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Abstract

This dissertation studies econometric models in the presence of unobserved hetero-

geneity when data is observed over multiple dimensions. Chapter 2 and 3 study

this in the classic panel setting with two dimensions, which are usually individuals

and time. Chapter 2 studies the setting where unobserved heterogeneity may enter

non-linearly and nonseparably to the observed covariates. Established matrix com-

pletion methods and a group fixed-effect type estimator prove to approximate the

model well. Chapter 3 studies the setting where unobserved heterogeneity enters

linearly and separably, but is modelled as a generic functional transformation of

unobserved characteristics. The factor model estimated with many factors approx-

imates this form of unobserved heterogeneity well, and, like in Chapter 2, a group

fixed-effects estimator also performs well in theory and in simulations. Chapter 4

studies this setting when three or more dimensions are observed in the data and re-

stricts focus to the linear regression model. This chapter extends the notion of the

group fixed-effects estimator to a nonparametric kernel style transformation that

can be applied to any number of dimensions. The results in this chapter show that

the current state-of-the-art factor model methods to approximate unobserved het-

erogeneity do not extend well to the setting with three or more dimensions. The

results also show that the novel nonparametric kernel transformation proposed in

this chapter control for unobserved heterogeneity sufficiently well to achieve the

parametric rate of consistency under certain conditions.
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Impact Statement

This dissertation makes several contributions to the literature on econometric theory

and the results are useful for practitioners working with panel and multidimensional

datasets. In particular, the methods proposed herein are useful for practitioners who

want model estimates that are robust to many forms of unobserved heterogeneity.

Chapter 2 proposes two estimation procedures to estimate nonseparable mod-

els of unobserved heterogeneity that are useful to practitioners studying models

with a binary covariate of interest, for example, to estimate average treatment ef-

fects. The results show that existing matrix completion methods can approximate

counterfactuals in this model well, and that the novel group fixed-effects estimator

can outperform these existing methods in certain settings.

Chapter 3 proposes two estimation procedures to estimate regression coeffi-

cients in linear models with an additive and separable unobserved heterogeneity

term that is specified to be flexible to many different functional forms. This is use-

ful to practitioners who are concerned with robustness of their estimates in linear

models, where they may be concerned there is a high-dimensional and complicated

form of unobserved heterogeneity. The state-of-the-art factor model approximates

this model for unobserved heterogeneity well, and a novel group fixed-effects es-

timator also approximates this model well. The group fixed-effects estimator may

also have useful inference properties, that are left for future research.

Chapter 4 extends the interactive fixed-effects model to the setting where data

is observed over an arbitrary number of dimensions, and focuses on the more chal-

lenging case of three or more dimensions. This chapter is particularly useful for

practitioners using data that varies over many dimensions - such as supermarket
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data, or repeated network data like international trade - who are concerned that

unobserved heterogeneity may interact over all dimensions of their data. The theo-

retical and simulation results highlight the benefit of the proposed novel estimators

in controlling for this complicated form of unobserved heterogeneity, and the inad-

equacy in using existing state-of-the-art techniques. Prior to this work there were

only limited methods available to practitioners working in the three or higher di-

mensional setting.
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Chapter 1

Introduction

Modern econometric datasets often record observations of economic activity over

multiple dimensions, for example, to record the economic behaviour of the same

set of individuals over many time periods. This classic example is referred to as

panel data, and the more general case of observing three or more dimensions is

referred to as multidimensional data. The additional avenue of variation afforded

by these datasets greatly improves our ability to control for latent behaviour that

is not explicitly observed, but can be inferred by repeated observation. This latent

behaviour is commonly known as unobserved heterogeneity, and controlling for

this presents many opportunities and challenges for practitioners analysing such

datasets. This dissertation considers the problem in a number of different settings.

Chapter 2 explores the panel data setting when discrete valued covariates are

observed, and mainly focuses on the binary treatment effect case. This chapter

allows for flexible interactions between the binary covariate of interest and latent

characteristics that vary over either or both dimensions of the data. To achieve this,

the chapter considers a nonseparable functional form that translates values of the la-

tent characteristics in an arbitrary manner, subject to smoothness conditions across

values of the latent characteristics. This smoothness condition is a technical require-

ment that may not be required in general, but is imposed as a sufficient condition for

consistency. To deal with unobserved heterogeneity, this chapter proposes a matrix

completion technique and a novel group fixed-effect method that treat counterfac-

tual values of the dependent variable as missing data to be estimated. Theoretical
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and simulation results show that both methods are consistent, and whilst the matrix

completion method has large biases, the group fixed-effects estimator offers sub-

stantial bias reduction. The methods are implemented in an empirical application

of the effect of election day registration on voter turnout in the U.S.

Chapter 3 studies linear regression models in the panel data setting where un-

observed heterogeneity enters additively, and is a flexible transformation of latent

characteristics. This is done by allowing the function that interacts latent char-

acteristics to be nonseparable across dimensions of the data, and unspecified up

to smoothness conditions over variation of the latent characteristics, much like in

Chapter 2. The object of interest in this chapter are the slope coefficients on the

observed covariates. The advantage of the linear and additive model is that it can

deal with high dimensional variation in the covariate of interest, which the model

and methods in Chapter 2 are not suitable for. This chapter shows that existing

state-of-the-art factor models can consistently estimate the slope coefficients, but

requires the estimated number of factors to increase asymptotically, which makes

formal inference results difficult. The chapter also introduces a group fixed-effects

estimator, which turns out to have a faster rate of consistency for the slope coeffi-

cients under certain smoothness conditions and restrictions on the number of latent

characteristics. Simulation results confirm the theoretical findings and the methods

are implemented in an empirical application on UK house prices.

Chapter 4 studies linear regression models with additive unobserved hetero-

geneity when data is observed over three or more dimensions. This setting poses

significant technical challenges for existing estimation methods, and the chapter

demonstrates the need for a nuanced approach. Focus is again on the estimation of

slope coefficients related to observed covariates. The chapter shows that whilst ex-

isting factor model methods can consistently estimate the slope coefficients, the rate

of consistency is slow when dimensions grow at roughly similar rates. Generalisa-

tions of the factor model to multidimensional settings suffer from many theoretical

shortcomings and are largely avoided in the estimation approach developed in this

chapter. Instead, the method proposed generalises a group fixed-effects style esti-
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mator - similar to the method in Chapter 2 and Chapter 3 - to a nonparametric kernel

type estimator that has superior asymptotic and finite sample bias properties to the

current toolset available in the literature. Theoretical results suggest the parametric

rate of consistency can be shown for this new estimator, and simulation results cor-

roborate these findings. The methods are implemented to estimate the elasticity of

demand for beer using the Dominick’s supermarket dataset.



Chapter 2

Low-Rank Approximations of

Nonseparable Panel Models

2.1 Introduction

Nonseparable models are useful to capture multidimensional unobserved hetero-

geneity, which is an important feature of economic data. The presence of this het-

erogeneity makes the effect of covariates on the outcome of interest different for

each unit due to factors that are unobservable or unavailable to the researcher. In the

absence of further restrictions, a different data generating process essentially oper-

ates for each unit, which creates identification and estimation challenges. One way

to deal with these challenges is the use of panel data, where each unit is observed on

multiple occasions. In this paper, we develop an approach to estimate nonsepara-

ble models from panel data based on homogeneity restrictions and low-rank factor

approximations. Whilst homogeneity restrictions have been used previously in this

context, the application of low-rank factor approximations is more novel.

The nonseparable model that we consider includes observed discrete covari-

ates or treatments, multidimensional unobserved individual and time effects, and

idiosyncratic errors. We construct the effects of interest as averages or quantiles of

potential outcomes constructed from the model by exogenously manipulating the

value of the treatments. These effects are generally not identified from the observed

data because the treatment assignment is usually determined by the unobserved in-
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dividual and time effects. Following the previous panel literature, we impose cross-

section and time-series homogeneity restrictions to identify the effects of interest,

see, e.g. Chamberlain (1982), Manski (1987), Honoré (1992), Evdokimov (2010),

Graham and Powell (2012), Hoderlein and White (2012a) and Chernozhukov et al.

(2013a).

The estimation of the nonseparable model is challenging due to the presence

of the multidimensional unobserved individual and time effects. We cannot just

exclude these effects because they are endogenous, i.e., related to the treatments.

We deal with this problem by approximating their effect with a low-rank factor

structure. This approach can be interpreted as a series or sieve approximation on

the unobservables. We characterize the error of this approximation in terms of the

functional singular value decomposition of the expectation of the outcome condi-

tional on the treatment and unobserved effects. For smooth conditional expectation

functions, the mean squared error of the approximation error vanishes with the rank

of the factor structure at a polynomial rate.

We develop an estimator of the low-rank factor approximation in the case

where the covariate of interest is binary. This is an empirically relevant case as

it covers the treatment effect model for panel data. We also show how to extend the

model to include additive controls and fixed effects. Here, we rely on the analogy

between the estimation of treatment effects and the matrix completion problem pre-

viously noted by Athey et al. (2017) and Amjad et al. (2018). Thus, given that the

principal components program is combinatorially hard in the presence of missing

data, we consider the convex relaxation of this program that replaces a constraint

in the rank of a matrix by a constraint in its nuclear norm, following Srebro and

Jaakkola (2003) and Fazel (2003). The resulting estimator is the matrix-completion

estimator.

