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ABSTRACT

Using quantum computers for computational chemistry and materials science will enable us to tackle problems that are intractable on classi-
cal computers. In this paper, we show how the relative energy of defective graphene structures can be calculated by using a quantum
annealer. This simple system is used to guide the reader through the steps needed to translate a chemical structure (a set of atoms) and
energy model to a representation that can be implemented on quantum annealers (a set of qubits). We discuss in detail how different
energy contributions can be included in the model and what their effect is on the final result. The code used to run the simulation on D-
Wave quantum annealers is made available as a Jupyter Notebook. This Tutorial was designed to be a quick-start guide for the computa-
tional chemists interested in running their first quantum annealing simulations. The methodology outlined in this paper represents the
foundation for simulating more complex systems, such as solid solutions and disordered systems.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0151346

I. INTRODUCTION

Quantum chemistry is considered to be one of the first fields
that could benefit from the development of quantum hardware and
algorithms.1 The first applications of quantum computing to solve
the electronic structure problem date back to 20052 and the field
has since then received significant attention.3–13 A detailed over-
view of the state-of-the-art methods developed in this field can be
found in the following two review papers (and references therein):
McArdle et al.3 focus on using digital quantum computers to solve
the electronic structure problem ab initio, while Cao et al.4 is
aimed at the expert computational chemist and highlights the
advantages quantum computing brings to the field.

At this early technological stage, several strategies to employ
quantum effects in computing are being explored.14 The two most
well-developed at present are quantum gate-based15 and quantum

annealing.16 The former can be thought of as the quantum equiva-
lent of classical computers, where the classical bits are replaced by
quantum bits (qubits) and classical gates are replaced by quantum
gates, which operate in discrete time. The latter relies on the
quantum adiabatic theorem and requires the problem of interest to
be mapped to a physical set of qubits, whose states are allowed to
evolve by slowly changing the Hamiltonian parameters of the
quantum annealer, at all times remaining in the instantaneous
ground state. However, current quantum annealers experience
coupling to their thermal environment beyond the �10–100 ns
timescale.17 Quantum annealers, therefore, behave in a way that is
intermediate between the idealized quantum adiabatic theorem and
inevitable experimental limitations.

From a chemical point of view, quantum gate-based algo-
rithms have been employed mainly to solve the Fermion
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Hamiltonian that describes the motion of electrons in molecules
and materials, i.e., the Shrödinger equation. Typically, the terms
that account for electron correlation make this equation intractable
to solve classically for all but the simplest systems. Thus,
post-Hartree-Fock (post-HF) approaches have been developed such
as configurational interaction (CI) and ideally applied in the full-CI
limit.18 Several algorithms have proved to be promising in this
field. However, results are still limited due to the size and stability
of available quantum hardwares.3–5,19

Quantum annealing in its current hardware implementation
solves problems that can be formulated as an Ising model.
Unfortunately, the electronic Hamiltonian cannot be mapped to
the Ising form without an exponential growth of the number of
variables required to solve the problem, as discussed from a classi-
cal point of view in Xia et al.20 This introduces an intrinsic limita-
tion in using quantum annealers for solving this type of problem.
Nevertheless, several algorithms to solve the electronic structure
problem through quantum annealing have been explored for small
systems.8–10,21–23

Quantum annealing is suited to solving optimization and
global minimum search problems.24 Therefore, it finds applications
in chemistry, where several configurations of the same structure are
energetically viable. For example, in the analysis of the conforma-
tion of transition states,25 configurations of dense polymers mix-
tures,26 protein design,27,28 screening of chemicals to discover new
materials29 and materials design30 such as configurational analysis
of doped materials.31

Here, we will focus on this last application using vacancies in
graphene as a test model to explore how to map a chemical system
to an Ising Hamiltonian and to the quadratic unconstrained binary
optimisation (QUBO) model. These models are the respective
natural language for QA and chemistry and they both belong to the
binary quadratic model (BQM) class of problems. The goal of this
Tutorial is to present an easy-to-follow example of how to apply
quantum annealing to solve a chemical problem, which can be for-
mulated as follows: “given a periodic lattice of atoms, represented
by a unit cell, atom coordinates, and periodic boundary conditions
(PBCs), what is the lowest energy configuration (or configurations)
when Nvac sites are replaced by vacancies.” This problem was
studied by Carnevali et al.31 using a discrete quadratic model,
relying on two qubits per site, to represent the graphene structure.
In this paper, a binary quadratic model, relying on a
one-qubit-per-site implementation is used. Furthermore, the
energy model introduced in by Carnevali et al.31 is expanded in
Sec. II G to better capture the chemistry of a more complex system.

In this paper, we are interested in providing a description of
the procedure to build the energy model. The model system was
purposefully chosen to be a simple test case. The energy model we
discuss in Sec. II E describes the effect of the vacancy on the energy
in a very simplified way. Nevertheless, by tuning the interaction
between species (in this case carbon atoms and vacancies), the
model can be extended, for example, to the simulation of solid
solutions, spin configurations, and stoichiometric nanoparticles.

Despite the simplicity of the problem, it can be seen as the test
model for the combinatorial optimization class of problems, which
are often found in chemistry and materials science. The configura-
tion space to explore is proportional to the binomial coefficient

�
Nsites

Nvac

�
where Nsites is the number of sites in the unit cell and

Nvac is the number of vacancies. For small values of Nsites or Nvac,
the problem can be treated exactly by completing an exhaustive
search, i.e., by calculating the energy of each possible outcome.
However, as the size of the cell increases, the problem becomes
quickly intractable (for example, for Nsites ¼ 50 and Nvac ¼ 10,
there are more than 1 billion possible configurations). Various heu-
ristic classical algorithms are available to tackle this type of
problem, for example, Monte–Carlo methods,32,33 random walks,34

tree search optimization,35 tabu algorithm,36 and simulated anneal-
ing (SA).37–41 However, these approaches suffer from limitations,
such as getting stuck in local minima, sampling the same location
more than once, and completely missing the best configurations
because of the randomness of the sampling. A method to overcome
these limitations is, therefore, required to analyze large configura-
tional spaces encountered in materials science.

Simulated annealing borrows ideas from the thermal anneal-
ing of metals. A fictional temperature, which decreases as the
annealing evolves, is introduced as a tunable parameter. By reduc-
ing the temperature, the size of the accessible configurational space
decreases during annealing. The process typically stops when either
a minimum threshold on the energy or the maximum number of
iterations, defined by the user, has been reached.42 The progress of
the SA can be determined by using sophisticated methods such as
holding points and checking to see if the holding point is within a
local basin.43 Quantum annealing (QA) is based on the same prin-
ciples as SA but uses an auxiliary quantum mechanical system to
find the minimum energy of the system. Unlike the SA algorithm
that uses classical search techniques, QA exploits two quantum
mechanical phenomena: superposition and tunneling.24 The
former means that at the beginning of the anneal, the qubits repre-
sent all possible final states, corresponding to all combinations of 1
and 0 simultaneously (see Appendix A). The latter means that the
system can move from one configuration to another by tunneling
through the energy barrier. Therefore, it is possible for QA to
escape deep local minima that trap other optimization techniques.

The hardware for the simulation reported in this paper is
made commercially available by D-Wave44 via their quantum cloud
service LeapTM. The tools required to build the models and interact
with LeapTM are distributed via the open-source project Ocean,
hosted on the D-Wave GitHub page.45 The Advantage_system5.2,
which implements a Pegasus Quantum Processing Unit (QPU)
Architecture,46 was used for the results discussed in Sec. II.

