
Citation: Yu, F.; Cong, S.; Yap, E.P.;

Hausenloy, D.J.; Ramachandra, C.J.

Unravelling the Interplay between

Cardiac Metabolism and Heart

Regeneration. Int. J. Mol. Sci. 2023,

24, 10300. https://doi.org/

10.3390/ijms241210300

Academic Editor: Claudio de Lucia

Received: 30 May 2023

Revised: 14 June 2023

Accepted: 16 June 2023

Published: 18 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Unravelling the Interplay between Cardiac Metabolism and
Heart Regeneration
Fan Yu 1,2,3 , Shuo Cong 1,2,3 , En Ping Yap 1,2,3, Derek J. Hausenloy 1,2,3,4 and Chrishan J. Ramachandra 1,2,*

1 National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
2 Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School,

Singapore 169857, Singapore
3 Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
4 The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
* Correspondence: chrishan.ramachandra@nhcs.com.sg

Abstract: Ischemic heart disease (IHD) is the leading cause of heart failure (HF) and is a significant
cause of morbidity and mortality globally. An ischemic event induces cardiomyocyte death, and
the ability for the adult heart to repair itself is challenged by the limited proliferative capacity of
resident cardiomyocytes. Intriguingly, changes in metabolic substrate utilisation at birth coincide
with the terminal differentiation and reduced proliferation of cardiomyocytes, which argues for
a role of cardiac metabolism in heart regeneration. As such, strategies aimed at modulating this
metabolism-proliferation axis could, in theory, promote heart regeneration in the setting of IHD.
However, the lack of mechanistic understanding of these cellular processes has made it challenging
to develop therapeutic modalities that can effectively promote regeneration. Here, we review the role
of metabolic substrates and mitochondria in heart regeneration, and discuss potential targets aimed
at promoting cardiomyocyte cell cycle re-entry. While advances in cardiovascular therapies have
reduced IHD-related deaths, this has resulted in a substantial increase in HF cases. A comprehensive
understanding of the interplay between cardiac metabolism and heart regeneration could facilitate
the discovery of novel therapeutic targets to repair the damaged heart and reduce risk of HF in
patients with IHD.

Keywords: cardiac metabolism; ischemic heart disease; heart failure; heart regeneration; cardiomyocyte
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1. Introduction

Ischemic heart disease (IHD) is the most prevalent cardiovascular disease and remains
the leading cause of death globally. Although IHD-related mortality rates have decreased
over time due to primary prevention, and improved diagnosis and treatment, the rise
in absolute numbers of IHD cases is a serious cause for concern. Crucially, IHD can
increase the risk of heart failure (HF) by 8-fold and, as expected, is the most frequent
underlying cause of HF [1,2]. HF itself affects ~64 million individuals and is a leading
cause of hospitalisation [3]. Currently, HF affects 1–1.3% of the global population and is
expected to rise to 3% and affect more than 70% of those aged above 65 by 2030 [4]. While
the ageing of the population will undoubtedly contribute to this foreseeable increase in HF
prevalence, improved survival outcomes in IHD patients with acute myocardial infarction
(AMI) may also contribute to an increase in HF cases [4,5]. As such, there is an unmet
need to identify novel therapeutic strategies to prevent the onset and progression of HF in
patients with IHD.

Myocardial ischemia instigates profound derangement in cellular energetics and
metabolism in the heart which induces injury and eventual death of cardiomyocytes [6,7].
Cardiomyocytes undergo apoptosis at a rate of 0.002% in normal human hearts, 0.12–0.7%
in failing hearts from patients with NYHA class III and IV [8–10], and a staggering 17%
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in ischemic hearts [10,11]. The adult human heart is one of the least regenerative organs,
but it is widely accepted that the heart’s regenerative ability is preserved in mammals
during the early neonatal stage, and throughout the entire lifespan in certain lower ver-
tebrate species [12–14]. In support, cardiomyocyte proliferation has been observed in
mice subjected to apical resection and MI within the first week of birth [14,15], but this
regenerative window was restricted to 2 days postpartum in larger mammals [16,17]. Heart
regeneration has also been observed in a human newborn with severe MI where functional
cardiac recovery had occurred within weeks after the initial extensive myocardial damage,
translating into long-term normal cardiac function [18]. While the ability to promote heart
regeneration in the setting of AMI is appealing, very little is known about the molecular
pathways underlying cardiomyocyte proliferation. Alternatively, several efforts have been
made to transplant various cell types into the infarcted heart. However, suboptimal deliv-
ery, homing, engraftment, and survival of these transplanted cells remain a major issue for
it to be considered as a viable therapeutic modality [19]. Interestingly, marked changes in
cardiac metabolism have been found to occur during heart development as evidenced by
the predominant utilisation of glycolysis in foetal hearts and oxidative phosphorylation
in adult hearts, the latter coinciding with terminal differentiation and reduced prolifera-
tion of cardiomyocytes [20,21]. These findings lend support to the assumption that the
transition from glycolytic to oxidative metabolism, and the resultant increase in reactive
oxygen species (ROS) production is a key driver of DNA damage and cell cycle arrest in
cardiomyocytes [22].

With the aim of understanding the complexities associated with cardiac metabolism
and heart regeneration, we review the role of metabolic substrates and mitochondria in
heart regeneration, and discuss potential targets aimed at promoting cardiomyocyte cell
cycle re-entry.

2. The Role of Metabolic Substrates in Heart Regeneration

The heart beats around 100,000 times each day and consumes ~8% of total ATP
produced by the body [11,23]. Despite being one of the most energy-consuming organs,
the heart stores limited amounts of ATP, which are sufficient to maintain its function for
only a few seconds in the presence of nutrient shortage [24]. In order to meet the high
energy demands, the heart can utilise a variety of energy substrates (e.g., fatty acids,
glucose, ketones, and amino acids), albeit at different proportions. Importantly, the heart
can readily switch to a specific type of fuel during cardiac development, and in response to
physiological and pathological stress [25]. In this section, we focus on the major metabolic
substrates utilised by the heart and discuss their potential roles in heart regeneration.

