On the effect of parametric uncertainty in Gaussian Processes applied to geostatistical estimation: an in-silico case study

G

Philipp Deussen, Federico Galvanin

Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK

Corresponding Author: f.galvanin@ucl.ac.uk

(7)

INTRODUCTION

- In mining exploration and production, models of the subsurface are constructed using Gaussian Processes (GPs) to interpolate between samples of the ground (drill core).
- Drilling the ground for samples is expensive and time-consuming. In value-dense commodities, sampling is a production bottleneck. Optimal sampling is thus desirable.
- Commonly in industry, samples target the location with the highest Kriging variance.
- However, this variance implicitly depends on estimates of the kernel parameters.
- A methodology is proposed that fits multiple GPs with sets of parameter estimates from Monte Carlo Simulations to account for parametric and model prediction uncertainty.
- The goal is to produce maps to make quantitative uncertainty assessments possible. These shall be used as one of the optimality criteria for optimal experimental designs.

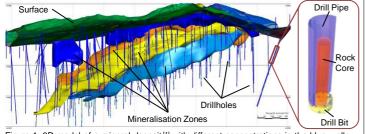
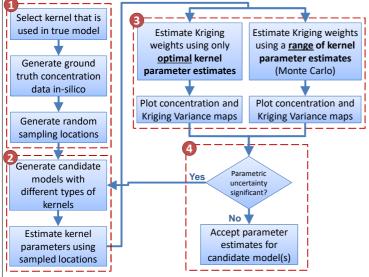


Figure 1: 3D model of a mineral deposit^[1] with different concentrations in the blue, yellow and orange clouds. Drilled samples are in dark blue and a schematic of a drill is shown.

METHODOLOGY

Approach for Quantifying Parametric Uncertainty

- 1. Generating Ground Truth & Sampling: A known kernel, which describes the spatial correlation structure of concentration likelihood at different points, is used to generate ground truth concentration data. Some points are sampled; the rest are to be modelled. 2. Estimation of Kernel Parameters: Models based on different kernels are suggested
- and the kernel parameters are estimated based on magnitude and position of samples. 3. Estimation of Kriging Weights: Kriging weights determine the relative importance of
- samples for the GP. They are estimated for all proposed kernels; once with the optimal kernel parameters and once with the range of likely kernel parameters (MC simulation).
- 4. Parameter identifiability: Compare predicted concentrations and variances from the single-pass and the Monte Carlo GP. If the difference is significant, reducing parametric uncertainty must be prioritised in experiment designs or the model rejected altogether.



Formulation of Models

- The kernel of the GP consists of a correlation function R(h), relating the semivariance $\gamma(h)$ of concentration at distance h and the distribution variance σ_Z^2 of concentrations. $v(h) = \sigma_7^2 - R(h)$
- Simple (biased) Kriging is a form of GP which gives the best linear estimate of the • mean expected concentration at an unsampled location Z using the estimator \hat{Z} , and the variance of estimates (σ_{BK}^2) based on the expected square error to the mean. $\sigma_{BK}^2 = E \left[\left(Z - \hat{Z} \right)^2 \right]$ (2)
- The estimators are based on the samples \dot{Z}_i and their relative importance weights w_i . $\hat{Z} = \sum_{i=1}^{N} w_i Z_i$ (3)
- The optimal weights w_i can be found from samples i and j by substituting (3) into (2): $\sigma_{BK}^2 = \sigma_Z^2 - 2\sum_{i=1}^N w_i R(Z,Z_i) + \sum_{i=1}^N \sum_{j=1}^N w_i w_j R\big(Z_i,Z_j\big)$ (4)
- And then **minimising the Kriging variance**: $\partial \sigma_{BK}^2 / \partial w_i = 0$: $\sum_{i=1}^{N} R(Z_i, Z_j) w_i = R(Z, Z_j)$ (5)
- For all unsampled locations this results in a weights matrix ${\bf W}$ and correlation matrices between sampled points A, and sampled and unsampled locations P. This can be solved as it is a linear system of equations with no degrees of freedom.[2]

