
Performance of EdDSA and BLS Signatures in Committee-Based
Consensus

Zhuolun Li
University of Leeds
sczl@leeds.ac.uk

Alberto Sonnino
Mysten Labs

University College London (UCL)
alberto@mystenlabs.com

Philipp Jovanovic
University College London (UCL)

p.jovanovic@ucl.ac.uk

ABSTRACT
We present the first performance comparison of EdDSA and BLS
signatures in committee-based consensus protocols through large-
scale geo-distributed benchmarks. Contrary to popular beliefs, we
find that small deployments (less than 40 validators) can benefit
from the small storage footprint of BLS multi-signatures while
larger deployments should favor EdDSA to improve performance.
As an independent contribution, we present a novel way for
committee-based consensus protocols to verify BLS multi-signed
certificates by manipulating the aggregated public key using pre-
computed values.

CCS CONCEPTS
• Security and privacy→ Digital signatures; • Networks→
Network performance analysis.

KEYWORDS
Digital signature, Consensus, Blockchain

ACM Reference Format:
Zhuolun Li, Alberto Sonnino, and Philipp Jovanovic. 2023. Performance
of EdDSA and BLS Signatures in Committee-Based Consensus. In The 5th
workshop on Advanced tools, programming languages, and PLatforms for
Implementing and Evaluating algorithms for Distributed systems (ApPLIED
2023), June 19, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3584684.3597265

1 INTRODUCTION
Consensus protocols run at the core of blockchains to order clients’
transactions into a sequence agreed by all honest validators. The
popularity of blockchains raised the interest in developing high-
performance consensus systems, with early studies proposing
committee-based protocols to improve over Bitcoin’s [27] low
throughput of 7 transactions per second. These protocols have
since been shown to increase blockchain throughput and reduce
latency [2, 22], and they are rapidly becoming the standard in recent
proof-of-stake architectures [11, 24, 25]. The blockchain literature
provides a large variety of efficient committee-based consensus
protocols. They improve on the state-of-the-art through various
techniques, ranging from efficient data-sharing layers [10, 30] and

ApPLIED 2023, June 19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0128-3/23/06.
https://doi.org/10.1145/3584684.3597265

robust DAG-based protocols [14, 28] to multi-mode protocols adapt-
ing to faults and network conditions [15, 18, 23, 26].

Unfortunately, these works pay little attention to their choice of
signature scheme. Our inspection of their codebases indicates that
most use either EdDSA [10, 11, 24, 25, 28] or BLS [14, 19, 20, 26]
but do not justify their choice. This is unfortunate as digital signa-
tures require CPU-intensive operations and are extensively used
in committee-based consensus: block proposers authenticate their
block proposals by signing them, validators counter-sign block
proposals to indicate their support, and certificates containing a
quorum of signatures are used to commit and finalize transactions.
On the one hand, EdDSA signatures provide very fast signature
generation and verification; on the other hand, BLS multi-signing
enables small certificates and nearly constant-time certificate veri-
fication regardless of the committee size. It is a popular belief that
BLS is preferable to EdDSA for large deployments where large Ed-
DSA certificates are slow to propagate and verify. There is, however,
no empirical evidence supporting this belief.

We address this gap by providing the first performance compari-
son of EdDSA and BLS signatures in committee-based consensus
(to the best of our knowledge). We demonstrate through large-scale
geo-distributed benchmarks that the choice of the signature scheme
is a major factor determining the system’s performance. We find
that contrary to popular beliefs, deployments with a relatively small
committee size (less than 40 validators) can benefit from the small
storage footprint of BLS multi-signatures while larger deployments
should favor EdDSA to improve performance. In a nutshell, the com-
putational overhead of BLS verification becomes prohibitive when
validators verify a large number of counter-signed block proposals;
at the point where it offsets the benefits of small and efficient certifi-
cates. We select HotStuff [31] as an example of a committee-based
consensus protocol for our experiments. As an independent con-
tribution, we present a novel way for committee-based consensus
protocols to verify BLS multi-signed certificates by pre-computing
a fixed number of group elements to manipulate the aggregated
public key. This technique outperforms a traditional BLS verifica-
tion process (even in the presence of Byzantine faults) requiring
to re-compute the appropriate aggregated public key upon each
certificate verification.