The main theoretical result of the paper is to show that the matrix-completion

estimator is consistent under asymptotic sequences where the two dimensions of the

panel grow to infinity at the same rate. This result does not follow from the existing

matrix completion literature that assumes that the matrix to complete has low-rank.
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In our case, the underlying matrix of interest can have full rank, but we impose

appropriate smoothness assumptions on the data generating process that guarantee

that the singular values of the matrix form a rapidly decreasing sequence. This al-

lows a low-rank approximation, and it also implies a bound on the nuclear norm

of the matrix. Our consistency proof for the matrix completion estimator therefore

crucially relies on the bound of the nuclear norm, but does not impose any low-rank

conditions. Our proof strategy also avoids the high-level restricted strong convexity

assumption (see e.g. Negahban and Wainwright (2012)). We instead provide inter-

pretable conditions on the underlying process of the observable and unobservable

variables directly.

The matrix-completion estimator is consistent, but can be biased in small sam-

ples. This bias comes from two different sources: approximation bias due to the

low-rank factor structure approximation and shrinkage bias due to the nuclear norm

regularization of the principal component analysis program Cai et al. (2010); Ma

et al. (2011); Bai and Ng (2019b). We propose matching approaches to debias the

estimator. For each treatment level, the simplest approach consists of finding the

observation in the other treatment level that is the closest in terms of the estimated

factor structure. We also propose a two-way matching procedure that combines

matching with a differences-in-differences approach. The two-way procedure is re-

lated to several recent proposals such as the matching approach of Imai and Kim

(2019) to estimate causal effects from panel data and the blind regression of Li

et al. (2017b) for matrix completion. The difference with these proposals is in the

information used to match the observations. Imai and Kim (2019) use the treat-

ment variable and Li et al. (2017b) the outcome, whereas we use the estimated

factor structure. In this sense, the estimation of the factor structure can be seen as

a preliminary de-noising step of the data Chatterjee (2015). Amjad et al. (2018)

proposed a similar debiasing procedure based on the estimated factor structure, but

they rely on synthetic control methods instead of matching. In contemporaneous

and independent work, Chernozhukov et al. (2020) have developed an alternative

rotation-debiasing method that can be applied to make inference on heterogenous
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treatment effects in low-rank models. This method consists of the application of

iterative least squares to the left and right singular vectors of the matrix-completion

estimator.

We illustrate our methods with an empirical application to the effect of election

day registration (EDR) on voter turnout and numerical simulations. We estimate

average and quantile effects using a state-level panel dataset on the 24 U.S. presi-

dential elections between 1920 and 2012 collected by Xu (2017). We find that, after

controlling for possible non-random adoption, EDR has a positive effect, especially

at the bottom of the voter turnout distribution. Our methods uncover stronger ef-

fects than standard difference-in-differences methods that rely on restrictive parallel

trend assumptions. The simulation results show that our theoretical results provide

a good representation of the behavior of the estimators in small samples.

The rest of the paper is organized as follows. Section 2.2 describes the model

and effects of interest. Section 2.3 introduces the low-rank factor approximation and

derives the properties of its matrix-completion estimator. The matching methods

to debias the matrix-completion estimator are discussed in Section 2.4. Section

2.5 reports the results of the numerical examples. All the proofs of the theoretical

results are gathered in the Appendix.

2.2 Model and Effects of Interest
Throughout this paper we consider the following nonseparable and nonparametric

panel data model:

Assumption 2.2.1 (Model).

Yit = g(XXX it ,AAAi,BBBt ,UUU it), i ∈ N= {1, . . . ,N}, t ∈ T= {1, . . . ,T}, (2.1)

where i and t index individual units and time periods, respectively; Yit is an observed

outcome or response variable with support Y ⊆ R; g is an unknown function; XXX it

is a vector of observed covariates or treatments with finite support X; AAAi and BBBt are

vectors of individual and time unobserved effects, possibly correlated with XXX it , with

supports A⊆Rda and B⊆Rdb , respectively; and UUU it is a vector of unobserved error
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terms of unspecified dimension, for which we assume that

UUU it
d
=UUU js | XXXNT ,AAAN ,BBBT , for all i, j ∈ N, t,s ∈ T, (2.2)

and

UUU it ⊥⊥ (XXXNT ,AAAN ,BBBT ) | AAAi,BBBt , for all i ∈ N, t ∈ T, (2.3)

where XXXNT = {XXX it : i ∈ N, t ∈ T}, AAAN = {AAAi : i ∈ N}, BBBT = {BBBt : t ∈ T}, and ⊥⊥

denotes stochastic independence. We also assume that, for all i ∈ N, t ∈ T, the

support of (XXX it ,AAAi,BBBt) is equal to the Cartesian product X×A×B, and that EY 2
it <

∞.

This model can be motivated from a purely statistical perspective as a latent

variable model using the Aldous-Hoover representation for exchangeable random

matrices, e.g. Xu et al. (2014), Chatterjee (2015), Orbanz and Roy (2015), and Li

and Bell (2017).1 We motivate it instead as a structural model where the unob-

served effects AAAi and BBBt are associated with individual heterogeneity and aggregate

shocks, respectively. Additional exogenous covariates can be incorporated in the

usual way by carrying out the analysis conditional on them. We focus on discrete

covariates but, from a theoretical perspective, the extension to continuous covari-

ates is straightforward by using appropriate smoothing methods — it is, however,

not clear to us whether that extension would be practically useful with realistic

sample sizes. We therefore think that it would complicate our presentation without

much benefit.

The main restriction imposed by Assumption 2.2.1 is the unit and time homo-

geneity in (2.2). A sufficient condition for unit homogeneity is that the observations

are identically distributed across i, which is a common sampling assumption for

panel data. Time homogeneity has also been commonly used in panel data models

(Chamberlain, 1982; Manski, 1987; Honoré, 1992; Evdokimov, 2010; Graham and

Powell, 2012; Hoderlein and White, 2012a; Chernozhukov et al., 2013a). It implies

that time is randomly assigned, conditional on covariates and unobserved effects.

1In the Aldous-Hoover representation, AAAi, BBBt and UUU it are independent uniform random variables.
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The additional restrictions in (2.3) are exogeneity conditions on (XXXNT ,AAAN ,BBBT ) with

respect to UUU it , conditional on AAAi and BBBt . The most substantive is the exogeneity of

XXX it . Given (2.2), this is a mild condition as time homogeneity already imposes that

any relationship between UUU it and XXX it can only be unit and time-invariant. Taken

together, (2.2) and (2.3) impose that

UUU it | AAAi,BBBt
d
=UUU js | AAA j,BBBs, for all i, j ∈ N, t,s ∈ T. (2.4)

The product support condition guarantees overlap in the support of the un-

observed effects for all values of the treatments. This condition is similar to

the overlap condition used in cross section treatment effect models under uncon-

foundedness or selection on observables. Thus, together with (2.3), it implies that

Pit(x) := Pr
(
Xit = x | AAAN ,BBBT)> 0, a.s., for all i ∈ N, t ∈ T and x ∈ X, where Pit(x)

is the analog of the propensity score in our setting. This condition is plausible

in many applications. For example, in our empirical application in Section 2.5.1,

Xit = 1{t ≥ τi}, where τi is the date of the law change in state i. In that case, if we

consider τi to be a random variable with sufficiently large support conditional on

the unobserved effects, then the condition Pit(x)> 0, a.s., is satisfied.

The model considered is similar to the static model in Chernozhukov et al.

(2013a), but there are three important differences. First, the structural function g

has time effects as arguments and therefore allows the relationship between Yit and

XXX it to vary over time in an unrestricted fashion even under (2.2). For example, it

can include location and scale time effects. Second, Chernozhukov et al. (2013a)

impose that Yit and XXX it are identically distributed across i, which is stronger than the

unit homogeneity in (2.4). Thus, unit homogeneity does not restrict the treatment

assignment process. Third, they analyze short panels, whereas we rely on large T

for identification. Our model also encompasses the nonseparable model with time

effects in Freyberger (2017), where in our notation Yit = gt(XXX it ,AAAT
i BBBt +UUU it).2 We

provide more examples of models covered by Assumption 2.2.1 below.