2.1. Glucose Metabolism

Cells with high proliferative capacity display elevated glycolic rates for energy pro-
duction, despite the presence of adequate oxygen [26]. Glycolysis is an inefficient way
to generate energy as only 2 ATPs are generated per molecule of glucose (in contrast to
36 ATPs generated by oxidative phosphorylation); however, this metabolic pathway is a
major contributor for the biosynthesis of cellular components, such as lipids, amino acids,
and nucleotides [26]. Studies in zebrafish, and in neonatal and adult mice have shown a
pro-glycolytic metabolic profile is favourable for heart regeneration. In support, analysis of
the transcriptome and proteome profile in zebrafish at 7 days post-cryoinjury revealed an
alteration in cardiomyocyte metabolism from mitochondrial oxidative phosphorylation to
glycolysis at the border and remote zones [27]. In other studies, lactate, an end product
of glycolysis, promoted cell cycle progression in neonatal mouse cardiomyocytes and in
human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) by regulating
the expression of genes involved in cell fate and proliferation [28].

In neonatal and healthy adult hearts, glycolysis contributes to ~44% and ~5% of total
ATP produced, respectively [29,30]. The cardiomyocyte plasma membrane is impermeable
to glucose; as such, glucose uptake is mediated by glucose transporters (GLUTs) of which
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14 members have been identified in various tissues to date. GLUT1 and GLUT4 are the most
abundantly expressed isoforms in the heart [31], and notably, both transporters display an
expression profile coinciding with different stages of cardiac development, with GLUT1
and GLUT4 being predominantly expressed in foetal and adult hearts, respectively [32].
The upregulation of GLUT1 has been found to play important roles in cardiac development
and in response to cardiac stress [33,34]. Consistently, cardiac-specific overexpression of
GLUT1 increased the percentage of proliferative cardiomyocytes and reduced fibrosis in
cryoinjured neonatal mice by promoting nucleotide biosynthesis [35] (Figure 1). While
these findings support the upregulation of GLUT1 as a potential mediator of heart re-
generation, it is important to note that glycolysis is a fundamental metabolic pathway in
active inflammatory cells (e.g., neutrophils, proinflammatory macrophages) [36], and inhi-
bition of GLUT1 has been considered a potential therapeutic intervention for attenuating
pro-inflammatory responses following AMI [37].
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tricarboxylic acid cycle. 

2.2. Fatty Acid Metabolism 
The foetal heart barely utilises fatty acids for efficient ATP production, which could 

be attributed to its low mitochondrial content and the limited availability of fatty acids in 
the placenta [52]. However, immediately after birth, the infant heart switches rapidly to 
fatty acid β-oxidation (FAO) [52,53], and this metabolic pathway generates the majority of 
ATP (~40–60% of total ATP) throughout adulthood [30]. Compared to other substrates, 
FAO generates the majority of ATP; however, as this process consumes the largest amount 
of oxygen, fatty acids are considered the least efficient energy substrate [54]. 

Long-chain fatty acid (LCFA) uptake into the cytosol is mediated by the fatty acid 
transport protein, CD36/FAT [54], and although the role of CD36 in cardiomyocyte 
proliferation is unclear, CD36 knockdown in mouse endothelial cells (ECs) has been found 
to prevent angiogenesis and vascular repair in response to hindlimb ischemia [55]. ECs 
play important roles in establishing an intact vasculature and in guiding cardiomyocyte 

Figure 1. Schematic illustrating the interplay between cardiac metabolism and cardiomyocyte
proliferation in neonatal and adult mammalian hearts. Neonatal heart metabolism (red), adult heart
metabolisms (blue). Abbreviations: Glut1—glucose transporter type 1; Glut4—glucose transporter
type 4; PK—pyruvate kinase; PDK—pyruvate dehydrogenase kinase; FACS—fatty acyl coA synthase;
PPARα—peroxisome-proliferator-activated receptor alpha; BCAAs—branched-chain amino acids;
BCKA—branch-chain alpha-keto acids; mTORC1—mammalian target of rapamycin complex 1;
TCA—tricarboxylic acid cycle.

Besides their role in metabolism, certain glycolytic enzymes have been found to be
interlinked with cell cycle regulatory pathways. Pyruvate kinase (PK) is an important
enzyme which regulates the conversion of phosphoenolpyruvate and ADP to pyruvate
and ATP [38]. These enzymes also show developmental-stage-specific expression profiles,
with the PK muscle isoform 2 (PKM2) being predominantly expressed during embryonic
and postnatal development, and PKM1 being the dominant isoform in adult cardiomy-
ocytes [39]. Interestingly, cardiomyocyte-specific overexpression of PKM2 in post-MI adult
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mice has been shown to increase cardiomyocyte proliferation, and improved cardiac func-
tion and long-term survival by elevating targets downstream of β-catenin signalling [39].
Conversely, PKM2 expression has been found to be upregulated in stressed hearts where it
has contributed to HF [40], while inhibition of the PKM2/β-catenin axis in post-MI mice
reduced infarct size, increased the percentage of proliferative cardiomyocytes, improved mi-
tochondrial function, and enhanced angiogenesis, which was attributed to the activation of
target genes associated with cell proliferation [41]. Pyruvate dehydrogenase kinases (PDKs)
are another family of enzymes with important roles in regulating pyruvate metabolism
and metabolic flexibility [42]. Transcriptomic analyses in zebrafish revealed PDK enzymes,
PDK2b, PDK3b, and PDK4b are up-regulated at the border zone in cryoinjured hearts, and
overexpression of PDK3 increased the number of proliferating cardiomyocytes, albeit with
no reduction in scared regions [43] (Figure 1).

