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ABSTRACT
This work proposes a novel portfolio management technique, the
Meta Portfolio Method (MPM), inspired by the successes of meta
approaches in the field of bioinformatics and elsewhere. The MPM
uses XGBoost to learn how to switch between two risk-based port-
folio allocation strategies, the Hierarchical Risk Parity (HRP) and
more classical Naïve Risk Parity (NRP). It is demonstrated that
the MPM is able to successfully take advantage of the best char-
acteristics of each strategy (the NRP’s fast growth during market
uptrends, and the HRP’s protection against drawdowns during mar-
ket turmoil). As a result, the MPM is shown to possess an excellent
out-of-sample risk-reward profile, as measured by the Sharpe ratio,
and in addition offers a high degree of interpretability of its asset
allocation decisions.
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1 INTRODUCTION
Portfolio management as we know it today has been heavily influ-
enced by the work of Harry Markowitz [15], who formalized the
idea of the risk-return trade-off, where investors are rewarded for
taking on more risk. These portfolios, however, suffer from signifi-
cant flaws [13, 21]. Institutional investors who used the standard
Markowitz allocations suffered large drawdowns during recent
crises; as a result, the model was criticized [18] and risk-based port-
folio allocation techniques became more popular. However, these
newer methodologies, despite having rigorous underpinning math-
ematical structures, are not supported by any financial theory that
would promote them as the optimal portfolio choice.

Therefore, rather than trying to discover a risk-based methodol-
ogy that would work ideally well for all scenarios [3], the work of
this paper aims to choose the best performing strategy for given
market conditions. It proposes a new portfolio construction tech-
nique called the Meta Portfolio Method (MPM), inspired by the
successes of meta approaches in the field of bioinformatics [2, 9],
among other areas. The MPM combines two risk-based portfolio
allocation strategies, namely the Hierarchical Risk Parity (HRP) and
more classical Naïve Risk Parity (NRP), by allocating capital to the
one predicted to provide better risk-adjusted performance in the
next investment period.

2 BACKGROUND
2.1 Meta Methods
The idea behind meta approaches is that the performance of a task
can often be greatly enhanced by combining multiple methodolo-
gies, as opposed to using any of the constituent techniques alone.
Meta approaches have been successfully applied in the field of bioin-
formatics [2, 9], but have not yet been widely explored in portfolio
management. An exception is provided by [11], in which the au-
thors did identify key features of the variance-covariance matrix
that help in studying the behavior of different risk-based allocation
strategies. However, this was an ex-post analysis where the model
could only make retrospective decisions as to which strategy per-
formed better. What is lacking from the existing literature is an
ex-ante analysis that would be able to recommend which of the
strategies should be followed in the future, given a set of statistical
characteristics of a given asset universe. The research described
here aims to bridge this gap.

2.2 Risk-Based Portfolio Construction
Strategies

As mentioned in the introduction, the meta-strategy of this work
combines two risk-based portfolio construction strategies, Naïve
Risk Parity (NRP) and Hierarchical Risk Parity (HRP). This sec-
tion will give a brief introduction to each of these, followed by a
comparison of their relative strengths and weaknesses.

2.2.1 Naïve Risk Parity (NRP). Risk parity portfolios aim to max-
imize the portfolio diversification level in the hope that a more
diversified portfolio will be less vulnerable to unfavorable market
conditions. The Naïve Risk Parity [18] method is considered to be
the simplest implementation of a risk-based methodology, and aims
to equalize the risk contributed to the overall portfolio by each
asset. Its portfolio weights can be computed as follows

𝑤𝑖 =

1
𝜎𝑖

2∑𝑛
𝑗=1

1
𝜎 𝑗

2

, (1)

where 𝜎2
𝑖
denotes the variance of returns of asset 𝑖 .

2.2.2 Hierarchical Risk Parity (HRP). Hierarchical Risk Parity [17],
similar to other risk-budgeting approaches, considers the variance-
covariance matrix during its construction process. However, it in
addition makes use of hierarchical clustering to group together
similar assets, to avoid computing correlation estimates between
all pairs of assets. This process uses three steps: tree clustering,
quasi-diagonalization, and recursive bisection.
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In the first step the algorithm performs tree clustering by first
transforming the correlation matrix into a distance matrix𝐷 , where
each element is given by

𝑑𝑖, 𝑗 =

√︂
1
2
(1 − 𝜌𝑖, 𝑗 ). (2)

The newly created matrix 𝐷 is then transformed by computing the
Euclidean distance between all column pairs as follows