The structural function g is generally not identified, but can be used to construct

2Note that our model allows for g to depend on t because the dimension of BBBt is unspecified.
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interesting effects. Let Yit(xxx) := g(xxx,AAAi,BBBt ,UUU it(xxx)) be the potential outcome for

individual i at time t obtained by setting exogenously XXX it = xxx ∈ X, where

UUU it(xxx)
d
=UUU it | AAAN ,BBBT . (2.5)

Here we impose rank similarity as the distribution of UUU it(xxx) conditional on AAAN and

BBBT does not change with xxx. The main effects of interest are the average structural

functions (ASFs)

µt(xxx) :=
1
N

N

∑
i=1

E
[
Yit(xxx) | AAAN ,BBBT ] , µ(xxx) :=

1
T

T

∑
t=1

µt(xxx), (2.6)

and the conditional average structural functions (CASFs)

µt(xxx | X0) :=
1

Nt(X0)

N

∑
i=1
1{XXX it ∈ X0}E

[
Yit(xxx) | AAAN ,BBBT ] ,

Nt(X0) =
N

∑
i=1
1{XXX it ∈ X0},

µ(xxx | X0) :=
1

n(X0)

T

∑
t=1

Nt(X0)µt(xxx | X0), n(X0) =
T

∑
t=1

Nt(X0), (2.7)

where X0 ⊆ X, provided that n(X0) > 0. The ASFs and CASFs correspond to av-

erages of the potential outcome Yit(xxx) at a given time period or aggregated over

the observed time periods. In both cases the average is over the cross sectional

units in the observed sample or finite population. Infinite-population versions of

the effects can be obtained by taking probability limits as N → ∞. If XXX it includes

only a binary treatment, the ASFs and CASFs can be used to form treatment ef-

fects. For example, µ(1)− µ(0) is the time-aggregated average treatment effect

and µt(1 |{1})− µt(0 |{1}) is the average treatment effect on the treated at time t.

Distribution structural functions (DSFs) can be constructed analogously replacing

Yit(xxx) by 1{Yit(xxx) ≤ y} in (2.6) and (2.7) for y ∈ Y. Quantile effects can then be

formed by taking left-inverses of the DSFs and taking differences. For example, the
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τ-quantile treatment effect at time t is qt,τ(1)−qt,τ(0), where

qt,τ(xxx) = inf

{
y ∈ Y :

1
N

N

∑
i=1

E
[
1{Yit(xxx)≤ y} | AAAN ,BBBT ]≥ τ

}
.

We provide some examples of data generating processes that satisfy Assump-

tion 2.2.1. The purpose is to show that Assumption 2.2.1 covers a great variety of

models commonly used in empirical analysis. Our estimation methods are generic

in that we do not need to specify the data generating process, besides of satisfying

Assumption 2.2.1. Of course, using more information about the data generating

process would lead to more efficient estimators, but at the cost of robustness to

model misspecification.

Example 2.2.1 (Linear factor model). Consider the linear panel model with factor

structure in the error terms:

Yit(xxx) = xxxT
βββ +λλλ

T
i fff t +σi(xxx)σt(xxx)Uit(xxx), Uit(xxx) | XXXNT ,AAAN ,BBBT ∼ i.i.d. FU ,

where Uit(xxx) is a zero mean random variable with marginal distribution FU , which

does not depend on xxx. This is special case of Assumption 2.2.1 with Yit = Yit(XXX it),

AAAi = (λλλ i,{σi(xxx) : xxx ∈ X}) , BBBt = ( fff t ,{σt(xxx) : xxx ∈ X}), and UUU it =Uit(XXX it). The av-

erage effect of changing the covariate from xxx0 to xxx1 at t is

µt(xxx1)−µt(xxx0) = µt(xxx1 | {xxx1})−µt(xxx0 | {xxx1}) = (xxx1 − xxx0)
T
βββ .

A version of this model was considered by Kim and Oka (2014) to analyze the effect

of unilateral divorce laws on divorce rates in the U.S. This model encompasses the

standard difference-in-differences model, Yit(xxx) = xxxTβββ +λi+ ft +σi(xxx)σt(xxx)Uit(xxx),

by setting λλλ i = (λi,1)T and fff t = (1, ft)T.

Example 2.2.2 (Binary response model). Assume that the potential outcome Yit(xxx)

is binary and generated by

Yit(xxx) = 1{m(xxx,AAAi,BBBt)≥Uit(xxx)}, Uit(xxx) | XXXNT ,AAAN ,BBBT ∼ i.i.d.U (0,1),
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for some unknown function m. Here, assuming that Uit(xxx) is uniform is a normal-

ization, since m can be arbitrary. This latent index model with unobserved effects is

a special case of Assumption 2.2.1 with Yit =Yit(XXX it) and UUU it =Uit(XXX it). The ASFs

at xxx and t is

µt(xxx) =
1
N

N

∑
i=1

m(xxx,AAAi,BBBt).

Similar latent index models for count or censored responses are also covered by

Assumption 2.2.1.

Example 2.2.3 (Treatment effect factor model). Assume that XXX it contains only a

binary treatment indicator, i.e., X = {0,1}. The potential outcomes are generated

by the linear factor model

Yit(xxx) = λλλ i(xxx)T fff t(xxx)+σi(xxx)σt(xxx)Uit(xxx), Uit(xxx) | XXXNT ,AAAN ,BBBT ∼ i.i.d. FU , xxx ∈ X,

where Uit(xxx) is a zero mean random variable with marginal distribution FU , which

does not depend on xxx. This is special case of Assumption 2.2.1 with Yit = Yit(XXX it),

AAAi = ({λλλ i(xxx),σi(xxx) : xxx ∈ X}), BBBt = ({ fff t(xxx),σt(xxx) : xxx ∈ X}), and UUU it = Uit(XXX it).

The average treatment effect at t is

µt(1)−µt(0) =
1
N

N

∑
i=1

[λλλ i(1)T fff t(1)−λλλ i(0)T fff t(0)],

and the average effect on the treated at t is

µt(1 | {1})−µt(0 | {1}) = 1
Nt(1)

N

∑
i=1
1{XXX it = 1}[λλλ i(1)T fff t(1)−λλλ i(0)T fff t(0)],

provided that Nt(1) = ∑
N
i=11{XXX it = 1}> 0. Versions of this model have been con-

sidered by Hsiao et al. (2012), Gobillon and Magnac (2016a), Athey et al. (2017),

Li and Bell (2017), Xu (2017), Li (2018), Bai and Ng (2019a), Xiong and Pel-

ger (2019), and Chan and Kwok (2020). Example 2.2.1 is a special case with

λλλ i(xxx)T fff t(xxx) = xxxTβββ +λλλ
T
i fff t .

Throughout this paper we use standard panel data notation, with the two panel
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dimensions being denoted by units i and time t. However, one could also consider

pseudo-panel or network applications of our results, where the two panel dimen-

sions are denoted by i and j, and Yi j could, for example, be wage of worker i in

firm j, consumption of member i in household j, a friendship indicator between

individuals i and j, or the volume of trade from country i to country j. The ex-

isting literature on two-way heterogeneity in network models usually either makes

stronger parametric assumptions than we impose here (e.g. Graham (2017), Dzem-

ski (2019), Chen et al. (2020), Zeleneev (2020)) or uses stochastic blockmodels or

graphon models, which typically ignore the effect of covariates (e.g. Holland et al.

(1983), Wolfe and Olhede (2013), Gao et al. (2015), Auerbach (2019)). Our meth-

ods of estimating non-parametric models with two-way heterogeneity may therefore

also be of interest in a network context.

2.3 Estimation via Factor Structure Approximation

A natural starting point to estimate the effects in (2.6) and (2.7) is to use empirical

analogs. This amounts to replacing E
[
Yit(xxx) | AAAN ,BBBT ] by an estimator. There are

two complications with this approach. First, the potential outcome Yit(xxx) is not

observable. We deal with this complication by noting that

E
[
Yit(xxx) | AAAN ,BBBT ]= E

[
g(xxx,AAAi,BBBt ,UUU it(xxx)) | AAAN ,BBBT ]

= E
[
g(xxx,AAAi,BBBt ,UUU it) | AAAN ,BBBT ]= E [g(xxx,AAAi,BBBt ,UUU it) | XXX it = xxx,AAAi,BBBt ]

= E [Yit | XXX it = xxx,AAAi,BBBt ] ,

under the rank similarity in (2.5) and Assumption 2.2.1. Hence, we can write the

expectation of the potential outcome as an expectation of the observed outcome.

The second complication is that AAAi and BBBt are not observable, so that we cannot

directly estimate E [Yit | XXX it = xxx,AAAi,BBBt ]. To deal with this complication, we start by
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noticing that

E [Yit | XXX it = xxx,AAAi = aaa,BBBt = bbb] = E [g(xxx,aaa,bbb,UUU it) | AAAi = aaa,BBBt = bbb]

=: m(xxx,aaa,bbb),
(2.8)

where the function m does not vary with i and t, by implication (2.4) of Assumption

2.2.1. We show next how this function can be approximated and estimated using a

low-rank factor structure.

2.3.1 Low-rank factor structure approximation

For ease of exposition, we assume in the rest of the paper that the covariate vector

XXX it includes only a binary treatment and X = {0,1}. Accordingly, we denote the

covariate and its values by Xit and x instead of XXX it and xxx. In what follows, x denotes

a generic element of X and all the assumptions and results hold for all x ∈ X1 ⊆ X,

where X1 = X if we are interested in the entire population, X1 = {0} if we are

interested in the treated subpopulation, and X1 = {1} if we are interested in the

untreated subpopulation.