Other signalling pathways not directly involved in glycolytic metabolism have also
been implicated in cardiomyocyte proliferation. For instance, the Nrg1/ErbB pathway
is indispensable for cardiac development as it regulates cardiomyocyte growth and sur-
vival and mediates terminal differentiation of cardiomyocytes from iPSCs [44,45]. The
Nrg1/ErbB2 axis has also been shown to mediate profound changes in metabolism by
up-regulating glycolytic genes at the border zone of cryoinjured zebrafish hearts [46]
(Figure 1). Furthermore, cardiac-specific overexpression of ErbB2 after 3 weeks of per-
manent left anterior descending (LAD) coronary artery ligation in mice promoted de-
differentiation and proliferation of cardiomyocytes, resulting in improved cardiac func-
tion [47]. While it is unclear how this Nrg1/ErbB2 axis mediates metabolic remodelling, it
could be through the modulation of fatty acid metabolism as transient overexpression of
ErbB2 in a breast cancer cell line promoted glycolysis and cell migration by upregulating
fatty acid synthase involved in neoplastic lipogenesis [48,49].

Collectively, these findings suggest a switch from glucose oxidation to glycolysis is
sufficient to promote cell cycle re-entry in adult cardiomyocytes (Figure 1). However,
considering the ubiquitous expression of GLUTs in multiple cardiac cell types and that
certain cell cycle activators are associated with cardiac hypertrophy and cancer [34,50,51],
future strategies aimed at targeting these pathways should be investigated in a cell-type-
specific manner to circumvent potential off-target effects.

2.2. Fatty Acid Metabolism

The foetal heart barely utilises fatty acids for efficient ATP production, which could be
attributed to its low mitochondrial content and the limited availability of fatty acids in the
placenta [52]. However, immediately after birth, the infant heart switches rapidly to fatty
acid β-oxidation (FAO) [52,53], and this metabolic pathway generates the majority of ATP
(~40–60% of total ATP) throughout adulthood [30]. Compared to other substrates, FAO
generates the majority of ATP; however, as this process consumes the largest amount of
oxygen, fatty acids are considered the least efficient energy substrate [54].

Long-chain fatty acid (LCFA) uptake into the cytosol is mediated by the fatty acid
transport protein, CD36/FAT [54], and although the role of CD36 in cardiomyocyte prolif-
eration is unclear, CD36 knockdown in mouse endothelial cells (ECs) has been found to
prevent angiogenesis and vascular repair in response to hindlimb ischemia [55]. ECs play
important roles in establishing an intact vasculature and in guiding cardiomyocyte organi-
zation in response to injury [56], while angiogenesis is essential for heart regeneration, as it
restores blood flow to damaged myocardial tissue [57–59]. EC-specific inhibition of Notch
signalling has been shown to impair fatty acid transport, resulting in abnormalities of the
cardiac metabolome and vascular densities in adult mouse hearts [60]. In this study, genetic
ablation of RBP-Jκ (a core component of the Notch pathway) reduced LCFA transport to
the heart, resulting in a switch to glucose metabolism as the main source of energy, which,
in turn, promoted cardiac hypertrophy and HF. Indeed, several studies support Notch
signalling as a critical mediator of angiogenesis and cardiomyocyte proliferation [61,62],
but it is unclear whether this regenerative ability is regulated by cardiac metabolism.
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In the cytosol, LCFAs are esterified to fatty acyl CoAs by fatty acyl coA synthase
and the resulting acyl groups are transferred into the mitochondria for FAO [54]. Acyl
coA synthetase long-chain family member 1 (ACSL1) is a key rate-limiting enzyme which
regulates LCFA uptake rates by increasing esterification to form fatty acyl CoA [63,64]
(Figure 1). Interestingly, the expression of ACSL1 has been found to increase with age
while the expression of glucose metabolism-related enzymes (glucose-6-phosphate 1-
dehydrogenase, hexokinase 1, hexokinase 3, PKM) decrease with age [65]. These find-
ings allow for the speculation that increased FAO during ageing may be an important
suppressor of heart regeneration. In support, cardiac-specific knockdown of ACSL1 in
neonatal mice promoted cardiomyocyte proliferation even at 60 days of age as evidenced
by increased expression of cell proliferation markers [65]. Similarly, knockdown of ACSL1
in post-MI adult mice improved cardiac function by inducing cardiomyocyte proliferation.
Mechanistic studies have revealed that inhibition of ACSL1 mediates cell proliferation via
an Akt-FoxO1 axis, as suppression of this pathway decreased the expression of positive
cell cycle regulators, cyclin B1, cyclin D2 and cyclin-dependent kinase 1 [65]. While these
findings suggest a decrease in FAO is necessary for cardiomyocyte proliferation, other
studies have shown that increased FAO (mediated by ACSL1) improves re-endothelisation
after vessel injury. Furthermore, cyclic mechanical stretching of endothelial progenitor cells
(EPCs) enhances vascular adhesion and endothelial differentiation by activating ACSL1 to
increase FAO, while transplantation of ACSL1-overexpressing EPCs in rats with carotid
injury results in improved vascular homing and repair [66].

Peroxisome-proliferator-activated receptors (PPARs) are key regulators of FAO [67].
PPARα is a master ligand-activated transcriptional factor that coordinates the expression
of lipid metabolism genes, such as CD36 and mitochondrial FAO enzymes (e.g., carnitine
palmitoyltransferases, acyl-CoA dehydrogenases) [68] (Figure 1). Experimental evidence
suggests that PPARα plays a biphasic role in cell proliferation, as administration of the
PPARα agonist, GW7647, was initially found to stimulate cardiomyocyte proliferation in
infant mice at P4, but later promoted cardiomyocyte hypertrophy and binucleation, and
reduced cardiomyocyte proliferation rates at P5 [69]. These findings suggest PPARα may
have a more prominent role in the terminal differentiation of cardiomyocytes. Indeed,
increased expression of PPARα has been observed during the differentiation of mouse
embryonic stem cells into cardiomyocytes, while pharmacological inhibition of PPARα
prevented this process, as evidenced by a decreased expression of cardiac specific genes [70].