CASE STUDY

1. Generation of Candidate Models & Ground Truth Spherical Kernel^[2]: $\gamma(h) = (s) \left(\frac{3h}{2}\right)$ $\binom{1}{h}^{3}$ True if h < r

$$\frac{|\mathbf{M} \text{odel}|}{|\mathbf{G} \text{aussian Kernel}|^{[2]}} \quad \text{if } h < r \qquad \gamma(h) = (s) \left(\frac{1}{2r} - \frac{1}{2} \left(\frac{r}{r}\right)\right) + n; \quad \text{if } h \ge r \qquad \gamma(h) = s + n \qquad (6)$$

$$\frac{|\mathbf{G} \text{aussian Kernel}|^{[2]}}{|\mathbf{f} h < r \qquad \gamma(h) = (s) \left(1 - e^{-a\frac{h^2}{r^2}}\right) + n; \quad \text{if } h \ge r \qquad \gamma(h) = s + n \qquad (7)$$

Where s is the sill, n the nugget effect, r the characteristic range of correlations and a is constant

2. Estimation of Kernel Parameters from Sampled Locations

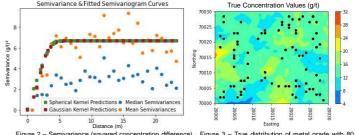
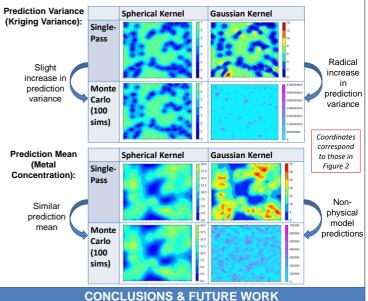


Figure 3 - True distribution of metal grade with 80 Figure 2 – Semivariance (squared concentration difference) veen sampled point pairs vs. distance between them random sampling locations used in analysis

Kernel Parameters										
Paramet	Parameter True Values			Spher	Spherical Kernel Estimates			Gaussian Kernel Estimates		
r 17				8.68			8.68			
n	n 3			2.31			2.31			
s		20	C		4.23			4.23		
а	a -			-			251.62			
Sph	erical Ke	r nel: Varia	nce-	Gaussian	Gaussian Kernel: Variance-Covariance Matrix for Parameters					
Covariance Matrix for Parameters				1	2		3	4		
	1	2	3	1	3.95 x 10 ¹⁵					
1	4.14			2	3.98 x 10 ⁶	0.78				
2	-0.39	0.20		3	-4.18 x 106	-0.77	7	0.77		
3	0.54	-0.18	0.18	4	5.50 x 1016	5.54 x 3	107	-5.83 x 107	7.66 x 10 ¹⁷	

3. Estimation of Kriging Weights & Fitting Gaussian Processes



- Kernels with structurally unidentifiable parameters, e.g. the Gaussian kernel in Sahimi^[2], should be avoided. Alternative formulations that fix the numerical parameter a = 1/3, e.g. in Rossi and Deutsch^[3], should be used instead.
- In industry practice, kernel parameter uncertainty, local anisotropies and qualitative factors are often accounted for by fitting the kernel by hand^[3]. Instead, regression should be used and the variance-covariance matrix should be computed so that the effect of parametric uncertainty can be quantified and propagated to the GP.
- Future Model-based optimal experiment designs will include a criterion to capture the effect of parametric uncertainty on the GP. This will be based on the Fisher Information Matrix and constitute second design objective in model discrimination work.

REFERENCES

^[1]Dominy, S., O'Connor, L., Parbhakar-Fox, A., Glass, H., Purevgerel, S. (2018) Geometallurgy – a route to more resilient mine operations, *Minerals*, 8(12). ^[2]Sahimi, M. (2011) Flow and Transport in Porous Media and Fractured Rock, 2nd Ed., Wiley,

Sargent Centre

for Process Sys

Engineering

ms

Change the world

Prof.

Federico

Galvanin

Philipp

Deussen