Contributions. In summary, we make the following contributions:

• We perform the first performance comparison of EdDSA
and BLS signatures in committee-based consensus (to the
best of our knowledge) through large-scale geo-distributed
benchmarks.
• We analyze the performance implications of each signature
scheme and identify that small deployments are most suited

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3584684.3597265
https://doi.org/10.1145/3584684.3597265
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584684.3597265&domain=pdf&date_stamp=2023-06-20


ApPLIED 2023, June 19, 2023, Orlando, FL, USA Zhuolun Li, Alberto Sonnino, and Philipp Jovanovic

to take advantage of BLS multi-signatures while larger de-
ployments should favor EdDSA.
• We present a novel and more efficient way for committee-
based consensus protocols to take advantage of BLS multi-
signatures to verify certificates.

2 BACKGROUND
We recall BLS multi-signatures and provide an overview of typical
committee-based consensus protocols.

BLS multi-signatures. The Boneh-Lynn-Shacham (BLS) signature
scheme [4] is an efficient signature scheme using pairing-friendly
elliptic curves. BLS supports multi-signing and public-key aggre-
gation, making it very popular for various blockchain projects.
We start by recalling the standard BLS signature scheme. Let
G1, G2, and G𝑇 be groups of prime order 𝑞 such that there ex-
ists an efficiently computable and non-degenerate bilinear map
𝑒 : G1 × G2 → G𝑇 . We denote by 𝑔1, 𝑔2, and 𝑔𝑇 the canonical gen-
erators of G1, G2, and G𝑇 , respectively, and let H1 : {0, 1}∗ → G1.
We denote the security parameter by _ and

$←− denotes sampling
uniformly at random. The BLS signature scheme consists of the
following algorithms:

• BLS.Setup(1_): Setup and output a bilinear group 𝑝𝑎𝑟 =

(𝑞,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2).
• BLS.KeyGen(𝑝𝑎𝑟 ): Given the parameters 𝑝𝑎𝑟 , output a pair of

public/secret keys (pk, sk) where sk $←− Z∗𝑞 and pk = 𝑔sk2 ∈ G2.
• BLS.Sign(𝑝𝑎𝑟, sk,𝑚): Given a message 𝑚 ∈ {0, 1}∗, output a
signature 𝜎 = H1 (𝑚)sk ∈ G1.
• BLS.Verify(𝑝𝑎𝑟, pk, 𝜎,𝑚): Given a public key pk ∈ G2, a signa-
ture 𝜎 ∈ G1 and a message 𝑚 ∈ {0, 1}∗, output 1 if 𝑒 (𝜎,𝑔2) =
𝑒 (H1 (𝑚), pk) and 0 otherwise.

BLS signatures can support multi-signing with public key aggrega-
tion. A multi-signature scheme (MSP) allows 𝑛 signers to generate
a short signature 𝜎 , on the same message 𝑚 (the size of the sig-
nature is independent of the number of signers). To verify the
multi-signature one needs all the signer’s public keys aggregated
into a single key 𝑎𝑝𝑘 ,𝑚, and 𝜎 .

• MSP.Setup(1_): Output BLS.Setup(1_).
• MSP.KeyGen(𝑝𝑎𝑟 ): Output BLS.KeyGen(𝑝𝑎𝑟 ).
• MSP.Sign(𝑝𝑎𝑟, sk,𝑚): Output BLS.Sign(𝑝𝑎𝑟, sk,𝑚).
• MSP.SigAggr({𝜎1, . . . , 𝜎𝑛}): Output 𝜎 =

∏𝑛
𝑖=1 𝜎𝑖 .