Collectively, these findings support a role for FAO in promoting metabolic maturation
in the adult heart with concurrent reduction in regenerative capacity [71,72]. It remains
controversial whether inhibition of FAO is sufficient to extend the regenerative window as
this may also delay cardiomyocyte maturation. Hence, the interplay between metabolic
transitions and cardiomyocyte maturation needs to be carefully considered as inhibition
of FAO at inopportune settings could result in adverse outcomes. In support, analysis of
endomyocardial biopsies from failing hearts has revealed a decrease in PPARA mRNA,
implying a decrease in FAO in the setting of HF [73]. Finally, recent findings suggest that nei-
ther GW7647 nor the FAO inhibitor, etomoxir, could promote cardiomyocyte proliferation
in post-MI mouse hearts [74].

2.3. Ketone Body Metabolism

Ketone bodies such as acetoacetate, β-hydroxybutyrate, and acetone accumulate in
the systemic circulation under conditions of prolonged fasting, insulin deprivation, and
extreme exercise [75–77], with recent evidence supporting an increased utilisation of ketones
in failing hearts [78]. The role of ketones in the developing heart is less clear. Comparative
proteomics analysis of cells from three stages of cardiac differentiation (iPSCs, cardiac
progenitor cells, and cardiomyocytes) has revealed ketogenic substrates are upregulated as
result of increased expression of ketogenic enzymes, 3-hydroxymethyl-3-methylglutaryl-
CoAlyase, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), and 3-hydroxybutyrate
dehydrogenase 1 [79]. In another multi-omics study, increased ketogenesis was found to
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occur in neonatal mouse hearts at P7 when compared to hearts at E18.5 [80]. Interestingly,
the expression of HMGCS2 (a rate-limiting enzyme of ketogenesis) gradually decreased
after weaning and its levels reached normal physiological levels by postnatal day 56.
Since the occurrence of early ketogenesis coincided with the regenerative window in
neonatal mouse hearts, it could be speculated that ketone body utilisation plays a role in
cardiomyocyte proliferation. In support of this idea, overexpression of HMGCS2 improved
cardiac function in post-MI mice by increasing the percentage of phospho-histone H3
(PHH3)+ (a cell proliferation marker) cardiomyocytes [81]. Furthermore, ketone body
oxidation was shown to enhance EC proliferation and angiogenesis in vitro and in mice
subjected to pressure overload [82]. Whether this enhanced angiogenic capacity of ECs
is sufficient to improve cardiac function remains to be validated as left ventricular (LV)
ejection fraction was not investigated in this study, while the LV anterior wall thickness
at end-diastole remained thickened even after ketogenic diet in the setting of pressure
overload. As the primary concern for promoting ketone body oxidation is the risk of
acidosis [83], future studies should investigate the safety range of circulating ketone bodies
to maximise their potential benefits in heart regeneration, whilst preventing adverse effects.

2.4. Amino Acid Metabolism

Although amino acids are one of the smallest contributors of ATP production (~2%
of total ATP) [84], they are intricately involved in several pathological conditions [30].
High circulating levels of the branched-chain amino acids (BCAAs), leucine, valine, and
isoleucine, are associated with insulin resistance, type 2 diabetes, coronary artery diseases,
and HF [85,86]. Interestingly, BCAAs were found to modulate liver regeneration and
function in patients who had undergone hepatectomy [87]. BCAAs and their metabolites
mediate cell growth, proliferation, and tumour progression by activating the mammalian
target of rapamycin complex 1 (mTORC1) pathway [88] (Figure 1). Leucine, in particular,
is a key stimulator of mTORC1-mediated cell growth through blockage of the mTORC1
inhibitor, sestrin 2 [89]. Given that mTORC1 is a mediator of cardiac hypertrophy [90],
BCAAs may have an undefined role in cardiomyocyte proliferation and growth.

Multi-omics analysis has revealed that glutamine is enriched during heart regen-
eration in zebrafish and in neonatal mice but reduced in adult mice which have lost
regenerative capacity [91]. This dynamic change in glutamine expression was found to
correlate with the regulation of mTORC1, which plays an important role in cell growth
and proliferation [92,93]. Interestingly, activation of the Wnt/β-catenin pathway in regen-
erating zebrafish hearts rescued the negative effects that mTORC1 inhibition exerted on
cardiomyocyte proliferation [91] (Figure 1). Given that the Wnt/β-catenin pathway is a
master regulator of cardiac development and cardiomyocyte terminal differentiation [94],
further studies are needed to tease out the interplay between Wnt/β-catenin signalling and
glutamine in cardiomyocyte proliferation [95].

In summary, the adult heart is incapable of repairing damaged tissue, which is, in
part, attributed to the switch in metabolic substrate utilisation after birth. Accumulating
evidence supports the possibility that multiple metabolic components are involved in
the regulation of cardiomyocyte proliferation. Indeed, conditions of high glycolysis and
reduced FAO have been proposed to promote heart regeneration, but the roles of ketone
body and amino acid metabolism in cardiomyocyte proliferation is controversial and
unclear. As such, future studies are needed to elucidate the dynamic interplay between
these metabolic pathways and the cell proliferation pathways which they regulate.

3. The Role of Mitochondria in Heart Regeneration

The heart, a perpetually active organ with substantial energy needs relies on a dense
and highly functional mitochondrial network to maintain energy requirements and over-
all performance [23,96]. However, the role of mitochondria in the heart extends beyond
energy production, as these dynamic organelles also orchestrate a range of cellular func-
tions, including signal transduction, calcium regulation, oxidative stress management,
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and apoptosis [97–99]. Recent findings have begun to shed light on the intricate link
between mitochondria metabolism and cardiovascular diseases [100–102]. This includes
understanding how early defects in mitochondrial oxidative phosphorylation manifest in
HF, and the pivotal role of mitochondrial metabolic impairment in MI-induced cardiac
damage [103–105].

