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Abstract: Weather data is one of the most important inputs for a reliable building 10 

energy simulation, and in current studies, EnergyPlus Weather (EPW), historically 11 

measured by a few suburban weather stations, is most widely used. Weather, however, 12 

is shaped by urban morphology and other factors, and therefore transforming weather 13 

files using tools like urban weather generator into urban area becomes necessary. This 14 

study investigated the differences between multi-sourced weather datasets after 15 

transforming, and in turn the impact on urban building energy simulation. One campus 16 

block was selected as a case study, with forty-one urban blocks obtained along with 17 

their urban morphologies. One microclimate station and sixteen sensors were installed 18 

to collect weather data to validate multi-sourced weather files for energy simulation 19 

models. The study results showed the root mean square error (RMSE) of temperature 20 

differences between suburban weather station, EPW and microclimate station on 21 

campus was 2.1°C and 4.3°C, respectively, turned into 1.2°C and 4.1°C, respectively 22 

after transforming. With respect to building energy use, the mean absolute percentage 23 

difference (MAPD) of cooling-energy use intensity between the ones calculated from 24 

the above mentioned three datasets was 32.4% and 13.1%, respectively, turned into 25.8% 25 

and 4.1%, respectively after transforming. Meanwhile, the MAPD of heating-energy 26 

use intensity was 27.2% and 116.3%, respectively, turned into 12.7% and 93.6%, 27 

respectively after transforming. This study provides references of selecting weather 28 

data for urban building energy modelling to achieve more reliable energy decision-29 

making process. 30 
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1. Introduction  1 

Until 2022, the urbanization rate in China has reached 65.22% [1]. This urban sprawl 2 

has produced profound changes in the urban physical environment, consequently 3 

increasing urban energy consumption and global carbon emissions [2,3]. As known, 4 

buildings are responsible for one-third of energy consumption in cities [4], and there 5 

exists a great and untapped opportunity to create and transform urban buildings to more 6 

sustainable and energy-efficient environment in city context [5]. In this way,  Urban 7 

Building Energy Modelling (UBEM), that was developed from Building Energy 8 

Modelling (BEM), has been developed to combine various urban data with energy 9 

simulation tools [6,7]. Subsequently, efficient  UBEM frameworks like City Building 10 

Energy Saver (CityBES) [8], UBEM.io [9], City Energy Analyst (CEA) [10], and so on, 11 

were proposed  can predict building energy demand at larger and broader spatial levels.  12 

In those existing UBEM frameworks, weather data has been recognized as an essential 13 

input parameter [11–13]. While modelling energy demand of buildings, major climatic 14 

parameters as the important influencing factors include outdoor temperature, relative 15 

humidity, wind, and solar radiation [14], which can be generated as a weather file, 16 

named as EnergyPlus weather (EPW) in building simulation tools. Current default EPW 17 

file used in UBEM are usually Typical Meteorological Year (TMY), and it was mainly 18 

derived from a long period of historical weather records with averaged annual hourly 19 

meteorological data [15,16]. The inherent nature of TMY excluding extreme weather 20 

and weather changes makes them less suitable for investigating the effect of potential 21 

local microclimate on building energy performance as microclimate usually deviates 22 

significantly from TMYs [17].  23 

An alternative to obtain weather data is using weather stations located in suburb areas, 24 

which is relatively more accurate than TMY. In this approach, at least one-year period 25 

of urban weather dataset should be collected to generate the EPW file with the tools, 26 

e.g., pyepw or Elements. However, in central urban areas, the urban microclimate may 27 

be quite different from rural climate due to both the form and the fabric of urban 28 
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landscape [18]. At a larger spatial level such as a neighborhood or even a city, the 1 

concentration of human activities and man-made buildings will further contribute to 2 

changes in the inthernal microclimate of the city. A typical example of this effect is 3 

Urban Heat Island (UHI), which results in higher temperature in urban areas than in 4 

rural areas [19]. Guattari et al. [20] simulated the energy consumption of individual 5 

buildings based on meteorological data collected for the central city and suburban areas 6 

of Rome to assess the impact of different climate boundaries on building energy 7 

performance. The results showed that the average building cooling demand increased 8 

by about 30% and the average heating demand decreased by about 11%. Hong et al. 9 

[21] simulated the annual cooling and heating demand of a typical building using data 10 

from 27 meteorological sites in San Francisco, and the results varied by 100% and 65%, 11 

respectively, and the peak electricity demand reached a 30% difference. Therefore, to 12 

accurately simulate building energy demand at urban level,  it is important to consider 13 

the impact of urban microclimate [22,23].   14 

The current methods used to obtain urban microclimate data can be divided into three 15 

categories [24]. Field measurement is the earliest method, and it uses monitoring 16 

instruments to measure climate parameters in a specific geographic location [25,26], 17 

which is labor-intensive and costly. The second method uses remote sensing and GIS 18 

tools to invert the environmental conditions near the ground through data obtained from 19 

remote sensors or satellites [27–29]. Such method, however, is impossible to form 20 

continuous urban weather files since satellite photos are taken periodically. The third 21 

method is to simulate/calcualte microclimate, and this method can facilitate the flexible 22 

weather data both spatially and temporally by transforming computational models 23 

[30,31]. To simulate/calcualte urban microclimate data, there are three types of 24 

computational models, namely, numerical weather prediction model, Computational 25 

Fluid Dynamics (CFD) model, and Urban Canopy Model (UCM). In the first model, 26 

long-term historical microclimate data may be essential for a basic energy simulation 27 

run, and prediction techniques assisted with numerical models, such as machine 28 

learning [32] and large eddy simulation [33], can be applied to forecast a complete 29 

weather file within a few meters horizontally, and then resolve micro-climate features 30 
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at neighborhood scale. In another two models, urban morphology is an essential 1 

component and has an impact in turn on urban microclimate and energy consumption 2 