The approximation that we propose is based on the singular value decomposi-

tion of the function (aaa,bbb) 7→m(x,aaa,bbb) for each x∈X. We make two assumptions on

this decomposition. The first assumption is a sampling condition on the unobserved

effects that will be useful to define a norm for the eigenfunctions.

Assumption 2.3.1 (Sampling of AAAi and BBBt). (i) AAAi is independent and identically

distributed across i ∈ N with distribution FAAA, (ii) BBBt is independent and identically

distributed over t ∈ T with distribution FBBB, and (iii) AAAi and BBBt are independent for

all i, t.

For simplicity we consider the case where both AAAi and BBBt are independently

distributed across i and over t, but since we consider asymptotic sequences where

both N and T become large one could also allow for appropriate weak dependence

across both i and t. Formalizing this weak dependence would complicate both the

assumption and the proof of the following results, which is why we decided to stick

to independence in our presentation here.
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The next assumption is a regularity condition on the function m(x,aaa,bbb).

Assumption 2.3.2 (Smoothness of (aaa,bbb) 7→ m(x,aaa,bbb)). The function (aaa,bbb) 7→

m(x,aaa,bbb) admits a singular value decomposition

m(x,aaa,bbb) =
∞

∑
j=1

s j(x)u j(x,aaa)v j(x,bbb),

under the L2(FAAA ×FBBB) norm, where the eigenfunctions u j(x,aaa) and v j(x,bbb) are or-

thonormal, i.e.,

Eu j(x,AAAi)
2 = 1, Eu j(x,AAAi)uk(x,AAAi) = 0,

Ev j(x,BBBt)
2 = 1, Ev j(x,BBBt)vk(x,BBBt) = 0, j ̸= k ∈ {1,2,3 . . .},

and the singular values s1(x)≥ s2(x)≥ s3(x)≥ . . .≥ 0 satisfy

∞

∑
j=1

s j(x)< ∞.

There is a large literature on singular value decompositions of functions, which

shows that, under appropriate conditions, the singular values satisfy s j(x) ≲ j−α ,3

where the decay coefficient α depends on the dimensions of the arguments aaa, bbb, and

on the smoothness of (aaa,bbb) 7→ m(x,aaa,bbb). For sufficiently smooth functions, α > 1

and therefore ∑
∞
j=1 s j(x) < ∞. For example, if (aaa,bbb) 7→ m(x,aaa,bbb) is continuously

differentiable up to order s and A and B are compact, then

s j(x)≲ j−
s

da∧db ,

by Theorem 3.3 of Griebel and Harbrecht (2013), where da ∧ db is the minimum

of da and db. This implies that ∑
∞
j=1 s j(x) < ∞ if s > da ∧ db. Assumption 2.3.2 is

therefore a high-level smoothness assumption on (aaa,bbb) 7→ m(x,aaa,bbb), very similar

to the Assumption 2.2. in Menzel (2018), where an analogous condition on the

singular values is imposed, with the same aim of controlling the behaviour of a

3Here, s j(x)≲ j−α means that there exists a constant c > 0 such that s j(x)≤ c j−α , for all j.
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function of unobserved two-dimensional heterogeneity.

The formulation of this smoothness assumption is convenient for our purposes,

because it immediately leads to a low-rank approximation of m(x,aaa,bbb). The low-

rank approximation truncates the singular value decomposition to the first R ele-

ments,

m(x,aaa,bbb) =
∞

∑
j=1

s j(x)1/2u j(x,aaa)︸ ︷︷ ︸
=:φ j(x,aaa)

s j(x)1/2v j(x,bbb)︸ ︷︷ ︸
=:ψ j(x,bbb)

=
R

∑
j=1

φ j(x,aaa)ψ j(x,bbb)+ζR(x,aaa,bbb).

(2.9)

The first term is the approximation and the second term is the approximation error.

Under Assumption 2.3.2,

E ζR(x,AAAi,BBBt)
2 → 0 as R → ∞.

In other words, the approximation error can be made negligible by increasing the

truncation point R. For example, if s j(x)≲ j−α with α > 1, then

E ζR(x,AAAi,BBBt)
2 = E

[
∞

∑
j=R+1

s j(x)u j(x,AAAi)v j(x,BBBt)

]2

=
∞

∑
j,k=R+1

s j(x)sk(x)E
[
u j(x,AAAi)uk(x,AAAi)

]
E
[
v j(x,BBBt)vk(x,BBBt)

]
=

∞

∑
j=R+1

s j(x)2 ≲
∞

∑
j=R+1

j−2α ≤
∫

∞

R
j−2αd j ≲ R1−2α ,

by Assumptions 2.3.1 and 2.3.2. Hence, ζR(x,AAAi,BBBt) converges in mean square to

zero at a polynomial rate with R.

Combining (2.8) and (2.9), we obtain the approximate factor model

Yit = λλλ i(Xit)
T fff t(Xit)+ζR(Xit ,AAAi,BBBt)+Eit , Eit := Yit −E [Yit | Xit ,AAAi,BBBt ] , (2.10)

where λλλ i(x) = [φ1(x,AAAi), . . . ,φR(x,AAAi)]
T, fff t(x) = [ψ1(x,BBBt), . . . ,ψR(x,BBBt)]

T, and

the composite error νit := ζR(Xit ,AAAi,BBBt) + Eit contains the approximation error,

ζR(Xit ,AAAi,BBBt), and the conditional expectation error, Eit . The factor structure can
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be seen as a series or sieve approximation to the function (aaa,bbb) 7→ m(x,aaa,bbb) with

basis functions {φ j(x,aaa)ψ j(x,bbb)}∞
j=1 if we let R = RN,T to grow with N and T such

that ζR(x,aaa,bbb) vanishes as N,T → ∞. The factor structure approximation is exact

in some cases for fixed R. For instance, in Example 2.2.3

m(x,AAAi,BBBt) = λλλ i(x)T fff t(x),

so that ζR(x,AAAi,BBBt) = 0, a.s., if R is greater or equal to the number of factors.

In the model (2.10) the factor structure changes with the treatment level. In

other words, we have a different pure factor model for each x ∈ X, that is

Yit = λλλ i(x)T fff t(x)+νit if Xit = x.

This observation leads to our first estimation strategy where the data is partitioned

by the treatment level and separate factors and factor loadings are estimated in each

element of the partition by solving the least squares program

min
{λλλ i}N

i=1,{ fff t}T
t=1

1
2

N

∑
i=1

T

∑
t=1

Dit(x)
(
Yit −λλλ

T
i fff t
)2
, (2.11)

where Dit(x) := 1{Xit = x}. Unfortunately, we cannot solve this problem using

standard principal component analysis due to the presence of missing data, that

is, each observational unit (i, t) is not available at all treatment levels. In the next

section, we apply matrix completion methods to deal with this problem.

2.3.2 Estimation by matrix completion methods

We start by expressing the program (2.11) in matrix form. Let ΓΓΓ
R(x) =

λλλ
N(x) fff T (x)T, where λλλ

N(x) = [λλλ 1(x), . . . ,λλλ N(x)]T, a N ×R matrix of factor load-

ings, and fff T (x) = [ fff 1(x), . . . , fff T (x)]
T, a T ×R matrix of factors. The least squares

estimator of ΓΓΓ
R(x) is the N ×T matrix ΓΓΓ with typical element Γit that solves

min
{ΓΓΓ∈RN×T :rank(ΓΓΓ)≤R}

1
2

N

∑
i=1

T

∑
t=1

Dit(x)(Yit −Γit)
2 . (2.12)
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Let YYY (x) be a N × T matrix whose (i, t) element is Yit if Xit = x and is missing

otherwise. The previous program is closely related to the problem of completing the

missing entries of YYY (x) using a low rank approximation matrix ΓΓΓ
R(x) Rennie and

Srebro (2005); Candès and Recht (2009); Candes and Tao (2010). This connection

was previously noticed by Athey et al. (2017) and Amjad et al. (2018) in the context

of treatment effects models. The solution is the N × T matrix of rank R whose

entries are the closest in the mean squared error sense to the corresponding entries

of YYY (x).

The previous program is combinatorially hard because of the constraint in the

rank of the matrix Srebro and Jaakkola (2003). Following Fazel (2003) we consider

the convex relaxation of this program. Let ∥M∥∞ be the spectral norm of a RN×T -

matrix M, and define the nuclear norm (also called trace norm) of ΓΓΓ as the corre-

sponding dual norm ∥ΓΓΓ∥1 := max{M∈RN×T :∥M∥∞≤1}Tr(M′
ΓΓΓ). This nuclear norm

can equivalently be defined as the sum of the singular values of ΓΓΓ. Using this norm

we can write the convex relaxation of the program (2.12) as follows,

min
{ΓΓΓ∈RN×T :∥ΓΓΓ∥1≤R1}

1
2

N

∑
i=1

T

∑
t=1

Dit(x)(Yit −Γit)
2 ,

where R1 is a positive constant such that R = f (R1), where f is an increasing func-

tion. Hence, ζR(x,AAAi,BBBt) vanishes in mean square as R1 → ∞. We replace the

rank constraint, rank(ΓΓΓ) ≤ R, by a constraint on the nuclear norm of the matrix,

∥ΓΓΓ∥1 ≤ R1, i.e. we replace a constraint in the number of nonzero singular values by

a constraint in the sum of singular values. This program is convex in ΓΓΓ and can be

reformulated in Lagrange form as

min
{ΓΓΓ∈RN×T }

1
2

N

∑
i=1

T

∑
t=1

Dit(x)(Yit −Γit)
2 +ρ(R1)∥ΓΓΓ∥1, (2.13)

where ρ(R1) ≥ 0 is a regularization parameter, which is a one-to-one increasing

function of R1. There exist efficient algorithms to solve this program Mazumder

et al. (2010).