𝑑𝑖, 𝑗 =

√√√
𝑁∑︁
𝑛=1
(𝑑𝑛,𝑖 − 𝑑𝑛,𝑗 )2, (3)

creating a new matrix representation which gives the correlation of
each asset with the rest of the portfolio. This allows the formation
of a tree structure according to the 𝑑𝑖, 𝑗 ‘scores’. In the second step,
quasi-diagonalization, the tree structure created in the previous
step is used to reorganize the rows and columns of the correlation
matrix in such a way as to make similar assets sit next to each other
and investments considered to be different be placed further apart.
The last step performs recursive bisection wherein the standard
inverse-variance methodology is applied to the clusters defined in
the previous steps. Because asset weights are assigned in a top-down
fashion, according to each sub-cluster’s variance, only assets within
the same cluster compete for allocation, achieving diversification
benefits across all levels of the tree structure.

2.2.3 Comparison of the Component Strategies. Each component
strategy displays a different realized volatility profile, as seen in
Figure 1. HRP gives a portfolio with a much lower variance. It offers
a return stream with heavily damped tails which makes it a safer
option. Some negative tails can be spotted but these are much less
common and less pronounced than those in NRP’s profile, which
displays heavy tails in its return distributions. However, since fat
tails also mean a higher probability of a large positive return, NRP
has the potential of being considerably more profitable than HRP
during certain market conditions.
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Figure 1: 3D plots showing changes in the probability den-
sity function over time.

3 METHODOLOGY
3.1 Data Selection & Preparation
Results presented in this work are based on ten different investment
universes, each containing five distinct asset classes. A set of 18 ex-
change traded funds (ETFs), as shown in Table 1, is used as a basket
from which assets can be drawn with replacement to construct a

Table 1: Basket of ETFs.

Ticker Name Ticker Name

AGG Aggregate Bonds VNQ Real Estate
EEM Emerging Markets XLV Health Care Sector
EFA Developed Markets IWD Value Equities
EWJ Japanese Equities IWM Small-Cap Equities
GLD Gold LQD Corporate Bonds
QQQ Nasdaq-100 Index TLT 20+ Year T-Bonds
SHY 1-3 Year T-Bonds VO Mid-Cap Equities
SPY S&P 500 Index VBR Small-Cap Value
TIP I-L Bonds XLY Consumer Services

specific asset universe. The selection routine is constrained so as
to allow each universe to share at most two ETFs with any other
asset universe. The reason for selecting market indices, rather than
individual assets, is that they are generally uncorrelated and hence
offer higher diversification benefits. The list of ETFs shown in Ta-
ble 1 has been chosen in such a way as to represent as many distinct
asset classes as possible. Data collected on each ETF includes daily
returns that span the period from November 2004 until May 2021.
All assets are denominated in US Dollars, the domestic currency of
the investors considered in this study.

The original data contains daily price information; since we are
interested in the growth of each universe component, the simple
(arithmetic) return from time 𝑡 − 1 to time 𝑡 is computed as follows

𝑟𝑛,𝑡 =
𝑃𝑛,𝑡

𝑃𝑛,𝑡−1
− 1, (4)

where 𝑃𝑛,𝑡 is the price of asset 𝑛 at time (day) 𝑡 . If we have 𝑁

assets in a portfolio and their weights at time 𝑡 − 1 are given by
𝑤1,𝑡−1,𝑤2,𝑡−1, . . . ,𝑤𝑁,𝑡−1, the portfolio returns are computed using

𝑅𝑡 =

𝑁∑︁
𝑛=1

𝑤𝑛,𝑡−1𝑟𝑛,𝑡 . (5)

In order to simplify calculations, it is assumed the risk-free return is
zero throughout the investment period and hence the return above
is our variable of interest.

3.1.1 Computation of Return Covariance Matrix. Both of the com-
ponent strategies (HRP andNRP) require an estimate of the variance-
covariance matrix between each pair of asset return series. This
matrix will be used both for the computation of the features to
be input to the machine learning model (next section) that selects
the strategy to be used in the next time period, and for the inter-
nal construction of portfolio weights. The multivariate GARCH
Dynamic Conditional Correlation (DCC) model [7] is employed
here to compute the variance-covariance matrix. The DCC model
is well-regarded because it allows for time-varying correlations
between assets.

3.2 Computation of Features
The set of predictive features includes measures that aim to describe
each constituent strategy’s most recent performance, such as av-
erage return, realized volatility [10], maximum drawdown [4] and



downside deviation [20], as well as a given investment universe’s
mean return and standard deviation.