The structure of this paper is chosen to guide the reader
through (a) the mapping of the problem to the D-Wave hardware
and (b) the building of the energy model. The methodology dis-
cussed here, together with the code made available at Ref. 47, gives
the necessary resources to computational chemists and materials
scientists interested in incorporating quantum annealing into their
workflow. In Sec. II A, the analogies between simulations on classi-
cal and quantum computers are drawn. The Ising and QUBO
models are introduced in Sec. II B. In Sec. II C, we discuss the
workflow to map the vacancies in the graphene problem to the QA
hardware and run the annealing. Section II D explores whether
quantum annealing is needed for this type of simulation and what
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other methods could be used instead. In Sec. II E, the energy
model is built first in terms of objectives and then, in Secs. II F
and II G, constraints are added. The concept of qubit and its Bloch
sphere representations are discussed in Appendix A. The mapping
of the problem to the QPU hardware is presented in Appendix B.
The idea of a graph representation of the chemical structure is
introduced in Appendix C. The testing and tuning of the model
parameters can be found in Appendix D. Considerations on the
configuration multiplicity are discussed in Appendix E. Finally, the
QA-simulated energy is compared to density functional theory
(DFT) energies obtained by using the CRYSTAL48 code and dis-
cussed in Appendix F.

II. THE MODEL AND RESULTS

A. Analogies with the “classical” quantum chemical
approach

The maturity of the technology used in classical computers
means that the mapping of the materials chemistry problem to the
hardware level is, generally, taken care of by the design of the high-
level programming language used to write the materials and molec-
ular modeling software. On the other hand, being at the dawn of
the application of quantum computing to chemistry, we are
required to invest some time thinking about how to map the chem-
ical system to the quantum hardware. In this section, we outline
the differences between the classical and quantum computational
materials chemistry workflows.

Computational chemists and materials scientists are familiar
with translating a chemical system into a system of functions that

can be implemented on a classical computer. A simplified typical
workflow is summarized on the left side of Fig. 1. First, the system
is defined, from a chemical point of view, in terms of the number
and types of atoms, and their possible positions. Periodic boundary
conditions (PBCs) are applied to the unit cell to model extended
periodic systems. This step represents the first abstraction. The
system then needs to be defined in terms of mathematical functions
to be represented on a computer. Although there are, in theory, no
constraints on the types of functions that can be used, the proper-
ties of some of them are better suited at describing electron distri-
butions, e.g., Slater Type Orbitals (STOs) and Gaussian functions
for molecules, and plane waves for crystals. These functions are
parameterized in order to describe the position of the atoms and
the corresponding electron distribution in the systems under study.

The next step involves selecting the electronic Hamiltonian.
These Hamiltonians have been developed and implemented on clas-
sical computers for several decades.48–51 They each tend to perform
better for a specific class of structures or properties, but they have, in
general, broad applicability. Therefore, typically, the user will select
an out-of-the-box method (HF,52 LDA,49 B3LYP,53,54 etc.) imple-
mented in the code they are using and will not devote time to devel-
oping the energy model for each simulation. The outcome of the
simulation will be the ground state energy of the system, the single-
particle energy levels and other properties, such as the optimized
atomic geometry, vibrations or optical spectra, etc.

Now we examine the quantum computational materials chem-
istry workflow. In the first step, analogous to the classical workflow,
the chemical system is defined in terms of atomic numbers, atomic
coordinates, and PBCs. Then, the structure needs to be mapped to
the quantum hardware. Some recent methods are able to map a
classical basis set (e.g., STO-3G) directly to hardware. As discussed
in Sec. I, this approach requires a large number of qubits.55 In this
work, we will use a different approach: each site of the structure is
mapped to a single logical qubit. The problem can, therefore, be
encoded on a binary vector (whose length depends on both the
system being investigated and the energy model, as discussed
below). A simple mapping function (and reverse mapping func-
tion) is developed in Sec. II E to perform this task for our chosen
example system. For a problem to be solved on a quantum
annealer, it needs to be expressed in a binary quadratic model
(BQM) form. This model is discussed in Sec. II B.

B. The ising and QUBO models

As discussed in Sec. II A, we need to map our problem to a
binary quadratic problem to be able to solve it on a quantum
annealer. Among the BQM class of problems, there are the Ising
Hamiltonians

E(s) ¼
X
i

hisi þ
X
j.i

Ji,jsis j si [ {þ 1,� 1} (1)

and the quadratic unconstrained binary optimisation (QUBO)
method

E(x) ¼ xTQx ¼
X
i

Qi,ixi þ
X
i

X
j.i

Qi,jxix j xi [ {0, 1}: (2)
FIG. 1. Left: computational materials chemistry workflow for classical comput-
ers. Right: computational materials chemistry workflow for quantum computers.
The vector x represents the lowest energy configuration of the system.
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The linear term in the right-hand side of Eq. (2) originates from
the fact that the xi variables are binary and, since 02 ¼ 0 and
12 ¼ 1, x2i can be replaced by xi.

During the quantum annealing, the state of the qubit is repre-
sented by a vector that can have any value on a sphere, called the
Bloch sphere (see Appendix A for details). At the end of the
annealing, the projection of the vector on the z axis of the sphere is
measured for all qubits used to map the problem and returned as
the result of the calculation. In the Ising model, the variables si can
be either �1 or +1. The term hi is the bias

56 applied to the qubit i
and Ji,j the coupling between qubits i and j. In the QUBO model,
the variables can be either 0 or 1. A problem formulated as an
Ising model can easily be converted into a QUBO problem and
vice versa by using si ¼ (2xi � 1). In this work, the QUBO formu-
lation of the problem was chosen because it allows for a matrix rep-
resentation of the Hamiltonian that is more familiar to the
computational chemist.

The challenge is to formulate the problem we are solving as a
minimization function,

argmin
x

X
i

Qi,ixi þ
X
i

X
j.i

Qi,jxix j

 !
, (3)

where the Q matrix, also called the objective function, is designed
in such a manner that the minimum of Eq. (3) corresponds to the
lowest energy of the system of interest. Often, problems of practical
interest are subject to constraints. However, as the QUBO acronym
suggests, in the formulation of the model we are bound to uncon-
strained optimizations. Therefore, the constraint will be included in
the model as a penalty function. This function is designed to
increase the energy of the solutions that do not respect the con-
straint. The development of both objective functions and con-
straints is the main topic of Secs. II E and II F.

C. The vacancies in graphene workflow

For the calculation of the relative energy of vacancies in gra-
phene, the quantum workflow can be summarized in the following
steps:

† step 1: build a graphene supercell large enough to contain the
concentration of vacancies that we are interested in simulating.
In this paper, we consider all possible structures using a 3 � 3
supercell of the two-atom primitive cell of graphene with up to
three of the 18 carbon atoms removed to form the vacancies.
This structure is shown in Fig. 2, where the labeling of the sites
is defined, and can be found in the Jupyter Notebook available
at Ref. 47. The pymatgen57 library was used in this step because
it allows for a python representation of the system that can be
used with the Ocean tools;45

† step 2: each site is mapped to a single qubit. This mapping is
done via a vector x, with length Nsites (in this case 18). The
element xi at position i in the x vector will be 1 if the site i in the
structure displayed in Fig. 2 is occupied by a C atom and 0 oth-
erwise (vacancy);

† step 3: build the BQM representation of the energy model. The
details of the model used in this article are discussed in Sec. II B.