• MSP.KeyAggr(𝑝𝑎𝑟, {pk1, . . . , pk𝑛}): Output 𝑎𝑝𝑘 =
∏𝑛

𝑖=1 pk𝑖 .
• MSP.Verify(𝑝𝑎𝑟, 𝑎𝑝𝑘, 𝜎,𝑚): Output BLS.Verify(𝑝𝑎𝑟, 𝑎𝑝𝑘, 𝜎,𝑚).
An MSP scheme is usually vulnerable to rogue key attacks if the
signers do not prove their ownership of the corresponding secret
keys [3]. This issue does not pose a challenge for committee-based
blockchains, as validators are required to demonstrate knowledge
of their secret key 𝑠𝑘 by signing a specific transaction prior to
becoming eligible to join a future committee.

We note that threshold signatures are a generalization of multi-
signatures requiring only a threshold 𝑡 ≤ 𝑛 of signatures (rather
than 𝑡 = 𝑛) to compute 𝜎 . Threshold signatures require complex
distributed key generation mechanisms to generate the key pair
of every signer when there is no natural trusted third party to run
the setups protocol [1, 17, 21]. Furthermore, they do not extend

1 2 3
Propose Vote Certify

Figure 1: High-level overview of one round of a typical
committee-based consensus protocol. The committee is
formed of four validators (𝑣0, 𝑣1, 𝑣2, 𝑣3). The leader 𝑣0 pro-
poses 𝐵𝑘 for round 𝑘; validators reply with a vote 𝑉𝑘 over 𝐵𝑘 ;
the leader collects a quorum of votes into a certificate𝐶𝑘 and
disseminates it, and validators verify 𝐶𝑘 .

naturally to settings where validators have different voting powers
and are thus unsuitable for consensus protocols. As a result, this
paper does not consider them as no committee-based blockchains
deploy them within their consensus protocol (to the best of our
knowledge).

Committee-based consensus. Committee-based blockchains typi-
cally divide time into a sequence of epochs (lasting roughly a
day [24, 25, 29]). They elect a committee of 𝑛 = 3𝑓 + 1 valida-
tors for each epoch (usually through proof-of-stake [24, 25]), where
𝑓 is the maximum number of faulty validators that the system can
tolerate. The elected committee then ‘extends’ the blockchain by
sequencing clients’ transactions using a Byzantine fault tolerant
(BFT) protocol.

For the sake of this paper, we only present the aspects of
committee-based consensus protocols where signatures intervene
the most (and omit other aspects such as synchronizers [8], leader-
election modules [7], and view-changes [5, 15]). Typical committee-
based consensus protocols operate in a round-by-round manner,
electing a leader in each round among the validators to balance
validator participation. Figure 1 provides a high-level overview of
one round of a typical committee-based consensus protocol run-
ning with four validators, 𝑣0, 𝑣1, 𝑣2, and 𝑣3. The leader 𝑣0 of round
𝑘 disseminates a block 𝐵𝑘 extending the longest chain of blocks
it knows1 (➊). Validators then vote for at most one leader’s pro-
posal for each round by counter-signing it unless the proposal is
malformed or conflicts with a longer chain that they know (➋);
validators send their votes 𝑉𝑘 back to the leader. The leader aggre-
gates a quorum of 2𝑓 + 1 votes into a certificate 𝐶𝑘 and distributes
it to the validators; validators accept 𝐶𝑘 if it is correctly signed by
a quorum (➌).

The protocol then repeats for several rounds (usually two or
three) in order to commit 𝐵𝑘 . For instance, the original HotStuff
protocol [31] commits 𝐵𝑘 when there exist three consecutive cer-
tified blocks in the chain, 𝐶𝑘 , 𝐶𝑘+1, 𝐶𝑘+2. More recent variants of
HotStuff, such as Jolteon [15], only require two consecutive rounds;
and state-of-the-art DAG-based protocols [10, 14, 28] allowmultiple
validators to disseminate proposals in parallel. The general protocol
1Usually leaders collect batches of transactions to propose, referred to as blocks, hence
the protocol forms a chain of blocks (or a ‘blockchain’).