[34].  3 

Urban morphology consists of both physical form of buildings, urban blue-green space, 4 

and so on, and those have a positive effect on reducing UHI effect and for an exact 5 

urban block, its specific morphology can form its own microclimate [35]. Therefore, 6 

simulating buildings’ energy demand of an exact location in urban context requires its 7 

typical meteorological data for a customized weather [36]. Long (longer than one year) 8 

and accurate field data measured from exact locations, however, is quite difficult to 9 

obtain. To overcome this issue, Urban Weather Generator (UWG), as a typical UCM 10 

model, was developed by Bueno et al. [37], and it can generate a new weather file for 11 

an exact location through transforming the rural or TMY weather files by considering 12 

the impact of urban morphology on the urban microclimate variables for a given 13 

neighborhood. Subsequently, researchers further enriched the UWG by introducing 14 

relevant urban morphology of a block into its microclimate and energy analysis [38]. 15 

For example, Detommaso et al. [39] have input the UWG-processed weather files to 16 

ENVI-met, and this approach has been proven to provide sufficiently reliable data for 17 

simulating microclimate. To improve the accuracy of energy simulation, Kamal et al. 18 

[40] have applied UWG to transform raw weather data with urban morphological 19 

parameters, and Ma et al. [41] have applied UWG to transform the TMY file to an urban 20 

block, by integrating morphological parameters for localized microclimate estimation, 21 

and further simulated the multi-scale building energy. However, the accuracy prediction 22 

of building energy performance metrics using detailed BEM software, like EnergyPlus, 23 

in urban areas for the transformed microclimate data is still lacking, and the rural or 24 

TMY weather data always cannot reflect the actual situation. Oller et al. [42] pointed 25 

out that since the lack of precise meteorological data in exact locations, data from 26 

suburban weather stations is generally used, with lack of information indicating the 27 

potential errors resulted in the simulated performance of buildings. 28 
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Many studies have confirmed that there are differences between building energy 1 

simulation results due to using weather data from different sources. Although these 2 

differences can be reduced by transforming the weather files, a comprehensive 3 

understanding on the effects from all possible sources of weather data is still missing, 4 

as well as their contributions to the simulated energy consumption at urban levels. To 5 

fill this research gap, this study selected multi-sourced weather files and combined them 6 

with UWG to obtain transformed weather data, integrating with EnergyPlus to simulate 7 

building energy consumption in the study area under all weather files. A comparative 8 

analysis of the data was used to derive error ranges in weather variables and differences 9 

ranges between the energy simulation results calculated using multi-sourced weather 10 

files and those obtained using field measured weather files. Based on the comparison 11 

results, a reference for the priority of weather data selection in subsequent urban 12 

building energy modelling studies can be provided. 13 

2. Methodology 14 

2.1 Comparison workflow 15 

This study created the UBEM of urban blocks with building geometries and properties, 16 

and used EnergyPlus to simulate building energy demand. Figure 1 shows the overall 17 

workflow of this study, which consists of four major steps: 18 

• Step 1 (Weather Data Collection): in this step, the weather data were obtained from 19 

multiple sources, including typical EPW file from EnergyPlus website, the weather 20 

station of Nanjing city, one long-term microclimate station and sixteen stationary 21 

sensors in the case study campus.  22 

• Step 2 (Physical Modeling): in this step, forty-one different blocks with different 23 

urban morphologies were randomly generated. Geometric characteristics (e.g., 24 

building height, building density, building floor area and window-to-wall ratio), 25 

and non-geometric characteristics (e.g., heating, ventilation, air conditioning 26 

system, heat transfer of building envelopes and occupant behavior) of the buildings 27 

were obtained from on-site survey and national reference standards, and then the 28 
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building energy models were created according to these data.  1 

• Step 3 (Weather Data Processing): in this step, the UWG was applied to transform 2 

weather data for each block according to its morphology, with a total of five 3 

comparisons carried out to identify the differences between multi-sourced weather 4 

files.  5 

• Step 4 (Energy Simulation): in this step, comparison of model estimates of building 6 

energy consumption using EnergyPlus as being forced with weather files using two 7 

alternative methods was carried out using mean absolute percentage difference 8 

(MAPD).  9 

 10 

Figure 1: Workflow of multi-sourced weather comparison in UBEM process 11 

2.2 Case study urban area 12 

This study has selected the Sipailou campus of Southeast University (SEU) (Figure 2) 13 

as a case study. This university campus is located in the central area of Nanjing, Jiangsu 14 

Province, China. It has a total area of 411,309m2 and this size is an appropriate scale 15 

for neighborhood level analysis. There are thirty-eight buildings on the campus with 16 
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various functions, such as office building, laboratory buildings, teaching buildings and 1 

multi-use buildings. Multi-use buildings may include classrooms, offices for both 2 

research students and academic staff, research laboratories, etc. The buildings on the 3 

campus have floors between 1 and 15, with an average of 5 floors. As a typical 4 

university campus in China, the buildings were mainly made of brick-concrete and 5 

reinforced concrete structures.  6 

7 

Figure 2: The case study campus 8 

2.3 Multi-sourced microclimate data 9 

In this study, the raw weather data were obtained from four different sources, namely 10 

EnergyPlus weather file (EPW), data from the Nanjing weather station (WS), data from 11 

the microclimate station in SEU (SEU) and data from stationary distributed 12 

microclimate experiments (Si). The specific methods used to obtain these weather data 13 

and the weather information they contain were described below. 14 

The EPW weather file for Nanjing was downloaded from the EnergyPlus weather 15 

website [43]. The data for cities in China comes from the China Standard Weather Data 16 