If a specific number of vacancies is chosen, then some additional
constraints can be included in the model (this is discussed in
detail in Sec. II F);

† step 4: run the quantum annealer. For the problem to be solved
on the quantum annealer, each variable needs to be mapped to
the hardware. Because of the limited connectivity of currently
available hardware, more than one physical qubit might be
needed to encode one variable (for a detailed description of this
process, see Appendix B). This mapping is called minor embed-
ding and for the results reported in Secs. II E– II G, the default
mapping performed by the D-Wave API was selected. The user
is also required to define how many times the quantum anneal-
ing will be performed. In this paper, the default value of one
thousand times was used. The output of this step will be one x
vector for each time the quantum annealing was run. Typically,
due to quantum fluctuations and external sources of noise, a dis-
tribution of energy and configurations will be returned. If the
problem is properly formulated, the lowest energy configuration
should correspond to the global minimum of the function. Some
of the configurations might be degenerate in energy and, in the
specific case discussed in this paper, some configurations might
be symmetry equivalent. This will require some post-processing
in order to group symmetry-equivalent structures. Finally, by

FIG. 2. Graphene 3� 3 supercell of the two-atom primitive cell. Gray-filled
circles represent the 18 sites for the carbon atoms. The numbering is the one
used for the results reported below. The nearest neighbor atoms are the ones
where the circles touch. This includes the ones across the periodic boundaries
(for example, atoms labeled 0 and 15).
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reversing the mapping function, we can go from the configura-
tion of the x vector to a chemical structure containing C atoms
and vacancies. Some of the quantum annealing parameters, such
as annealing time and chain strength, need to be optimized to
improve the quality of the results. This parameter optimization is
discussed in Appendix D.

D. Is quantum annealing needed for this problem?

For the graphene structure, we are interested in studying, for
relatively small unit cells, an exhaustive search can be performed.
In such an approach, the energy of all configurations containing a
fixed number (Nvac) of vacancies is calculated. This can be achieved
by building all the permutations of the x vector containing Nvac

zeros and calculating their energy using the QUBO model. In an
even larger exercise, the whole vacancy space could be explored. All
the x vectors for all configurations with the number of vacancies
going from 0 to Nsites are built and their energy is calculated. It is
unlikely that structures with a large number of vacancies will be of
interest since they correspond to non-chemically stable structures.
However, if instead of studying vacancies, we were interested in solid
solutions, then we might be interested in simulating high concentra-
tions of both species.58,59 The total number of possible permutations
is 2Nsites , while for a fixed number of vacancies Nvac, the number of
configurations can be calculated by using the binomial factor�

Nsites

Nvac

�
¼ Nsites!

Nvac!(Nsites � Nvac)!
: (4)

The number of configurations to evaluate for a reasonable-
sized cell and number of vacancies quickly becomes too large to be
explored via an exhaustive search. For example, more than 1017

configurations exist for a 60-atom cell with a 40% level of substitu-
tion. For highly symmetrical structures, symmetry reduction can be
used to drastically reduce the number of configurations.60 In the
following, we focus on a generic approach that does not require the
system to belong to a particular symmetry group.

This kind of large configuration space can be explored by using
classical global optimization heuristics, such as Monte–Carlo sam-
pling,32,33 and simulated annealing.38–41 Currently, these heuristic
approaches outperform QA. This is a hardware limitation and, as
QPUs containing a larger number of more connected qubits are
being developed, QA is expected to deliver much-improved perfor-
mance than classical heuristics. This is because, as discussed in
Sec. I, heuristic approaches suffer from several limitations. These
limitations become more relevant for large configurational spaces
characterized by relatively flat energy surfaces. Therefore, new

optimization methods, such as QAs, are needed for the classes of
problems encountered in materials science.

E. Objectives

1. Number of bonds

In this section, we will focus on encoding the energy model
for the graphene structure as a QUBO problem. The model we are
using is based on the total number of bonds. Therefore, we define
an arbitrary energy for the presence/absence of a bond caused by
the introduction of a vacancy. The contributions to the energy of
the system are based on the following assumptions:

† the energy of the system only depends on the total number of
bonds in the system;

† if site i and site j are nearest neighbors and they are both occu-
pied by a C atom, the energy of the system decreases by 1 arbi-
trary unit;

† if site i and site j are nearest neighbors and one or both of them
is vacant, the energy of the system is unchanged;

† only nearest neighbors are included in the model. The interac-
tion between sites i and site j does not contribute to the energy
of the system if they are more than one bond length apart.

The model outlined above can be expressed as a QUBO matrix

Q
Qi,j ¼ �Ai,j for j . i,
Qi,j ¼ 0 for j � i,

�
(5)

where A is the adjacency matrix of the structure (A and Q for the
structure displayed in Fig. 2 is reported in the the Jupyter Notebook
available at Ref. 47). Equation (5) defines Q as a sparse matrix with
only 3Nsites non-zero elements. This is an important aspect to keep
in mind when developing the energy model as explained in detail in
Appendix B.

2. Vacancy-free case

As a starting point, no constraint on the number of vacancies
in the system will be imposed. Therefore, the lowest energy config-
uration is the one where the x vector satisfies the following expres-
sion:

x
argmin

XNsites

i

XNsites

j�i

�Ai,jxix j

 !
:

(6)

The result, in a Pandas dataframe61 form, as returned by the
Ocean API is reported in Fig. 3. The first 18 elements represent the

FIG. 3. The quantum annealing output for the QUBO problem reported in Eq. (5) (vacancy-free structure) using the parameters discussed in Appendix D. The values in
the columns labeled 0–17 are the 18 components of x. The percentage of broken chains as a measure of the quality of the annealing is explained in detail in Appendix B.
The energy is reported in arbitrary units. The quantum annealing was performed 1000 times.
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component values of x. The QUBO matrix defined in Eq. (6)
returns only one configuration: the one where no vacancies are
present. This is an intuitive and reassuring result since the presence
of vacancies increases the energy of the system. The average per-
centage of broken chains is also reported in Fig. 3. This is a
measure of the quality of the annealing that depends on the way
the problem is mapped to the hardware. This topic is discussed in
detail in Appendix B.

F. Constraints and penalties

In the previous section, we observed how an unconstrained
model (i.e., one that minimizes only objectives and is not subject to
constraints) results in only one solution for the model problem. In
this section, we want to model systems with a well-defined number
of vacancies. Only vectors, x, that respect such a constraint will be
considered acceptable solutions to the problem. If we are interested
in an x vector that contains Nvac vacancies, we can formulate the
constraint as

XNsites

i

xi ¼ NC , (7)

where the number of atoms is NC ¼ Nsites � Nvac. Equation (7) can
be transformed into Eq. (8),

XNsites

i

xi � NC ¼ 0: (8)

To express the constraint as a penalty function, we look for a
function of x whose minimum value is obtained when the con-
straint is respected. Results corresponding to configurations that do
not respect the constraint may also be returned. However, if the
model (objective and constraints) is well designed, these should be
at noticeably higher energy and therefore both less likely to be
returned by the annealer and easy to identify. By squaring Eq. (8),
we obtain a function whose minimum value of zero occurs when
the condition

PNsites
i xi ¼ NC is satisfied,

XNsites

i

xi � NC

 !2

(9a)

¼
XNsites

i

x2i þ
XNsites

i

XNsites

j.i

2xix j �
XNsites

i

2xiNC þ N2
C (9b)

¼
XNsites

i

1� 2NCð Þxi þ
XNsites

i

XNsites

j.i

2xix j: (9c)

The expression in Eq. (9b) can be simplified to that shown as
(9c) because:

† the term N2
C is constant, so does not change the relative energy

of solutions corresponding to different configurations;

† the x2i term can be replaced by the linear equivalent, xi as in
Eq. (2).

