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Summary
Background HFrEF is a heterogenous condition with high mortality. We used serial assessments of 4210 circulating
proteins to identify distinct novel protein-based HFrEF subphenotypes and to investigate underlying dynamic
biological mechanisms. Herewith we aimed to gain pathophysiological insights and fuel opportunities for
personalised treatment.

Methods In 382 patients, we performed trimonthly blood sampling during a median follow-up of 2.1 [IQR:1.1–2.6]
years. We selected all baseline samples and two samples closest to the primary endpoint (PEP; composite of
cardiovascular mortality, HF hospitalization, LVAD implantation, and heart transplantation) or censoring, and
applied an aptamer-based multiplex proteomic approach. Using unsupervised machine learning methods, we
derived clusters from 4210 repeatedly measured proteomic biomarkers. Sets of proteins that drove cluster allocation
were analysed via an enrichment analysis. Differences in clinical characteristics and PEP occurrence were evaluated.

Findings We identified four subphenotypes with different protein profiles, prognosis and clinical characteristics,
including age (median [IQR] for subphenotypes 1–4, respectively:70 [64, 76], 68 [60, 79], 57 [47, 65], 59 [56, 66]years),
EF (30 [26, 36], 26 [20, 38], 26 [22, 32], 33 [28, 37]%), and chronic renal failure (45%, 65%, 36%, 37%). Subphenotype
allocation was driven by subsets of proteins associated with various biological functions, such as oxidative stress,
inflammation and extracellular matrix organisation. Clinical characteristics of the subphenotypes were aligned with
these associations. Subphenotypes 2 and 3 had the worst prognosis compared to subphenotype 1 (adjHR (95%
CI):3.43 (1.76–6.69), and 2.88 (1.37–6.03), respectively).

Interpretation Four circulating-protein based subphenotypes are present in HFrEF, which are driven by varying
combinations of protein subsets, and have different clinical characteristics and prognosis.
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Research in context

Evidence before this study
HFrEF (Heart Failure with reduced Ejection Fraction), as a
heterogeneous condition with a high mortality rate, can
benefit greatly from subphenotyping efforts. Proteomic blood
biomarkers carry large potential for phenotyping studies in
the cardiovascular domain, as shown in studies in HFpEF
(Heart Failure with preserved Ejection Fraction) patients.

Added value of this study
In this study, we identify four distinct HFrEF phenotypes
based on 4210 repeatedly measured proteomic biomarkers.
These subphenotypes show differing protein profiles, clinical
characteristics and prognosis. The subphenotypes are driven
by subsets of proteins that are associated with various
pathophysiological pathways. Novel aspects of this study
include the repeated assessments of the proteomic panel, in
order to capture dynamic biological mechanisms; and the

extensive set of proteins used. Our study demonstrates that
repeated proteomics measurements improve the accuracy of
subphenotypes in relation to prognosis compared to single
baseline measurements. Moreover, the large protein panel
provides a comprehensive assessment of the processes
involved in heart failure, and gives us the opportunity to
associate specific biological pathways and processes with the
subphenotypes.

Implications of all the available evidence
Repeated assessment of extensive biomarker panels can
contribute pathophysiological insights for complex diagnoses
like HFrEF. Future studies should further investigate the role
of these biological mechanisms in HFrEF and further explore
prospects of personalized treatment decisions based on
subphenotypes.
Introduction
Heart Failure (HF) entails high mortality rates, and its
prevalence is projected to increase in Western countries,
among others, because of the ageing of the population.1,2

The causes and factors contributing to HF show sub-
stantial heterogeneity between patients.3 Yet, our un-
derstanding of this underlying pathophysiology, which
could enhance current treatments, remains incomplete.4

This has spurred an interest in identifying sub-
phenotypes of HF based on clinical, echocardiographic
or hemodynamic characteristics.5–9 Such subphenotypes
may provide further insights into underlying factors and
mechanisms.

Recently, promising advancements have been made
by identifying HF subphenotypes based on blood bio-
markers, such as circulating proteins. Circulating pro-
teins like NT-proBNP, ST2 and GDF-15 have shown to
carry value for the prediction of cardiovascular events in
HF patients.10 Using such biomarkers for sub-
phenotyping has the advantage that these biomarkers
may contain information about the patient’s disease
state that is not yet clinically apparent. Accordingly,
patients may show different treatment response based
on their biomarker profile.11 Recent studies on this topic
in HF patients with preserved ejection fraction (HFpEF)
have identified subphenotypes with varying clinical
characteristics and prognosis, using 41512 and 36313

proteomic biomarkers. Studies like these in patients
with heart failure with reduced ejection fraction
(HFrEF) are scarce and have focused on clinical char-
acteristics or a limited number of biomarkers.3,11

While the results of these previous studies are
promising, several aspects warrant further investigation.
First, incorporating larger numbers of circulating pro-
teins could provide more comprehensive insights into
the underlying mechanisms of HF, incremental to those
provided by the biomarkers commonly investigated in
cardiovascular studies. Second, by incorporating
repeated proteomic measurements, temporal trends of
the biomarker levels could be taken into account, which
may allow for a better representation of the dynamic
nature of HF.