Let Γ̂ΓΓ(x) be a solution to (2.13) with typical element Γ̂it(x). Then, we can form
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estimators of the ASF and CASF as

µ̂t(x) =
1
N

N

∑
i=1

[
Dit(x)Yit +{1−Dit(x)}Γ̂it(x)

]
,

and

µ̂t(x | {x0}) =
∑

N
i=1 Dit(x0)

[
Dit(x)Yit +{1−Dit(x)}Γ̂it(x)

]
∑

N
i=1 Dit(x0)

.

In the next section, we provide conditions under which these estimators are con-

sistent using asymptotic sequences where N,T → ∞. These estimators, however,

might display shrinkage biases in finite samples due to the nuclear norm regular-

ization Cai et al. (2010); Ma et al. (2011); Bai and Ng (2019b). We propose two

matching procedures to debias the estimator in Section 2.4.

2.3.3 Consistency of Matrix Completion Estimator

Let ΓΓΓ
∞(x) be the N ×T matrix with typical element Γ∞

it (x) = m(x,AAAi,BBBt) and EEE(x)

be the N ×T matrix with typical element

Eit(x) :=

 Eit = Yit −Γ∞
it (x) if Xit = x,

0 otherwise.
(2.14)

Note that ΓΓΓ
∞(x) = limR→∞ ΓΓΓ

R(x) a.s. Furthermore, we introduce the notation

D(x) = {(i, t) ∈ N×T : Xit = x}, and n(x) = |D(x)| for the number of observa-

tions with Xit = x.

Recall that

Γ̂ΓΓ(x) ∈ argmin
ΓΓΓ∈RN×T

QNT (ΓΓΓ,ρ,x), QNT (ΓΓΓ,ρ,x) =
1
2 ∑
(i,t)∈D(x)

(Yit −Γit)
2 +ρ∥ΓΓΓ∥1,

(2.15)

where ρ := ρ(R1). Here, if the argmin over ΓΓΓ ∈ RN×T is not unique, then we can

choose Γ̂ΓΓ(x) arbitrarily from the set of minimizers — our results are not affected by

that, we only require that QNT (Γ̂ΓΓ(x),ρ,x) ≤ QNT (ΓΓΓ,ρ,x), for all ΓΓΓ ∈ RN×T . We

want to show that Γ̂ΓΓ(x) converges to ΓΓΓ
∞(x) as N,T → ∞ in some sense such that
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µ̂(x)−µ(x) = oP(1). For that we require additional assumptions.

Assumption 2.3.3 (Error Moments). Conditional on XXXNT , AAAN and BBBT , Eit(x) is

independent across (i, t) ∈ D(x), and there exists a constant b < ∞ that does not

depend on i, t, N, T , such that

E
[
Eit(x)4 | AAAN ,BBBT ,XXXNT ]≤ b.

Furthermore, we assume that n(x)−1
∑(i,t)∈D(x)Γ∞

it (x)
2 = OP(1).

For the purpose of showing Lemma 2.3.1 and Theorem 2.3.4 we could alterna-

tively replace Assumption 2.3.3 by the two high-level conditions:

2
n(x) ∑

(i,t)∈D(x)
Γ

∞
it (x)Eit = oP(1), ∥EEE(x)∥∞ = OP

(√
N +T

)
,

where again ∥·∥∞ denotes the spectral norm. The first of those conditions is implied

by Assumption 2.3.3 through application of the weak law of large numbers, while

the second follows, for example, by the spectral norm inequality in Latała (2005).

In principle, we could still derive those high-level conditions if we allowed for

appropriate weak dependence of Eit(x) across i and over t, but we again focus on

the independent case for simplicity of presentation.

We first provide a consistency result for the entries of Γ̂ΓΓ(x) that correspond to

the observed values of YYY (x).

Lemma 2.3.1. Let the Assumptions 2.3.1, 2.3.2 and 2.3.3 hold, and assume that

ρ = ρNT is chosen such that ρNT/
√

N +T → ∞ and ρNT
√

NT/n(x)→ 0 as N,T →

∞. Then,

1
n(x) ∑

(i,t)∈D(x)

[
Γ̂it(x)−Γ

∞
it (x)

]2
= oP(1).

A necessary condition for the existence of the sequence ρ = ρNT in

Lemma 2.3.1 is n(x)/
√
(N +T )NT → ∞, that is, the fraction n(x)/(NT ) of ob-

servations with Xit = x can converge to zero, but not too fast. Apart from that,



2.3. ESTIMATION VIA FACTOR STRUCTURE APPROXIMATION 35

Lemma 2.3.1 does not restrict the assignment process that determines XXXNT . No-

tice also that Lemma 2.3.1 does not require Assumption 2.2.1 because Γ∞(x) is a

reduced-form parameter.

Applying the Cauchy-Schwarz inequality

(
1

n(x) ∑
(i,t)∈D(x)

ait

)2

≤ 1
n(x) ∑

(i,t)∈D(x)
a2

it

with ait = Γ̂it(x)−Γ∞
it (x), Lemma 2.3.1 guarantees that

1
n(x) ∑

(i,t)∈D(x)

[
Γ̂it(x)−Γ

∞
it (x)

]
= oP(1).

Nevertheless, Lemma 2.3.1 is not directly useful to show the consistency of the

estimators of the ASF, because it only guarantees L2-consistency of Γ̂ΓΓ(x) over the

set of entries (i, t) for which Xit = x. Those are exactly the observations for which

an unbiased estimator of Γ∞
it (x) = m(x,AAAi,BBBt) is already available, namely Yit . The

consistency result we would like to obtain is

1
NT

N

∑
i=1

T

∑
t=1

[
Γ̂it(x)−Γ

∞
it (x)

]2
= oP(1), (2.16)

but such a result will certainly require stronger assumptions on XXXNT than we have

imposed so far.

The existing literature on matrix completion relies on the concept of restricted

strong convexity to derive (2.16). This approach shows that under certain conditions

on a RN×T -matrix MMM with entries Mit , and on XXXNT (which determines the set D(x)),

there exists a constant c > 0 such that with high probability

1
NT

N

∑
i=1

T

∑
t=1

M2
it ≤

c
n(x) ∑

(i,t)∈D(x)
M2

it .

See Theorem 1 in Negahban and Wainwright (2012), Lemma 12 in Klopp et al.

(2014), and Lemma 3 in Athey et al. (2017). Thus, if Mit = Γ̂it(x)−Γ∞
it (x) and XXXNT
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satisfy restricted strong convexity, then (2.16) would follow from Lemma 2.3.1.

We pursue a different strategy than the existing matrix completion literature to

show that

µ̂(x) :=
1
T

T

∑
t=1

µ̂t(x) =
1

NT

N

∑
i=1

T

∑
t=1

Dit(x)Yit +
1

NT

N

∑
i=1

T

∑
t=1

[1−Dit(x)] Γ̂it(x)

is a consistent estimator of (NT )−1
∑

N
i=1 ∑

T
t=1 Γ∞

it , which under Assumption 2.2.1 is

equal to µ(x) defined in (2.6). We believe that our approach is simpler in the setting

of this paper where Γ∞
it (x) is not necessarily of low-rank. In particular, we do not

aim to show (2.16), but instead we derive consistency of µ̂(x) directly. However,

the following theorem still requires additional assumptions on the assignment pro-

cess that determines XXXNT , in the same way that additional conditions on XXXNT are

required to verify restricted strong convexity. For simplicity, we focus on consis-

tency of µ̂(x) in the main text, but results for more general weighted averages of the

form (NT )−1
∑

N
i=1 ∑

T
t=1Wit(x)Γ∞

it (x), with known weights Wit(x)∈R, are presented

in the appendix. For example, in the case of the treatment effects on the treated that

we consider in the empirical application of Section 2.5.1, Wit(x) = n(1)−1Xit .

