6 cosð2θÞ − 2

28 cosð2θÞ þ cosð4θÞ þ 35

s
: ð13Þ

Thus, the Peres-Horodecki criterion provides us with a
simple, necessary and sufficient condition to determine
outgoing entanglement in terms of the c.m. momentum and
scattering angle, which is depicted in Fig. 2. We see that the
system is entangled for values of initial momenta in the
c.m. frame of around the electron mass scale, and for
scattering angles around θ ¼ ðnþ 1

2
Þπ; n ∈ N, where the

first inequality above is met. In particular, no entanglement
is generated in the high energy limit.
In fact, the largest initial c.m. momentum for which the

system is entangled is when θ ¼ ðnþ 1
2
Þπ; n ∈ N, in which

case

λ2

�
p;

π

2

�
< 0 ⇔ p <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

p
þ 2

q
me ∼ 1.05 MeV: ð14Þ

The contribution of loops can be assessed heuristically,
by highlighting regions in the ðp; θÞ space where scattering
amplitudes of one-loops may switch a product state to an
entangled state and vice versa, i.e., the regions where the
absolute value of the smallest partially transposed eigen-
value at tree level is smaller than α3, which are shown in
Fig. 3. We see that there is a possibility that such diagrams
slightly expand or contract the main entanglement regions,

FIG. 1. Feynman diagrams of the t and u channels of a Møller
scattering process (e−e− → e−e−).

FIG. 2. The red regions in this plot correspond to the values of
p and θ for which the final state is entangled.
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but that there is no other isolated region in phase space
where the system may become entangled. This also lends
us a concrete idea of the accuracy of the tree-level
approximation in evaluating entanglement.
The outgoing entanglement may be quantified through

the logarithmic negativity, shown in Fig. 4. Here, we see
that the system is very entangled for very small momenta
around θ ¼ ðnþ 1

2
Þπ; n ∈ N, and that the negativity

decreases with p and as we move away from a scattering
angle of θ ¼ ðnþ 1

2
Þπ. The regions of maximal entangle-

ment must necessarily be populated by pure states, which is
indeed confirmed by a direct analysis of the von Neumann
entropy of the system, shown in Fig. 5. We see that the
system is maximally mixed around θ ¼ nπ; n ∈ N, whilst it
is pure for small momenta around θ ¼ ðnþ 1

2
Þπ; n ∈ N.

It is very interesting to analyze in detail the mechanism
whereby maximal entanglement emerges in this system. If

the initial state is purified by filtering it into jLLi or jRRi,
then at θ ¼ π=2 and in the soft limit p → 0þ, one gets the
maximally entangled output jϕ−i; if, instead, the initial
state is jLRi or jRLi, then one ends up with the orthogonal
maximally entangled output jψ−i. The dynamical gener-
ation of such entanglement was already discussed in [36],
and is due to the fact that, for θ ¼ π=2, the Mandelstam
variables t and u driving the two channels pertaining to the
process’s two Feynman diagrams are equal, and as a
consequence the interference between the two diagrams
results into a balanced superposition. If the evolution were
linear, one would then expect an incoherent mixture of such
two orthogonal states in the case of a completely unpo-
larized initial state. However, the measurement process is
nonlinear in the input state, and in fact the effect of
measurement normalization in this instance is to com-
pletely suppress the jψ−i contribution to the mixture:
operationally this is reflected by the fact that, at a
perpendicular scattering angle and in the limit p → 0, all
output detected particles come from the input branch with
the same polarization (i.e., the probability of detecting
particles with different polarizations vanishes). In fact, in
the nonrelativistic limit (p ≪ me), the process’s differential

cross section is given by dσ
dΩ ¼ m2

eα
2

4p4sin4ðθÞ ð1þ 3cos2ðθÞÞ, with
divergences in the soft scattering limit p → 0 and for the
(nonentangled) output at θ ¼ 0 and θ ¼ π.

B. Electron-positron to muon-antimuon pair

Let us now examine muon-antimuon pair creation from
the scattering of an electron-positron pair, that is, the
process e−eþ → μ−μþ. At tree level, this process is
described by a single Feynman diagram, shown in
Fig. 6, with scattering amplitude

FIG. 3. Regions where minfλiðp; θÞg ≤ α3 for Møller scatter-
ing with unpolarized input.