Therefore, in this study, we considered repeated
measurements of 4210 proteomic biomarkers in 382
HFrEF patients and conducted a cluster analysis on
temporal proteomic patterns to identify HFrEF sub-
phenotypes. Subsequently, we examined clinical char-
acteristics of these subphenotypes, as well as their
associations with adverse clinical events. Moreover, we
used pathway analysis to further explore the proteomic
www.thelancet.com Vol 93 July, 2023

https://clinicaltrials.gov/ct2/show/NCT01851538
https://clinicaltrials.gov/ct2/show/NCT01851538
http://creativecommons.org/licenses/by/4.0/
www.thelancet.com/digital-health


Articles
profiles of the subphenotypes and the underlying dis-
ease mechanisms.
Methods
Study population and study design
The investigation was performed within the Serial
Biomarker Measurements and New Echocardiographic
Techniques in Chronic Heart Failure Patients Result in
Tailored Prediction of Prognosis (Bio-SHiFT) study,
conducted in the Erasmus MC, Rotterdam, and North-
west Clinics, Alkmaar, Netherlands. This was a pro-
spective cohort study of stable patients suffering from
chronic heart failure (CHF).14 Patients were recruited
during regular outpatient visits and included if they
were 18 years or older, able to understand and sign the
informed consent form, if they were diagnosed with
CHF ≥3 months ago according to the guidelines of the
European Society of Cardiology,15,16 and if they had not
been hospitalized for HF less than 3 months prior to
inclusion. Information about the patients was recorded
at baseline and at predefined follow-up visits, which
were scheduled every 3 (±1) months. These visits
included short medical examinations, collection of blood
samples, and documentation of adverse cardiovascular
events since the last visit. A description of the sample
size estimation for the Bio-SHiFT study is provided in
the supplemental material. A total of 398 CHF patients
were enrolled between August 2011 and January 2018.
This investigation concerns the 382 patients with
HFrEF.

Ethics statement
The study was approved by the medical ethics commit-
tee of the Erasmus Medical Center in Rotterdam (MEC-
2011-029) and complied with the Declaration of
Helsinki. All included patients provided written in-
formed consent. The first and last authors had full ac-
cess to the data of this study and take responsibility for
its integrity and analysis.

Clinical assessment at baseline
Every patient was evaluated at baseline by a research
physician or research nurse, who performed a physical
examination and recorded HF-related symptoms and
NYHA class. Medical history, HF aetiology, left ven-
tricular ejection fraction (EF), cardiovascular risk fac-
tors, and medication use were retrieved from hospital
records.

Outcome definitions
The study endpoints were determined by a clinical event
committee consisting of three physicians, according to
pre-defined event definitions; endpoints were deter-
mined based on hospital records and discharge letters,
and without knowledge of the proteomic measure-
ments. Any ambiguities were discussed by the
www.thelancet.com Vol 93 July, 2023
physicians until consensus was reached. In patients
with multiple endpoints, only the first one was consid-
ered for analysis. The primary endpoint (PEP) was pre-
defined as the composite of cardiovascular death, heart
transplantation, LVAD implantation, and hospitalization
for acute or worsened HF. Patients were considered
hospitalized for acute or worsened HF when hospital-
ized for an exacerbation of HF symptoms, together with
two of the following conditions: BNP or NT-proBNP
exceeding three times the normal upper limit, signs of
worsening HF, like pulmonary rales, raised jugular
venous pressure or peripheral edema, increased dose or
intravenous administration of diuretics, or administra-
tion of positive inotropic agents.

Proteomic measurements
Blood samples were collected at baseline and at
trimonthly intervals thereafter. Blood samples used for
this investigation included samples drawn at baseline,
as well as the last two samples drawn before a PEP or
the last two samples before censoring. Previous in-
vestigations in this cohort using all trimonthly samples
have shown that the levels of several plasma and urine
biomarkers change in the months before adverse events
occur.14,17 By using the first and the last two samples, we
capture these biomarker changes while minimizing the
number of measurements. Blood samples were pro-
cessed within 2 h after collection, after which they were
stored at −80 ◦C.

We performed the proteomic analyses using 55 μL of
EDTA plasma, using the aptamer-based proteomic
SOMAscan platform.18 In total, 5284 aptamers were
applied in the samples, of which 300 aptamers with non-
human or not validated targets were subsequently
excluded. Furthermore, when aptamers targeted the
same protein, those with the highest binding affinity
were kept, while the rest were excluded. This procedure
left us with 4210 aptamers corresponding to an equal
number of proteomic biomarkers. Additional informa-
tion is provided in the Supplemental methods and
Supplemental Table S1.

Statistical analysis
Subphenotypes in the patient population were explored
using a cluster analysis. We consecutively performed the
cluster analyses on the baseline proteomics measure-
ments and intercept and slope coefficients from linear
mixed effect models (LME), representing the full tra-
jectories of the proteins. Full details on the LME models
and cluster analysis are provided in the supplement.

The biomarkers were log-transformed and stan-
dardized to Z-scores. Next, the dimensions of the
biomarker profiles were reduced via the Uniform
Manifold Approximation and Projection (UMAP)
method. The optimal number of clusters was assessed
by applying UMAP and the NbClust R-package, which
uses an ensemble of measures to select the optimal
3

www.thelancet.com/digital-health


Articles

4

number of clusters, on 100 bootstrap resampled data-
sets. The most common numbers of clusters were
evaluated on cluster stability and clinical significance.
Finally, the patients were assigned to different clusters
via the k-means algorithm. Internal validity was
assessed by investigating the stability of the cluster
allocation under the addition of random noise.

Differences in proteins between the subphenotypes
were illustrated via heatmaps and quantified using
Kruskal–Wallis tests. Differences in the clinical charac-
teristics were investigated using Kruskal–Wallis tests,
chi-squared tests, or Fisher exact tests where appro-
priate. Differences in the hazard of PEP were investi-
gated via Cox proportional hazard regressions, using
four levels of correction: 1: univariate, 2: corrected for
age, sex and eGFR (CKD-EPI), 3: corrected for all
available clinical variables showing significant associa-
tions with the PEP according to Kruskal–Wallis tests
after correction for multiple testing, with age, sex and
eGFR (CKD-EPI) forced in the model, and 4: corrected
for the variables from model 3 and NT-proBNP levels.
Model 4 was included to make inferences on the added
value of our subphenotypes over NT-proBNP, which is
used in clinical practice, however caution is required
when interpreting its results as clearly, subphenotypes
were based on the proteomics measurements, which
also included NT-proBNP. We therefore base our main
inferences around the results of Model 3. C-indexes
were internally validated using Harrell’s bias correction.