Performance of EdDSA and BLS Signatures in Committee-Based Consensus ApPLIED 2023, June 19, 2023, Orlando, FL, USA

flow, however, remains similar. If the leader fails or is unresponsive
for a long period of time, the validators run a view-change sub-
protocol to elect a new leader [5]; changing leaders are expensive
and severely degrades performance.

The key motivation for BLS multi-signatures in committee-based
consensus is to reduce the size of certificates (which grow linearly
with the committee size) and allow their nearly constant-time veri-
fication (by verifying a single multi-signature rather than the 2𝑓 + 1
votes individually).

3 CACHED BLS MULTI-SIGNATURE
VERIFICATION

We extend the BLS multi-signature scheme presented in Section 2
with a new functionMSP.KeyDisAggr that subtracts a set of public
keys from the aggregate public key 𝑎𝑝𝑘 .
• MSP.KeyDisAggr(𝑝𝑎𝑟, 𝑎𝑝𝑘, {−pk1, . . . ,−pk𝑛}): Given the ag-
gregate public key 𝑎𝑝𝑘 , the opposite of all public keys 𝑃𝐾 =

{−pk1, . . . ,−pk𝑛}, output 𝑎𝑝𝑘∗ = 𝑎𝑝𝑘
∏𝑗

𝑖=1 −pk𝑖 .
This function requires a single elliptic curve addition per key to

remove from the aggregate. We now show how to incorporate it in
the normal flow of committee-based consensus protocols depicted
in Figure 1 of Section 2.

Protocol description. Every validator in the committee is initial-
ized with the public parameters 𝑝𝑎𝑟 output by MSP.Setup(1_).
Each validator locally runsMSP.KeyGen(𝑝𝑎𝑟 ) to generate their
public/secret keypair (pk, sk) and publishes pk (see Section 2).
Each validator stores the public key {pk1, . . . , pk𝑛} of all other
valiators. They also compute and store the aggregated public key
𝑎𝑝𝑘 = MSP.KeyAggr(𝑝𝑎𝑟, {pk1, . . . , pk𝑛}) as well as the opposite2
of all validator’s public keys {−pk1, . . . ,−pk𝑛}.
• Step ➊: Propose. The leader of round 𝑘 collects a set of clients’
transactions 𝑙 and creates a block proposal𝑚 = (𝑘, 𝑙, ·), where the
dot ‘·’ denotes omitted protocol-specific fields. The leader then
signs𝑚 by calling 𝜎𝐵 = MSP.Sign(𝑝𝑎𝑟, sk,𝑚) using its secret
key sk and disseminates 𝐵𝑘 (𝑚,𝜎𝐵) to the other validators.
• Step ➋: Vote. Validators first parse 𝐵𝑘 = (𝑚,𝜎𝐵) and then ver-
ify it via MSP.Verify(𝑝𝑎𝑟, pk, 𝜎𝐵,𝑚) where pk is the leader’s
public key. If the check passes and all other protocol-specific
conditions are met, they counter-sign 𝐵𝑘 and send their vote
𝑉𝑘 = MSP.Sign(𝑝𝑎𝑟, sk, 𝐻 (𝐵𝑘 )) to the leader (where 𝐻 is a
collision-resistant hash-function).
• Step ➌: Certify. The leader verifies each incoming vote by call-
ingMSP.Verify(𝑝𝑎𝑟, pk,𝑉𝑘 , 𝐻 (𝐵𝑘 )), where pk is the public key
of the voter. As soon as it receives 2𝑓 +1 valid votes {𝑉𝑘1 , . . . ,𝑉𝑘𝑛 },
it aggregates them calling 𝜎𝐶 = MSP.SigAggr({𝑉𝑘1 , . . . ,𝑉𝑘𝑛 }).
It then computes a bitmap 𝑏 indicating which validators did not
contribute to 𝜎𝐶 . This is achieved by deterministically attribut-
ing an index to each validator that corresponds to its position in
the bitmap. This bitmap allows to reduce the size of the certifi-
cate that would otherwise contain the public key of each signer.
The leader then disseminates the certificate 𝐶𝑘 = (𝜎𝐶 , 𝑏) to the
validators. Upon receiving𝐶𝑘 , validators use the bitmap 𝑏 to iden-
tify the validators who did not contribute to 𝜎𝐶 , retrieve their