Theorem 2.3.4. Let the Assumptions 2.2.1, 2.3.1, 2.3.2 and 2.3.3 hold. Consider

N,T → ∞ at the same rate, and let ρ = ρNT be chosen such that ρNT/
√

N +T →

∞ and ρNT/
√

NT → 0. Let Pit(x) = Pr
(
Xit = x | AAAN ,BBBT), and assume that

(NT )−1
∑

N
i=1 ∑

T
t=1 P−1

it (x) = OP(1). Let GGG(x) be the N × T matrix with entries

Git(x) = P−1
it (x)(Dit(x)−Pit(x)), and assume that ∥GGG(x)∥∞ = OP(

√
N +T ), and

1
NT

N

∑
i=1

T

∑
t=1

P−1
it (x)Git(x) = oP(1),

1
NT

N

∑
i=1

T

∑
t=1

Γ
∞
it (x)Git(x) = oP(1). (2.17)

Then,

µ̂(x) = µ(x)+oP(1).

To interpret the conditions in Theorem 2.3.4, notice that due to the definitions

Dit(x) = 1{Xit = x} and Pit(x) = Pr
(
Xit = x | AAAN ,BBBT), E

[
Git(x) | AAAN ,BBBT ] = 0 by
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construction, and Git(x) therefore plays a role very similar to the error term Eit(x).

In particular, the conditions in (2.17) can be verified by a weak law of large numbers,

as long as P−1
it (x) is not too large, and Git(x) is not too strongly correlated across i

and over t. Regarding the condition on the spectral norm ∥GGG(x)∥∞ = OP(
√

N +T ),

there are many results in the random-matrix theory literature that show this rate

for mean-zero random matrices GGG(x), see, for example, Geman (1980), Silverstein

(1989), Bai et al. (1988), Yin et al. (1988). In particular, if Git(x) is independent

across both i and t, then this rate result follows from the very elegant spectral norm

inequality in Latała (2005), see the proof of Lemma 2.3.1 in the appendix, where we

apply that inequality to Eit(x). However, that simple argument would require Xit to

be independently distributed across i and t, conditional on AAAN , BBBT . More generally,

we expect ∥GGG(x)∥∞ = OP(
√

N +T ) to hold whenever the matrix entries Git(x) have

zero mean, sufficiently bounded moments, and weak correlation across both i and

t, see Section S.2 of the supplementary material of Moon and Weidner (2017) for

details.

We have thus shown that consistent estimates for ASFs can be obtained via

the matrix completion estimator even if the estimand Γ∞
it (x) = m(x,AAAi,BBBt) itself is

not of low rank. This is the main technical result of this paper. However, inference

on µ(x) based on µ̂(x) can be problematic, because µ̂(x) is subject to both low-

rank approximation and shrinkage biases. The low-rank approximation bias is due

to the approximation error ζR(x,aaa,bbb) in the decomposition of m(x,aaa,bbb) in equation

(2.9). The shrinkage bias comes from bias in Γ̂ΓΓ(x) due to the presence of the nuclear

norm penalization in the objective function of (2.15). To isolate this bias, consider

a simple case where Yit(x) follows a deterministic pure factor model

Yit(x) = Γit(x) =
R

∑
j=1

s j(x)u j(x,AAAi)v j(x,BBBi).

Then, the matrix completion estimator of Γit(x) in (2.15) yields

Γ̂it(x) =
R

∑
j=1

[s j(x)−ρ]+u j(x,AAAi)v j(x,BBBi)
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where [z]+ = max(z,0). Compared to ΓΓΓ(x), Γ̂ΓΓ(x) has the same eigenvectors but the

singular values are shrunk toward zero. This argument carries over to the case where

Yit(x) follows an approximate factor structure Cai et al. (2010); Ma et al. (2011); Bai

and Ng (2019b). Because of these biases, we explore alternative estimates for µ(x)

in Section 2.4.

2.3.4 Covariates and fixed effects

As we mentioned in Section 2.2, exogenous covariates can be incorporated by con-

ditioning on their values. This method can produce very noisy estimators in small

samples unless the covariates take only on few values. Here we consider a semipara-

metric version of the model that imposes additivity in the effect of the exogenous

covariates, which may be continuous, discrete or mixed. It also allows for additive

unobserved individual and time effects that might vary across the covariate level x.

These effects can be subsumed in the factor structure, but are usually considered

separately in empirical analysis as the estimators perform better without regulariz-

ing them Athey et al. (2017).

Let CCCit be a dc-vector of covariates, ααα(x) = (α1(x), . . . ,αN(x)) be a N-vector

of individual effects and δδδ (x) = (δ1(x), . . . ,δT (x)) be a T -vector of time effects.

Then, we can replace the program (2.13) by

min
{βββ∈Rdc ,ααα∈RN ,δδδ∈RT ,ΓΓΓ∈RN×T }

N

∑
i=1

T

∑
t=1
1{Xit = x}

(
Yit −CCCT

itβββ −αi −δt −Γit
)2
+ρ(R1)∥ΓΓΓ∥1,

Chernozhukov et al. (2018), Moon and Weidner (2018) and Beyhum and

Gautier (2019) provide algorithms to solve this program. Let β̂ββ (x), α̂αα(x) =

(α̂1(x), . . . , α̂N(x)), δ̂δδ (x) = (δ̂1(x), . . . , δ̂T (x)), and Γ̂ΓΓ(x) be the solution of the pre-

vious program. We can form estimators of the ASF and CASF as

µ̂t(x) =
1
N

N

∑
i=1

[
1{Xit = x}Yit +1{Xit ̸= x}

{
CCCT

it β̂ββ (x)+ α̂i(x)+ δ̂t(x)+ Γ̂it(x)
}]

,
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and

µ̂t(x | {x0}) =

∑
N
i=1

[
1{Xit = x0 = x}Yit +1{Xit = x0 ̸= x}

{
CCCT

it β̂ββ (x)+ α̂i(x)+ δ̂t(x)+ Γ̂it(x)
}]

∑
N
i=11{Xit = x0}

.

2.4 Debiasing Using Matching Methods

The matrix completion estimator of the ASF is generally biased. As we explained

in Section 2.3.3, the bias comes from two sources: low-rank approximation bias

and shrinkage bias. One could attempt to correct the shrinkage bias by shifting the

singular values of Γ̂ΓΓ(x) upwards. However, inference results on the ASFs based on

matrix completion are generally very difficult to obtain even if ΓΓΓ
∞(x) is truly low

rank. In our setting, the presence of the additional low-rank approximation bias

makes this even more challenging. We instead discuss alternative estimators and

show that they have significantly lower biases than the matrix completion estimators

in the numerical simulations of Section 2.5.2.

To construct the estimators of ΓΓΓ
∞(x), we start by extracting the factor structure

of Γ̂ΓΓ(x) in (2.15). Let λ̂λλ i(x) and f̂ff t(x) be the R×1 vectors that satisfy

Γ̂it(x) = λ̂λλ i(x)T f̂ff t(x),

subject to the usual normalizations that T−1
∑

T
t=1 f̂ff t(x) f̂ff t(x)

T is the identity matrix

of size R and N−1
∑

N
i=1 λ̂λλ i(x) λ̂λλ i(x)T is a diagonal matrix. Next, we apply a matching

procedure to this factor structure. In its simplest version, we estimate each entry

ΓΓΓ
∞
it (x) such that Xit ̸= x, by matching with the observation with X js = x that is the

nearest neighbor in terms of the vectors λ̂λλ i(x) and f̂ff t(x). In particular, Γ̆it(x) =

Yi∗∗(i,t,x),t∗∗(i,t,x) where i∗∗(i, t,x)∈N and t∗∗(i, t,x)∈T are a solution to the program

min
j∈N,s∈T

∥∥∥λ̂λλ i(x)− λ̂λλ j(x)
∥∥∥2

+
∥∥∥ f̂ff t(x)− f̂ff s(x)

∥∥∥2

s.t. X js = x.
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We also consider a two-way matching procedure that combines matching with

a difference-in-differences approach. It consists of two steps:

(i) For all x∈X and (i, t)∈N×T such that Xit ̸= x, find the matches i∗(i, t,x)∈N

and t∗(i, t,x) ∈ T that solve the program

min
j∈N,s∈T

∥∥∥λ̂λλ i(x)− λ̂λλ j(x)
∥∥∥2

+
∥∥∥ f̂ff t(x)− f̂ff s(x)

∥∥∥2

s.t. Xis = X jt = X js = x.

(ii) Estimate Γit(x) by

Γ̃it(x) = Yi,t∗(i,t,x)+Yi∗(i,t,x),t −Yi∗(i,t,x),t∗(i,t,x).

In other words, we find the match ( j,s) with X js = x that not only is the closest to

(i, t) in terms of the estimated factor structure, but also corresponds to a unit j with

X jt = x and a time period s with Xis = x. Then, we estimate the counterfactual Γit(x)

as a linear combination of Yjt , Yis and Yjs.