The proteins were subsequently assigned into sub-
sets containing similar proteins using k-means, with the
optimal number of clusters chosen by NbClust. This
was done separately for the slopes and intercepts. Pro-
tein subsets of interest were analysed using the Top-
pGene Suite19 with an enrichment analysis to identify
associated diseases and biological processes, using the
complete set of 4210 proteins as the reference. The re-
sults from this enrichment analysis were visualised us-
ing REVIGO.20

R version 4.0.3 was used for all analyses, and two-
sided p-values <0.05 were considered statistically
significant. An overview of the full methodology is dis-
played in Fig. 1.

Role of the funding source
Funders were not involved in study design; in the col-
lection, analysis and interpretation of data; in the wri-
ting of the report; or in the decision to submit the article
for publication.
Results
Baseline characteristics
Baseline characteristics are shown in Table 1. The me-
dian (IQR) age was 64 (56–72), 72.8% were male and
72.3% of the patients were in NYHA class I or II. The
median (IQR) duration of HF at inclusion was 4.2 (0.9–
4.9) days. Measured at baseline, the median (IQR) NT-
proBNP was 133 (46–274) pmol/L, median (IQR) hs-
troponin T was 18 (9–33) ng/L and median (IQR) CRP
was 2.2 (0.9–4.9) mg/L.

Cluster analysis
In the main text, we focus on the cluster analysis per-
formed using the estimated intercept and slope co-
efficients. Results of cluster analyses on baseline,
second and final proteomics measurements are pro-
vided in the supplementary material. Aggregated re-
sults from our bootstrap analysis to find the optimal
number of clusters can be found in Supplemental
Fig. S1. Either two, three or four clusters seemed to
fit the data best. Fitting three clusters resulted in sub-
optimal cluster stability. Fitting four clusters led to
subphenotypes that showed more diversity in clinical
characteristics and biomarker profiles than fitting two
clusters. Hence, four clusters was chosen as the best
solution for our study. The Jaccard similarity values
from the stability analysis showed that all four clusters
were stable (cluster 1: 0.83, 2: 0.77, 3: 0.92, 4: 0.89).
Fig. 2 illustrates the distribution of protein values
across the clusters using a heatmap.

Cluster characteristics
Baseline characteristics per cluster are presented in
Table 1. Patients with subphenotypes 1 and 2 were the
two oldest groups and more often showed hypertensive
aetiology of HF, while patients with subphenotypes 3
and 4 were youngest and more frequently showed
(dilated) cardiomyopathy. Subphenotype 2 had lower
systolic blood pressure (mean subphenotype 1 - mean
subphenotype 2 (95%CI): SBP1-SBP2: 9.91 (4.09–15.73)
mmHg) and subphenotype 3 lower systolic blood pres-
sure and EF than subphenotype 1 (SBP1-SBP3: 15.73
(10.09–21.36) mmHg; EF1-EF3: 4.60 (1.54–7.66)%).
Subphenotype 2 showed the highest median levels of
NT-proBNP, hs-troponin T and CRP at baseline, the
lowest percentage of patients with NYHA class I or II,
the longest median duration of HF and these patients
most often had a history of chronic renal failure or
diabetes mellitus. Subphenotype 4 had the lowest me-
dian levels of CRP and the highest percentage of pa-
tients with NYHA class I or II.

Associations between clusters and clinical outcome
Median follow-up was 2.06 (IQR: [1.10.2.57]) years. In
total, 114 patients experienced a PEP. Supplemental
Table S2 displays the clinical characteristics of patients
with and without a PEP. Age, sex, SBP, duration of HF,
NYHA class, history of atrial fibrillation, other
arrhythmia, and chronic renal failure differed signifi-
cantly between patients with and without a PEP. Fig. 3
shows a Kaplan–Meier plot illustrating the differences
in prognosis for the subphenotypes, and Fig. 4 displays
the results of the univariate and adjusted Cox
www.thelancet.com Vol 93 July, 2023
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Fig. 1: Overview of methods and the subphenotypes that were obtained. HFrEF = Heart Failure with reduced Ejection fraction, LME = Linear
Mixed Effects, UMAP = Uniform Manifold Approximation and Projection, EF = Ejection Fraction, SBP = Systolic Blood Pressure, HTN= Hy-
pertension, AF = Atrial fibrillation.

Articles
proportional hazard models. Adjusted for aforemen-
tioned variables, compared to subphenotype 1, sub-
phenotypes 2 and 3 had the worst outcomes (HR (95%
CI): cluster 2: 3.43 (1.76–6.69), cluster 3: 2.88
(1.37–6.03)). Subphenotype 4 did not show a significant
association with outcome compared to subphenotype 1.
Of note is that this subphenotype 4 consisted of only 43
patients, with only three events. The optimism corrected
C-statistic for this model was 0.73.

Proteins associated with cluster membership
The distribution of protein values suggested that cluster
allocation was driven by highly correlated groups of
biomarkers. Using a combination of k-means and
NbClust to identify relevant subsets of biomarkers,
separately for the intercept and slope parameters,
www.thelancet.com Vol 93 July, 2023
resulted in the partitioning for the intercept and slope
values of the proteins as displayed in Fig. 2.