The role of mitochondria has extended into the areas of cell fate determination and
development [106]. Crucial functions of mitochondria in stem cells have been highlighted
in several reports [107,108], indicating mitochondrial characteristics, such as morphology,
localization, abundance, and function, could serve as markers of pluripotency, underscoring
the multifaceted roles these organelles play in cardiac health and disease [106,109].

3.1. Oxidative Phosphorylation and Reactive Oxygen Species

Mitochondria are the primary sites of oxidative phosphorylation, a process that gener-
ates ATP with superior efficiency compared to glycolysis [110]. However, this increased
efficiency is linked with the endogenous generation of ROS as a by-product of ATP pro-
duction due to electron leakage [111,112]. Overproduction of ROS can lead to oxidative
DNA damage in cardiomyocytes, triggering a cell cycle checkpoint and arresting the cell
cycle [22,113]. Notably, mitochondrial dysfunction, such as when induced by mitochondrial
transcription factor A inactivation, has been shown to elevate ROS production, activate
the DNA damage response, and induce cardiomyocyte cell cycle arrest, eventually leading
to lethal cardiomyopathy [114]. Meanwhile, elevated ROS levels have also been linked
to disturbances in mitochondrial and antioxidant proteins, leading to cardiac hypertro-
phy [115]. On the contrary, when using microRNA or CRISPR/Cas9 technology to silence
key genes involved in the mitochondrial electron transport chain or tricarboxylic acid cycle,
a reduction in mitochondrial number was observed followed by a decrease in ROS and an
increase in cardiomyocyte proliferation [116,117]. These findings support the causal rela-
tionship between disturbed mitochondrial function and ROS production, which eventually
interferes with cardiomyocyte proliferation (Figure 2).

In heart diseases such as AMI, redox (reduction–oxidation) changes in the injured heart
may affect the proliferation and differentiation of cycling cardiomyocytes or progenitor
cells [118,119]. This indicates that ROS levels generally correlate with stem cell differen-
tiation, and increased oxidative stress post-cardiac injury could potentially induce the
terminal differentiation of glycolytic cardiac progenitor cells (CPCs) [120,121]. Furthermore,
cardiac hypoxia, a common consequence of cardiac injury, may play a crucial role in the
recruitment of cycling cells or their progeny to the injured site [122]. Ineffectively managed
ROS levels are also reported to be associated with cardiac ageing, cardiomyopathy, and a
decline in the CPC population, resulting in reduced cardiac cell turnover [123,124].

Given the critical roles of mitochondrial function and ROS production in cardiac health,
targeting these mitochondrial injuries with an emphasis on reducing oxidative damage
could offer a promising strategy to delay the progression of HF.
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Figure 2. Schematic illustrating the role of mitochondria in cardiac injury and regeneration. (Left) en-
vironmental stress, such as that caused by ischemia/reperfusion injury can lead to mitochondrial
dysfunction, resulting in ROS overproduction and dysregulation of mitochondrial dynamics, thereby
instigating DNA damage and suppressing cardiomyocyte proliferation. (Right) under hypoxic con-
ditions or during antioxidant treatments, cardiomyocytes can switch from oxidative metabolism to
glycolysis, potentially via the HIF-1α pathway, and undergo restoration of aberrant mitophagy and
mitochondria biogenesis to promote cell cycle re-entry. Abbreviations: ROS—reactive oxygen species;
HIF-1α—hypoxia inducible factor 1α.

3.2. Hypoxia Conditioning

The heart was initially recognised as the least regenerative organ, but this notion has
been significantly developed over the past few decades [125,126]. Accumulating evidence
suggests the existence of progenitor cells, such as c-kit+ cells, stem cell antigen-1+ cells,
side population (SP) cells, and cardio-sphere-derived cells, within the adult heart, albeit in
limited numbers [22,127–129]. These resident CPCs have demonstrated remarkable capa-
bilities for self-renewal and differentiation into multiple cardiovascular lineages, including
endothelial, smooth muscle, and myocardial cells, and this phenomenon is observable both
in vitro and in vivo [19,130].

Studies have shown that a hypoxic niche environment may regulate signalling path-
ways to sustain the dedifferentiation and survival of foetal cardiovascular progenitor
cells [131,132], whereas high oxygen concentrations coincide with the stagnation of car-
diomyocyte proliferation [133]. Moderate hypoxia (SaO2 75–85%) can also bolster cell
cycle activities in postnatal human cardiomyocytes [134]. Along these lines, the preserved
self-renewal and decreased mitochondrial ROS levels were further observed in murine
CPCs residing in hypoxic niches [135]. Moreover, intracellular ROS production was found



Int. J. Mol. Sci. 2023, 24, 10300 9 of 21

to be maintained at low levels in several resident CPCs in the adult heart to preserve their
quiescence and/or multipotency [119].

Long-term systemic hypoxemia could potentially reduce mitochondrial respiration
and consequent ROS production in adult cardiomyocytes, which may promote cardiomy-
ocyte re-entry into the cell cycle, thereby stimulating the proliferation of terminally dif-
ferentiated cardiomyocytes [119,136] (Figure 2). Interestingly, exercise such as treadmill
running have been shown to effectively reduce cardiomyocyte ROS accumulation and
induce mitochondrial uncoupling, which coincided with heart regeneration [133]. Similarly,
gradual exposure to severe systemic hypoxemia in mice resulted in the inhibition of oxida-
tive metabolism, decreased ROS production and oxidative DNA damage, and reactivation
of cardiomyocyte mitosis [137]. Besides ROS, other potential mechanisms through which
hypoxia attenuates cardiac stem cell apoptosis have been identified. For instance, low
oxygen tension has been shown to stabilize and activate several critical transcription factors
and signalling pathways, such as hypoxia inducible factor 1α (HIF-1α) and Yes-associated
protein (YAP), which, in turn, induced metabolic remodelling towards glycolysis to facili-
tate cardiomyocyte proliferation [138,139]. Importantly, HIF-1α and YAP control glycolysis
by regulating the expression of glycolytic enzymes, and deletion or downregulation of
these players has been shown to impair glucose uptake and glycolysis, which decreased
cardiomyocyte proliferation [138].