(CSWD), which is a specific meteorological dataset for building thermal analysis, with 17 

data measured between 1971 and 2003 from 270 meteorological stations in China. The 18 
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climatic parameters used in this study included air temperature, relative humidity, direct 1 

solar radiation, wind speed and wind direction, which are commonly adopted in existing 2 

studies [44].  3 

The local climatic data of Nanjing was obtained from the Nanjing weather station 4 

(District Station No. 58238), which is 53.8 km away from the case study campus. The 5 

data include hourly-measured air temperature, relative humidity, solar radiation, wind 6 

speed and wind direction, which were collected in 2020. 7 

A local microclimate weather station has been installed under manufacturers’ guidelines 8 

on the roof of a six-story building in SEU, since 2016, as shown in Figure 3. The 9 

location was selected with a consideration of potential shading from surrounding 10 

buildings or trees. The weather station measures air temperature, relative humidity, 11 

direct normal solar radiation, wind speed and wind direction, which are accessible from 12 

either a local storage via a Wifi channel or an online server. Table 1 has listed some 13 

major technical specifications about the measurements from this local weather station. 14 

The data used in this study was collected in 2020. 15 

 16 

Figure 3: The local microclimate station on the campus 17 

Table 1: Main technical specifications for the local microclimate station on the campus 18 
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 Data logger 
Temperature

/Humidity 
Wind speed 

Wind 

Direction 

Solar 

radiation 

Version RX3003 S-THB-M002 S-WSB-M003 S-WDB-M003 S-LIB-M003 

Operating 

temperature 
-40~+60°C -40~+75°C -40~+75°C -40~+70°C -40~+75°C 

Accuracy - 
T: ±0.21°C 

RH: ±2.5% 

±1.1m/s or 

±4% 
±5° 

±10 W/m2 or 

±5% 

Resolution - 
T: 0.02°C 

RH: 0.1% 
0.5 m/s 1.4° 1.25 W/m2 

Measuremen

t range 
- 

T: -40~+75°C 

RH: 0~100% 
0~76 m/s 0~355° 0~1280 W/m2 

To obtain more specific climatic conditions of different exact locations, besides the 1 

above local weather station, other sixteen stationary distributed measurement points 2 

were installed on the campus as well, with the locations indicated in Figure 4. Those 3 

sensors are installed at a height of 1m on the campus. The data from these points were 4 

collected to validate the weather file transformed by UWG for each block. These 5 

sensors measure air temperature, relative humidity, light intensity, CO2 concentration 6 

and TVOC concentration. Among those parameters, temperature was selected for the 7 

validation, and regarding weather monitoring, DHT22 excels in precision as a humidity 8 

and temperature sensor with an accuracy of ±2% for relative humidity and accuracy of 9 

±0.5°C for temperature [45]. Because the battery of sensors can only support 3 days, 10 

each time in close to 3 days, they need to be replaced manually. To avoid time-11 

consuming and labor intensive, a duration of one-month monitoring was obtained and 12 

the data was collected in December, 2020. During validation, this study compared the 13 

one-month weather file transformed by UWG (that is December) with data from 14 

stationary distributed measurement points. 15 
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1 

Figure 4: Stationary distributed measurement points on campus 2 

2.4 Microclimate transforming and energy simulation 3 

2.4.1 Urban block generation 4 

In this part, the blocks used in the subsequent UWG model were generated. In order to 5 

divide the study area into separate blocks accurately, this study required information on 6 

building footprints, road networks and greenery, which can be obtained from local 7 

government departments, satellite images or on-site investigation. The boundaries of 8 

the area were determined by building locations, functional clusters and road networks. 9 

The study firstly divided the whole campus into 13 basic blocks based on road networks, 10 

and then randomly combined them based on whether the blocks were adjacent or not, 11 

and 28 combined blocks were generated, consequently a total of 41 blocks were 12 

obtained. Each block has its own morphology, such as building geometry (height, 13 

building density, vertical-to-horizontal area ratio), vegetation, road structure and 14 

materials. Figure 5 shows the process of generating blocks from building footprints and 15 

road networks. 16 
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 1 

Figure 5: Block generation process based on building footprint and road network 2 

2.4.2 UWG model 3 

After generating the blocks and extracting the morphological parameters of each block, 4 

UWG is applied to transform the original weather data. Figure 6 illustrates how the 5 

information was exchanged between modules in the UWG model. The UWG can 6 

integrate simulation by introducing multiple models, performing synchronization 7 

between the models to exchange information on boundaries, allowing larger-scale 8 

models to provide boundary information for smaller-scale models. The UWG includes 9 

four modules, namely Weather Station Module (WSM), Vertical Diffusion Module 10 

(VDM), Target Parcel Boundary Module (TPBM) and Target Parcel Canopy Module 11 

(TPCM).  12 
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 1 

Figure 6: Information exchanged among UWG modules 2 

The WSM is a rural canopy model that contains raw data collected by the 3 

meteorological station in the suburban area and calculates sensible heat fluxes. In this 4 

study, the data used here was the EPW data and the Nanjing weather station data. The 5 

module is based on the energy balance of the soil surface. Equations 1, 2 and 3 define 6 

the heat exchange balance in the first layer, each intermediate layer, and the deepest 7 

layer, respectively.  8 

𝑑1 · (𝜌𝑐)1 ·
𝛿𝑇1

𝛿𝑡
= 𝐶1,2 · (𝑇2 − 𝑇1) + 𝑄𝑠𝑢𝑟𝑓    (1) 

𝑑𝑖 · (𝜌𝑐)𝑖 ·
𝛿𝑇𝑖

𝛿𝑡
= 𝐶𝑖,𝑖+1 · (𝑇𝑖+1 − 𝑇𝑖) + 𝐶𝑖,𝑖−1 · (𝑇𝑖−1 − 𝑇𝑖)   (2) 