For the intercepts, four subsets were deemed
optimal; they are denoted with the letters A, B, C and D.
Subset A seemed most important for cluster allocation
with 99.7% (1051/1054) of proteins significantly asso-
ciated with the estimated subphenotypes after correction
for multiple testing. This was followed by subsets B and
D, with respectively 68.6% (615/897) and 57.8% (372/
643), and finally subset C with 19.6% (317/1615). The
top 10 proteins most associated with the subphenotypes
per subset are displayed in Supplemental Table S3.
Protein levels in subsets A and B were highest in sub-
phenotypes 3 and 4 and lowest in subphenotype 1.
Protein levels in subset D were highest in
subphenotype 2.
5
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Characteristic Overall, N = 382a 1, N = 90a 2, N = 121a 3, N = 128a 4, N = 43a p-valueb

Demographics

Age at baseline visit (years) 64 (56, 72) 70 (64, 76) 68 (60, 79) 57 (47, 65) 59 (56, 66) <0.001

Men 278 (73%) 65 (72%) 88 (73%) 91 (71%) 34 (79%) 0.8

Ethnicity: Caucasian 351 (93%) 88 (99%) 110 (92%) 112 (88%) 41 (98%) 0.005

Features of HF

Duration (years) 4.2 (1.6, 9.5) 2.7 (0.8, 6.5) 5.6 (2.8, 10.8) 4.2 (1.4, 10.3) 3.4 (1.8, 6.5) 0.005

NYHA class I or II 276 (73%) 68 (76%) 71 (59%) 101 (80%) 36 (84%) <0.001

Systolic ejection fraction (%) 30 (23, 36) 30 (26, 36) 26 (20, 38) 26 (22, 32) 33 (28, 37) 0.009

Clinical characteristics

BMI (kg/m2) 26.5 (24.0, 30.1) 26.0 (24.3, 28.6) 25.9 (23.4, 29.3) 26.9 (24.3, 30.6) 28.9 (24.8, 31.3) 0.1

eGFR CKD-EPI (mL/min/1.73m2) 58 (42, 77) 56 (44, 73) 53 (38, 73) 68 (55, 85) 74 (54, 87) 0.002

Systolic blood pressure (mmHg) 114 (100, 130) 124 (108, 138) 112 (100, 128) 110 (94, 120) 120 (110, 129) <0.001

Diastolic blood pressure (mmHg) 70 (60, 78) 74 (68, 81) 68 (60, 76) 70 (60, 75) 70 (65, 80) <0.001

Biomarker level

Nt-proBNP (pmol/L) 133 (46, 274) 94 (46, 204) 252 (156, 458) 71 (20, 169) 81 (27, 163) <0.001

Hs-Troponin T (ng/L) 18 (9, 33) 16 (10, 26) 28 (17, 44) 10 (7, 23) 10 (8, 15) <0.001

CRP (mg/L) 2.2 (0.9, 4.9) 1.8 (0.6, 3.4) 3.1 (1.3, 6.7) 3.0 (1.3, 5.5) 1.3 (0.7, 2.2) <0.001

Aetiology of HF

Ischaemic heart disease 166 (43%) 44 (49%) 52 (43%) 47 (37%) 23 (53%) 0.2

Hypertension 33 (8.6%) 13 (14%) 18 (15%) 2 (1.6%) 0 (0%) <0.001

Secondary to valvular heart disease 12 (3.1%) 3 (3.3%) 6 (5.0%) 3 (2.3%) 0 (0%) 0.5

Cardiomyopathy 122 (32%) 15 (17%) 37 (31%) 57 (45%) 13 (30%) <0.001

Hypertrophic (HCM) 15 (3.9%) 1 (1.1%) 9 (7.4%) 5 (3.9%) 0 (0%) 0.077

Dilated (DCM) 97 (25%) 13 (14%) 24 (20%) 49 (38%) 11 (26%) <0.001

Restrictive 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) >0.9

Arrhytmogenic right ventricular (ARVC) 1 (0.3%) 0 (0%) 1 (0.8%) 0 (0%) 0 (0%) 0.7

Non compaction cardiomyopathy 4 (1.0%) 0 (0%) 1 (0.8%) 2 (1.6%) 1 (2.3%) 0.6

Unclassified 7 (1.8%) 1 (1.1%) 2 (1.7%) 3 (2.3%) 1 (2.3%) >0.9

Unknown 27 (7.1%) 12 (13%) 5 (4.1%) 8 (6.2%) 2 (4.7%) 0.081

Medical history

Myocardial Infarction 145 (38%) 34 (39%) 42 (35%) 49 (38%) 20 (47%) 0.6

PCI 126 (33%) 26 (29%) 40 (33%) 39 (30%) 21 (49%) 0.11

CABG 54 (14%) 15 (17%) 21 (17%) 10 (7.8%) 8 (19%) 0.092

Atrial fibrillation 137 (36%) 34 (39%) 62 (52%) 26 (20%) 15 (35%) <0.001

Other arrhythmia 151 (40%) 17 (19%) 49 (41%) 64 (50%) 21 (49%) <0.001

pacemaker implantation 85 (23%) 8 (9.5%) 27 (24%) 35 (27%) 15 (35%) 0.004

ICD implantation 254 (66%) 52 (58%) 76 (63%) 97 (76%) 29 (67%) 0.032

CRT 113 (30%) 26 (29%) 35 (29%) 40 (31%) 12 (28%) >0.9

Stroke (CVA/TIA) 48 (13%) 17 (19%) 16 (14%) 12 (9.4%) 3 (7.0%) 0.12

Chronic renal failure 181 (48%) 40 (45%) 79 (65%) 46 (36%) 16 (37%) <0.001

Diabetes Mellitus 98 (26%) 15 (17%) 50 (41%) 24 (19%) 9 (21%) <0.001

Known hypercholesterolemia 160 (43%) 28 (32%) 52 (44%) 55 (44%) 25 (60%) 0.026

Hypertension 166 (44%) 32 (37%) 58 (48%) 53 (42%) 23 (53%) 0.2

Intoxication

Smoking: Ever 271 (71%) 68 (76%) 81 (67%) 86 (68%) 36 (84%) 0.13

Smoking: Current 343 (90%) 80 (89%) 111 (92%) 113 (90%) 39 (91%) 0.9

Medication

Ace Inhibitor 258 (68%) 58 (65%) 74 (61%) 91 (71%) 35 (81%) 0.072

Angiotensin II receptor blockers 107 (28%) 29 (32%) 38 (31%) 33 (26%) 7 (16%) 0.2

