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Abstract

Urinary tract infections (UTIs) are a major cause of emergency hospital admissions, but it

remains challenging to diagnose them reliably. Application of machine learning (ML) to rou-

tine patient data could support clinical decision-making. We developed a ML model predict-

ing bacteriuria in the ED and evaluated its performance in key patient groups to determine

scope for its future use to improve UTI diagnosis and thus guide antibiotic prescribing deci-

sions in clinical practice. We used retrospective electronic health records from a large UK

hospital (2011–2019). Non-pregnant adults who attended the ED and had a urine sample

cultured were eligible for inclusion. The primary outcome was predominant bacterial growth

�104 cfu/mL in urine. Predictors included demography, medical history, ED diagnoses,

blood tests, and urine flow cytometry. Linear and tree-based models were trained via

repeated cross-validation, re-calibrated, and validated on data from 2018/19. Changes in

performance were investigated by age, sex, ethnicity, and suspected ED diagnosis, and

compared to clinical judgement. Among 12,680 included samples, 4,677 (36.9%) showed

bacterial growth. Relying primarily on flow cytometry parameters, our best model achieved

an area under the ROC curve (AUC) of 0.813 (95% CI 0.792–0.834) in the test data, and

achieved both higher sensitivity and specificity compared to proxies of clinician’s judgement.

Performance remained stable for white and non-white patients but was lower during a period

of laboratory procedure change in 2015, in patients�65 years (AUC 0.783, 95% CI 0.752–

0.815), and in men (AUC 0.758, 95% CI 0.717–0.798). Performance was also slightly

reduced in patients with recorded suspicion of UTI (AUC 0.797, 95% CI 0.765–0.828). Our

results suggest scope for use of ML to inform antibiotic prescribing decisions by improving

diagnosis of suspected UTI in the ED, but performance varied with patient characteristics.

Clinical utility of predictive models for UTI is therefore likely to differ for important patient

subgroups including women <65 years, women�65 years, and men. Tailored models and
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decision thresholds may be required that account for differences in achievable performance,

background incidence, and risks of infectious complications in these groups.

Author summary

Urinary tract infections (UTIs) often lead to emergency hospital visits, but they can be dif-

ficult to diagnose. As a result, antibiotics are often prescribed inappropriately. We created

a machine learning model to help doctors better diagnose UTIs and prescribe antibiotics

only when needed. We used health records from a large UK hospital and considered fac-

tors such as patient age, sex, ethnicity, urinary symptoms, laboratory tests, and medical

history. Our model was good at predicting UTIs and performed better than doctors’

guesses in many cases. It worked well for both white patients and ethnic minorities, but

there were some differences in how well it did for older people, men, and patients who

already had a suspected UTI. In summary, our study suggests that machine learning can

help improve UTI diagnosis and antibiotic prescribing decisions in the emergency depart-

ment. However, we might need to customize the model for different patient groups, as its

performance varied based on patient characteristics.

Background

Urinary tract infections (UTIs) are a major cause of emergency admissions in high-income

countries [1,2] with annual costs estimated in excess of $2.8 billion in the US alone [2]. How-

ever, the ability to diagnose UTI reliably in the emergency department (ED) and differentiate

it from other reasons for attendance is undermined by a lack of rapid and accurate diagnostic

tests for UTI [3], the fact that patients often present with non-specific symptoms (particularly

in the elderly) [4], and the need to make rapid diagnostic decisions. Previous studies have

therefore repeatedly reported both over- and undertreatment of suspected UTI in the ED

[5,6].

Recently, researchers have started investigating whether the application of risk models to

data that are routinely collected during ED visits may be used to support earlier diagnosis of

UTI and guide antibiotic initiation [7–10]. In the largest study to date, Taylor et al. [7] showed

that machine learning can predict bacteriuria with high accuracy using data from 80,000 ED

patients who presented with symptoms that were broadly compatible with suspected UTI.

Their model achieved both higher sensitivity and specificity when compared to retrospective

proxies of clinicians’ judgement. Similar results were reported by Müller et al. [8] on a smaller

Swiss cohort. However, average performance measures alone may be insufficient to judge the

utility of these models in clinical practice.