The additional difference-in-differences step in the two-way procedure is use-

ful to reduce bias. To see this, we can compare Γ̃it(x) with the simple matching

estimator Γ̆it(x). Thus, abstracting from the estimation error in the factors and load-

ings,

E[Γ̆it(x)−Γit(x) | AAAN ,BBBT ,XXXNT ] = m(x,AAAi∗∗(i,t,x),BBBt∗∗(i,t,x))−m(x,AAAi,BBBt)

= OP(∥AAAi∗∗(i,t,x)−AAAi∥+∥BBBt∗∗(i,t,x)−BBBt∥),

by a first-order Taylor expansion of (aaai,bbbt) 7→ m(x,aaai,bbbt) around (AAAi,BBBt); whereas

E[Γ̃it(x)−Γit(x) | AAAN ,BBBT ,XXXNT ] = m(x,AAAi∗(i,t,x),BBBt∗(i,t,x))−m(x,AAAi,BBBt)

= OP(∥AAAi∗(i,t,x)−AAAi∥2 +∥BBBt∗(i,t,x)−BBBt∥2),

by a second-order Taylor expansion of (aaai,bbbt) 7→ m(x,aaai,bbbt) around (AAAi,BBBt). The
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two-way matching removes the leading term of the Taylor expansion, reducing the

bias of the matching by one order of magnitude because i∗∗(i, t,x) ̸= i or t∗∗(i, t,x) ̸=

t. On the other hand, ∥AAAi∗(i,t,x) − AAAi∥ ≥ ∥AAAi∗∗(i,t,x) − AAAi∥ and ∥BBBt∗(i,t,x) − BBBt∥ ≥

∥BBBt∗∗(i,t,x) − BBBt∥ a.s. because the two-way procedure imposes the additional re-

strictions Xis = X jt = x. Whether the first or second order bias dominates would

generally be determined by the proportion of observations with X js = x and the dis-

tributions of AAAi and BBBt . We provide a numerical comparison of the biases of the

matching estimators in Section 2.5.2.

We develop the theory for a debiased estimator that allows for multiple matches

and estimated factors and loadings. Multiple matches are expected to reduce dis-

persion at the cost of increasing bias. Let λλλ i = λλλ (x,AAAi) and fff t = fff (x,BBBt) be the

transformations of AAAi and BBBt that are consistently estimated by λ̂λλ i and f̂ff t .
4 We

define

Ni =
{

j ∈ N\{i} :
∥∥∥λ̂λλ i − λ̂λλ j

∥∥∥≤ τNT

}
, Tt =

{
s ∈ T\{t} :

∥∥∥ f̂ff t − f̂ff s

∥∥∥≤ υNT

}
,

for some bandwidth parameters τNT > 0 and υNT > 0. The debiased estimator of

µ(x) is then given by

µ̃(x) =
1

NT

N

∑
i=1

T

∑
t=1

Ỹit(x),

with

Ỹit(x) =



Yit if Xit = x,

1
nit

∑
j∈Ni

∑
s∈Tt

1{Xis = X jt = X js = x}(Yis +Yjt −Yjs)

if Xit ̸= x and nit > 0,

1
n(x) ∑( j,s)∈D(x)Yjs if nit = 0,

(2.18)

where nit := ∑ j∈Ni ∑s∈Tt 1{Xis = X jt = X js = x}. Here, for Xit ̸= x, we construct

4The matching method discussed here is also applicable to settings where the matching is based
on variables other than the estimated factor structure. These include for example cross section and
time series averages of the observable variables. See the appendix for a more general treatment.
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the counterfactual Ỹit(x) by averaging over all units ( j,s) ∈ Ni ×Tt that satisfy the

constraint Xis = X jt = X js = x. Notice that if Xit ̸= x and nit = 0, then we cannot

construct a suitable counterfactual by that method. In that case we assign Ỹit(x)

the average of the observations with X js = x to make sure that µ̃(x) is always well-

defined, but our assumption below guarantees that this rarely happens.

This estimator has similar debiasing properties to the nearest neighbor de-

scribed above, but it is more tractable theoretically because it varies more smoothly

with respect to the factors and loadings.

Indeed, µ̃(x) can be written as

µ̃(x) =
1

NT

N

∑
i=1

T

∑
t=1

ωit Yit ,

where the weights ωit are functions of λ̂λλ j and f̂ff s for all j ∈ N and s ∈ T. To show

that µ̃(x) is a consistent estimator of µ(x), we use the following assumption:

Assumption 2.4.1 (Two-way Matching Estimator). There exists a sequence ξNT >

0 such that ξNT → 0 as N,T → ∞, and

(i) 1
NT ∑

N
i=1 ∑

T
t=11{Xit ̸= x&nit = 0}= OP (ξNT ).

(ii) Yit is uniformly bounded over i, t,N,T .

(iii) Yit is independent across both i and t, conditional on XXXNT , AAAN , BBBT .

(iv) The function (aaa,bbb) 7→ m(x,aaa,bbb) is at least twice continuously differentiable

with uniformly bounded second derivatives.

(v) There exists c > 0 such that ∥aaa1 −aaa2∥ ≤ c∥λλλ (aaa1)−λλλ (aaa2)∥ for all aaa1,aaa2 ∈A,

and ∥bbb1 −bbb2∥ ≤ c∥ fff (bbb1)− fff (bbb2)∥ for all bbb1,bbb2 ∈ B.

(vi) 1
N ∑

N
i=1

(∥∥∥λ̂λλ i −λλλ i

∥∥∥2
+max j∈Ni

∥∥∥λ̂λλ j −λλλ j

∥∥∥2
)
= OP (ξNT ).

1
T ∑

T
t=1

(∥∥∥ f̂ff t − fff t

∥∥∥2
+maxs∈Tt

∥∥∥ f̂ff s − fff s

∥∥∥2
)
= OP (ξNT ).

(vii) τ2
NT = OP (ξNT ) and υ2

NT = OP (ξNT ).
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(viii) 1
NT ∑

N
i=1 ∑

T
t=1 E

[
ω2

it

∣∣XXXNT , AAAN , BBBT ]= OP(NT ξ 2
NT ).

(ix) Let YYY NT
−(i,t),−( j,s) be the outcome matrix YYY NT , but with Yit and Yjs replace by

zero (or some other non-random number), and all other outcomes unchanged.

We assume

1
(NT )2

N

∑
i, j=1

T

∑
t,s=1

1{(i, t) ̸= ( j,s)}E
[∣∣∣ωit

(
YYY NT
−(i,t),−( j,s)

)
ω js

(
YYY NT
−(i,t),−( j,s)

)
−ωit(YYY NT )ω js(YYY NT )

∣∣∣ ∣∣∣∣XXXNT , AAAN , BBBT
]
= OP

(
ξ

2
NT
)
.

Remark 2.4.1 (Assumption 2.4.1). Part (i) guarantees that Xit ̸= x and nit = 0 only

happens for a small fraction of observations (i, t). We are therefore able to con-

struct proper counterfactuals Ỹit(x) for most observations. Part (ii) is a boundedness

condition that is standard in the matrix completion literature. Part (iii) is an indepen-

dence condition that is convenient to simplify the derivations but can be generalized

to weak correlation across both i and t. We use part (iv) to bound the error terms

of the Taylor expansions for the bias. Part (v) imposes an injectivity condition. The

functions aaa 7→ λλλ (aaa) and bbb 7→ fff (bbb) need to be such that AAAi and BBBt can be uniquely

recovered from λλλ i = λλλ (AAAi) and fff t = fff (BBBt). A necessary condition is that the di-

mensions of λλλ i and fff t are greater than or equal to the dimensions of AAAi and BBBt ,

respectively. This holds in our factor structure approximation when let R grow with

the sample size, provided that the dimensions of AAAi and BBBt are fixed. Part (vi) holds

if λ̂λλ i−λλλ i and f̂ff t − fff t are of order N−1/2 and T−1/2. We expect this assumption to be

satisfied for rates ξNT ≫ max(N−1,T−1). The bandwidth parameters τNT and υNT

should not be chosen too large according to part (vii). For example, if we want to

achieve a rate ξNT ≪ max(N−1/2,T−1/2), then we need τNT ≪ max(N−1/4,T−1/4)

and υNT ≪ max(N−1/4,T−1/4). Part (viii) requires that any given outcome Yit is

not chosen too often with too high weight in the construction of the counterfactuals

Ỹ js(x). Finally, part (ix) is a high-level assumption that could be justified by ap-

propriate distributional assumptions on Xit , AAAi, BBBt , and on the estimators λ̂λλ i and f̂ff t .

We prefer to present it as a high-level assumption, because formally working out
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the distributional assumptions is quite cumbersome. Intuitively, if nit is sufficiently

large, then changing YYY NT to YYY NT
−(i,t),−( j,s) should not change the constructions of

the counterfactual Ŷit(x) very much. If that is true for all (i, t), then the weights

ωit(YYY NT ) should be very close to the weights ωit

(
YYY NT
−(i,t),−( j,s)

)
and the assumption

is satisfied.

Theorem 2.4.2. Under Assumptions 2.2.1 and 2.4.1,

µ̃(x)−µ(x) = OP (ξNT ) .

As discussed in the above remark, one can achieve rates

ξNT ≪ max(N−1/2,T−1/2)

for sufficiently regular data generating processes, and if the bandwidth parameters

τNT and υNT are chosen sufficiently small. By contrast, the low-rank approximation

bias in µ̂(x) will usually prevent us from achieving such a convergence rate for µ̂(x).

This finding is consistent with our Monte Carlo results in Section 2.5.2, where µ̃(x)

is found to typically have much smaller bias than µ̂(x).