FIG. 4. Plot of the logarithmic negativity as a function of p and
θ for Møller scattering.

FIG. 5. The von Neumann entropy of the system as a function
of p and θ for Møller scattering.
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iM ¼ v̄ðs2; p2Þð−ieγμÞuðs1; p1Þ
−igμν

ðp1 þ p2Þ2
× ūðr1; q1Þð−ieγνÞvðr2; q2Þ: ð15Þ

The eigenvalues of the partially transposed output state
are also all invariant under θ → θ þ π and may be deter-
mined analytically for an unpolarized input. Only one of
them (it is a general feature of the partial transposition of
two-qubit density matrices to allow for a single negative
eigenvalue), which we refer to as λ1, is negative for certain
values of p and θ. Quite remarkably, as can be seen in
Fig. 7, the pair of output muons is entangled for most of the
parameter space.
We see that the system is entangled for all values of p

and θ except in the vicinity of θ ¼ nπ; n ∈ N, as well as

around the minimum of the energy p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

μ −m2
e

q
.

This analysis is reflected in the logarithmic negativity,
plotted in Fig. 8(a): the system is least entangled around

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

μ −m2
e

q
and around θ ¼ nπ; n ∈ N, whilst it is

maximally entangled around θ ¼ ðnþ 1
2
Þπ; n ∈ N for

very large momenta. Accordingly, the state is mixed around

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

μ −m2
e

q
and θ ¼ nπ; n ∈ N, whilst it is pure for

θ ¼ ðnþ 1
2
Þπ; n ∈ N at very large energies, as shown in

Fig. 8(b).
At high energies at θ ¼ π=2, the final state is the pure

Bell state jψ−i. Conversely to what was previously seen in
the case of Møller scattering, this is an instance where
outgoing particles coming from different initial helicities
dominate the output in the high energy limit, which is thus
purified into a Bell state. The s-channel generation of such
maximal entanglement was already discussed in [36]
(where it is argued that the virtual photon cannot distin-
guish, so to speak, between the helicities jLRi and jRLi,
and thus carries an equal proportion of the currents, which
favors maximal entanglement generation). The filtering of
initial states with equal helicities would instead result in a
jψþi Bell state at θ ¼ π=2 in the ultrarelativistic limit. In
the collinear (θ ¼ 0) direction, equal initial helicities give
rise to the jϕ−i Bell state but different initial helicities stay
pure and separable, which results into a mixed state.
These entanglement features could be weighted against

the behavior of the differential cross section for an
unpolarized beam, which behaves like ½1þ ðcos θÞ2� at
high energies: quite significantly, the probability of
detecting outgoing particles is in this case minimum around
the region where maximal entanglement is generated.

C. Electron-positron annihilation

We now consider an electron-positron annihilation proc-
ess into two photons, i.e. the process e−eþ → γγ. From the
Feynman diagrams shown in Fig. 9 describing this process,
the scattering matrices can be read as

iMt ¼ −ie2ϵ�μðλ1; q1Þϵ�νðλ2; q2Þ

× v̄ðs2; p2Þγμ
i

=t −m
γνuðs1; p1Þ; ð16Þ

iMu ¼ −ie2ϵ�μðλ1; q1Þϵ�νðλ2; q2Þ

× v̄ðs2; p2Þγμ
i

=u −m
γνuðs1; p1Þ; ð17Þ

where Mt and Mu are the scattering amplitudes corre-
sponding to the t and u channels, respectively.

FIG. 7. The red region in this plot corresponds to the values of
p and θ for which the final state is entangled.

FIG. 6. Feynman diagram of an electron-positron annihilation
to a muon-antimuon pair (e−eþ → μ−μþ).