Due to the need for large sample sizes, previous models were developed using data from

heterogeneous patient groups. Many patients included in these studies are actually at very low

risk of UTI, attending the ED for other reasons—including non-specific symptoms like altered

mental status, other infections such as pneumonia, or even non-infectious conditions like

heart disease—and receiving routine investigations for UTI [6]. This makes it difficult to deter-

mine their value in the primary target population of patients with suspected UTI. Successful

deployment of predictive models for UTI requires good performance in this more narrowly

defined target population, and may further need to distinguish between clinically important

subgroups such as younger women (<65 years), older women (�65 years), and men. These
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groups differ in their background incidence of UTI, prevalence of asymptomatic bacteriuria

(which does not usually require treatment), and risk of complications [11], and model perfor-

mance and interpretation may vary as a result. Finally, predictive models need to show that

they can achieve satisfactory performance without re-enforcing existing healthcare inequalities

originating for example from race or ethnicity (“fair AI”) [12].

In this study, we built on the work of Taylor et al. [7] to develop a model to predict bacteri-

uria in samples obtained from patients attending the ED in a large English hospital, which we

evaluated in a temporally independent dataset. To explore scope to deploy such a model in

clinical practice, we evaluated its performance in key patient subgroups including: age (<65

and�65 years), gender, ethnicity (white, non-white), and UTI syndrome at presentation (uri-

nary symptoms, lower UTI, pyelonephritis, urosepsis).

Methods

Data and study population

We used electronic health record (EHR) data collected routinely in the ED at Queen Elizabeth

Hospital Birmingham (QEHB), which serves an ethnically diverse population in southwest

Birmingham. Approximately 115,000 ED patients attend QEHB each year. A detailed explana-

tion of the study data was published previously [13]. In short, we included all adult patients

who attended the ED at QEHB between November 1st 2011 and March 31st 2019 and who

had a urine sample sent for microbiological testing within 24 hours of arrival (S1 Fig). After

being seen by the ED physician, each patient at QEHB is routinely assigned one or more symp-

toms and/or suspected diagnoses out of a predefined list of ~800 ED diagnostic codes (e.g.,

pyelonephritis, haematuria, or acute confusion; S1 Text) [14]. We excluded patients without a

valid record of age or sex, patients aged<18 years, pregnant women (identified via a preg-

nancy-related discharge diagnosis within ±9 months of arrival), and those who had a urine

sample that was not ultimately cultured. As our focus was community-onset UTI, we excluded

patients whose earliest urine sample was taken more than 24 hours after their recorded arrival

in the ED (to account for delays in delivering samples to the laboratory but exclude hospital-

acquired infection), and those with a previous diagnosis of UTI recorded�30 days before the

date of ED attendance.

Ethics approval and consent to participate

This research study was deemed exempt from NHS Research Ethics Committee review as

there is no change to treatment or services or any study randomisation of patients into differ-

ent treatment groups, and the study uses de-identified routinely collected data. Approval to

undertake the study was obtained from the UK Health Research Authority ref: 17/HRA/3427.

Outcome

The binary primary outcome was bacterial growth in the ED urine sample defined as growth

of a predominant pathogen�104 colony-forming units per millilitre (cfu/mL) during microbi-

ological culture. Growth of several different organisms at once was considered mixed growth

(unless growth of Escherichia coli was explicitly recorded) and—following standard procedure

at QEHB—was considered sample contamination [15]. In order to not miss bloodstream

infections from a urinary source, urine samples were also considered positive if they showed

bacterial growth <104 cfu/mL but the same pathogen was also grown from a blood sample

taken within 24 hours of arrival.
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Notably, whether sent urines were actually cultured in the laboratory depended on the

number of bacteria and white blood cells (WBCs) estimated from urine flow cytometry. The

threshold values for proceeding to culture were WBC > 40/μL or bacteria > 4000/μL before

October 2015 and were increased to WBC> 80/μL or bacteria > 8000/μL thereafter [13].

Candidate predictors

Candidate predictors were selected based on clinical expertise, previous literature, and avail-

ability of data within the EHR system [13]. Considered information included age at arrival (in

ten-year age-bands), sex, ethnicity (Asian, Black, White, Other), Charlson Comorbidity Index

(CCI), presence of underlying renal/urological conditions, previous hospital or emergency vis-

its for UTI or other reasons, blood tests (WBC, platelets, C-reactive protein [CRP], creatinine,

alkaline phosphatase [ALP], bilirubin), urine flow cytometry (bacteria, WBC, red blood cells

[RBC], epithelial cells, casts, crystals), calendar time (month, day of year, day of week, time of

day). Suspected ED diagnosis was also included and grouped into UTI syndromes (lower UTI,

pyelonephritis, urosepsis), UTI symptoms (urinary symptoms, abdominal pain, altered mental

status), other infections (LRTI, sepsis of other origin, other infections), or non-infectious. A

detailed list of the definition of each variable can be found in Rockenschaub et al. [13]. If more

than one value was recorded for a variable during a patient’s time in the ED, the mean value

was included. Immunosuppression, vital signs, and previous antibiotic-resistant urine organ-

isms were excluded from the analysis due to them being recorded in <10% of patients. Follow-

ing Taylor et al. [7], we also considered a reduced set of predictors—which could be more

easily implemented as a model in the ED—using only age, sex, history of positive urine culture,

and all available urine flow cytometry measurements.