Aldosteron antagonists 293 (77%) 72 (80%) 90 (74%) 106 (83%) 25 (58%) 0.008

Diuretics other 5 (1.3%) 0 (0%) 1 (0.8%) 2 (1.6%) 2 (4.7%) 0.2

Beta blockers 350 (92%) 79 (89%) 107 (88%) 122 (95%) 42 (98%) 0.069

Aspirin 77 (20%) 13 (15%) 24 (20%) 23 (18%) 17 (40%) 0.007

p-values <0.05 are indicated in bold. BMI = Body mass index, CABG = Coronary artery bypass surgery, CRT = Cardiac resynchronisation therapy, ICD = implantable cardioverter-defibrillator, PCI =
Percutaneous coronary intervention. aMedian (IQR); n (%). bKruskal–Wallis rank sum test; Pearson’s Chi-squared test; Fisher’s exact test.

Table 1: Clinical characteristics.
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Fig. 2: Heatmap displaying intercept/slope levels across subphenotypes and protein subsets. Patients and subphenotypes are on the Y-axis,
while proteins and protein subsets are on the X-axis. The purple heatmap at the bottom displays the –log (p-value) of Kruskal–Wallis tests per
protein, and the black lines on the side indicate the occurrence of an endpoint.
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Subset D included many proteins that are implicated
in various pathways in heart failure: myocardial stretch/
stress and fibrosis (NT-proBNP, ANP, ST2, GDF15, and
FGF23), extracellular matrix remodelling (MMP2 and
TIMP1), myocyte injury (troponin T, heart-type fatty acid-
binding protein and sFAS), inflammation (prolactinon,
adiponectin, soluble endoglin, FAS (APO-1), osteoprote-
gerin and CA-125), neurohumoral activation (adrenome-
dullin, chromogranin A and B) and renal dysfunction
(cystatin C and kidney injury molecule-1). Subsets A and
B included proteins associated with extracellular matrix
remodelling (A: IL-6, B: MMP9), myocyte injury (B: CK-
MB), and inflammation (A: IL-6). Subset C included
proteins associated with extracellular matrix remodelling
(MMP8, and galectin-3), oxidative stress (MPO), inflam-
mation (CRP, TNF-alpha, LP-PLA2, TWEAK, Serine
protease PR3, S100A8/A9 complex), and neurohumoral
activation (angiotensin II and endothelin-1, 2 and 3).

Fig. 5 displays the main results from our enrichment
analysis. Associations of the protein subsets with ‘biolog-
ical processes’ and ‘cellular components’ from the Gene
Ontology database22 and ‘diseases’ from the DisGeNET
BeFree database21 are highlighted based on the magnitude
of their Benjamini–Hochberg corrected p-values. Notable
associations with biological processes and diseases for
subset A included response to oxidative stress (B–H
pval:7.87E-03), mitochondrial transport (3.73E-03) and
ataxia (3.10E-02). Subset D was associated with circulatory
system development (3.79E-06), inflammatory response
(3.90E-04), extracellular matrix organization (2.10E-06),
chronic kidney disease (2.49E-03), diabetic nephropathy
(1.23E-03), atherosclerosis (3.25E-6), and conditions related
www.thelancet.com Vol 93 July, 2023
to the PEP such as heart failure (5.79E-04) and myocardial
infarction (3.59E-03). In the dot plot for the cellular com-
ponents, associations for subset A included intracellular
terms (Term:B–H pval; mitochondrial matrix:5.62E-10,
microtubule cytoskeleton:6.43E-10), while cellular compo-
nent associations for subset D were of a more extracellular
nature (extracellular matrix:2.89E-25, external encapsu-
lating structure:2.89E-25).

Supplemental Tables S4–S6 provide full overviews of
the significant results of the enrichment analysis,
respectively for ‘diseases’, ‘biological processes’, and
‘cellular components’. We found the following top 3
associated ‘biological processes’ per intercept subset, for
subset A: intracellular transport (B–H pval: 8.79E-15),
protein translation (1.43E-14) and peptide biosynthetic
process (1.43E-14); for subset B, regulation of chromo-
some segregation (1.94E-02) and regulation of sister
chromatid segregation (4.32E-02); for subset C, adaptive
immune response (1.59E-02), humoral immune
response mediated by circulating immunoglobulin
(1.59E-02), immune effector process (1.59E-02); and for
subset D, cell adhesion (2.38E-18), locomotion (2.12E-
13) and taxis (6.25E-13). Biological processes that were
previously found to be highly associated with HFrEF in
other studies making use of the Gene Ontology data-
base,23,24 were also reflected in our subsets. Peptidyl-
serine phosphorylation (1.19E-02) was associated with
subset A, and plasma membrane bounded cell projec-
tion morphogenesis (1.70E-07), ERK1 and ERK2 cascade
(1.92E-04), response to wounding (1.75E-03), mesen-
chyme development (2.94E-02), and MAPK cascade
(3.18E-02) were associated with subset D.
7
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Fig. 3: Kaplan–Meier plot illustrating the differences in prognosis for the subphenotypes. Endpoints are the composite of cardiovascularmortality, HF
hospitalization, LVAD implantation and heart transplantation. The survival curves differ significantly from each other with a log-rank p-value <0.0001.
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Fig. 4: Forest plot illustrating the differences in prognosis for the subphenotypes. Forest plot illustrating prognosis of the subphenotypes
using Cox proportional hazard models with four levels of adjustment: 1. Univariate, 2. Adjusted for age, sex and eGFR (CKD-EPI), 3. Adjusted for
age, sex, eGFR (CKD-EPI), systolic blood pressure, duration of HF, NYHA class, history of atrial fibrillation, other arrhythmia and chronic renal
failure 4. Adjusted for the variables of model 3 and baseline NT-proBNP. C-indexes are optimism corrected via Harrell’s bias correction.
AIC = Akaike information criterion, BIC= Bayesian information criterion, p = p-value.
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Visual summaries of biological processes associated
with intercept subsets A and D are provided in Fig. 6.
For subset A, the summary highlights translational
processes, as well as processes involved in intracellular
protein transport, actin cytoskeleton organization and
post-transcriptional regulation of gene expression.
Conversely, for subset D, the summary highlights pro-
cesses involved in cell morphogenesis and differentia-
tion, and those involved in chemotaxis.