(a) (b)

FIG. 8. Plot of the logarithmic negativity (a) and von Neumann
entropy (b) as functions of p and θ for the scattering
e−eþ → μ−μþ.
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As before, we can compute the scattering matrix
expanded in the helicity basis, and hence the resulting
final density matrix for an unpolarized input and its partial-
transposed and eigenvalues, periodic in θ → θ þ π.
Two eigenvalues contribute to the entanglement of the

system by the PPT criterion. The whole of phase space is
entangled except in regions that we call the “wing
domains,” as can be seen in Fig. 10(a). These can be
shown numerically to span between p ¼ meffiffi

2
p ≈ 0.36 and p ≈

0.9 MeV and are symmetrical around θ ¼ n
2
π; n ∈ N.

By looking at the logarithmic negativity, plotted in
Fig. 10(b), we see that the system is most entangled for
small momenta at all angles θ as well as for high momenta
for θ ¼ nπ; n ∈ N. On the other hand, around θ ¼ π=2 at
large energies, the system is almost in a product state and is
barely entangled.
We can also look at the von Neumann entropy of the final

system, shown in Fig. 11, and we see that the system is pure
at low energies and around θ ¼ nπ; n ∈ N, whilst it is
maximally mixed in the wing domains.
At low energies, the same helicity input branch domi-

nates the output and imposes the maximally entangled state
jϕþi, whilst in the ultrarelativistic limit at θ ¼ 0 the
maximally entangled state jϕ−i emerges.

D. Bhabha scattering

Bhabha scattering corresponds to an electron-positron
pair scattering, i.e. e−eþ → e−eþ. From the Feynman
diagrams shown in Fig. 12 describing this process, the
scattering amplitudes can be read as

iMs ¼ v̄ðs2; p2Þð−ieγμÞuðs1; p1Þ
−igμν

ðp1 þ p2Þ2
× ūðr1; q1Þð−ieγνÞvðr2; q2Þ; ð18Þ

iMt ¼ −v̄ðs2; p2Þð−ieγμÞvðr2; q2Þ
−igμν

ðp2 − q1Þ2
× ūðr1; q1Þð−ieγνÞuðs1; p1Þ; ð19Þ

where Ms and Mt correspond to the s and t channels,
respectively.
Again, the partially transposed eigenvalues of the density

matrix derived from these amplitudes for unpolarized input
can be evaluated analytically, and one can show that three
of them are always positive whilst one, which we denote

FIG. 9. Feynman diagrams of the t and u channels of an
electron-positron annihilation (e−eþ → γγ).

(a) (b)

FIG. 10. Plot of the PPT criterion (the red region in this plot
corresponds to the region for which the final state is entangled)
and logarithmic negativity as functions of p and θ for electron-
positron annihilation.

FIG. 11. The von Neumann entropy of the system as a function
of p and θ for electron-positron annihilation.

FIG. 12. Feynman diagrams of the s and t channels of a Bhabha
scattering (e−eþ → e−eþ).
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with λ1, can be negative. At variance with the previous
ones, this process is not invariant under θ → θ þ π but only
under θ → −θ.
The application of the Peres-Horodecki criterion

is shown by plotting the logarithmic negativity in
Fig. 13(a). On this occasion, output entanglement is only
found in a fairly restricted region of parameters. The study
of the logarithmic negativity, backed by the von Neumann
entropy in Fig. 13(b), allows us to visualize the point of
maximal output entanglement at θ ¼ π (with the particles
bouncing back from each other) and p ≈ 0.32 MeV, where
the output state is given by

ρout ¼ 0.98jϕþihϕþj þ 0.01jLRihLRj þ 0.01jRLihRLj:
ð20Þ

Hence, maximal entanglement is very closely approxi-
mated at intermediate energies, comparable with the
electron mass, in Bhabha scattering too, even for max-
imally mixed initial states. The jLRi and jRLi contribu-
tions to the state above come, respectively, from the jRLi
and jLRi branches, for which this scattering acts as a
helicity flip, and which are suppressed albeit not entirely. If
these branches are filtered out by selecting initial particles
with the same helicity, then one obtains a state which is, to
all practical purposes (given the substantial noise one may
anticipate in such processes) indistinguishable from the
maximally entangled Bell state jϕþi. It is worthwhile to
note that the generation of such entanglement at inter-
mediate energies occurs entirely through the t channel,
which dominates the process. This nontrivial finding does
not feature in the analysis of [36], which focuses on the
occurrence of exact maximal entanglement, especially in
the low and high energy limit.