Statistical analysis

Patient characteristics. Predictors were summarised for all patients and for those who

did/didn’t have a positive urine culture. Continuous variables were described using mean and

standard deviation (if approximately normally distributed) or median and interquartile range

(if non-normal). Categorical variables were described via counts and percentages. Differences

in variable distribution by culture status were tested via t-test (normal continuous variables),

Wilcoxon rank-sum test (non-normal continuous variables), and χ2 test (categorical variables).

Predictive modelling. For the predictive modelling, continuous predictors were capped

at the 1st and 99th percentile (“winsorised”) and transformed to approximate normality using

Yeo-Johnson transformations. Since we observed at least some missingness for most of our

variables, we considered three increasingly complex imputation strategies: mean imputation,

k-nearest neighbour imputation, and multivariate imputation by chained equations (see S2

Text for a detailed description of each).

We considered the following predictive algorithms: standard logistic regression (LR), logistic

regression with fractional polynomials (LR-FP), elastic net (E-NET), random forest (RF), and

extreme gradient boosting (XGB). For LR-FP, up to four degrees of freedom (equivalent to two

polynomial terms) were considered and the best fitting one chosen via the Akaike Information Cri-

terion (AIC) [16]. For E-NET, RF, and XGB, 30 hyperparameter combinations were randomly cho-

sen (see S1 Table) [17] and the best performing combination was chosen after internal validation.

All models were trained on data up to December 2017. Data from January to March 2018

were set aside for recalibration, and data from April 2018 to March 2019 were reserved as a tem-

porally external test set. Training and internal validation was performed on the training data via

10-times repeated 10-fold cross validation, with all transformations and imputations being per-

formed separately for each run to avoid data leakage. The best model of each algorithm class

PLOS DIGITAL HEALTH Predicting UTI in the ED using machine learning

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000261 June 13, 2023 4 / 16

https://doi.org/10.1371/journal.pdig.0000261


was externally validated on the test set (with and without recalibration using Platt scaling). Dis-

criminative performance was evaluated using the area under the receiver operating characteris-

tic (AUC), specificity, and negative predictive value (NPV). Thresholds for the calculation of

specificity and NPV were chosen such that a predefined sensitivity of 95% was achieved [13].

Difference in performance between models was tested via resampling (S3 Text). Calibration was

assessed using calibration plots with locally estimated scatterplot smoothing.

Sensitivity analyses. In addition to the main analysis, we performed a broad set of sensi-

tivity analyses to assess the robustness of our best model in specific situations and patient sub-

groups and to determine if there may be scope to deploy the model in clinical practice. We

investigated changes in performance over time by re-running all analyses only on data before

2013 and testing it on data from 2013. We repeated this process for the years 2014, 2015, etc.

Next, we evaluated the performance by age (<65 and�65 years), sex, ethnicity (white, non-

white), and in the subgroup of patients with recorded suspicion of UTI indicated by an ED

diagnosis of urinary symptoms, lower UTI, pyelonephritis, or urosepsis. The effect of mixed

culture growth on our results was assessed by considering it as a positive culture or by exclud-

ing it from the analysis altogether. Finally, performance of our model was compared to two

previously used proxies of clinicians’ judgement [7]: ED diagnosis of UTI (lower UTI, pyelone-

phritis, or urosepsis) and/or prescription of systemic antibiotics recommended for UTI in

QEHB’s 2018 prescribing guidelines (see supporting information).

All analysis was performed in R (v3.6.2) and RStudio (v1.2.5033) on Windows 10. A pro-

spective protocol for this analysis was published in Rockenschaub et al. [13]. All results were

reported following the strengthening the Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis (TRIPOD) statement (S1 Checklist) [18].