Hypoxia-induced proliferation has been shown to be sufficient for promoting heart
regeneration following MI [113]. Hypoxemia exposure following MI appears to induce
robust regeneration, reduce myocardial fibrosis, and improve LV systolic function [137]. Ad-
ditionally, a moderate level of hypoxia in combination with a mitochondrial ROS scavenger
reversed the hypertrophic growth of LV cardiomyocytes by inducing cell cycle re-entry
in terminally differentiated cardiomyocytes, thereby resulting in a substantial recovery of
cardiac function [112].

The therapeutic potential of hypoxia/antioxidant treatment extends beyond resident
CPCs. Hypoxia conditioning and antioxidant treatment can also benefit transplanted
cardiac stem/progenitor cells aimed at repairing infarcted hearts, as this approach is chal-
lenged by low survival rates of donor cells [140,141]. For instance, hypoxic preconditioning
of c-kit+ CPCs improves their survival and homing after engraftment into an infarcted
heart [142]. Similarly, overexpressing sulfiredoxin 1, reduces ROS generation, and mi-
tochondrial membrane potential, while enhancing the primary antioxidant systems and
increasing the migration, proliferation, and cardiac differentiation of CPCs [143]. Another
antioxidant, MHY-1684, has been shown to enhance the angiogenic capacity of CPCs in
the setting of ROS-related diabetic cardiomyopathy by decreasing hyperglycemia-induced
mitochondrial ROS generation and attenuating mitochondrial fragmentation. These find-
ings indicate a potential therapeutic role for antioxidants in modulating mitochondrial
dynamics and function in response to oxidative stress [142].

3.3. Mitochondrial Quality Control

Mitochondrial dynamics, encompassing biogenesis, fusion, fission, and mitophagy are
crucial for regulating mitochondrial morphology and maintaining mitochondrial health,
especially for cellular responses to metabolic cues or environmental stresses [144,145].
Abnormal mitochondrial dynamics such as excessive mitochondrial fragmentation and im-
paired fusion have been implicated as drivers of HF and cardiac ischemia/reperfusion (IRI)
injury [146,147], while maintenance of normal mitochondrial structure and function could
facilitate heart regeneration [148]. There is growing evidence suggesting that mitochondrial
quality control in cardiomyocytes can enhance cardiac function, save cardiomyocytes from
death, and prevent worsening of cardiovascular diseases under external environmental
stress [144,149,150] (Figure 2).

Studies have shown that the differentiation process of c-kit+ progenitor cells involves
mitochondrial fragmentation, which is controlled by the calcineurin-Drp1 pathway [151],
while an environmental stressor such as high glucose milieu can alter mitochondrial dynam-
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ics and increase the expression of fission-related proteins such as Fis1 and Drp1, leading to
a significant decrease in the tube-forming ability of CPCs [152]. Interestingly, pharmacolog-
ical inhibition of mitochondrial fragmentation can help to maintain the undifferentiated
state of c-kit+ progenitor cells. Mitochondrial division inhibitor 1 (mdivi-1), which inhibits
Drp1-dependent mitochondrial fission, has shown promise in enhancing the survival of
human W8B2+ cardiac stem cells, but surprisingly, the cytoprotective effects of mdivi-1
in simulated IRI models does not appear to be governed by changes in mitochondrial
morphology, membrane potential, or ROS production [153].

The balance of mitophagy and mitochondrial biogenesis is of great importance in car-
diomyocyte proliferation and differentiation. Mitophagy is induced during differentiation
of adult CPCs and is mediated by mitophagy receptors [154]. Disrupting BNIP3L- and
FUNDC1-mediated mitophagy during differentiation leads to sustained mitochondrial fis-
sion and the formation of dysfunctional mitochondria, resulting in increased susceptibility
to cell death and failure to survive in an infarcted heart [155]. In a hypoxia/reperfusion
injury cellular model, transfection of miR-494-3p mimic (inhibitor of PGC1α) improved
cardiomyocyte proliferation activity by inhibiting mitochondrial biogenesis, thereby pre-
venting the occurrence of cardiomyocyte apoptosis and autophagy [156].

In summary, the intricate role of mitochondria in cardiac regeneration is woven
into multiple facets of cellular processes. Mitochondrial oxidative phosphorylation and
ROS play pivotal roles in powering the energy-demanding process of cardiomyocyte
proliferation, whereas mitochondrial dynamics and mitophagy are crucial in upholding
mitochondrial quality control, thereby, mutually facilitating the regeneration of robust
cardiac cells. Enhancing our comprehension of the mechanisms underlying mitochondrial
dysfunction and identifying innovative ways to bolster mitochondrial function and foster
heart regeneration could pave the way for novel therapeutic strategies.

4. Potential Strategies to Promote Heart Regeneration through Metabolic Modulation

In the past decade, studies have focused on cell-based therapies to promote heart
regeneration by administrating stem cells into injured hearts [157]. Several clinical trials
have been conducted which evaluated the direct intracoronary or intramyocardial delivery
of multiple sources of adult stem cells (e.g., bone marrow cells and adipose tissue derived
cells) into the heart to regenerate the damaged myocardium [158,159]. However, there is
no approved phase III clinical trial for AMI patients, and the results from smaller trials are
inconsistent in terms of the efficacy and potential risk of administration routes [158,159].
As such, there is an unmet need to discover effective and safe therapies to promote car-
diomyocyte proliferation and heart regeneration. In this section, we focus on potential
targets that can modulate cardiac metabolism to promote heart regeneration (summarised
in Table 1).

Table 1. List of studies investigating the effects of hormones as mediators of cardiomyocyte prolifera-
tion and cardiac metabolism.