E. Electron-muon scattering

Let us now analyze electron-muon scattering
e−μ− → e−μ−. From the Feynman diagram shown in
Fig. 14 describing this process, the scattering amplitude
can be read as

iM ¼ ūðr2; q2Þð−ieγμÞuðs2; p2Þ
−igμν

ðp1 − q1Þ2
× ūðr1; q1Þð−ieγνÞuðs1; p1Þ: ð21Þ

From these, the only partially transposed eigenvalue that
can be negative may be determined for unpolarized input to
show that, by the PPT criterion, the output particles are
entangled for

p >
ffiffiffiffiffiffiffiffiffiffiffiffimemμ

p
2

and θ ¼ π � ϵðpÞ; ð22Þ

where ϵðpÞ cannot be determined analytically but is small,
increasing for p≲ 50 MeV but decreasing for large values
of p. This is shown in Fig. 15.
The logarithmic negativity is plotted in Fig. 16, where

one can see that the system has its largest entanglement for
θ ¼ π and p ¼ ffiffiffiffiffiffiffiffiffiffiffiffimemμ

p , whilst it is not very entangled for
large momenta. For p ¼ ffiffiffiffiffiffiffiffiffiffiffiffimemμ

p , θ ¼ π, we have

ρout ¼
2

3
jϕ−ihϕ−j þ 1

3

14×4
4

: ð23Þ

Thus, we see that the system never reaches maximal
entanglement, but approaches a noisy, depolarized Bell
state for the identified values of θ and p.

(a) (b)

FIG. 13. Plot of the logarithmic negativity and von Neumann
entropy as functions of p and θ for Bhabha scattering. FIG. 14. Feynman diagram of an electron-muon scattering

process (e−μ− → e−μ−).

(a) (b)

FIG. 15. The red regions correspond to the values of p and θ for
which the final state is entangled at low—< 30 MeV—(a) and
high—< 1 GeV—(b) energies.
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The von Neumann entropy of the system can be seen in
Fig. 17, and one observes that the state is pure for
θ ¼ ð2nþ 1Þπ, n ∈ N whilst it is maximally mixed when
θ ¼ 2nπ, n ∈ N. In this case, at variance with the scattering
processes examined so far, maximal purity does not
correspond to maximal entanglement as these pure states
are product states.

F. Compton scattering

Finally, we shall examine Compton scattering, that is, the
process e−γ → e−γ. From the Feynman diagrams shown in
Fig. 18 describing this process, the scattering matrices can
be read as

iMs ¼ −ie2ūðs2; p2Þγμϵ�μðλ2; k2Þ
=pþ =kþm
s2 −m2

× γνϵνðλ1; k1Þuðs1; p1Þ; ð24Þ

iMu ¼ −ie2ūðs2; p2Þγνϵ�νðλ1; k1Þ
=p − =kþm
u2 −m2

× γμϵμðλ2; k2Þuðs1; p1Þ; ð25Þ

where Ms and Mu are the scattering amplitudes corre-
sponding to the s and u channels, respectively.
As before, we can expand these in the helicity basis, time

evolve the initial state, apply partial transposition and
impose the Peres-Horodecki criterion to determine the
entanglement of the system, although in this case the final
state for an unpolarized initial state is never entangled,
regardless of the energy scale or the scattering angle.
This is rather surprising and contrasts with other proc-

esses seen in QED. There is however the possibility for the
system to be entanglable through loop diagrams, as can be
seen in Fig. 19(a), where parameter regions with partially
transposed eigenvalues smaller than α3 are shown; note that
such regions extend also beyond the infrared divergence
that characterizes the process at θ ¼ π. The possibility of
entanglement occurring at higher order is all the more likely
given that, as shown by evaluating the von Neumann
entropy plotted in Fig. 19(b), the states in those regions
are very close to pure states.
Even at tree level, however, entanglement can actually be

generated in Compton scattering, as we are about to see.

1. Werner state filtering

Let us now show that even partial filtering of the input
state allows one to recover substantial entanglement from
this process. To this aim, let us consider the input Werner
state obtained by projecting an unpolarized state on the
symmetric subspace, given by ρ−∞ ¼ 1

3
ðjLLihLLj þ

jψþihψþj þ jRRihRRjÞ [44]. Switching to this input, one
gets regions of output entanglement as is shown in
Fig. 20(a).
As shown in Fig. 20(b), Compton scattering is actually

capable to generate substantial degrees of entanglement for
partially filtered inputs. Interestingly, in the limit where the
scattering angle approaches the divergent backscattering

(a) (b)

FIG. 16. Plots of the logarithmic negativity at low and high
energies as a function of p and θ for electron-muon scattering at
low—< 30 MeV—(a) and high—< 1 GeV—(b) energies.