Results

Between 2011 and 2019, 795,752 ED visits were recorded at QEHB (S1 Fig). Of those, 23,128

(2.9%) visits from 18,353 unique patients had a urine sample submitted for microbiological

analysis. After applying exclusion criteria, we assigned 10,352 (81.6%) visits to the training set,

479 (3.8%) visits to the calibration set, and 1,538 (12.1%) visits to the test set. Among included

visits, 33% resulted in a positive urine culture which notably increased to 44% after thresholds

for culture were raised in 2015 (see Methods and S2 Fig).

Patient characteristics

Half (51.9%) of included visits were from patients�65 years and two-thirds (66.0%) were

from women (Table 1). 23.8% and 17.9% of patients had CCIs of 1–2 and�3 respectively. His-

tory of renal (21.6%) or urological (28.5%) disease were common. Many included patients also

had a hospital visit (47.8%) and/or urine sample (48.9%) recorded in the previous year. Over a

third (39.4%) of included visits had a recorded ED diagnosis of UTI, with another 5.1% show-

ing a record of urinary symptoms.

Bacterial growth was more commonly found among older patients, women, those of white

ethnicity, and patients who previously had a positive urine culture (Table 1). It was also more

commonly found among those with a recorded ED diagnosis of UTI (lower UTI, pyelonephri-

tis, urosepsis) but not among those with only symptoms of UTI and was strongly associated

with urine flow cytometry results and some blood tests, most notably CRP and platelet counts.

Predictive modelling

The best performing model to predict bacteriuria was an XGB including all predictors, which

achieved an AUC of 0.813 (95% CI 0.792–0.834; Table 2 and Fig 1) during external validation
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Table 1. Demography, medical history, and clinical characteristics at presentation in the ED.

Overall Bacterial growth Missing % p-value

Yes No

Number of visits 12,680 (100.0) 4,677 (36.9) 8,003 (64.1)

Demographics

�65 years (%) 6,584 (51.9) 2,645 (40.2) 3,939 (59.8) 0.0 <0.001

Female (%) 8,368 (66.0) 3,260 (39.0) 5,108 (61.0) 0.0 <0.001

Ethnicity (%) 5.3 <0.001

Asian 1,671 (13.9) 555 (33.2) 1,116 (66.8)

Black 552 (4.6) 175 (31.7) 377 (68.3)

White 9,256 (77.1) 3,496 (37.8) 5,760 (62.2)

Other 526 (4.4) 183 (34.8) 343 (65.2)

Comorbidities

Charlson comorbidity index (%) 0.0 0.295

0 7,386 (58.2) 2,686 (36.4) 4,700 (63.6)

1–2 3,023 (23.8) 1,126 (37.2) 1,897 (62.8)

�3 2,271 (17.9) 865 (38.1) 1,406 (61.9)

Cancer (%) 915 (7.2) 322 (35.2) 593 (64.8) 0.0 0.286

Underlying renal condition (%) 2,733 (21.6) 1,011 (37.0) 1,722 (63.0) 0.0 0.913

Underlying urological condition (%) 3,614 (28.5) 1,333 (36.9) 2,281 (63.1) 0.0 1.000

Renal/urological surgery (%) 2,484 (19.6) 838 (33.7) 1,646 (66.3) 0.0 <0.001

Hospital activity in prior year

Any hospitalisation (%) 6,067 (47.8) 2,259 (37.2) 3,808 (62.8) 0.0 0.446

Urine sample taken (%) 6,195 (48.9) 2,251 (36.3) 3,944 (63.7) 0.0 0.217

Urine sample positive (%) 3,062 (24.1) 1,355 (44.3) 1707 (55.7) 0.0 <0.001

Antibiotics in hospital (%) 3,194 (25.2) 1,149 (36.0) 2,045 (64.0) 0.0 0.225

Presentation in the ED

Recorded ED diagnosis (%) 6.7 <0.001

UTI 4,998 (42.2) 2,290 (45.8) 2,708 (54.2)

UTI symptoms 1,737 (14.7) 476 (27.4) 1,261 (72.6)

Other infection 1,684 (14.2) 495 (29.4) 1,189 (70.6)

Other diagnoses 3,414 (28.9) 1,149 (33.7) 2,265 (66.3)

Urine flow cytometry (median / IQR)

Bacteria x103/μL 8.1 (2.3, 21.3) 13.5 (5.2, 33.3) 5.5 (1.0, 14.3) 15.4 <0.001

White blood cells x1/μL 328 (111, 1191) 540 (163, 1881) 249 (96, 821) 15.4 <0.001

Red blood cells x1/μL 35.0 (13.0, 132.0) 32.0 (12.0, 104.0) 37.0 (14.0, 158.0) 15.4 <0.001