2The opposite of a public key is obtained by negating the y-axis value, i.e., (𝑥, 𝑦)
becomes (𝑥, −𝑦) .

previously cached set of {−pk1, . . . ,−pk𝑗 }, and compute 𝑎𝑝𝑘∗ =
MSP.KeyDisAggr(𝑝𝑎𝑟, 𝑎𝑝𝑘, {−pk1, . . . ,−pk𝑛}). They then ver-
ify the certificate calling MSP.Verify(𝑝𝑎𝑟, 𝑎𝑝𝑘∗, 𝜎𝐶 , 𝐻 (𝐵𝑘 )).

This approach has twomain advantages. (i) The bitmap allows re-
ducing the certificate size by 32B per signer compared to straightfor-
ward implementations including the public key of each signer in the
certificate (as it is the case in many production systems [11, 24, 25]);
certificates are part of the forever-stored blockchain so any message
compression becomes substantial over time. (ii) Before verifying
a certificate validators compute 𝑎𝑝𝑘∗ with at most 𝑓 elliptic curve
additions, while a straightforward BLS multi-signature verification
would require 2𝑓 + 1 to recompute the aggregated verification key
every time. Furthermore, practical leaders’ implementations wait
around 50-100ms after collecting the first 2𝑓 + 1 votes to give extra
time to the remaining validators to vote. As a result, typical certifi-
cates contain close to 𝑛 = 3𝑓 + 1 votes in the common case (happy
path), and computing 𝑎𝑝𝑘∗ requires only one or two elliptic curve
additions.

4 PERFORMANCE COMPARISON
We select HotStuff [31] as an example of a committee-based consen-
sus protocol for our experiments. We select this protocol because it
is the quorum-based consensus protocol most used in production
blockchains; Celo [6], Cypherium [9], Flow [13], Diem [11], and
Aptos [24] all run a variant of HotStuff. Furthermore, it shares many
design traits with Tendermint [29] (its closest ancestor). We specif-
ically run our benchmarks on a 2-chain HotStuff variant called
Jolteon [15]; we chose this variant because Diem [11], Aptos [24],
and Flow [13] run it in production.

Implementation. We implement BLS multi-signatures on top of the
original open-source implementation of Jolteon3. It is implemented
in Rust, uses Tokio4 for asynchronous networking, ed25519-dalek5
for signatures, and data-structures are persisted using RocksDB6.
It uses TCP to achieve reliable point-to-point channels, necessary
to correctly implement the distributed system abstractions. Since
this implementation uses EdDSA (over the curve Ed25519), we
modify its cryptomodule to use BLS multi-signatures as described
in Section 3. We use the BLS implementation of Filecoin (over the
curve BLS12-381)7with modifications to realize the cached BLS
multi-signature scheme we propose. The implementation of both
signature schemes is designed to achieve 128-bit security. We are
open-sourcing our BLS-enabled implementation8.

Evaluation setup. We evaluate the throughput and latency of Hot-
Stuff/Jolteon equipped with BLS multi-signatures through experi-
ments on AmazonWeb Services (AWS). We then compare its perfor-
mance with the baseline implementation using EdDSA for various
committee sizes.