𝑑𝑛−1 · (𝜌𝑐)𝑛−1 ·
𝛿𝑇𝑛−1
𝛿𝑡

= 𝐶𝑛−𝑖,𝑛 · (𝑇𝑑𝑒𝑒𝑝 − 𝑇𝑛−1) (3) 

where 𝑑𝑖  is the depth, m; (𝜌𝑐)𝑖  is the volumetric heat capacity, Jm-3K-1; 𝑇𝑖  is the 9 

average temperature of the layer 𝑖, K; 𝐶𝑖,𝑗 is the mean thermal conductance between 10 

two layers, Wm-2K-1. 𝑄𝑠𝑢𝑟𝑓 is the sum of net radiation, sensible and latent heat fluxes 11 

at the surface, Wm-2. 𝑇𝑑𝑒𝑒𝑝 is the annual average temperature of weather station, used 12 

as boundary condition deep into the ground, K. 13 

The VDM calculates the vertical distribution of air temperature above the weather 14 

station, with heat diffusion defined by Equation 4, 15 
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𝛿𝜃(𝑧)

𝛿𝑡
= −

1

𝜌(𝑧)
·
𝛿

𝛿𝑧
(𝜌(𝑧) · 𝐾𝑑(𝑧) ·

𝛿𝜃(𝑧)

𝛿𝑧
)   (4) 

where 𝜃 is the potential air temperature, K; 𝑧 is the vertical space component, m; 𝜌 is 1 

the air density, kgm-3, and 𝐾𝑑 is a diffusion coefficient, m2s-1.  2 

The lower boundary condition of Equation 4 is the temperature measured at the weather 3 

station, which is usually 2m; the upper boundary condition is the temperature measured 4 

at a height of approximately 150m where the potential temperature is uniform and its 5 

vertical slope 
𝛿𝜃(𝑧)

𝛿𝑧
 equals to 0. 6 

The TPBM calculates the air temperature above the urban canopy layer. The energy 7 

balance calculation is performed based on selected control volumes within the defined 8 

urban boundary layer, as defined by Equation 5, 9 

𝑉𝐶𝑉 · 𝜌 · 𝑐𝑣 ·
𝑑𝜃𝑢𝑟𝑏

𝑑𝑡
= 𝐻𝑢𝑟𝑏 + ∫𝑢𝑟𝑒𝑓 · 𝜌 · 𝑐𝑝 · (𝜃𝑟𝑒𝑓−𝜃𝑢𝑟𝑏)𝑑𝐴𝑓   (5) 

where 𝑉𝐶𝑉  is the control volume, m3; 𝜌  is the air density, kgm-3; 𝑐𝑣  and 𝑐𝑝  are the 10 

specific heat of air at constant volume and constant pressure, respectively, Jkg-1K-1; 11 

𝜃𝑢𝑟𝑏 and 𝜃𝑟𝑒𝑓 are the average potential temperature and reference potential temperature 12 

of the control volume, respectively, K; 𝐻𝑢𝑟𝑏 is the sensible heat flux at the surface of 13 

the control volume, W; 𝑢𝑟𝑒𝑓 is the reference air velocity, ms-1; and 𝐴𝑓 is the lateral heat 14 

exchange area between the control volume and its surroundings, m2. 15 

This module distinguishes between nighttime and daytime parcel boundary layers and 16 

is driven by the geostrophic wind and the urban breeze circulation. The circulation 17 

velocity (𝑢𝑐𝑖𝑟𝑐) was calculated from the expression given by Hidalgo et al. [46], see 18 

Equation 6, 19 

𝑢𝑐𝑖𝑟𝑐 = 𝑘𝑤 · (𝛽 · 𝑧𝑖 ·
𝐻𝑡𝑝−𝐻𝑚𝑠

𝜌·𝑐𝑝
)1/3    (6) 

where 𝑘𝑤 is a constant approximating to 1; 𝛽 is the buoyancy coefficient, ms-1K-1; and 20 

𝐻𝑡𝑝 and 𝐻𝑚𝑠 are the sensible heat fluxes from the target parcel and the weather station, 21 

respectively, Wm-2. 22 
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Based on the morphological parameters within the corresponding target parcel and the 1 

results of TPBM calculations, the TPCM will give the adjusted weather data of the 2 

target block. The module assumes a good air mixture within the urban canopy. Thus, 3 

the energy balance equation of the target parcel is Equation 7, 4 

𝑄 = 𝑇𝑟𝑜𝑎𝑑 · ℎ𝑐𝑣 · 𝐴𝑟𝑜𝑎𝑑 + 𝑇𝑢𝑏𝑙 · 𝐴𝑟𝑜𝑎𝑑 · 𝑢𝑒𝑥 · 𝑐𝑝 · 𝜌𝑎𝑖𝑟 + 𝑇𝑖𝑛𝑑𝑜𝑜𝑟 · 𝐴𝑤𝑖𝑛 · 𝑈𝑤𝑖𝑛

+ 𝑇𝑤𝑎𝑙𝑙 · ℎ𝑐𝑣 · 𝐴𝑤𝑎𝑙𝑙 + 𝑇𝑖𝑛𝑑𝑜𝑜𝑟 · 𝐴𝑟𝑜𝑜𝑓 · 𝑅𝑣𝑒𝑛𝑡 · ℎ𝑏𝑙𝑑 · 𝑐𝑝 · 𝜌𝑎𝑖𝑟

+ 𝑇𝑖𝑛𝑑𝑜𝑜𝑟 · 𝐴𝑟𝑜𝑜𝑓 · 𝑅𝑖𝑛𝑓𝑖 · ℎ𝑏𝑙𝑑 · 𝑐𝑝 · 𝜌𝑎𝑖𝑟 + (𝐴𝑟𝑜𝑜𝑓 + 𝐴𝑟𝑜𝑎𝑑)