Epithelial cells x1/μL 21.0 (6.0, 54.0) 14.0 (5.0, 40.0) 25.0 (9.0, 62.0) 15.4 <0.001

Small round cells x1/μL 1.0 (0.0, 4.0) 2.0 (1.0, 5.0) 1.0 (0.0, 3.0) 15.4 <0.001

Casts x1/μL 1.0 (0.0, 2.0) 1.0 (0.0, 3.0) 1.0 (0.0, 2.0) 15.4 <0.001

Crystals x1/μL 5.0 (2.0, 15.0) 5.0 (2.0, 16.0) 5.0 (2.0, 13.0) 60.0 0.004

Blood tests (median / IQR)

C-reactive protein mg/L 27 (6, 93) 32 (7, 98) 24 (6, 89) 53.9 <0.001

White blood cells x103/μL 10.8 (8.0, 14.5) 10.9 (8.2, 14.6) 10.7 (7.9, 14.5) 43.8 0.088

Platelets x103/μL 231 (182, 292) 227 (180, 284) 233 (183, 296) 44.0 0.001

Creatinine μmol/L 84 (66, 118) 83 (65, 115) 84 (66, 120) 45.1 0.045

Bilirubin μmol/L 9 (6, 14) 9 (6, 14) 9 (6, 14) 51.4 0.140

(Continued)
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on temporally independent data. At a pre-defined sensitivity of 95%, the model achieved a spec-

ificity of 36.1% (95% CI 30.9–40.9) and had an NPV of 89.8% (95% CI 87.9–91.3). Both a simple

LR using all predictors (AUC 0.796, 95% CI 0.776–0.817) and an XGB using the reduced set of

predictors (AUC 0.806, 95% CI 0.783–0.828) performed comparably, although p-values from

bootstrapping suggested slightly lower performance of LR compared to a full XGB (p<0.001).

Results from internal validation were similar but performance was slightly worse using multiple

imputation (S2 Table and S3 Table). The primary importance of urine flow cytometry results—

which make up most predictors in the reduced set—for discriminative power was also observed

in univariate analyses (S4 Table). The final XGB model tended to underestimate the risk of bac-

terial growth, which was (over-)corrected after re-calibration (Fig 2).

Sensitivity analyses

Coinciding with changes in laboratory procedures, estimated performance of our XGB model

was reduced around 2015 (AUC 0.766, 95% CI 0.740–0.793; Fig 3). Reduced performance was

also seen in patients aged�65 years (AUC 0.783, 95% CI 0.752–0.815) and in men (AUC

0.758, 95% CI 0.717–0.798) with bootstrapped p-values for a difference in performance of

p = 0.004 and p<0.001 compared to those aged <65 years and compared to women. There

was no significant difference in performance for patients with an ED diagnosis of lower UTI,

pyelonephritis, urosepsis, or UTI symptoms (AUC 0.797, 95% CI 0.765–0.828, p = 0.210;

Table 3), and no evidence that performance varied by ethnicity (AUC 0.831, 95% CI 0.780–

Table 1. (Continued)

Overall Bacterial growth Missing % p-value

Alkaline phosphatase IU/L 88 (69, 117) 88 (69, 117) 88 (69, 119) 51.4 0.897

p-values refer to the result of a t-test for difference in means (normal continuous variables), a Wilcoxon rank-sum test for difference in means (non-normal continuous

variables), or a χ2 test of independence (categorical variables).

ED, emergency department; IQR, interquartile range.

https://doi.org/10.1371/journal.pdig.0000261.t001

Table 2. Discriminative performance of candidate models when predicting bacterial growth in 1,538 urine samples of a temporally external test set from 2018/19.