By combining the objective defined in Eq. (6) and the con-
straint defined in Eq. (9c), the following equation for the energy
(U) of the system is Obtained:

U¼ α
XNsites

i

XNsites

j.i

�Ai,jxix j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
objective

þλ
XNsites

i

1� 2NCð Þxi þ
XNsites

i

XNsites

j.i

2xix j

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

constraint

¼ λ
XNsites

i

1� 2NCð Þxi þ
XNsites

i

XNsites

j.i

2λ� αAi,j
� �

xix j: (10)

The elements of the resulting QUBO matrix can be expressed
as

Q
Qi,j ¼ λ 1� 2NCð Þ for i ¼ j,
Qi,j ¼ 2λ� αAi,j

� �
for j . i,

Qi,j ¼ 0 for j , i:

8<
: (11)

The factor λ, also called the Lagrange parameter, determines
the weight of the constraint with respect to the objective. The α/λ
ratio defines how much the final energy should be affected by not
respecting the constraint. There is no simple a priori formula for
selecting the α and λ values and a tuning procedure is required
(for details see Appendix D).

The QUBO model defined in Eq. (11) corresponds to an
upper triangular matrix where the total number of off diagonal ele-
ments is N2

sites�Nsites

2 . For an 18-site model, this results in 135 off diag-
onal non-zero elements out of a total of 324 elements. Off diagonal
terms introduce coupling between qubits. Due to the limited con-
nectivity of the physical qubits in the D-Wave quantum annealer,
the increased number of couplings will have an impact on the per-
centage of broken chains and the ratio of valid solutions (i.e., solu-
tions that respect the constraint). This is discussed in Sec. II F 1
and in Appendix B.

1. Single-vacancy case

In this section, the QUBO model derived above will be used
to simulate graphene structures containing one vacancy. The values
of α ¼ 1 and λ ¼ 2 for Eq. (10) were selected following the tuning
procedure outlined in Appendix D. The results of the quantum
annealing are reported in Fig. 4. Only the configurations that
respect the constraint are included.

Comparing the results reported in Figs. 3 and 4, we can draw
some interesting conclusions regarding the effect that the constraint
(and the increased number of couplings) has on the results. First, 18
different configurations, corresponding to the vacancy in each of the
different sites are obtained. All these configurations result in the
same energy. An average value of 1.06% broken chains was obtained
in the results reported in Fig. 4 compared to 0.0% found in Fig. 3.
The reason for this increase in broken chains is explained in detail in
Appendix B. By summing the multiplicity of the different
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configurations, we find that only 73.7% of the times the annealing
was run a configuration containing one vacancy was returned. These
are the configurations that respect the constraint imposed in Eq. (7)
and are defined as feasible. The vectors, x, representing the other
configurations (not reported in the table) would contain either zero
or more than one zeros and are discarded in the post-processing.

When only one vacancy is introduced, we know that all the 18
configurations will be symmetry equivalent and, therefore, the con-
figurations reported in Fig. 4 can be reduced by symmetry to the
structure reported in Fig. 5. In this straightforward example, this

can be done manually based on the knowledge we have about the
symmetry of the system. For more complex configurations, we used
the spglib library62 for symmetry analysis of periodic structures, as
implemented in pymatgen.57

2. Two and three vacancies

Graphene structures including two and three vacancies were
studied using the same method described above for the one-vacancy
structure. The QUBO matrix for this model is the same as the one

FIG. 4. The quantum annealing output for the QUBO problem reported in Eq. (11) (single-vacancy structure) using the parameters discussed in Appendix D. The values
in the columns labeled 0 to 17 are the 18 components of x. The percentage of broken chains as a measure of the quality of the annealing is explained in detail in
Appendix B. The energy is reported in arbitrary units. The quantum annealing was performed 1000 times.

FIG. 5. The quantum annealing output for the QUBO reported in Eq. (11) (single-vacancy structure) using the parameters discussed in Appendix D. Only symmetry non-
equivalent structures are reported.
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reported in Eq. (11), where a different number of vacancies is used
in the definition of the constraint. For the two-vacancy structure, the
NC term is set equal to 16 (2 of the 18 sites are replaced by vacan-
cies) and for the three-vacancy structure, the NC term is set equal to
15 (3 of the 18 sites are replaced by vacancies). In Figs. 6 and 8, the
configurations of two-and three-vacancy structures, respectively, are
reported. Only the symmetry non-equivalent structures (i.e., the
ones returned by a symmetry analysis) are included.

The presence of more than one vacancy introduces an inter-
esting effect on the energy distribution. Unlike the one-vacancy
structure, where all the feasible configurations resulted in the same
energy of �24.0 arbitrary units, in the two-vacancy structures, two
energies and five symmetry non-equivalent structures are returned.
These are summarized in Fig. 6 and depicted in Fig. 7. Structure a
is the lowest energy structure. In this structure, the two vacancies
are found in neighboring sites. This can be explained by using the
model described in Sec. II E 1. When the two vacancies are next to
each other, they lead to a total of five broken bonds. On the other
hand, the vacancies in structures b–e are found in non-neighboring
sites, which leads to a total of six broken bonds in these structures.

All these structures have the same energy because the energy
model used only accounts for nearest-neighbor interactions.
Therefore, whether the vacancies are next-nearest neighbors (as in
structure b) or three bond lengths apart (as in structures d and e),
the energy is unchanged according to the energy model used.
Interestingly, structure b contains some single-coordinated atoms,
which, from a chemical point of view, would be expected to desta-
bilize the system and increase its energy. In Sec. II G, we address
this aspect by adding a new objective to the energy model.

When the QUBO model is constrained to return results con-
taining three vacancies, 14 symmetry non-equivalent configurations
and three energy values are returned. These are reported in Fig. 8.
From the lowest to the highest energy, the corresponding structures
have three vacancies in neighboring sites, two adjacent vacancies
and one removed and three non-neighboring vacancies. One
example per structure is depicted in Fig. 9.

In Fig. 10, three structures predicted by the model to have the
same energy as structure f in Fig. 9 (�18:0 arbitrary units) are
depicted. These configurations were selected specifically to high-
light that some of the structures returned by the model will be

FIG. 6. The quantum annealing output for the QUBO problem reported in Eq. (11) (Natoms ¼ 16) using the parameters discussed in Appendix D. The values in the
columns labeled 0 to 17 are the 18 components of x. The percentage of broken chains as a measure of the quality of the annealing is explained in detail in Appendix B.
The energy is reported in arbitrary units. The quantum annealing was performed 1000 times.