Hormone Treatment Animal/Cellular
Model

Effects on
Cardiomyocyte

Proliferation

Proliferation
Markers

Evaluated

Effects on
Cardiac

Metabolism
References

Glucocorticoid

Cardiomyocyte-
specific knockout
of glucocorticoid

receptors

Neonatal
C57BL/6 mice (P1) Promoted

Ki67; BrdU;
Aurora B;

Nucleation

Decreased fatty
acid oxidation;

increased
glycolysis

[160]

Dexamethasone

Pregnant C57BL/6J
mice (E13.5 or E16.5)

Failed to induce
fatty acid
oxidation [161]

Pregnant C57BL/6J
mice (E17.5)

Decreased fatty
acid oxidation

Neonatal Sprague
Dawley rats (P2) Inhibited Ki67; Nucleation [162]
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Table 1. Cont.

Hormone Treatment Animal/Cellular
Model

Effects on
Cardiomyocyte

Proliferation

Proliferation
Markers

Evaluated

Effects on
Cardiac

Metabolism
References

Thyroid
hormones

T3

Ovine (Ovis aries)
foetal cardiomyocytes
(~135 days gestation)

Inhibited BrdU [163]

Neonatal
cardiomyocytes from
C57BL/6 mice (P2-P4)

Increased PHH3; EdU Increased ROS
production [164]

Neonatal C57BL/6
mice (P6) Increased PHH3; EdU [165]

Thyroidectomy Neonatal sheep (P30)

Reduced
mitochondrial

maturation and
biogenesis

[166]

Myh6-Cre;
ThraDN/+

Neonatal C57BL/6
mice (P14) Increased

Ki67; EdU;
Aurora B;

Nucleation

Downregulation
of mitochondrial

genes
[167]

Myh6-Cre;
ThraDN/+

Adult C57BL/6 mice
post-IRI injury Increased

Ki67; EdU;
Aurora B;

Nucleation

Abbreviation: Myh6-Cre;ThraDN/+—cardiomyocyte-specific overexpression of dominant negative thyroid hormone
receptor alpha; IRI—ischemia/reperfusion injury; PHH3—phospho-histone H3.

4.1. Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) are non-coding transcripts of >200 nucleotides
in length and which are abundantly expressed in the cardiovascular system where they
regulate cardiac development and disease [168,169]. LncRNAs are emerging as regulators
of glucose and fatty acid metabolism, but only a few cardiac-specific lncRNAs have been
investigated to date [170,171]. For instance, the cardiomyocyte-enriched lncRNA, LncHrt,
has been shown to preserve cardiac metabolism and improve cardiac function in post-MI
adult mice by activating the LKB1–AMPK pathway via sirtuin 2 (Sirt2) [172]. Importantly,
lncRNAs have been found to regulate cardiomyocyte proliferation, angiogenesis, and heart
regeneration by mediating transcriptional and epigenetic remodelling in the heart [173].
Bioinformatic assessment of neonatal mouse hearts has revealed differentially expressed
lncRNAs at P1 and P7 that were associated with cardiac metabolism and cell prolifera-
tion [174]. Moreover, overexpression of Sirt1 antisense lncRNA in adult mouse hearts led to
the stabilisation of Sirt1 mRNA which promoted an increase in ki67+ and PHH3+ cardiomy-
ocytes [175]. Accumulating evidence support Sirt1 activity in the positive regulation of
PPARα and PGC1α which promotes fatty acid metabolism in phenylephrine-induced car-
diomyocytes hypertrophy in neonatal rats [176]. These findings further highlight the contro-
versies regarding the inhibition of FAO to promote cardiomyocyte proliferation [65,66,71].

4.2. Hormones

Glucocorticoids are steroid hormones released by adrenal glands in response to stress
and play important roles in cardiovascular diseases and in the maturation of foetal cardiac
function [177–179]. In neonatal mouse hearts, physiological exposure to glucocorticoids
was found to reduce cardiomyocyte proliferation, whereas ablation of glucocorticoid recep-
tors extended the time window of cell cycle exit, which coincided with increased expression
of glycolytic genes [160]. Consistently, dexamethasone (a potent glucocorticoid) inhibited
the proliferation of isolated cardiomyocytes from newborn P2 rats, as evidenced by an
increased number of binucleated cardiomyocytes, consisting of reduced cyclin D2 expres-
sion [162]. It could be speculated that the mechanism by which glucocorticoids suppress
cardiomyocyte proliferation is by modulating FAO, as dexamethasone was shown to induce
expression of FAO-related genes in mouse foetal cardiomyocytes [161]. Collectively, these
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findings suggest that inhibition of glucocorticoid signalling may promote cardiomyocyte
proliferation in neonatal mice, but whether this approach can exert similar effects in adult
mammalian hearts warrants further investigation; however, caution is advised when at-
tempting to suppress glucocorticoid signalling, as this pathway has been shown to protect
cardiomyocytes from cell death [180].

In higher vertebrates, thyroid hormones are secreted by the thyroid gland and exist
as two active forms: triiodothyronine (T3) and thyroxine (T4) [181]. The heart is a tar-
get organ of thyroid hormones and recent studies have shown this hormone regulates
cardiac metabolism through multiple mechanisms [182]. An increase in circulating lev-
els of thyroid hormones have been observed after birth where it triggers cardiomyocyte
cell cycle arrest and suppresses regenerative potential [167]. This has led to the specula-
tion that changes in the levels of thyroid hormones could mediate the interplay between
metabolism and cell cycle arrest [183]. Consistent with an anti-proliferative role, T3 was
found to decrease BrdU uptake in ovine foetal cardiomyocytes by reducing cyclin D1
expression [163]. Similarly, a novel interaction between adrenergic-thyroid hormone in
postnatal mice led to an increase in metabolic rates which may impair cardiomyocyte
division and limit proliferation [184]. While these findings suggest that reduced thyroid
levels promote cardiomyocyte proliferation, it will be challenging to translate this approach
to clinical settings as decreased levels of thyroid hormones in the adult heart has been
associated with an increased risk of cardiovascular diseases [181]. Conflicting findings
have also been reported, whereby T3 administration in neonatal mouse hearts stimulated
cardiomyocyte proliferation by inducing mitochondrial ROS production, which, in turn,
activated JNK2α2-mediated, IGF1-dependent Erk1/2 proliferative pathways [164]. This
finding conflicts with the ROS paradigm where increased ROS production is considered
a key suppressor of cardiomyocyte proliferation [22,112,114,143]. In other studies, inhibi-
tion of DUSP5 (the nuclear phospho-Erk1/2-specific phosphatase) increased T3-activited
phospho-Erk1/2 levels, resulting in ventricular cardiomyocyte proliferation of ~15% in
young adult mice [165]. Though T3 has been shown to induce cardiomyocyte proliferation
in both neonatal and young adult mice, caution is advised when considering this approach
as a therapeutic modality to repair the damaged heart, as high-dose T4 administration
has been found to stimulate hypertrophy of existing cardiomyocyte, rather than promote
hyperplastic growth [185]. Collectively, these findings suggest that modulation of thyroid
hormones can mediate cardiomyocyte proliferation, but it is important to identify the
time windows when this hormone should be suppressed or elevated to promote effective
regeneration.