Model AUC (95% CI) Specificity (95% CI) NPV (95% CI) p-value

All candidate predictors

XGB 0.813 (0.792–0.834) 36.1 (30.9–40.9) 89.8 (87.9–91.3) -

RF 0.803 (0.783–0.825) 33.0 (26.1–39.0) 88.8 (86.2–90.7) 0.048

LR 0.796 (0.776–0.817) 28.9 (23.5–35.5) 87.6 (84.9–90.1) <0.001

E-NET 0.796 (0.775–0.819) 28.4 (23.3–36.0) 87.4 (84.4–90.1) <0.001

LR-FP 0.791 (0.771–0.813) 32.8 (27.1–38.4) 88.9 (86.6–90.8) <0.001

Reduced set of predictors

XGB 0.806 (0.783–0.828) 34.6 (29.8–39.4) 89.4 (87.7–91.1) 0.102

E-NET 0.787 (0.766–0.810) 31.1 (24.9–36.0) 86.5 (83.1–89.2) <0.001

LR 0.786 (0.765–0.809) 29.2 (24.2–34.3) 85.9 (82.1–89.1) <0.001

LR-FP 0.783 (0.762–0.807) 33.9 (27.5–40.2) 88.5 (85.9–90.5) <0.001

RF 0.761 (0.736–0.785) 26.7 (23.6–29.8) 71.7 (66.3–76.8) <0.001

Specificity and NPV were calculated at a predefined sensitivity of 95%. Confidence intervals were obtained via 1,000 bootstraps of the external test set. p-values indicate

a difference in AUC compared to the top performing model and were calculated as the proportion of bootstraps in which the top performing model retained better

performance [28,29], multiplied by two to account for the two-sided nature of our hypothesis.

AUC, area under the receiver operating characteristic; CI, confidence interval; E-NET, elastic net; LR, logistic regression; LR-FP, logistic regression with fractional

polynomials; NPV, negative predictive value; RF, random forest; XGB, extreme gradient boosting trees.

https://doi.org/10.1371/journal.pdig.0000261.t002
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0.873, p = 0.153). The model showed some miscalibration in subgroups, primarily in the

elderly (Fig 4).

Estimated performance differed strongly depending on how the microbiological culture

finding of mixed growth (23.5% of all samples) was classified, which is often considered indic-

ative of a contaminated / unreliable sample [7,15]. When mixed culture growth was considered

positive growth during training and testing, estimated external model performance increased

to AUC 0.864 (95% CI 0.847–0.880), which further increased to AUC 0.892 (95% CI 0.875–

0.909) if samples with mixed growth were excluded from the analysis altogether. Bootstrapping

showed a clear difference in performance in both cases (p<0.001). Importantly, samples with

mixed growth were frequently assigned high probabilities of bacteriuria, irrespective of how

mixed growth was classified in the model (S3 Fig).

When compared to retrospective proxies of clinician’s judgement (ED diagnosis of UTI

and/or prescription of systemic antibiotics recommended for UTI), our model achieved both

higher sensitivity and specificity (Table 4). At a specificity of 63.7%—which would be achieved

by a model that predicts bacteriuria whenever there was a recorded ED diagnosis of UTI—our

model obtained considerably higher sensitivity (83.0%, 95% CI 80.3–85.0 versus 48.2%, 95%

CI 44.3–52.1). Conversely, at a sensitivity of 59.9% achieved by using recorded ED diagnosis of

UTI and/or antibiotic prescribing to infer clinical judgement, our model achieved notably

higher specificity (85.5%, 95% CI 83.1–87.7 versus 51.6%, 95% CI 48.3–55.0).

Discussion

In this retrospective EHR study, our best-performing model was able to predict bacterial

growth in ED urine samples with an AUC of 0.815 in an ethnically diverse patient population

Fig 1. Receiver operating characteristic curve with risk thresholds (left panel) and classification plots (right panel) of the final LR and XGB models in the

temporally external test set using all candidate predictors. FPR, false positive rate; LR, logistic regression; TPR, true positive rate; XGB, extreme gradient

boosting trees.

https://doi.org/10.1371/journal.pdig.0000261.g001
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and outperformed retrospective proxies of clinical judgement. However, performance differed

over time and depending on the patient population in which it was used, with reduced perfor-

mance in patients aged�65 years and men. Given the differences in UTI incidence, prevalence

of asymptomatic bacteriuria, and risk of infectious complications in these important target

populations, this has implications for the model’s potential use to predict UTI and thus guide

antibiotic prescribing in clinical practice and may suggest the need for separate models or

thresholds for decision making.

Our model primarily relied on urine flow cytometry parameters when making its predic-

tions. A reduced model based on age, sex, history of positive urine culture, and urine flow

cytometry performed almost as well as a model using all predictors. Some flow cytometry

results—bacterial count and WBC—were already used at QEHB’s laboratory during the study

period in a simple decision rule to screen for samples with extremely low probability of bacte-

rial growth, which were then excluded from culture. The good predictive power of our model

even in pre-screened urines suggests that the value of flow cytometry to support early diagnosis

of bacteriuria and UTI may currently be underused in clinical practice. For example, if the

model were used, it would have correctly identified 95% of samples which later showed bacte-

rial growth while ruling out bacterial growth early in 36.6% of ultimately culture-negative sam-

ples. Of those samples that were flagged as likely negative, 90.3% were correctly classified and

did not exhibit bacterial growth during culture. This highlights the potential of data-driven

models to aid the diagnosis of UTI and to reduce laboratory cost if clinical parameters are used

in addition to cytometry to select which urines are cultured.