3https://github.com/asonnino/hotstuff
4https://tokio.rs
5https://github.com/dalek-cryptography/ed25519-dalek
6https://rocksdb.org
7https://github.com/filecoin-project/bls-signatures
8https://github.com/radiken/hotstuff-digital-signature-benchmarking

https://github.com/asonnino/hotstuff
https://tokio.rs
https://github.com/dalek-cryptography/ed25519-dalek
https://rocksdb.org
https://github.com/filecoin-project/bls-signatures
https://github.com/radiken/hotstuff-digital-signature-benchmarking


ApPLIED 2023, June 19, 2023, Orlando, FL, USA Zhuolun Li, Alberto Sonnino, and Philipp Jovanovic

We deploy a testbed on AWS, using t3.medium instances across
4 different AWS regions: N. Virginia (us-east-1), N. California (us-
west-1), Sydney (ap-southeast-2), and Frankfurt (eu-central-1). Val-
idators are distributed across those regions as equally as possible.
The selection of regions in the experiment emulates a geograph-
ically sparse distributed network that closely resembles the dis-
tribution of existing blockchain nodes 9. Each machine provides
up to 5 Gbps of bandwidth, 2 virtual CPUs (1 physical core) on a
2.5 GHz, Intel Xeon Platinum 8175, 4 GB memory, and runs Linux
Ubuntu server 20.04. In the following sections, each measurement
in the graphs is the average of 5 independent runs, and the error
bars represent one standard deviation. Our baseline experiment
parameters are a block size of 500KB, a transaction size of 512B,
and one benchmark client per party submitting transactions at a
fixed rate for 5 minutes. The leader timeout value is set to 5 seconds.
When referring to latency, we mean the time elapsed from when the
client submits the transaction to when the transaction is committed
by one validator. We measure it by tracking sample transactions
throughout the system. For each committee size configuration, we
gradually increase the input rate until we observe fluctuations in
latency or reductions in throughput, which are indicative of the
system reaching its capacity limits.

Analysis. Figure 2 and Figure 3 show that a 4-validators deployment
can process 50,000 tx/s while keeping the latency below 1.5 seconds,
regardless of the signature scheme. Similarly, prior to reaching
system capacity, 20- and 40-validator deployments can process
around 80,000 tx/s while keeping the latency around 4 to 5 seconds,
regardless of the signature scheme10.

Increasing the committee size to 60 validators drops the perfor-
mance of our EdDSA-based implementation to around 60,000 tx/s
and increases the latency to 5 seconds (Figure 2). This performance
drop is explained by both the additional bandwidth required to
broadcast messages to many validators and the CPU overhead re-
quired to verify a large number of signatures. Indeed, the leader
needs to verify at least 2𝑓 + 1 = 41 votes every round (step ➋ of
Figure 1) and validators need to verify 41 signatures to validate each
certificate11 (step ➌ of Figure 1). Our BLS-based implementation
suffers a more significant performance drop: Figure 3 indicates the
system can only process up to 20,000 tx with a latency of about
15 seconds. It appears that this performance difference is due to
the time required by the leader to verify individual votes (step ➋

of Figure 1). EdDSA allows the leader to efficiently verify votes,
while BLS verification is about 100x slower and monopolizes the
leader’s CPU. This causes the leader’s slow down, which affects
both throughput and latency.

Figure 2 indicates that even larger deployments of 80 validators
further drop the performance of the EdDSA-based implementation
to about 40,000 tx/s (with a latency of 6 seconds). Figure 3 shows
that our BLS-based implementation barely manages to process

9In May 2023, approximately half of the Ethereum nodes are located in North America;
the remaining nodes are distributed across Europe and Asia Pacific [12].
10It may seem surprising that the system achieves a higher throughput with 20 and 40
validators than with 4. This is, however, a known result [10, 15], the extra capacity
provided by the additional validators allows for better resource utilization. To the best
of our knowledge, the reason for this behaviour of multi-core consensus systems is
still unknown and an open research problem.
11The ‘batch-verify’ feature of EdDSA greatly speeds up certificate verification.

0 20k 40k 60k 80k
Throughput (tx/s)

0

2

4

6

8

10

La
te

nc
y 

(s
)

4 nodes 
20 nodes 

40 nodes 
60 nodes 

80 nodes 

Figure 2: EdDSA-based implementation for 4, 20, 40, 60, and
80 validators over a WAN.