A similar analysis of protein subsets was conducted for
the slope coefficients. Here, three subsets were deemed
optimal, as illustrated in Fig. 2. The findings were in
strong agreement with the intercept analysis: 98% of
proteins in intercept subset A were present in slope subset
C, and 91% of the proteins in intercept subset D were
present in slope subset A. Furthermore, in Fig. 5 we see
aligning associations between intercept subset A and slope
subset C, and intercept subset D and Slope subset C.

Clusters based on single protein measurements
In the analysis using baseline protein measurements only,
three stable clusters were found (Jaccard Similarity cluster
1: 0.94, 2: 0.98, 3: 0.96) after bootstrapping NbClust
(Supplemental Fig. S2). Supplemental Fig. S3 displays the
allocation of the patients over the clusters via a heatmap.
Subphenotype 1 was oldest, had the highest median sys-
tolic blood pressure and EF, and the lowest median CRP.
Subphenotype 2 had the highest NT-proBNP.
www.thelancet.com Vol 93 July, 2023
Subphenotype 3 was the youngest, had the lowest median
NT-proBNP and hs-troponin T, and these patients were
least often diagnosed with ischaemic heart disease and
hypertension, and most often with cardiomyopathy
(Supplemental Table S7). Subphenotypes 2 and 3 showed
numerically higher rates of the PEP compared to sub-
phenotype 1, although the associations were less
outspoken compared to the repeated-measurements based
subphenotypes, and did not reach statistical significance
(Supplemental Fig. S4; Supplemental Table S8).

In the analysis using second measurements, three
stable clusters were found (Jaccard Similarity cluster 1:
0.97, 2: 0.97, 3: 0.93) after bootstrapping NbClust
(Supplemental Fig. S5). The allocation of patients over
the clusters is illustrated in Supplemental Fig. S6.
Clinical characteristics are provided in Supplemental
Table S9. Subphenotype 1 was oldest, had the lowest
prevalence of cardiomyopathy, and lowest history of
pacemaker implantation. Subphenotype 2 had the
highest prevalence of diabetes mellitus and chronic
renal failure. While subphenotype 3 was youngest, pa-
tients had highest eGFR (CKD-EPI), lowest systolic
blood pressure, lowest prevalence of hypertension,
highest prevalence of cardiomyopathy and pacemaker
implantation, and lowest history of chronic renal failure.
The prognosis of subphenotype 2 was significantly
worse than that of subphenotype 1, after adjusting for
relevant clinical variables (Supplemental Fig. S7,
9
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Fig. 5: Associations between protein subsets and, biological conditions and mechanisms. Summary of Benjamini-Hochberg corrected p-
values obtained from an enrichment analysis using the Toppgene Suite on the Gene Ontology Cellular Component and Biological Mechanisms
datasets and the DisGeNet BeFree disease dataset.21,22 Terms are on the y-axis and the various subsets are on the x-axis. The size of the dots is
proportional to –log(p), B–H p-values equal to 1 are omitted. Boxplots illustrate the mean intercept/slope values of all proteins in each of the
protein subsets per patient (estimated via a random intercepts model), per subphenotype. For GO: Cellular Component, the top 10 significant
terms with the lowest B–H p-value were selected to be displayed. For the diseases, the top 10 significant terms with the lowest B–H p-value per
subset were selected to be displayed, disregarding conditions related to cancer, dermatology or the digestive system. For the GO: Biological
Mechanisms, terms were selected based on significance and relevance for the PEP.

Articles

10
Supplemental Table S10). The 25 patients with only one
measurement (for example, because the PEP occurred
early during follow-up) were included in this analysis.

Similar patterns can be seen in the analysis using
the last available biomarker measurements before
PEP or censoring. Three stable clusters were found
(Jaccard Similarity cluster 1: 0.92, 2: 0.82, 3: 0.94)
after bootstrapping NbClust (Supplemental Fig. S8).
Supplemental Fig. S9 displays the allocation of the
patients over the clusters via a heatmap. Sub-
phenotype 1 had the highest median systolic blood
pressure and EF, and lowest prevalence of cardiomy-
opathy. Subphenotype 2 had the lowest median EF
and most often a history of atrial fibrillation, chronic
renal failure and diabetes mellitus. Patients with
subphenotype 3 were least often diagnosed with hy-
pertension, most often with cardiomyopathy and
younger compared to the other subphenotypes
(Supplemental Table S11). The prognosis of sub-
phenotype 2 was significantly worse compared to
subphenotype 1, when adjusting for relevant clinical
variables (Supplemental Fig. S10, Supplemental
Table S12).