Fig 2. Model calibration of the final LR (left panel) and XGB (right panel) model before and after re-calibration in the temporally external test set using all

candidate predictors. Calibration was estimated using LOESS regression and grey areas represent 95% confidence intervals. Ticks at the top (bacterial growth)

and bottom (no bacterial growth) of each panel show the distribution of positive and negative samples in the test set. LOESS, locally estimated scatterplot

smoothing; LR, logistic regression; XGB, extreme gradient boosting trees.

https://doi.org/10.1371/journal.pdig.0000261.g002
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While our model thus achieved good performance, this was lower than previously reported

results from both the US (AUC 0.904) [7] and Switzerland (AUC 0.930) [8]. Reasons for this

discrepancy are not immediately obvious, but important differences exist with regards to the

data used for training and evaluation. Whereas only 2.9% of ED patients in our study had a

urine culture requested, 25.6% of ED patients in the US-based study by Taylor et al. had a cul-

ture requested [7]. Although propensity to culture might genuinely be higher in the US,

nation-wide estimates suggest much lower rates of 8.1% [19] and another US single centre

study reported rates as low as 2.3% [20]. The US study may therefore have been subject to

selection bias, or—if urine cultures were indeed requested for one in four patients attending

the ED—was not representative of other hospitals in the UK and US. Patient denominators are

not available for the Swiss study by Müller et al. [8]. However, Müller et al. treated mixed

growth as positive growth, which was also associated with higher performance in our study.

Furthermore, samples that were a priori dismissed by our laboratory due to low bacteria or uri-

nary WBC counts were cultured in Switzerland. These samples were unlikely to grow bacteria

(S3 Fig), thus representing “easy wins”. As a result, the algorithm developed by the Swiss

authors would be expected to perform worse when transferred to our patient population and

Fig 3. Changes in the estimated AUC of the best-performing model (XGB using all predictors) over time when

predicting bacterial growth. For each year, data up to that year were used to train the model. Orange dots and lines

represent estimated performance from internal validation of the training data before that year. Black diamonds

represent the estimated performance from external validation using data from that year.

https://doi.org/10.1371/journal.pdig.0000261.g003
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clinical and laboratory practice. This emphasises the importance of understanding variation in

laboratory processes, which can have a major impact on the implementation of ML models in

clinical practice. It is reassuring, though, that both models—like ours—predominantly relied

on urinalysis parameters in their predictions, which agrees with findings from non-ED popu-

lations [3,9].

Strengths and limitations

To the best of our knowledge, this is the first model predicting bacterial growth in ED urines

from a UK patient population. A major strength of this analysis is the use of a large sample of

high-quality EHR data from a major teaching hospital. QEHB’s long history of electronic

record keeping [21] allowed us to use records collected over multiple years, perform extensive

sensitivity analyses, and assess likely future model performance.

However, the data used in this analysis were nevertheless recorded as part of routine care

rather than specifically for research. Our data contained missing data, which needed to be

addressed by imputation. Some key variables relevant to the diagnosis of UTI were completely

absent from the EHR data for the duration of our study, including urine dipstick results and

prior antibiotic prescribing outside of hospital. Dipsticks are commonly used to support the

diagnosis of UTI [3,22] and prior antibiotic use may have prevented the growth of microor-

ganisms during culture [6], potentially limiting the model’s power to predict bacterial growth

[23]. Furthermore, a substantial proportion of urine samples included in this analysis were

submitted for culture in the absence of any recorded suspicion of UTI or weren’t cultured

despite suspicion of UTI. While this likely reflects real-world clinical practice [4], clinical

guidelines suggest that bacteriuria should only guide treatment in the presence of clear symp-

toms [24]. Reducing unnecessary investigations in patients who are very unlikely to have UTI

Table 3. Discriminative performance of our best-performing XGB model in clinically relevant patient subpopulations.