In addition, more elaborate transformations of the variance-
covariance matrix are carried out. For example, meanCORR and
stdCORR compute the average and the standard deviation, respec-
tively, of all lower triangular elements of the correlation matrix and
indicate overall level and heterogeneity of correlations at a given
point in time. Other features include the non-parametric k-nearest
neighbor entropy estimator [12], the quality ratio [1], that aims to
capture how much diversification benefit each investment universe
is able to offer, and the standardized generalized variance [16], which
measures the overall volatility of a specific asset universe.

As described in section 2.2, the two component strategies (HRP
and NRP) differ in the way they are constructed. Since the HRP
considers an additional clustering step, its performance depends
on the level of the hierarchical structure present in a given asset
universe, measured by the cophenetic correlation coefficient [19],
with the quality of clustering computed using the intra-cluster vari-
ance [8]. Finally, a set of features characterizing some properties
of the correlation matrix are calculated, including its determinant,
condition number [6] and the fraction of variance that can be ex-
plained by the eigenvalues that lie outside the Marchenko-Pastur
distribution [14].

3.3 Outline of the Meta Portfolio Method
(MPM)

The sample period denoted by 𝑇𝑟 in Figure 2 is used as input to
the multivariate GARCH DCC model that computes the variance-
covariance matrix, which is then used in the construction of the
two component strategies and to compute a set of model features.
Observations collected during the brown sample period (denoted
by 𝑇𝑚) in Figure 2 are used to calculate features that describe each
component strategy’s most recent performance. Once all model
features have been computed, the strategy selection process can
take place.

Figure 2: Meta Portfolio Method (MPM) timeline.

At the beginning of the green band (denoted by 𝑇ℎ) in Figure 2
the machine learning model of the next section decides which of
the two component strategies (HRP or NRP) should be followed in
the next investment period. All available capital is then invested in
the selected strategy and held during the holding period of length
𝑇ℎ and its returns recorded. In the next investment period (Period
𝑘 + 1) the rolling windows are advanced by the time interval𝑇𝑎 and
the two component strategies are separately rebalanced. Then, the
process is repeated. All returns of the Meta Portfolio Method are

computed in a walk-forward manner so that the strategy selection
algorithm has access only to the historical data, and transaction
costs are taken into account when evaluating performance. The
whole procedure is summarized in Algorithm 1, below.

Algorithm 1:Meta Portfolio Method (MPM)
1 import daily asset returns
2 initialise 𝑇𝑚,𝑇𝑟 ,𝑇ℎ and 𝑇𝑎
3 while t < last observation do
4 compute var-cov matrix on 𝑇𝑟 data using GARCH DCC
5 construct the two component strategies
6 compute XGBoost features
7 for 𝑖 ← 1 to 𝑇𝑚 do
8 compute performance-related features
9 end

10 apply Bayesian hyperparameter optimization
11 predict the Sharpe ratio spread using optimized model
12 if 𝑠𝑝𝑟𝑒𝑎𝑑 > 0 then
13 select HRP strategy;
14 else
15 select NRP strategy;
16 end
17 for 𝑖 ← 1 to 𝑇ℎ do
18 compute returns generated by the MPM
19 end
20 advance the sliding window by 𝑇𝑎
21 end

3.4 Training Methodology
3.4.1 Target Variable. Since we are interested in predicting which
of the two strategies is going to perform better (on a risk-adjusted
basis) during the next investment period, the target variable is the
Sharpe ratio spread, the difference between Sharpe ratios of the HRP
and NRP strategies, given by

𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑆𝑅𝐻𝑅𝑃 − 𝑆𝑅𝑁𝑅𝑃 . (6)
The process of switching between the two component strategies

can be formulated as a binary classification problem, since at any
point in time we only have two choices at our disposal. However,
we notice from equation 6 that the target variable is a real-valued
number, which allows us to work in a regression setting. The ad-
vantage of this is that the magnitude of the Sharpe ratio spread
carries additional information that a machine learning model can
leverage during the training process. All real-valued predictions
can then be converted to a binary allocation decision using the HRP
strategy if 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ≥ 0, and the NRP strategy otherwise.

3.4.2 ML Model and Hyperparameter Optimization. XGBoost [5]
is selected to solve the regression problem above. The main ad-
vantage of XGBoost, in this problem setting, comes from the fact
that it is able to construct non-linear relations between the input
features while, at the same time, preserving a high degree of in-
terpretability through its built-in feature importance functions, an



Table 2: Performance comparison.