FIG. 7. 2� 2 unit cells displaying the structure of the symmetry non-equivalent configurations reported in Fig. 6. Gray-filled circles and smaller open circles represent C
atoms and vacancies, respectively. The labeling is the same used in Fig. 6.
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highly unstable from a chemical point of view. Structure k contains
singly bonded C atoms, structure m can be seen as broken into
five-atom wide strips and structure n contains isolated carbon
atoms. In this context, unstable refers to a configuration where one
or more atoms, upon geometry relaxation, would move to occupy a

neighboring vacancy site and result in a different configuration.
For example, in structures n, the displacement of the isolated
carbon atom results in a structure that is equivalent by symmetry
to structure a (see Sec. F for more details). This shows the need for
an improved energy model that is able to identify these types of

FIG. 8. The quantum annealing output for the QUBO problem reported in Eq. (11) (two-vacancy structure) using the parameters discussed in Appendix D. The values in the
columns labeled 0 to 17 are the 18 components of x. The percentage of broken chains as a measure of the quality of the annealing is explained in detail in Appendix B. The
energy is reported in arbitrary units. The quantum annealing was performed 1000 times.

FIG. 9. Structure of the symmetry non-
equivalent configurations reported in
Fig. 8. Gray circles and white circles
represent C atoms and vacancies,
respectively. The labeling is the same
used in Fig. 8.
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structures. This topic is discussed in Sec. II G where the coordina-
tion of the atoms is included as an objective in the model.

G. Coordination

In this section, we refine the model described above by adding
an extra term to the QUBO formulation in Eq. (11). The model
used for the results reported in Secs. II E and II F focused only on
the total number of broken bonds. However, as we have seen for
the three-vacancy structures, it does not take into account the local
character of the vacancies allowing for non-physical structures to
be returned.

From a chemical point of view, we know that breaking a bond
from a lower coordination atom will be more energy expensive than
breaking a bond from the same atom in a higher coordination envi-
ronment. In order to include this effect in the energy model, we need
to start looking at whether the sites surrounding atom i are occupied

by atoms or vacancies. This can be achieved by analyzing the next-
nearest neighbors for each site. We, therefore, define the B matrix,
which is analogous to the adjacency matrix A, but where the element
Bi,j = 1 if atoms i and j are next-nearest neighbors instead of nearest
neighbors. The objective that we are interested in minimizing is

�β
XNsites

i

XNsites

j.i

Bi,jxix j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
coordination objective

, (12)

where β is a scaling factor. The ratio between α and β will define
how much the result is influenced by the coordination objective with
respect to the number of broken bonds objective.

By adding the coordination objective to Eq. (10) we obtain the
following equation:

U ¼ α
XNsites

i

XNsites

j.i

�Ai,jxix j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
broken bonds objective

þ β
XNsites

i

XNsites

j.i

�Bi,jxix j|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
coordination objective

þ λ
XNsites

i

1� 2NCð Þxi þ
XNsites

i

XNsites

j.i

2xix j

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

constraint

¼ λ
XNsites

i

1� 2NCð Þxi þ
XNsites

i

XNsites

j.i

2λ� αAi,j � βBi,j
� �

xix j (13)

and the corresponding QUBO matrix is

Q
Qi,j ¼ λ 1� 2NCð Þ for i ¼ j,
Qi,j ¼ 2λ� αAi,j � βBi,j

� �
for j . i,

Qi,j ¼ 0 for j , i:

8<
: (14)

In this work, we decided to define coordination as an objective
rather than a constraint. This means that all the structures that
respect the constraint on the number of vacancies defined in
Eq. (11) will be considered acceptable. The coordination terms will
only change the relative energy values to take into account the dif-
ferent coordination of the structure. Therefore, we expect that the

FIG. 10. Structure of three unstable
structures returned by the QUBO
model summarized in Eq. (11) (three-
vacancy structure). These structures
were specifically selected to have the
same energy as structure f in Fig. 9.
Gray circles and white circles represent
C atoms and vacancies, respectively.
The labeling is the same used in
Fig. 8.
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chemically unstable structures, such as the ones displayed in Fig. 10
will still be found, but they will have higher energy, for example,
than structures b–e in Fig. 9.

Since in the QUBO formulation constraints are defined
as penalty functions, the coordination objective can be trans-
formed into a constraint by using the same procedure outlined in
Sec. II F. Ensuring the ratio α=β is small enough and only consid-
ering valid the results whose energy is below a fixed threshold will
result in structures not having, for example, single coordinated
atoms. Whether to treat the coordination as an objective or con-
straint depends on the application and what is the goal of the
simulation.

The results reported in Fig. 11 were obtained by using the
coefficients α=1.0, β=0.05, and λ=2.0. The quantum annealing
still returns 14 structures, but, unlike the results reported
in Fig. 8, 7 different energy values are found. In Fig. 12 the 6
structures reported in Figs. 9 and 10 are depicted together
with the energy calculated using Eq. (13). When including
coordination as an objective, the model is able to identify
structures based on the local environment of the vacancy and,
therefore, allows for easy identification of the non-physical
structures.

III. CONCLUSIONS

In this work, we drew the analogy between the classical and
the quantum materials chemistry workflows. They both rely on the
abstraction of the structure onto a set of functions and the calcula-
tion of the energy of the system by means of a Hamiltonian. The
identification of the lowest energy configuration of vacancies in
graphene structures was used as a test model. The mapping of the
problem to a set of qubits was discussed and the energy model was
built in terms of objectives to minimize and constraints to respect.
This process was broken down into its different components in
order to help the computational chemistry community to build
energy Hamiltonians suitable for quantum annealing, i.e., running
on a quantum computer. The model we discussed can be used to
identify the lowest energy state of a system characterized by several
states close in energy. These types of problems are often found in
chemistry and materials science. In Appendix D we showed how
the parameters used to build the model (α, λ and β values) and in
particular, their ratios are crucial in obtaining significant results.
These parameters may require some “chemical intuition” or other
theoretical input to choose values in more complex problems
where the ground-state solution is not immediately known or

FIG. 11. Output of the quantum annealing for the QUBO reported in Eqs. (13) and (14) (three-vacancy structure) after symmetry reduction of the returned structures. The
details of the parameters used can be found in Appendix D. The percentage of broken chains as a measure of the quality of the annealing is explained in detail in
Appendix B. The energy is reported in arbitrary units. The quantum annealing was performed 1000 times.
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obvious. The results discussed in this paper aim at showing in a
simple manner how quantum annealing is becoming an extra
resource in the computational chemist’s scientific toolbox.
Furthermore, with the development of larger and more connected
quantum hardware, these methods are believed to be able to tackle
problems that cannot be solved by classical computers. The functions
used to map the materials structures onto the D-Wave architecture
and to perform the post-processing analysis developed for the results
reported in this paper47 represent the foundation for the develop-
ment of a python library to be used by the materials chemistry com-
munity to directly access quantum annealing simulations much as
the ArQTiC code63 does for gate based quantum computing.
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APPENDIX A: QUBITS AND THE BLOCH SPHERE

Classical bits of information are defined by a two-level classi-
cal state. On the other hand, quantum bits of information, called
qubits, can be thought of as a two-state quantum-mechanical
system. From a vectorial point of view, qubits are represented by a
two-dimensional vector whose basis is

j0i ¼ 1
0

� �
and j1i ¼ 0

1

� �
, (A1)

and any other state can be obtained as a linear combination of j0i
and j1i.

The Bloch sphere64,65 is used as a graphical representation of a
two-state quantum-mechanical system. In the context of quantum
computing, the Bloch sphere is used to represent the state of a
qubit, by defining the north and south poles (aligned along the
z axis) as corresponding to the standard basis vectors j0i and j1i.