· (ℎ𝑎𝑛𝑡ℎ𝑟𝑜𝑝 + ℎ𝑡𝑟𝑒𝑒 · 𝜌𝑣𝑒𝑔) + 𝐴𝑟𝑜𝑜𝑓 · ℎ𝑤𝑎𝑠𝑡𝑒 · ℎ𝑚𝑖𝑥 + 𝐴𝑤𝑖𝑛

· ℎ𝑠𝑜𝑙𝑅𝑒𝑐 · (1 − 𝑠ℎ𝑔𝑐) 

(7) 

where 𝐴𝑟𝑜𝑎𝑑, 𝐴𝑤𝑖𝑛, 𝐴𝑤𝑎𝑙𝑙 and 𝐴𝑟𝑜𝑜𝑓 are the areas of roads, windows, walls and roofs, 5 

respectively, m2; ℎ𝑐𝑣 and ℎ𝑟𝑑 are convective and radiant heat transfer coefficients, Wm-6 

2K-1; 𝑅𝑣𝑒𝑛𝑡  and 𝑅𝑖𝑛𝑓𝑖  are the ventilation and infiltration air exchange rates of the 7 

building, ms-1; 𝑈𝑤𝑖𝑛  is the U-factor of windows, Wm-2K-1; ℎ𝑎𝑛𝑡ℎ𝑟𝑜𝑝  and ℎ𝑡𝑟𝑒𝑒  are 8 

anthropogenic sensible heat and tree sensible heat, Wm-2K-1. 9 

2.4.3 UBEM configuration 10 

The UBEM simulation was mainly based on a Rhino platform, and the Grasshopper 11 

plug-in that comes with Rhino is based on data linking and logical operations to enable 12 

visual script editing in the Rhino environment. Among the operators supported by 13 

Grasshopper, Ladybug Tools is a collection of free open-source plug-ins which can 14 

connect Rhino models to run simulation in EnergyPlus and UWG. Figure 7 shows the 15 

input parameters for the UBEM configuration and how these are integrated with the 16 

UBEM simulation. 17 
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 1 

Figure 7: Flowchart of integrating UWG into UBEM 2 

The parameters involved here included weather data, building information and 3 

morphological parameters. The EPW data, the Nanjing local climatic data and the 4 

microclimate data were taken from different sources and used as initial weather files. 5 

At the same time, the first two types of weather data were transformed by UWG to 6 

generate block-specific microclimate data. Although building information, such as 7 

building construction and equipment descriptions, can be obtained through field 8 

observation and experiment, detailed parameters were still lack. This study therefore 9 

referred to the Design Standard for Energy Efficiency of Public Buildings GB 50189-10 

2015 [47] and ASHRAE 90.1 [48] to determine the input parameters based on actual 11 

situations. Table 2 displays all the references of input parameters. Then morphological 12 

parameters were obtained through on-site survey to establish the building physical 13 

model. The input parameters in this study, including load settings, performance 14 

characteristics and occupancy schedules, can be referred to our previous work, and the 15 

energy simulation results were calibrated through the 20% error requirement and found 16 

to be reliable [49]. 17 

Table 2: The reference of input parameters besides weather files 18 

Input Parameters Reference 

Wall Construction On-Site Survey 

Window Construction Typical Value of Single Pane 

Roof Construction Typical Value of Honeybee 

Floor Construction Typical Value of Honeybee 
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Equipment Load Per Area 
Design Standard for Energy Efficiency of Public 

Buildings GB 50189-2015 

Lighting Density Per Area 
Design Standard for Energy Efficiency of Public 

Buildings GB 50189-2015 

Air Infiltration Rate ASHRAE standard 90.1 

Number of People Per Area 
Design Standard for Energy Efficiency of Public 

Buildings GB 50189-2015 

Ventilation Per Person ASHRAE 90.1 

2.5 Performance evaluation index  1 

This study firstly evaluated the temperature differences as reflected by the 2 

meteorological data before and after adjustments using root mean square error (RMSE), 3 

and then quantified the impact of meteorological data on building energy consumption 4 

using mean absolute percentage difference (MAPD) to test the differences between 5 

multi-sourced weather files on urban building energy simulation. The calculations of 6 

both RMSE and MAPD are shown in Equations 8 and 9, respectively, 7 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑛

𝑖=1
 (8) 

𝑀𝐴𝑃𝐷 = (
1

𝑛
∑

|𝑦𝑖 − 𝑦𝑖̂|

𝑦𝑖̂

𝑛

𝑖=1
) ∗ 100% (9) 

3. Results 8 

3.1 Results of raw data of multi-sourced microclimate 9 

Figure 8 (above) firstly compares the urban climatic conditions in Nanjing, the monthly 10 

average temperatures from multi-sourced meteorological data from three sources. 11 

Nanjing has a humid north subtropical climate with four distinct seasons, hot summer 12 

and cold winter, with a significant temperature difference between winter and summer. 13 