0 20k 40k 60k 80k
Throughput (tx/s)

0

5

10

15

20

25

30
La

te
nc

y 
(s

)
4 nodes 
20 nodes 

40 nodes 
60 nodes 

80 nodes 

Figure 3: BLS-based implementation for 4, 20, 40, 60, and 80
validators over a WAN.

transactions; it can only process a few thousand tx/s with a latency
of over 25 seconds. The time required by the leader to verify votes
exceeds 5 seconds most of the time (the leader-timeout value), at
which point validators believe the leader crashed and initiate a view-
change sub-protocol to elect a new leader; this scenario repeats
often and greatly degrades performance.

Key takeaways. Our experiments demonstrate no apparent perfor-
mance benefit of BLS signatures. Contrary to popular belief, large
deployments do not benefit from the aggregation properties of BLS.
Despite BLS multi-signatures enabling small certificates and nearly
constant-time certificate verification (regardless of the committee
size), the CPU overhead of individual votes verification greatly
offsets this benefit. As a result, large deployments should favor
EdDSA. Small deployments (up to 40 validators) do not place an



Performance of EdDSA and BLS Signatures in Committee-Based Consensus ApPLIED 2023, June 19, 2023, Orlando, FL, USA

excessive CPU burden on the leader, EdDSA and BLS-based deploy-
ments perform similarly and they may thus take advantage of the
aggregation properties of BLS. Small BLS multi-signed certificates
can provide a significant storage benefit: storing an EdDSA cer-
tificate requires 2.5 KB (for a 40 nodes deployment) while a BLS
multi-signed certificate only requires about 100 B. This difference
may become significant over time since certificates are part of the
forever-persisted blockchain.

5 FUTURE WORK
In a concurrent work to ours, Gelbmann [16] investigated the per-
formance of BLS aggregate signatures over gossip networks. A
potential future research direction is to connect Gelbmann’s eval-
uation, which focuses on a lower layer compared to a consensus
protocol, with our work. This would provide a more comprehen-
sive understanding of the performance of BLS signatures in a de-
centralized network, allowing for a decomposition of the factors
influencing their effectiveness.

Building upon the contributions from [10, 15] and the present pa-
per, a potential direction for future research involves exploring the
hardware bottlenecks of multi-core consensus systems. Experimen-
tal results have shown that increasing the committee size in small-
scale systems (from 4 to 40 nodes in our configurations) enhances
performance. However, the specific bottlenecks that impede such
improvement in larger-scale systems remain unidentified. Investi-
gating these bottlenecks could pave the way for efficient strategies
to enhance the performance of multi-core consensus systems.

Another potential direction for future work involves reducing
the storage footprint of blockchains. While recent research on
committee-based consensus tends to focus on enhancing computa-
tional performance in consensus protocols, less attention has been
given to improving storage efficiency. Our results demonstrate that
BLS signatures effectively compress information for authentica-
tion without compromising throughput and latency in small-scale
consensus systems. However, in a wider scope, methods for in-
formation compression and its trade-off between computational
efficiency in blockchains have not been thoroughly investigated.
The significance of such studies will only increase over time in the
context of ever-growing blockchains.

ACKNOWLEDGEMENTS
This work is partially funded by Mysten Labs.

REFERENCES
[1] Ittai Abraham, Philipp Jovanovic, MaryMaller, SarahMeiklejohn, and Gilad Stern.

2022. Bingo: Adaptively Secure Packed Asynchronous Verifiable Secret Sharing
and Asynchronous Distributed Key Generation. Cryptology ePrint Archive,
Paper 2022/1759. https://eprint.iacr.org/2022/1759

[2] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-
Corry, Sarah Meiklejohn, and George Danezis. 2017. Consensus in the age of
blockchains. arXiv preprint arXiv:1711.03936 (2017).

[3] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact multi-signatures
for smaller blockchains. In Advances in Cryptology–ASIACRYPT 2018: 24th Inter-
national Conference on the Theory and Application of Cryptology and Informa-
tion Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part II.
Springer, 435–464.