Overall, both the baseline protein-based sub-
phenotypes, second measurement protein-based
subphenotypes and the last available measurement
protein-based subphenotypes showed similarities to the
first three subphenotypes of the analysis using intercept
and slope values, both concerning clinical characteristics
and proteins patterns.
www.thelancet.com Vol 93 July, 2023
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Fig. 6: Summary of Gene Ontology biological processes associated with intercept subset A and D. Treemaps of Gene Ontology (GO)
biological processes associated with Intercept subset A and D, generated using REVIGO, a visualization tool that groups closely related GO terms
together based on network analysis.20 Groups of closely related GO terms are plotted together in the same colour. Representative GO terms,
selected based on p-value, are superimposed over all groups. Size of the GO term blocks is proportional to the –log (B–H p-value) of their
association with the subset. Not all significant biological processes are represented as REVIGO removes some redundant terms that are very
similar to other terms.
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Discussion
In this observational study of 382 HFrEF patients, the
application of unsupervised clustering techniques on
4210 repeatedly measured circulating cardiovascular
proteins, identified four distinct HFrEF subphenotypes
that showed differences in baseline characteristics and
clinical outcomes. Baseline characteristics that were
significantly associated with the subphenotypes
included age, systolic blood pressure, NYHA class, EF,
diabetes mellitus, and chronic renal failure. Certain
protein subsets seemed to drive the cluster allocation,
and an enrichment analysis showed that these subsets
were related to different biological mechanisms which
are associated with heart failure25 such as inflammation,
oxidative stress, renal dysfunction and extracellular
matrix remodelling.

Phenotyping studies are still scarce in the domain
of HFrEF. Previously, Ahmad et al.,3 examined 1619
patients with chronic HFrEF and constructed pheno-
types based on 45 clinical characteristics. Tromp
et al.,11 included 1802 patients with HFrEF and used
92 cardiovascular biomarkers measured once at base-
line for phenotyping. In the current investigation, we
expand this previous evidence in two ways. First, we
utilize a large panel of biomarkers. HF is a complex
condition that is linked with many biological pro-
cesses.2 Previous studies focused on relatively narrow
sets of cardiovascular proteins or clinical characteris-
tics. Incorporating a diverse set of biomarkers enables
us to gain a broader perspective on the mechanisms
involved in HF. The SOMAscan assays have shown
promising results in the field of biomarker discovery,
and were found to be consistent with protein quanti-
tative trait loci (pQTLs). Second, we use repeated
protein measurements, which allows us to account for
protein changes over time via the estimated intercept
and slope coefficients. This is important as previous
studies have observed that changes in biomarker levels
provide valuable information, especially in the period
before adverse clinical events occur.14,17 Recently, a
preliminary study has been performed using data
from the Bio-SHiFT study, wherein 92 circulating
proteins were repeatedly measured in a subset of 263
patients from the first inclusion round of the same
cohort and derived HFrEF subphenotypes. Here three
subphenotypes were identified, with varying clinical
characteristics and prognosis. In contrast with the
current study, no clear protein subsets characterizing
individual phenotypes were found; cluster 1 showed
lower values of all biomarkers, cluster 2 showed
increasing levels over time of most biomarkers, while
in cluster 3, there were elevated baseline levels, and
increasing levels over time of the remaining bio-
markers. These findings may have resulted from the
fact that the investigated 92-biomarker panel con-
tained proteins which had previously been linked to
cardiovascular disease. A broader panel, as used here,
might be better able to identify cluster-specific protein
subsets.

We identified four subphenotypes. In brief, sub-
phenotype 1 consisted of relatively old patients with
high SBP and high prevalence of hypertension, but with
higher EF and better clinical outcomes. The biomarker
profile of subphenotype 1 was characterized by low
expression at baseline of proteins in subsets A and B.
Subset A was related to oxidative stress, ataxia and
intracellular components. Overall, prominent underly-
ing biological processes included those related to
translational processes, as well as those involved in
intracellular protein transport, actin cytoskeleton orga-
nization and post-transcriptional regulation of gene
expression. Specifically, top associated biological pro-
cesses for subset A were related to intracellular transport
and protein translation, which can also be linked to
cardiovascular diseases via oxidative stress.26 Other
notable biological processes included platelet activation,
which is associated with complications in acute HF,27

and the G-protein-coupled receptor signalling pathway.
G-protein-coupled receptors play a central role in cardiac
function and disease, and are major drug targets for a
variety of cardiovascular diseases such as HF, coronary
artery disease and hypertension.28 Subset B did not
display any strong associations with diseases, biological
processes or cellular components based on the expres-
sion analysis. Subphenotype 2 also consisted of older
patients, but with lower SBP, more comorbidities such
as diabetes mellitus and chronic renal failure, very high
NT-proBNP and hs-troponin, and worse clinical out-
comes. The biomarker profile of subphenotype 2 was in
line with these characteristics, as it showed high ex-
pressions of proteins in subset D, which was associated
with inflammation, extracellular matrix remodelling,
chronic renal failure, diabetic nephropathy, heart failure
and myocardial infarction. Overall, prominent underly-
ing biological processes in subset D included those
related to cell morphogenesis and differentiation, and
those related to chemotaxis. Specifically, top associated
biological processes for subset D were related to cell
adhesion and cell migration (chemotaxis, locomotion),
both of which can be linked to adverse prognosis in
heart failure via inflammation.29,30 Other biological pro-
cesses included ERK1/2 (extracellular signal-regulated
kinase) signalling pathway and BMP (bone morphoge-
netic protein) signalling pathway. ERK1/2 mediates
cardiac hypertrophy and is associated with protection
from cell death and ischaemic injury.31 BMP plays a
fundamental role in the homeostasis of the heart, and
perturbations of its signalling pathway are associated
with various cardiovascular diseases such as athero-
sclerosis, vascular inflammation, and pulmonary hy-
pertension.32 Conversely, subphenotype 3 consisted of
younger patients with lower SBP, low EF, and higher
prevalence of, in particular dilated, cardiomyopathy.
These patients also had worse clinical outcomes.
www.thelancet.com Vol 93 July, 2023
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Subphenotype 3 had elevated levels of proteins in subset
A and B, with over-representation of processes as
described above. Subphenotype 4 was small and thus
more difficult to assess. It differed from subphenotype 3
by having a higher SBP and higher EF; clinical out-
comes seemed better. Biomarkers of subphenotype 4
were characterized by elevated levels for the slope co-
efficients in slope subset C and low levels for slope co-
efficients in subset A, which respectively contain many
proteins found in intercept subsets D and A.