During the calculation, the qubit can take any value on the
surface of the Bloch sphere. Its projection on the z axis is propor-
tional to the probability of measuring the state j0i or j1i. The
x axis and y axis components are the phase of the qubit. This phase
is responsible for some of the unique properties of qubits with
respect to classical bits.

Throughout this paper, when talking about the value of the
qubit measured at the end of the quantum annealing, we are refer-
ring to the projection of the qubit along the z axis, which is
returned as a j0i or j1i vector. For the sake of simplicity, when
reporting results, such as different configurations, the braket nota-
tion is dropped and the states j0i and j1i are reported as 0 and 1,
respectively.

APPENDIX B: MINOR EMBEDDING AND MAPPING OF
THE PROBLEM TO THE QPU

Once we have formulated a problem in terms of a binary qua-
dratic model, this needs to be mapped to the quantum annealer

hardware. For small problems, each variable of the model can be
mapped to a single physical qubit. The term physical qubit refers to
the physical quantum system used by the quantum processing unit
(QPU) to perform the calculation.

Because of the limited connectivity of the current QPU topol-
ogy in D-Wave annealers, for larger problems, it might not be pos-
sible to assign each variable to a single physical qubit. When this
happens, two or more physical qubits can be used to represent a
single variable. These qubits form a so-called chain. The process of
assigning a variable to more than one physical qubit is referred to
as minor-embedding and can either be performed manually by the
user or heuristically by the D-Wave API through a set of functions
called EmbeddingComposite, which rely on the minor-miner
library.66 Therefore, users do not need to worry about performing
the minor embedding by hand for each problem. Long chains will
impact the reliability of the results. One way to reduce the number
of chains is to minimize the number of couplings in our Ising
model or off diagonal elements in the QUBO formulation of the
problem.

Since the physical qubits in the chain represent one variable,
they should all return the same value (all spin up or all spin down).
When this is not the case, the chain is said to be broken. Several
strategies to recover the value of the variable represented by a
broken chain are available. In this work, the majority vote tech-
nique was used. This technique assigns the value of the physical
qubits that was predominant in the chain to all the qubits in the
chain.

From a physical point of view, a chain is formed by apply-
ing a ferromagnetic coupling among qubits. The strength of
such a magnetic field is called chain strength and it is one of the
parameters that need to be tuned. If the chain strength is too
strong compared to the fields used to implement the BQM, the
problem part of the Hamiltonian becomes negligible and only
trivial solutions are returned. On the other hand, if the chain
strength is too small, too many broken chains will be found and
the solution might become unreliable. It is, therefore, important
to take into account the coupling strength defined by the BQM
when setting the chain strength. There are several strategies to
determine what value will return the best results. The default
technique when using the D-Wave Ocean API is the uniform
torque compensation (UTC) method. By using the root mean
square of the coupling of the BQM, this method attempts to
compensate for the torque that would break the chain. The
chain strength is calculated as

CUTC ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ji,j

XNC

i

XNC

j.i

J2i,j

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NC

XNC

i

Nc
i

vuut for Ji,j . 0, (B1)

where Nc
i is the number of couplings (Ji,j) for atom i in the

model. The prefactor σ can be selected by the user. Values of σ
ranging from 0.1 to 1.0 were tested and are reported in Fig. 15 in
Appendix D 2.

The D-Wave API allows the user to visualize, on a graphical
interface, the mapping of the problem to the QPU. The images
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displayed in Fig. 13 are obtained from the D-Wave Problem
Inspector.67 In the top part of Fig. 13, the problem for the vacancy-
free graphene structure, whose QUBO model is defined in Eq. (5)
is displayed. The left panel shows the mapping of the problem to a
set of qubits. Since this QUBO model only includes coupling
between nearest neighbors atoms, this is equivalent to the graph
representation of the problem discussed in Appendix C. The right
panel in the same figure shows the mapping to a set of physical
qubits on the QPU. Because of the limited number of coupled
nodes, this problem was mapped to a set of 18 physical qubits and
no chains are present.

In the bottom part of Fig. 13, the same mapping described
above is displayed for the single-vacancy graphene structure. In
the energy model for this structure, all the nodes are coupled to
each other. This results in 153 edges (compared to the 27 in the
vacancy-free case) in the mapping to the logical qubits (bottom

left panel in Fig. 13). This problem cannot be mapped directly to
the QPU architecture and qubit chains are formed. These are
represented by the white lines connecting qubits in the bottom
right panel in Fig. 13. Despite having the same number of sites
in the structure as the vacancy-free case, due to the increased
coupling in the model, to solve this problem, 48 physical qubits
were used.

APPENDIX C: VACANCIES IN GRAPHENE AS A GRAPH
PARTITIONING PROBLEM

In this section, we present a different approach to thinking
about the problem of simulating vacancies in graphene. Graph rep-
resentations are often used in the quantum computing community
to represent a problem. A graph is a mathematical structure
defined by nodes and edges (a line connecting two nodes). It is,
therefore, easy to map such a structure to a set of qubits on a QPU.

FIG. 13. Panels (a) and (c): mapping of the vacancies in graphene problem to a set of logical qubits. The 1 and 0 states are represented by orange and
white circles, respectively. Panels (b) and (d): mapping of the vacancies in the graphene problem to the QPU. The 1 and 0 states are represented by light blue and
white circles, respectively. Blue and white lines connecting physical qubits represent positive and negative couplings. Panels (a) and (b) display the results for the
vacancy-free structure [energy model summarized in Eq. (5)]. Panels (c) and (d) display the results for the one-vacancy structure [energy model summarized in
Eq. (11)].
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A chemical structure can easily be thought of as a graph
where the nodes correspond to the atoms and the edges are the
bonds between two atoms. However, this representation is not
often used in the computational chemistry community. This is
because for most applications, as discussed in Sec. II A, the atom
types and coordinates can be directly fed into a computational
chemistry code implemented on classical computers. In addition,
the graph retains information about the connectivity of the
system, but the information about the relative distances of the
atoms is lost.

The graphene structure represented in Fig. 2 can be trans-
formed into an 18-node graph (one node per atom) and results in
27 edges (3Nsites=2 edges since each C atom is connected to three
other C atoms). The resulting graph is a 3-regular graph.

When using QA to calculate the energy of a chemical system, the
graph representation of the structure can be useful for two reasons:
† it helps build the energy model in terms of pairwise interactions

(see Table I);
† it allows for an additional level of abstraction between the chemi-

cal structure and the mapping to the QPU. This can help to visu-
alize the coupling required by the model and how that can be
optimized to reduce the number of coupled qubits.

The energy model reported in Eq. (5) can be outlined in
Table I, where xi ¼ 1 corresponds to site i being occupied by a C
atom, xi ¼ 0 corresponds to site i being occupied by a vacancy. The
results reported in the third column of Table I can be obtained by
using a coupling J ¼ �1 and is only needed when two nodes of the
graph are connected.

The problem of identifying the lowest energy configuration of
C atoms and vacancies can be thought of as a graph partitioning
problem. The goal of the partitioning is to assign some nodes to
group 1 (the C atoms) and others to group 0 (the vacancies) in
such a way that minimizes the energy of the system according to
Table I. This representation can be useful when a more complicated
energy model is used or when more than two species can occupy
the sites in the structure.

APPENDIX D: TUNING THE MODEL PARAMETERS

The effect of different λ=α ratios, chain strength, and anneal-
ing time were tested. The metrics analyzed are:

† ratio of broken chains (see Appendix B for details). These are
calculated with respect to the number of times the quantum

annealing was run and results that do not respect the constraint
were included;

† ratio of feasible solutions: how many solutions respect the
constraint?