To summarise, lncRNAs and hormones are promising targets that could potentially
promote cardiomyocyte proliferation via direct and/or indirect modulation of cardiac
metabolism. A comprehensive understanding of their mechanistic properties in modulating
epigenetics and endogenous influences is key to their further development as therapeutic
modalities for repairing the damaged heart in the setting of AMI.

5. Conclusions and Future Directions

HF is, in most cases, a progressive condition with a poor prognosis that imposes a
global economic burden of ~$108 billion per year. IHD is the most frequent underlying
cause of HF, as an ischemic event, can induce substantial cardiomyocyte death which
precipitates adverse remodelling and cardiac dysfunction [1,2]. For decades, a vast number
of studies have explored the possibility of transplanting cardiac and non-cardiac cells into
the damaged myocardium with the aim of restoring cardiac function, either through direct
action of the donor cells or via paracrine mechanisms [186]. However, the outcomes of
these studies have been controversial, with large clinical studies reporting no obvious
improvements in cardiac function following cell transplantation [187]. It would be ideal
if we had sufficient knowledge of how to re-activate endogenous pathways that regulate
the cell cycle in adult cardiomyocytes, given that the heart is one of the least regenerative
organs in the human body [12,13]. Findings from rodents do support the potential for
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heart regeneration during the early stages after birth [15]; however, the extremely narrow
regenerative window in larger mammals [16,17] calls into question whether cardiomyocyte
proliferation can be considered a realistic therapeutic option, whilst underscoring the
differences in regenerative capacity between species. Future studies in mammals that are
more closely related to humans could help to provide novel insight on re-activating the cell
cycle in the adult heart.

Changes in cardiac metabolism underlie the pathophysiology of several cardiac dis-
eases [20,30], yet its role in heart regeneration has been barely explored, which is surprising,
given that shifts in substrate utilisation before and after birth coincide with the terminal
differentiation and reduced proliferation of cardiomyocytes [20,21]. Experimental studies
do suggest that reduced oxidative metabolism favours cardiomyocyte re-entry into the cell
cycle [137], but this raises the question of why heart regeneration is not initiated in the
setting of HF, given that oxidative metabolism is already dampened [188]. Most likely, there
are fundamental differences between the metabolism-proliferation axis in foetal and failing
hearts, despite both adapting (or maladapting) to a reduced oxidative metabolism profile,
and future studies should focus on these differences to elucidate metabolic pathways that
can be potentially modulated without predisposing a pathological outcome.

Activation of the renin–angiotensin system (RAS) and increased production of the
main effector, angiotensin II (Ang II), are instrumental in cardiac remodelling by promoting
myofibroblast proliferation and matrix synthesis. Increased expression of angiotensin-
converting enzyme has been observed in cardiomyocytes adjacent to the infarct scar and
in nonmyocytes within the scarred tissue in MI patients [189], suggesting that RAS exerts
pleiotropic effects on several cell types. Moreover, an increased expression of Ang II receptor
type 1 (AT1) has been observed in infarcted rat hearts with increased Ang II binding affinity
in the endothelium and myofibers [190]. In cardiomyocytes, Ang II is a potent inducer of
hypertrophy, with studies also supporting a pathogenic role in metabolic perturbations.
For instance, acute exposure of rat neonatal cardiomyocytes to Ang II was found to result
in increased glucose uptake [191], while prolonged exposure of adult rat cardiomyocytes
elicited downregulation of FAO pathways [192]. Importantly, these metabolic changes were
associated with cardiomyocyte hypertrophy, rather than hyperplasia. RAS playing a role in
cardiomyocyte proliferation is unlikely given that its inhibition was not found to mediate
cardiomyocyte proliferation post-MI, but did increase vascular densities in the border
zone [193]. Consistently, upregulation of AT1 was found to decrease microvessel densities
in the setting of MI, while its inhibition promoted angiogenesis [194,195]. Conversely, Ang
II can trigger VEGF synthesis in mesenchymal stem cells (MSCs) and injection of Ang
II-treated MSCs into the border zone of infarcted hearts led to substantial improvements in
cardiac function and reductions in infarct size and fibrosis [196].

Finally, if regeneration were to occur, would the increase in cardiomyocyte (and or
endothelial cell) numbers be sufficient to provide meaningful improvements in cardiac
function? A typical MI can cause the loss of ~1 billion cardiomyocytes in the adult heart, so
the regeneration of this many cardiomyocytes will require a comprehensive understand-
ing of its cell cycle arrest and re-entry pathways. To conclude, the targeting of cardiac
metabolism to promote heart regeneration is an attractive concept, but one that comes
with many future challenges. Nevertheless, the use of multi-omics platforms coupled with
human samples and preclinical models could help to guide this area of research towards
identifying suitable targets which can be adopted into clinical practice to improve health
outcomes in patients with IHD.
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