Subphenotype 2 found in the current study shows
similarities to cluster 1 described by Ahmad et al.3 and
Endotype 4 described by Tromp et al.,11 which also
showed worse clinical outcomes, high rates of atrial
fibrillation, and high levels of NT-proBNP. Our sub-
phenotype 2 was characterized by elevated protein levels
in subset D, which includes many known HF bio-
markers, including NT-proBNP, ST2, troponin T, and
GDF15. Tromp et al.’s11 Endotype 4 also showed simi-
larities on SBP and EF. Subphenotypes similar to our
subphenotypes 1, 3, and 4 were not found in either
previous study. The fact that overlap between the clus-
ters from different studies is limited may in part be
because Ahmad et al.3 and Tromp et al.11 used different
variables to define their clusters (respectively clinical
variables and a smaller set of proteomic biomarkers,
measured at baseline only), and because of differences
in the CHF cohorts used. Using clinical variables as the
basis of the cluster analysis process, as Ahmad et al. did,
will by definition lead to large differences in these var-
iables between the clusters. This hampers comparison
with our subphenotypes, which are solely based on
proteomic measurements. When subphenotyping is
driven fully by proteomic profiles, any differences in
clinical characteristics in fact reflect differences in un-
derlying biological processes. As for differences between
cohorts, the BIOSTAT-CHF cohort used by Tromp
et al.,11 though similar in demographics, included
HFrEF patients that had a larger number of comorbid-
ities and higher baseline NT-proBNP compared to the
current study, and might therefore describe additional
subphenotypes that emerged as the condition grew
more severe.

When comparing our main analysis, which used the
LME model coefficients (based on repeated measure-
ments), with our additional analyses that used mea-
surements from specific (baseline, second, last
available) time points, we see overlapping results. Sub-
phenotypes 1, 2, and 3 of all analyses are generally
similar to each other regarding clinical characteristics.
However, the survival model clearly shows a better fit
for the survival model when using the mixed model
subphenotypes, with a higher optimism corrected c-in-
dex (repeated measurements: 0.73, baseline measure-
ment: 0.68, second measurement: 0.69, final
measurement: 0.71) and a lower Bayesian information
criterion (BIC; repeated measurements: 1023, baseline
www.thelancet.com Vol 93 July, 2023
measurement: 1040, second measurement: 1037, final
measurement: 1039). These results suggest that
repeatedly measured biomarkers lead to more distinct
subphenotypes regarding prognosis of HFrEF, and may
therefore carry potential to provide more accurate
pathophysiological insights.

The enhanced knowledge on HFrEF taxonomy as
obtained in this study via dynamic proteomics-based
deep phenotyping carries several potential clinical im-
plications. It may contribute to further elucidation of
biological mechanisms at work in HFrEF via retro-
translation, enabling further tailored therapeutic ap-
proaches. An ensuing deeper understanding of the
biological mechanisms of HFrEF could identify proteins
that could serve as specific targets for therapy.
Furthermore, knowledge on the proteomic and/or clin-
ical characteristics that are most prominently associated
with relevant subphenotypes, could enable clinical trial
designs targeting therapeutics to more homogeneous
groups, to improve probability of clinical benefit.

Limitations of this study include the limited number
of women (27%) and patients with a non-Caucasian
ethnicity (7%). Furthermore, compared with some
other chronic HF cohorts, the proportion of HF patients
in NYHA classes I and II were high in our study (73%),
which may have obscured subphenotypes that may have
more clearly emerged in patients with more severe
illness. Additionally, the sample size of this study was
somewhat limited compared to other phenotyping
literature,3,11 however these previous studies did not use
elaborate proteomics, and moreover we included much
more information about the patients via the repeated
measurements design (in total 1066 blood samples were
used). This greatly enhances statistical power, thus
obviating sample size concerns. Our study, as any, could
have benefitted from external validation, however due to
its unique serial blood sampling design, and repeated
application of a large aptamer-based assay, this was
challenging. Instead, we conducted extensive internal
validation, incorporating the full clustering analysis
workflow including the dimension reduction step,
which showed that our subphenotypes are stable. The
methodology used for protein measurement also war-
rants some consideration. The SOMAmer reagents were
selected against proteins in their native folded confor-
mations. Therefore, proteins that are unfolded or de-
natured are not detected. Furthermore, the SOMAscan
assay returns RFUs instead of absolute concentrations.
These values can be used to compare patients and
changes over time within a patient. However, they are
not recommended for use in clinical applications that
require absolute concentration to inform treatment
decisions.

In conclusion, in this study, we found four circulating-
protein based HFrEF subphenotypes which were driven by
different combinations of biomarker subsets that relate to
varying biological mechanisms. These four subphenotypes
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had different clinical characteristics and different prog-
nosis. Our findings suggest that repeated assessment of
extensive biomarker panels may contribute to the further
understanding of complex diagnoses like HF through dy-
namic phenotyping methods.
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