† ratio states: of the feasible solutions, how many correspond to
the ground state and how many correspond to higher energy
states?

1. Ratio λ/α

Ratios of λ/α ranging from 1 to 10 were obtained by keeping
α = 1 and varying the λ value. For these simulations, the chain
strength was calculated by using the uniform torque compensation
method, as discussed in Sec. D 2 with a prefactor of 0.3 [see
Eq. (B1) for details]. This means that a different chain strength is
calculated based on the different values of the couplings Ji,j to
ensure consistency in the results. Each point in the graphs in
Fig. 14 represents the mean value of ten different quantum anneals
(each run a thousand times). The error bars show the standard
deviation for the ten runs.

Based on the results reported in Fig. 14, the ratio λ/α = 2 was
used for all the simulations reported in this paper. This value was
selected because it results in a low percentage of broken chains
while delivering high constraints-respecting solutions. In addition,
it ensures a high probability of finding the ground state (third
column in Fig. 14). For all α=λ values, the probability of finding
excited states is higher than the ground state probability. This can
be explained in terms of the multiplicity of states. From a symme-
try point of view, the states corresponding to excited states (non-
neighboring vacancies) result in exponentially more structures than
the ground state ones (neighboring vacancies).

2. Chain strength

When the problem cannot be directly mapped to the QPU
architecture, chains of physical qubits are formed. This topic is dis-
cussed in Appendix B. The D-Wave Ocean API allows for different
ways to select the chain strength. The default is the so-called
Uniform Torque Compensation (UTC) method reported in
Eq. (B1). This model uses the residue mean square of the coupling
values. It is, therefore, important to use the same energy model for
all simulations when testing the effect of the chain strength using
this model. For the results reported in this section a λ/α=2 was
used. The UTC method allows for the selection of a prefactor,
which increases or decreases the chain strength values by a constant
amount. Prefactor values ranging from 0.1 to 1.0 were tested. In
Fig. 15 the metrics defined above are plotted against values of
chain strength. The x axis reports the chain strength value rather
than the prefactor that results in such value. The minimum and
maximum values of the Ji,j terms in the energy model are 3 and 4.
The hi terms depend on the number of vacancies in the model [see
Eq. (11)]. Values of hi ¼ �66, hi ¼ �64 and hi ¼ �58 were used
for the one, two and three-vacancy structures. Following the tests
discussed in this section, the prefactor value of 0.3 was chosen for
all the simulations reported in this paper.

TABLE I. Energy model summarized in Eq. (5) expressed in terms of binary vari-
able values xi and xj and product of variables xixj. The last column in the table can
be useful to find which coupling delivers the wanted result.

xi xj xixj

0 0 0
0 1 0
1 0 0
1 1 −1
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FIG. 14. Tuning of the λ/α ratio. Each row corresponds to a number of vacancies in the model. The columns, going from left to right report the percentage of broken
chains, the probability of finding a feasible solution (i.e., a solution that respects the constraint on the number of vacancies) and the percentage of ground states and
excited states among. In this context, ground state refers to the configuration corresponding to the lowest energy for the model discussed in Sec. II E. The excited states
respect the constraint, but the arrangement of the vacancies leads to a higher energy value. Each data point represents the average of ten quantum anneal runs performed
with a fixed set of parameters. The error bars show the standard deviation of the ten runs on the result.
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FIG. 15. Tuning of the chain strength. The x axis reports the value of the chain strength. The columns, going from left to right report the percentage of broken chains, the
probability of finding a feasible solution (i.e., a solution that respects the constraint on the number of vacancies) and the percentage of ground states and excited states
among. In this context, ground state refers to the configuration corresponding to the lowest energy for the model discussed in Sec. E. The excited states respect the con-
straint, but the arrangement of the vacancies leads to a higher energy value. Each data point represents the average of ten quantum anneal runs performed with a fixed
set of parameters. The error bars show the standard deviation of the ten runs on the result. The dashed vertical lines show the minimum (3) and maximum (4) values of
the Ji,j terms in the energy model.
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FIG. 16. Tuning of the anneal time. The x axis reports the annealing time in ns on a logarithmic scale. The columns, going from left to right report the percentage of
broken chains, the probability of finding a feasible solution (i.e., a solution that respects the constraint on the number of vacancies) and the percentage of ground states
and excited states among. In this context, ground state refers to the configuration corresponding to the lowest energy for the model discussed in Sec. E. The excited
states respect the constraint, but the arrangement of the vacancies leads to a higher energy value. Each data point represents the average of ten quantum anneal runs
performed with a fixed set of parameters. The error bars show the standard deviation of the ten runs on the result.
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3. Annealing time

The D-Wave Ocean API allows the user to define the duration
of the quantum annealing. Values ranging from 1 μs to 100 μs were
tested. results are reported in Fig. 16. The default value of 20 μs was
selected for all calculations because it ensures the highest rate of
feasible solutions.

APPENDIX E: CONSIDERATIONS ON THE
CONFIGURATION MULTIPLICITY

The Boltzmann distribution can be used, in chemistry and
statistical mechanics, to calculate the probability (pi) of finding the
system in state i as a function of the state energy and the

temperature,

pi ¼ e
�ϵi
kTPn

j¼1 e
�ϵ j
kT

, (E1)

where ϵi is the energy of state i, T is the temperature of the system,
n is the total number of states, and k is the Boltzmann constant.

In the approach outlined in Eqs. (2), (5), (11), and (14), the
energy of different configurations depends on the α and β values.
These are optimized in order to correctly identify the energy order
of different configurations. However, the absolute energy value cal-
culated with this approach is not expected to be representative of

FIG. 17. The quantum annealing output for the QUBO problem reported in Eq. (11) (one-vacancy structure) using the parameters discussed in Appendix D. The values in the
columns labeled 0 to 17 are the 18 components of x. The percentage of broken chains as a measure of the quality of the annealing is explained in detail in Appendix B. The
energy is reported in arbitrary units. The quantum annealing was performed a total of 100 000 times (100 separate quantum anneals run 100 times each). The values reported
in the last column only refer to the feasible solutions, i.e., the ones containing one vacancy.
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the real energy of the structure. Therefore, the energies reported
above would not yield sensible results when used in (E1).

When comparing the number of occurrences of different
structures having the same number of vacancies and within the
same energy bracket, the energy dependence of Eq. (E1) can be
removed to obtain:

pEi ¼ 1PnE

j¼1 1
¼ 1

n
, (E2)

where the superscript E was added to specify we are only interested
in states with energy E. We can use Eq. (E2) to study the distribu-
tion of symmetry equivalent structures for the one-vacancy gra-
phene structure. For this structure, 18 equivalent configurations are
found by the quantum annealer. According to Eq. (E2), these con-
figurations should be found the same number of times (5.55% of
the times).

In Fig. 17, the result of 100 different quantum annealings,
each of them run 1000 times, resulting in a total of 100 000 runs is
reported. The reason why it was not run directly 100 000 times in a
single time is that we want to allow the minor embedding to map
the logical qubits to different physical qubits. This is important
because of the possible presence of unwanted biases within the
quantum hardware that might bias the result.

The values reported in the “percentage occurrence” column
only refer to the feasible solutions, i.e., the ones containing one
vacancy. Therefore, their sum is 100%. This is different from the
results in the main body of this paper that reported the % of
occurrence with respect to all the solutions returned by the
quantum annealer including the ones that do not respect the
constraint on the number of vacancies. A standard deviation on
the percentage of occurrence values of 0.267 with respect to the
ideal 5.55% value was found.