Subgroup AUC (95% CI) Specificity (95% CI) NPV (95% CI) p-value

Age 0.004

<65 years 0.842 (0.813–0.870) 36.8 (31.1–44.9) 91.8 (88.2–95.1)

�65 years 0.783 (0.752–0.815) 32.9 (28.3–38.8) 87.5 (83.0–91.0)

Sex <0.001

Male 0.758 (0.717–0.798) 30.9 (24.2–32.4) 82.5 (75.9–87.4)

Female 0.840 (0.815–0.864) 37.2 (32.6–43.6) 93.7 (90.6–96.5)

Ethnicity 0.153

White 0.804 (0.777–0.828) 35.4 (29.3–39.9) 89.9 (86.8–92.2)

Asian, Black, or Other* 0.831 (0.780–0.873) 42.1 (31.8–49.2) 91.0 (83.5–95.9)

ED diagnosis 0.210†

UTI (including symptoms) 0.797 (0.765–0.826) 27.9 (22.8–34.0) 90.7 (85.3–94.8)

UTI (excluding symptoms) 0.806 (0.775–0.838) 27.6 (22.4–33.2) 92.5 (87.4–97.5)

Other diagnoses 0.824 (0.794–0.853) 40.7 (35.2–49.3) 89.4 (86.4–92.3)

Specificity and NPV were calculated at a predefined sensitivity of 95%. Confidence intervals were obtained via 1,000 bootstraps of the external test set. p-value test for a

difference between AUC of the two subgroups and were calculated as the proportion of bootstraps in which the subgroup with overall smaller performance remained

smaller, multiplied by two to account for the two-sided nature of our hypothesis.

* Due to otherwise small patient numbers in these subsets, ethnic minorities were considered as a single group. Patients with unknown ethnicity were excluded from

this comparison.
† Difference between UTI (including symptoms) versus Other diagnoses.

AUC, area under the receiver operating characteristic; CI, confidence interval; NPV, negative predictive value; XGB, extreme gradient boosting trees.

https://doi.org/10.1371/journal.pdig.0000261.t003
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could bring cost savings and support antimicrobial stewardship. Further research is required

to understand the reasons why these patients are being investigated for suspected UTI. Finally,

definitions of clinical judgement in this study were inferred indirectly from retrospective data

and do not reflect the full complexity of real-world clinical decision making, potentially under-

estimating clinicians’ performance in predicting bacteriuria.

Fig 4. Raw and re-calibrated model calibration of the final XGB model by age (<65 and�65 years) and sex (men and women). Calibration

was estimated using LOESS regression and gray areas represent 95% confidence intervals. Ticks at the top (bacterial growth) and bottom (no

bacterial growth) of each panel show the distribution of positive and negative samples in the test set. LOESS, locally estimated scatterplot

smoothing; XGB, extreme gradient boosting trees.

https://doi.org/10.1371/journal.pdig.0000261.g004
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Clinical, policy and research implications

Our results suggest a potential need for separate prediction models and decision thresholds in

key populations such as the elderly or men. Variations in performance around a change in lab-

oratory procedures in our observation period further demonstrate the difficulties of develop-

ing a single model that retains performance across time and hospitals. Instead of a one size fits

all approach, it may be necessary to (re-)train and validate models using local data from the

target population [25]. Fortunately, key variables such as urine flow cytometry remained stable

across studies [7,8,22] and clinical settings [9], and there might be an opportunity to improve

diagnosis of UTI simply by feeding back these raw results to clinicians in real-time.

Our results also highlight the prevalence of mixed growth in ED settings, with one quarter

of cultured urine samples showing mixed growth. While generally regarded as sample contam-

ination [7,15], some authors have argued that strict microbiological protocols might miss

important bacteriuria [26,27]. Either way, mixed growth has important implications for mod-

els that aim to predict (predominant) growth and is difficult to predict with currently available

diagnostics [8].

We suggest that our model may be embedded within the laboratory workflow. Assuming

all relevant clinical data have been recorded at the time of urine sample submission and are

readily available within the electronic patient record, the laboratory can use this data and our

model to rate the results of flow cytometry and provide rapid feedback to ED clinicians. The

results should be reported back to clinicians in such a way that it helps them decide on the like-

lihood of UTI and choice of antibiotic treatment. On-going education of clinical personnel

and audit of the process will be necessary for a successful implementation.

Conclusion

The ML models used in this study were able to predict bacterial growth in ED urine samples

with good predictive accuracy but expected performance varied with patient characteristics.

Effective deployment of predictive models to guide antibiotic prescribing decisions for UTI

are likely to require tailored approaches for patient subgroups with a high prevalence of

asymptomatic bacteriuria (patients aged�65 years) or high risk of complication (men).
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