[4] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the Weil
pairing. In International conference on the theory and application of cryptology
and information security. Springer, 514–532.

[5] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In
OsDI, Vol. 99. 173–186.

[6] Celo. 2023. Build Together and Prosper. https://celo.org.
[7] Shir Cohen, Rati Gelashvili, Lefteris Kokoris Kogias, Zekun Li, Dahlia Malkhi,

Alberto Sonnino, and Alexander Spiegelman. 2022. Be aware of your leaders. In
Financial Cryptography and Data Security: 26th International Conference, FC 2022,
Grenada, May 2–6, 2022, Revised Selected Papers. Springer, 279–295.

[8] Shir Cohen, Guy Goren, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. 2022. Proof of Availability & Retrieval in a Modular Blockchain
Architecture. Cryptology ePrint Archive (2022).

[9] Cypherium. 2023. Web3-Ready Blockchain. https://www.cypherium.io.
[10] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, andAlexander Spiegel-

man. 2022. Narwhal and Tusk: a DAG-based mempool and efficient BFT consen-
sus. In Proceedings of the Seventeenth European Conference on Computer Systems.
34–50.

[11] Diem. 2023. Welcome to the Diem Project. https://www.diem.com.
[12] ethernodes.org. 2023. Countries - ethernodes.org - The Ethereum Network &

Node Explorer. https://www.ethernodes.org/countries
[13] Flow. 2023. Build Powerful, Secure, and Scalable Web3 Apps. https://flow.com.
[14] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.

2022. Dumbo-ng: Fast asynchronous bft consensus with throughput-oblivious
latency. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. 1187–1201.

[15] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman,
and Zhuolun Xiang. 2021. Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback. arXiv preprint arXiv:2106.10362 (2021).

[16] Lukas Gelbmann. [n. d.]. BLS Cosigning via a Gossip Protocol. ([n. d.]).
[17] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Secure

distributed key generation for discrete-log based cryptosystems. In International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
295–310.

[18] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2010.
The next 700 BFT protocols. In Proceedings of the 5th European conference on
Computer systems. 363–376.

[19] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
2022. Speeding dumbo: Pushing asynchronous bft closer to practice. Cryptology
ePrint Archive (2022).

[20] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.
Dumbo: Faster asynchronous bft protocols. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 803–818.

[21] Aniket Kate, Yizhou Huang, and Ian Goldberg. 2012. Distributed key generation
in the wild. Cryptology ePrint Archive (2012).

[22] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. 2016. Enhancing Bitcoin Security and Performance
with Strong Consistency via Collective Signing. CoRR abs/1602.06997 (2016).
arXiv:1602.06997 http://arxiv.org/abs/1602.06997

[23] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2007. Zyzzyva: speculative byzantine fault tolerance. In Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles. 45–58.

[24] Aptos Labs. 2023. Committed to developing products and applications on the
Aptos blockchain that redefine the web3 user experience. https://aptoslabs.com.

[25] Mysten Labs. 2023. Build without boundaries. https://sui.io.
[26] Yuan Lu, Zhenliang Lu, and Qiang Tang. 2022. Bolt-dumbo transformer: Asyn-

chronous consensus as fast as the pipelined bft. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 2159–2173.

[27] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[28] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. 2022. Bullshark: Dag bft protocols made practical. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
2705–2718.

[29] Tendermint. 2023. Building the most powerful tools for distributed networks.
https://tendermint.com.

[30] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse.
2021. DispersedLedger: High-Throughput byzantine consensus on variable band-
width networks. arXiv preprint arXiv:2110.04371 (2021).

[31] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. Hotstuff: Bft consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing.
347–356.

https://eprint.iacr.org/2022/1759
https://www.ethernodes.org/countries
https://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997

	Abstract
	1 Introduction
	2 Background
	3 Cached BLS Multi-Signature Verification
	4 Performance Comparison
	5 Future Work
	References