From the overall trend, the temperature trends of Nanjing weather station (WS) and 14 

microclimate station in SEU (SEU) are consistent, while EPW and SEU show opposite 15 

temperature change trend during June to August. The reason for this difference is 16 

inferred to be that the climatic condition of Nanjing in 2020 has some deviation from 17 

the meteorological data of 1971-2003 in the EPW file, and climatic condition is 18 

inherently random. From the absolute error values of temperature, the maximum 19 

absolute error between WS and SEU is 1.96°C, and the mean absolute difference 20 
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maintains at 1.56°C, while they are 4.83°C and 2.68°C between EPW and SEU, 1 

respectively. 2 

 3 

Figure 8: The monthly average temperatures from multi-sourced weather data (above) 4 

and hourly air temperature at stationary Site 4 and 11 in December 2020 (left below) 5 

and temperature in 4th December 2020 (right below)  6 

Figure 8 (below) shows the hourly temperature results of selected example of two 7 

stationary points in December 2020. The temperature values on 1st December, has large 8 

deviations, which are excluded as instrument operation errors to avoid interference with 9 

the analysis at the beginning of experiment. Subsequently, the temperature showed 10 

periodic changes and cooled down significantly twice. Overall, the temperature trends 11 

of the two points are very similar, but they still have differences even though both 12 

measurement points are in the same campus. The average absolute difference at S4 and 13 

S11 is basically within 1°C where the temperature value of S4 is generally lower than 14 

S11.This might be S4 is in the inner courtyard enclosed by the teaching buildings 15 

blocking solar radiation, while S11 is in the western facade of the teaching building, 16 

although there are tall sycamore trees around, but leaves fall off in winter, the effect of 17 

blocking solar radiation is weakened. 18 

3.2 Results of Transformed Microclimate 19 

The next is the generated 41 urban blocks according to the Subsection 2.4.1, and the 20 

morphological parameters within each block were calculated. Figure 9 presents five 21 
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generated urban blocks. The four morphological parameters extracted refer to the 1 

simulation components of UWG, namely building height (ℎ𝑏𝑙𝑑), building density (𝜌𝑏𝑙𝑑), 2 

vertical-to-horizontal area ratio (𝑉𝐻) and vegetation coverage (𝜌𝑣𝑒𝑔). Overall, ℎ𝑏𝑙𝑑 and 3 

𝜌𝑏𝑙𝑑 are closer within different blocks around 16m and 25%, respectively; 𝑉𝐻 shows a 4 

certain gap in the range of 66% to 86%; 𝜌𝑣𝑒𝑔 varied widely among different blocks, and 5 

the 𝜌𝑣𝑒𝑔 of the whole study area was 32%. 6 

 7 

Figure 9: Morphological parameters of blocks (x-axis is the serial number of blocks) 8 

The transformed microclimate weather files specific to each block were obtained from 9 

EPW and Nanjing weather station by UWG. The summer solstice and winter solstice 10 

were selected as typical day samples to analyze the temperature discrepancy of different 11 

weather files in these two days (Figure 10). In the seasonal view, the temperature 12 

difference on the summer solstice is small and the average absolute difference of 13 

temperature between the weather files before (EPW, WS) and after (EPW-UWG, WS-14 

UWG) and microclimate station (SEU) is basically maintained at 1°C, while the 15 

difference on winter solstice is larger, exceeding 3°C.  16 
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1 

Figure 10: Hourly average temperature on the summer and winter solstice 2 

Eight typical blocks were selected as samples among the 41 blocks, 4 of which were 3 

initial blocks and the remaining 4 were combined ones composed of initial blocks, and 4 

the transformed EPW and WS within each block were compared with the stationary 5 

microclimate points located in each block (Figure 11). Among these 16 points used for 6 

the analysis, there are large differences between the measured temperature and it in the 7 

transformed weather files at some of the stationary point due to experimental errors, 8 

but the transformed weather files from Nanjing weather station (WS-UWG) are 9 

undoubtedly more consistent with the microclimate experiment in terms of the overall 10 

temperature trends.  11 

12 

Figure 11: Temperatures of microclimate experimental sites and transformed 13 
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microclimate files in eight blocks 1 

Figure 12 shows the analysis results of first two pairs and in Figure 12a, within all the 2 

blocks, the RMSE of temperature differences between the transformed microclimate 3 

files from Nanjing weather station (WS-UWG) and it from stationary points (Si) is 4 

smaller. The average temperature differences between the transformed microclimate 5 

files from EPW (EPW-UWG), WS-UWG and Si are 4.5°C and 2.4°C, respectively. The 6 

second pair is set up with a scenario where there are no distributed sensors in the study 7 

area, but there is a fixed more accurate microclimate station. Figure 12b illustrates the 8 

comparisons between transformed weather files between microclimate station, where 9 

the results are consistent with the first scenario. The transformed microclimate files 10 

from Nanjing weather station perform better, while the average temperature differences 11 

in this scenario is 4.1°C and 1.2°C, respectively. In the first two pairs, RMSE of the 12 

transformed weather files show a slight difference between blocks when compared with 13 

the weather data from microclimate stations. However, when compared with the data 14 

from distributed sensors in microclimate experiment, the fluctuation of RMSE varies 15 

greatly in different blocks. The change of RMSE is consistent with that of 𝑉𝐻 and 𝜌𝑣𝑒𝑔 16 

in block morphological parameters, while the correlation with ℎ𝑏𝑙𝑑  and 𝜌𝑏𝑙𝑑  is not 17 

strong. 18 
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1 

Figure 12: The RMSE of temperature comparison between the first two pairs 2 

The third and fourth pairs are based on the premise that the impact of urban morphology 3 

is not considered, and then this study compared the differences between raw EPW, WS 4 

and temperature from 16 stationary points (Si), respectively in December. Figure 13a 5 

presents that EPW and WS each is closer to the actual monitored values over a period 6 

of time and WS still outperforms. The average temperature differences between EPW, 7 

WS and weather files from Si are 4.9°C and 3.3°C, respectively. The comparison results 8 

between EPW, WS and SEU in Figure 13b imply the same conclusion, while the 9 

average temperature differences in this scenario is 4.3°C and 2.1°C, respectively. 10 