The standard deviation was then calculated for different
numbers of QA runs to study the dependence of the standard devi-
ation on the number of runs. Results are reported in Fig. 18 where
the standard deviation as a function of the increasing number of
QA runs is displayed. The standard deviation decreases with the
number of runs from 2.092 to 0.267 going from one single run to
100. After a first steep initial decrease of 1.394 going from 1 to 10
runs, the standard deviation decreases constantly and slowly with
the increasing number of runs. These results suggest that the stan-
dard deviation tends to zero in the limit of an infinite number of
runs and the 18 symmetry equivalent structures would be found
with the same frequency.

APPENDIX F: COMPARING THE QA ENERGIES TO DFT

The energy of the structures reported in Figs. 3 to 8 was calcu-
lated using Density Functional Theory (DFT). All calculations were
performed by using the periodic CRYSTAL17 code, which implements
localized Gaussian-type basis functions. Thanks to the use of local
basis functions instead of plane waves, on which most solid-state
simulation codes rely, the graphene structure can be treated as a
real 2D system. The PBE functional and a pob-TZVP basis set68

were used. The truncation criteria for the Coulomb and exchange
infinite lattice series were set to 8 (T1–T4) and 16 (T5). An 8� 8
Monkhorst-Pack grid was used to sample the reciprocal space. A
16� 16 Gilat-net grid, which is used to determine the Fermi
energy for conductors, was used. A tolerance of 10�9 Hartree/cell
was selected as a criterion for both the Self Consistent Field (scf )
and geometry optimization energies.

The structure of the vacancy-free graphene was fully opti-
mized (lattice parameters and atom positions). It was then used
as the initial geometry for all the other structures containing vacan-
cies. The lattice parameters were fixed at the vacancy-free values in
an attempt to simulate a low concentration of vacancies, which

FIG. 18. Dependence of the standard
deviation on the distribution of the con-
figuration as a function of the number
of quantum anneals. Each quantum
anneal run was performed 1000 times.
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would not be able to distort the lattice. In the geometry optimiza-
tion calculations, the symmetry of the structure was removed by
using the SYMMREMO keyword. The atom positions were not
manually changed to break the symmetry. This means that the
initial geometry for the single-vacancy structure is close to a local
minimum and upon optimization, we did not find a Stone-Wales
structure, but only a small displacement (0.05 Å) of the atoms sur-
rounding the vacancy.

In Table II, the “E sp” column reports the single point energy
on such initial geometry. Then, the atom coordinates of all struc-
tures were allowed to relax and their final energies are reported in
the “E optgeom” column. For ease of comparing the relative ener-
gies, these were normalized with respect to the lowest energy
within the structures containing the same number of vacancies.

The following observations can be drawn from Table II:

† the energy per atom increases with the number of vacancies in
the structures;

† for all structures, the relative DFT single point energies agree
with the QA calculations. It can, indeed, be observed that the
structures where the vacancies are located on neighboring sites
have the lowest energy within a fixed number of vacancies group.
For example, among the two-vacancy structures, structures b–e
have higher energy than structure a;

† when the geometry is optimized (column “E optgeom”), the
observation outlined in the precedent point does not always
hold true. For example, among the three-vacancy structures,
structures f and j, which are predicted by the QA to have the
highest energy have, according to DFT, the same energy as the
lowest energy structure a. This can be explained in terms of
the heavy reconstruction these structures undergo. Structures
f and j are depicted in Fig. 19 before and after geometry opti-
mization. Both structures start from a sparse initial distribu-
tion of vacancies and get to a final structure where the
vacancies can be found on three neighboring sites. In order to
quantify such reconstruction, the standard deviation (std) on

TABLE II. Comparison between the QA calculated energies and the DFT energy for the graphene structures including vacancies discussed in Sec. E to II G. The energies for
the quantum annealing are reported as arbitrary units. The column labeled “E sp” refers to the energy of the non-optimized structure. In column “E optgeom,” the energies of
the geometry-optimized structures are reported. The values of ΔE are normalized with respect to the lowest energy structure containing the same number of vacancies. The
standard deviation on the displacements of the atoms and the maximum displacement reported in the last two columns refer to the structure before and after geometry
optimization.

E QA ΔE QA E sp (eV/atom) E optgeom (eV/atom) ΔE sp (eV/atom) ΔE optgeom (eV/atom) Std disp Max disp

vacancy-free structure
a −27.0 0.0 −1036.195 07 −1036.195 07 0.0000 0.0000 0.0000 0.0000

one-vacancy structure
a −24.0 0.0 −1035.710 24 −1035.726 04 0.0000 0.0000 0.0257 0.0532

two-vacancy structure
a −22.0 0.0 −1035.586 97 −1035.630 47 0.0000 0.0000 0.0940 0.1201
b −21.0 1.0 −1035.152 02 −1035.190 41 0.0272 0.0275 0.0392 0.0724
c −21.0 1.0 −1035.238 12 −1035.238 12 0.0218 0.0245 0.1784 0.5633
d −21.0 1.0 −1035.314 04 −1035.400 40 0.0171 0.0144 0.0734 0.1301
e −21.0 1.0 −1035.307 56 −1035.376 83 0.0175 0.0159 0.0687 0.1247

three-vacancy structure
a −20.0 0.0 −1035.343 22 −1035.374 96 0.0000 0.0000 0.0492 0.1065
b −19.0 1.0 −1035.070 46 −1034.889 79 0.0182 0.0323 0.1525 0.2776
c −19.0 1.0 −1035.094 17 −1035.266 82 0.0166 0.0072 0.2092 0.2144
d −19.0 1.0 −1035.039 95 −1035.125 34 0.0202 0.0166 0.1440 0.2315
e −19.0 1.0 −1035.107 06 −1035.261 03 0.0157 0.0076 0.3275 0.6058
f −18.0 2.0 −1034.694 29 −1035.375 03 0.0433 −0.0000 0.5173 1.3846
g −18.0 2.0 −1034.732 32 −1034.656 41 0.0407 0.0479 1.7347 5.5544
h −18.0 2.0 −1034.698 64 −1034.698 64 0.0430 0.0451 0.4224 1.0414
i −18.0 2.0 −1034.875 51 −1035.263 72 0.0312 0.0074 0.8710 1.4490
j −18.0 2.0 −1034.742 82 −1035.375 03 0.0400 −0.0000 1.6188 5.7270
k −18.0 2.0 −1034.844 23 −1035.266 85 0.0333 0.0072 0.4115 0.2792
l −18.0 2.0 −1034.506 75 −1034.506 75 0.0558 0.0579 0.0149 0.0168
m −18.0 2.0 −1034.771 43 −1034.889 90 0.0381 0.0323 0.3783 0.7055
n −18.0 2.0 −1034.822 28 −1034.822 28 0.0347 0.0368 0.3625 0.2500

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 133, 221102 (2023); doi: 10.1063/5.0151346 133, 221102-21

© Author(s) 2023

 28 June 2023 13:11:23

https://aip.scitation.org/journal/jap


the atom displacements and the maximum displacements
(in Å) are reported in the last two columns of Table II. Both
structures f and j undergo much larger reconstruction than
any other structure. Their std on the atomic displacements is
one order of magnitude larger than that for the other
structures.
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