(a) (b)

FIG. 17. Plots of the von Neumann Entropy at low
—< 30 MeV—(a) and high—< 1 GeV—(b) energies as a
function of p and θ for electron-muon scattering.

FIG. 18. Feynman diagrams of the s and u channels for
Compton scattering (e−γ → e−γ).

(a) (b)

FIG. 19. (a) Regions where minfλiðp; θÞg ≤ α3 for Compton
scattering with unpolarized input; all partially transposed eigen-
values at tree level are always positive in this case. (b) von
Neumann entropy as a function of p and θ for Compton scattering
with unpolarized input.
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value θ ¼ π and the c.m. momentum diverges, the Bell
state jψþi may be approached arbitrarily well.

2. Pure input

Finally, let us also look at what happens if we use a pure
beam of states with helicity jLLi as the initial state. In this
case, the final system is always entangled.
The logarithmic negativity of the system is then shown in

Fig. 21. The system is maximally entangled in the limit of
θ → π and p → ∞, where the output state approaches
arbitrarily well the Bell state jϕ−i. Even at finite energies
and away from the infrared divergence, though, maximal
entanglement is approached remarkably well. For instance,
for θ ¼ 3π=4 and p ¼ 3.7 MeV a logarithmic negativity
EN ≈ 0.98 is achieved; in this case, the u channel domi-
nates the scattering statistics, and is responsible for the
outgoing entanglement.
Thus, we have shown that maximal entanglement can be

approached arbitrarily well in Compton scattering too.

IV. CONCLUSIONS AND OUTLOOK

The systematic approach for analyzing entanglement in
two-particle collisions presented in this paper allowed us to

cover tree-level entanglement in QED on general grounds,
encompassing arbitrary state preparations and dynamical
conditions. This brought to light very interesting, previ-
ously unknown cases, such as the possibility to reach
maximal entanglement in Bhabha scattering and, through
the filtering of the initial helicity, Compton scattering. In
such cases, we were able to analyze the generation of
entanglement in detail, and to identify optimal dynamical
conditions to that purpose. Our results apply directly to
other leptons in the QED sector and our method can be
extended to other QFTs and to higher perturbation levels.
Besides allowing us to determine the exact dynamical

regions of tree-level entanglement (in analytical form for
Møller scattering), our study brought to light further
mechanisms for the generation of entanglement in QED
besides those already highlighted for the generation of
exact maximal entanglement in [36]. In particular, besides
the already known single s-channel and t- and u- channel
interference generations, we have shown that maximal or
“virtually maximal” (i.e., maximal to all practical purposes,
given the noise at play) entanglement can originate in all
situations where one dominating channel (which could
be a t or u one too) leads to balanced superpositions of
helicity states. As a heuristic rule of thumb, one would be
tempted to argue that processes with equal output particle
masses are generally more favorable for the onset of such
maximal entanglement conditions (and thus no maximally
entanglement was found for electron-muon scattering),
although this is contradicted by the regions of high
entanglement observed for Compton scattering with filtered
initial states.
One potential perspective of systematic studies like the

present one arises in the context of the current wave of
proposed experiments aimed at establishing the quantum
nature of gravity, such as in the Bose Marletto Vedral
experiment [45–62]. Such proposals suggest to leverage the
occurrence of quantum entanglement—ideally as wit-
nessed by the violation of Bell-like inequalities—to certify
the quantum nature of a fundamental force, i.e., its coherent
action at the Hilbert space level. Of course, as such, these
tests are primarily aimed at gravity (although they may be
relevant to the investigation of other effects, such as those
related to Casimir interactions or to the occurrence of
axions [63]). However, the detection of entanglement in
any fundamental quantum field theory, the optimization of
the dynamical conditions for its emergence and a detailed
understanding of the mechanisms behind its generation are
certainly interesting fundamental questions, whose answers
hold potential for wider implications.
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(a) (b)

FIG. 20. (a) The orange regions in this plot correspond to the
values of p and θ for which the final state is entangled for
Compton scattering with Werner input. (b) Logarithmic nega-
tivity as a function of p and θ for Compton scattering with Werner
input.

FIG. 21. Plot of the logarithmic negativity as a function of p
and θ for Compton scattering (pure jLLi beam).
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