Meanwhile, comparing the raw weather files with the transformed microclimate files 11 

in each block, Figure 13c shows that the temperature adjustment values are closer, and 12 

the average temperature difference between the weather files before and after 13 

adjustment from EPW and Nanjing weather station is 2.2°C and 2.0°C, respectively. 14 
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1 

Figure 13: The RMSE of temperature comparison between the last three pairs 2 

Figure 14 is obtained by summarizing the analysis results of the above-mentioned five 3 

pairs. Based on the comparison of the first four pairs, it can be clearly concluded that 4 

WS performs better than EPW with respect to RMSE of temperature, whether it is the 5 

original weather data or the transformed microclimate files. Official weather station of 6 

the city where the research is located has a higher priority than EPW when it comes to 7 

obtaining weather files for building energy consumption simulation. In addition, 8 

comparing pair 1 and 2 with pair 3 and 4 respectively, the results reveal that the 9 

transformed microclimate files narrow the gap between the original weather data and 10 

the actual measured values, which proves the necessity of considering urban 11 

morphology in the process of energy consumption simulation. Meanwhile, although the 12 

average temperature adjustments values for EPW and Nanjing weather station are 13 

similar, the reduction in the difference between before and after the adjustment and the 14 
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actual measured values for Nanjing weather station is significantly larger than that for 1 

EPW. 2 

 3 

Figure 14: Aggregated RMSE of temperature comparison results 4 

Table 3: Average temperature difference for different pairs’ comparison 5 

  Avg. T difference (°C) 

Pair 1 
EPW-UWG vs Si 4.5 

WS-UWG vs Si 2.4 

Pair 2 
EPW-UWG vs SEU 4.1 

WS-UWG vs SEU 1.2 

Pair 3 
EPW vs Si 4.9 

WS vs Si 3.3 

Pair 4 
EPW vs SEU 4.3 

WS vs SEU 2.1 

Pair 5 
EPW vs EPW-UWG 2.2 

WS vs WS-UWG 2.1 

3.3 Results of Energy Simulation Comparison 6 

To further analyze the influence of weather files on the energy consumption of urban 7 

buildings, the weather datasets mentioned above were used as input to simulate the 8 

energy consumption of the 41 blocks. This study uses EnergyPlus to calculate the 9 

monthly and annual cooling and heating energy consumption of buildings, and then the 10 

simulation results use energy use intensity (EUI) as an indicator. 11 

Figure 15 shows the annual EUIs for cooling and heating of buildings in 41 blocks. 12 
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Since the building types in the study area are mostly office and teaching buildings, the 1 

EUIs for cooling and heating in most of the buildings within the blocks are similar 2 

under the same weather file, with the mean annual EUI simulation results for all blocks 3 

under SEU being 9.2 kWh/m2/year and 14.6 kWh/m2/year, respectively. Table 4 shows 4 

the MAPD of the EUI of buildings in all blocks before and after adjustment of EPW 5 

and WS compared with SEU. The results obtained from EPW are closer to those 6 

obtained from SEU than those from WS for the cooling EUI, with the mean MAPD of 7 

13.1% and 32.4%, respectively. This is related to the randomness of the Nanjing 8 

weather in 2020, where the monthly average temperature of Nanjing for the three 9 

months from June to August in EPW is 27.0°C, and the average temperature of WS and 10 

SEU are each 26.4°C and 27.8°C. On the other hand, the heating EUI calculated by 11 

EPW achieves a mean MAPD of 116.3% when compared to that of SEU, while the 12 

mean MAPD of WS is 27.2%. The significant decrease in heating EUI indicates an 13 

increasing trend in winter UHI effects when comparing the temperature of Nanjing in 14 

2020 to the weather data collected in EPW after nearly 20 years.  15 

 16 

Figure 15: Total annual cooling and heating EUI calculated for all blocks after 17 

applying different weather files 18 

Table 4: Mean absolute percentage difference for EUI using different weather data 19 

 
Mean absolute percentage difference (%) 

Cooling Heating Total 

Weather data Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 
Mean 

Standard 

Deviation 
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EPW vs SEU 13.1 2.5 116.3 19.3 65.1 5.6 

EPW-UWG vs SEU 4.1 4.0 93.6 17.5 55.9 5.6 

WS vs SEU 32.4 2.6 27.2 2.3 4.1 1.4 

WS-UWG vs SEU 25.8 1.3 12.7 1.9 2.3 1.5 

Figure 16 illustrates the monthly cooling and heating EUI of the buildings throughout 1 

the study area. The influence of the transformed microclimate file on building EUI is 2 

shown as an increase in cooling load in summer and a decrease in heating load in winter. 3 

Comparing the monthly results from different sets of weather data with the results of 4 

SEU, the cooling EUIs calculated by SEU are basically the largest, and the heating 5 

EUIs calculated by SEU are the smallest. The monthly average temperature of Nanjing 6 

in July in EPW is 28.6°C, while that of SEU is 26.0°C, and the cooling temperature 7 

setpoint in the energy simulation is 30°C. The duration of July temperature above 30°C 8 

hours in EPW and SEU is 283h and 73h, respectively, thus EPW and EPW-UWG both 9 

show an unusually high cooling load. Overall, using the results obtained from SEU as 10 

a benchmark, EPW performs better than WS in cooling, while WS performs better in 11 

heating. Moreover, the transformed microclimate files contribute to the accuracy of the 12 

simulation results regardless of cooling or heating, making the results closer to those of 13 

SEU. 14 

15 

Figure 16: Monthly cooling and heating EUI calculated for the entire campus using 16 

different weather files 17 

4. Discussion 18 
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To clarify the priority of weather files, this study conducted a comparison of multi-1 

sourced climate datasets. The results show that the RMSE of temperature differences 2 

from Nanjing weather station is smaller than that from EPW when comparing urban 3 

microclimate, respectively. While the weather files transformed by UWG that considers 4 

urban morphology are closer to the stationary points in the field. The results of the 5 

simulated EUI show no significant difference between impact of weather files from 6 