Asset
Universe

HRP NRP MPM

Sharpe Ratio

1 1.37 1.25 1.64
2 1.20 1.17 1.32
3 1.35 1.23 1.82
4 1.07 1.03 1.22
5 1.30 1.38 1.59
6 1.68 1.34 1.87
7 1.67 1.44 2.31
8 1.12 1.07 1.41
9 1.01 0.99 1.23
10 0.84 0.87 1.05

Cumulative
Return (%)

1 9.06 15.79 16.37
2 60.50 74.84 82.98
3 9.31 16.47 17.48
4 66.23 95.52 116.60
5 42.39 68.46 73.18
6 11.19 18.05 19.73
7 9.18 20.92 23.84
8 64.89 84.11 107.14
9 54.05 79.85 97.23
10 22.50 51.00 60.12

important consideration when making portfolio allocation deci-
sions. However, to fully harness the predictive power of XGBoost
it is necessary to carry out careful hyperparameter optimization.
Each set of model-building data (𝑇𝑟 sections in Figure 2) is split
into a training part which represents 70% of observations and a
test part which contains the remaining 30% of data. Only the train-
ing data is used for hyperparameter tuning purposes, with 5-fold
cross-validation implemented to get the average regression scores
across all folds. Due to the large number of hyperparameters, a
classical grid search would be too time-consuming, and Bayesian
hyperparameter optimization is therefore used instead to select the
best set of hyperparameters for each asset universe.

4 RESULTS
4.1 Cumulative and Risk-Adjusted Returns
Table 2 gives a performance comparison between the Meta Portfolio
Method (MPM) and its constituent strategies (HRP & NRP). The
MPM shows the strongest performance in all investment universes,
with Sharpe ratio improvements over the HRP and NRP having
p-values of 6.01×10−9 and 2.45×10−7, respectively, and cumulative
return improvements having comparable p-values of 1.53×10−7 and
4.50 × 10−4. The improvements provided by the MPM are therefore
clearly statistically significant.

Figure 3 shows an example wealth curve for investment uni-
verse 9 (a middle-performing example), over the entire investment
horizon. The MPM (green circle) is able to harness the fast growth
opportunity offered by the NRP (red triangle) during market up-
trends while at the same time offering a good level of protection

presented by the HRP (black square) during more turbulent peri-
ods, such as the onset of the COVID-19 pandemic in 2020. It is by
such means the MPM achieves the highest cumulative returns and
Sharpe ratios, as evidenced by the results in Table 2.

Figure 3: Comparison of cumulative returns for investment
universe 9.

4.2 Feature Importance
One benefit of XGBoost [5], as previously mentioned, is that it is
relatively easy to extract information about feature importance,
which allows a better understanding of what is driving the output
of the MPM. Figure 4 shows a boxplot of the importance scores for
each feature across all investment universes. We notice that among
the top three features is ‘hrp_down_dev’, the downside deviation
of the HRP strategy. This makes intuitive sense since this feature
informs the model about the historical downside risk experienced
by the HRP strategy and hence the overall risk at any point in
time. What is less obvious, however, is the high importance score
assigned to ‘intra_cluster_var’ and ‘cophenetic_average’. These
features correspond to the intra-cluster variance and the cophe-
netic correlation coefficient, respectively, and, as described earlier,
quantify the level and the complexity of the hierarchical structure
in a given investment universe. However, since this information
is taken into account when constructing the HRP strategy, it is
understandable these two features play a big role in predicting the
relative performance of the HRP strategy.

5 CONCLUSIONS
This work has introduced the Meta Portfolio Method (MPM), which
uses XGBoost to combine two different portfolio allocation paradigms,
the Hierarchical Risk Parity (HRP) and the Naïve Risk Parity (NRP),
both frequently used in practice, into a single portfolio allocation
framework. The MPM is able to take advantage of both the fast
growth opportunities offered by the NRP in favorable market con-
ditions, and the protection against large drawdowns during market
downturns offered by the HRP. As a result, the MPM gives sub-
stantially higher cumulative returns than either of the component
strategies individually, while also maintaining the highest level of
risk-adjusted return, as measured by the Sharpe ratio. Moreover, the
use of XGBoost within the MPM results in an easily interpretable
model, desirable to industry practitioners.

The performance of the MPM strategy has been analyzed on ten
different multi-class asset universes, giving confidence the MPM is



Figure 4: Boxplot with feature importances.

not overfitted to a particular data set. It should be noted it would not
be possible to construct significantly more asset universes based
only on ETFs. However, while ETFs are desirable in that these
assets can be chosen to be less correlated in performance than,
say, individual equities, it is not an absolute necessity to use them,
and future work will look at the alternative of having larger asset
universes composed of less weakly correlated components.
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