EPW and Nanjing weather station. The indisputable point is that the transformed EPW 7 

and weather station files both improve the accuracy of energy simulation. Although the 8 

suburban weather stations better reflect the meteorological conditions in urban areas 9 

than EPW, the latter still performs competitively in estimating cooling load as a 10 

consolidator of data from previous years. According to the empirical results of this study, 11 

when the on-site weather data of the exact location in urban context cannot be obtained, 12 

the use of weather files from suburban weather stations and transforming them into 13 

microclimate in the urban contexts through simulation software can be preferred. 14 

However, in this case, the bias that this choice will have on the energy simulation should 15 

also be clarified, which is about 4.1% and 2.3% in this study. The bias from EPW and 16 

transformed EPW have an average MAPD of 65.1% and 55.9%.  17 

This study might have those implications. As known, UBEM studies usually require 18 

computation sources, especially for larger spatial scales. Therefore, most studies would 19 

like to create building prototypes that simplify the morphological characteristics of 20 

urban buildings, and this inevitably causes uncertainties in the simulation results since 21 

urban morphology has direct and important impacts on energy simulation. This study 22 

relies on urban spatial information such as road networks, building footprints and green 23 

spaces, which are readily available through the popularization of geographic 24 

information services and remote sensing imagery, to divide and combine randomly 25 

different urban blocks [50]. Thus, the methodology used in this study is replicable and 26 

scalable and can be replicated in different study areas to enhance the findings of this 27 

study. On the one hand, urban morphological parameters are extracted and energy 28 

consumption simulations are performed by each block, to reduce the computational cost 29 
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and improves the robustness of results, and on the other hand, the uncertainty inherent 1 

in the results is reduced by increasing the randomness of the simulation samples [51,52]. 2 

From these two points, this method can be further extended and adopted in larger-scale 3 

UBEM studies and it will provide a reference for the researches on the correlation 4 

between urban morphology and building energy consumption. Next, in the subsequent 5 

application scenarios of the research results, for urban planners, the impact of urban 6 

morphology in the built environment on urban heat environment and energy 7 

performance can be used as a basis for the retention or demolition of buildings in urban 8 

renewal or design.  9 

This study still has some limitations. First, this research uses the UWG model for urban 10 

microclimate simulation, but UWG does not have a component of water bodies, which 11 

has positive benefits for mitigating UHI and improving urban microclimate. While in 12 

the center of the study area, there is a fountain, which might have unavoidable impact 13 

on the simulation results of UWG. Therefore, it is necessary to further include such 14 

impact from urban blue space, by integrating ENVI-met or other tools. Secondly, there 15 

is a lack of further analysis of the meteorological data from the 16 points involved. If it 16 

is difficult to install a stable microclimate station, the impacts including the location, 17 

validation of a specific monitoring, and how to represent a larger-scale area should be 18 

investigated in the future. Lastly, only the microclimate station data from 2020 and the 19 

stationary measurement from December 2020 were used in the study. In future work, a 20 

larger time span and large-scale microclimate should be carried out. 21 

5. Conclusion 22 

For UBEM, one major parameter is weather data, and weather data collected from 23 

different sources may impact the predicted energy consumption from buildings at urban 24 

level. To gain a deep understanding on this impact and guide the weather data selection 25 

in future studies, this study therefore has considered multi-sourced weather data, 26 

namely, EnergyPlus weather, the weather data from Nanjing weather station, the 27 

weather data from one microclimate station in SEU and sixteen stationary measurement 28 
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points in SEU. The transforming of both EPW and WS files to urban context was 1 

achieved by the urban weather generator (UWG) tool. To improve simulation accuracy, 2 

urban morphological parameters were integrated using a random combination of block 3 

division. The main findings from this study include:  4 

• The suburban weather stations reflect urban microclimate better than EPW with 5 

more accurately predicted building energy consumption. The results of 6 

temperature comparison showed that the RMSE of temperature differences 7 

between EPW, the weather files from WS and the microclimate station in SEU 8 

were 4.3°C and 2.1°C, respectively. The simulation results for the total energy use 9 

intensity using WS and EPW had a MAPD of 4.1% and 65.1%, respectively. 10 

• After adjustment, the gap between simulation results and actual situations was 11 

reduced for weather data. The results of temperature comparison showed that the 12 

RMSE of temperature difference between the weather files from WS, after 13 

adjustment, and that from the microclimate station in SEU was reduced by 0.9°C, 14 

and for EPW, it was reduced by 0.2°C.  15 

• This change of weather data was also revealed for building energy consumption 16 

simulation. The results of EUI comparison showed a 6.6% reduction in MAPD for 17 

the heating EUI calculated using the transformed WS file compared to that 18 

calculated using the SEU file, and a 14.2% reduction in MAPD for the cooling EUI. 19 

For the transformed EPW file, the MAPDs of the cooling and heating EUIs were 20 

reduced by 9% and 22.7%, respectively.  21 

Overall, the suburban weather stations perform better than EPW and the operation of 22 

transforming weather data is necessary, but the site-specific weather files are of utmost 23 

importance for the reliability of building energy consumption assessment. This study 24 

provides important reference for the acquisition and selection of weather files in future 25 

UBEM studies, to order to provide reliable simulation results for urban energy system 26 

planning, or energy simulation of single buildings in urban context. Also, the results of 27 
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this study can also enable architects, urban planners, grid planning engineers and 1 

relevant policy makers to make more reasonable decisions when identifying the role of 2 

urban morphology. 3 
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