2.5 Numerical Examples

2.5.1 Election day registration and voter turnout

We illustrate the methods of the paper with an empirical application to the effect

of allowing voter registration during the election day on voter turnout in the U.S.

Xu (2017). Voting in the U.S. used to require registration prior to the election day

in most states. Registration increased the cost of voting and was considered as

one possible reason for low turnout rates. In response, some states implemented

Election Day Registration (EDR) laws that allowed eligible voters to register on

election day when they arrive at the polling stations. These laws were not passed

by all the states, and there was variation in the time of adoption across states. Thus,

they were enacted by Maine, Minnesota and Wisconsin in 1976; Wyoming, Indiana

and New Hampshire in 1994, and Connecticut in 2012.
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We use a dataset on the 24 presidential elections for 47 states between 1920 and

2012 collected by Xu (2017). It includes state-level information about the turnout

rate, Yit , measured as the total ballots counted divided by voting-age population in

state i at election t, and a treatment indicator for EDR, Xit , that equals one if the

state i has an EDR law enacted at election t. Following Xu (2017), we exclude

North Dakota where registration was never needed, and Alaska and Hawaii that

were not states until 1959. Since there are only 9 states that are ever treated and

the treatment started in the 1976 election, we focus on effects on the treated at

the elections between 1976 and 2012. We estimate average treatment effects and

quantile treatment effects at multiple quantile indices.

Figure 2.1 compares the average turnout of states that are ever treated with

states that are never treated in elections prior to the first implementation of the EDR

laws in 1976. It shows that ever treated states have higher turnout rates on average

than never treated states without the EDR treatment. We consider several methods

to deal with this likely nonrandom assignment of EDR to estimate the ATTs for

each election after 1976. First, we do a naive comparison of means between treated

and nontreated states in each election (Dmeans). Second, we consider a difference-

in-differences method that uses the nontreated states as controls at each election

(DiD). In particular, we estimate the effects from a linear regression with state

effects and election effects interacted with a EDR indicator. This method yields

the ATT for each election under a parallel trend assumption between treated and

nontreated states.5 Third, we compute our estimator based on matrix completion

methods without debiasing (MC) with additive state and election effects and the

parameter ρ such that the number of factors is R = 6. Fourth, we debias the MC

estimates using the two-way matching method with 10 matches (TWM-10). Fifth,

we consider the simple matching method with 5 matches (SM-5). We choose the

number of matches roughly based on the numerical simulations of Section 2.5.2.

Figure 2.2 reports the estimates of the ATT of EDR at each election. The

methods that account for possible nonrandom assignment of the EDR produce lower

5The DiD model is a special case our model with additive effects. In this case, it imposes that
there are only additive state and election effects that are the same for both treatment levels.
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Figure 2.1: Pretrends in turnout rate

estimates of the effect than the naive comparison of means between treated and non-

treated states. This finding agrees with the pre-EDR differences found in fig. 2.1.

MC, TWM-10 and SM-5 estimates are generally larger and more stable across elec-

tions than DiD estimates. According to TWM-10, EDR laws increase voter turnout

between 5 and 9% depending on the election. This effect is an economically signifi-

cant relative to 55%, the average turnout rate for states without EDR. The estimates

of the election-aggregated ATTs are 10.71%, 0.67%, 7.35%, 5.56%, and 4.87% for

Dmeans, DiD, MC, TWM-10, and SM-3, respectively.

Figure 2.3 plots the estimates of the election-aggregated quantile treatment ef-

fect on the treated (QTT) of EDR as a function of the quantile index. We report

estimates from four methods: a naive comparison of quantiles between treated and

non-treated states (Dquantiles), our estimator based on matrix completion methods

without debiasing (MC) with additive state and election effects and the parameter

ρ such that the number of factors is R = 3, two-way matching with 10 matches
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Figure 2.2: Average treatment effect on treated

(TWM-10), and simple matching with 5 matches (SM-5). The QTT is the differ-

ence of the quantiles between the observed turnout for the treated observations and

the corresponding potential turnout have they not been treated. The quantiles of the

observed turnout are estimated using sample quantiles. The estimates of the quan-

tiles of the potential outcomes are obtained by inverting the corresponding estimates

of the distribution, which are obtained by our methods replacing Yit by the indica-

tor 1(Yit ≤ y) and repeating the procedure over a grid of values of y that includes

the sample quantiles of observed turnout with indices {.10, .11, . . . , .98}.6 Here, we

find that the effect of EDR is decreasing across the distribution of turnout and ranges

between 10 and 0% according to TWM-10. EDR is therefore more effective at the

bottom of the voter turnout distribution. Comparing with the Dquantiles estimates,

we find that the sign of the selection bias switches from positive to negative around

6We rearrange the estimates of the distribution to guarantee that they are increasing with respect
to y Chernozhukov et al. (2010).
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Figure 2.3: Time-averaged QTT

2.5.2 Monte Carlo simulations

To evaluate the performance of our methods in a controlled synthetic environment,

we generate potential outcomes from an additive linear model where

Yit(x) = x+g(Ai,Bt)+Uit(x), x ∈ {0,1}, i ∈ {1, . . . ,30}, t ∈ {1, . . . ,30},

Uit(x)∼ N(0,1/4) independently over i, t and x, Ai ∼U(0,1) independently over i,

Bt ∼ U(0,1) independently over t, Uit(x), A j and Bs are independent for all i, t, j

and s, and g is the Gaussian kernel, i.e.,

g(a,b) =
1√

2πσ
exp
(
−(a−b)2

σ2

)
.
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This design is similar to that used in Bordenave et al. (2020), with kernel function

specification from the numerical simulations in Griebel and Harbrecht (2013).7 The

parameter σ controls the decay of the singular values of g and can be calibrated to

make sure the singular values decay slowly. Smaller values for σ lead to greater

dispersion in the kernel function (a,b) 7→ g(a,b) and a slower singular value decay,

hence can be interpreted as a measure of smoothness.8 The assignment of Xit that

determines what potential outcomes are observed is similar to the election applica-

tion. In particular, only observations for the first half of the units, i ∈ {1, . . . ,15},

and the second half of the panel, t ∈ {15, . . . ,30}, may be treated. For these obser-

vations, Xit is related to the unobserved effects (Ai,Bt) via Xit = 1{g(Ai,Bt) ≥ c},

where c is a constant calibrated to Pr(g(Ai,Bt)≥ c) = .5.

Table 2.1: Results for µ(0 | {1})

Bias St. Dev. RMSE
Dmeans 0.59 0.02 0.59
DiD 0.70 0.03 0.70
MC 0.74 0.02 0.74
TWM-1 0.03 0.14 0.14
TWM-5 0.03 0.11 0.12
TWM-10 0.04 0.10 0.11
TWM-30 0.07 0.09 0.12
SM-1 0.12 0.10 0.16
SM-5 0.15 0.07 0.17
SM-10 0.19 0.06 0.20
SM-30 0.31 0.05 0.31
Notes: based on 1,000 simulations

We apply similar methods to Section 2.5.1 to estimate the CASFs µt(0 | {1}),

t ∈ {15, . . . ,30}, and µ(0 | {1}) using the observed variables Xit and Yit = Yit(Xit).

Thus, we consider Dmeans, DiD, MC without additive effects and with the param-

eter ρ such that R = 5, and multiple versions of TWM and SM with the number of

matches equal to 1, 5, 10, and 30. For each method, we compute the bias, standard

deviation and rmse from 1,000 simulations. Across the simulations, we redraw the
7We find similar results in a multiplicative model where Yit(x) = (1+ x)g(Ai,Bt)+Uit(x). We

omit these results for the sake of brevity.
8Smoothness here is specifically related to numerical smoothness, i.e. variability in the function

within close neighbourhoods of its arguments.
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values of Uit(x) and hold Ai, Bt and Xit fixed. Table 2.1 reports the results for the

time-aggregated CASF, µ(0 | {1}), and Figure 2.4 plots the results for the CASF,

µt(0 | {1}), as a function of t. The results show that Dmeans, DiD and MC are

severely biased relative to their standard deviations. All the matching estimators

reduce bias and rmse, despite of increasing dispersion. As one would expect, in-

creasing the number of matches reduces the variability of the matching estimators

but increases their biases. The number of matches that minimizes the rmse is larger

for the TWM than for the SM. Overall, these small-sample findings agree with the

asymptotic results of Sections 2.3.3 and 2.4.

Figure 2.4: Results for t 7→ µt(0 |{1}).
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Chapter 3

Linear Panel Regressions with

Two-Way Unobserved Heterogeneity

3.1 Introduction
We consider the following panel data model for i = 1, . . . ,N cross-sectional units,

and t = 1, . . . ,T time periods,

Yit = X ′
it β +uit , uit = h(αi,γt)+ εit , (3.1)

where Yit is an observed dependent variable, Xit = (Xit,1, . . . ,Xit,K)
′ is a K-vector

of observed explanatory variables, and uit is an unobserved error term. Within the

unobserved error term, we have an unknown real-valued function h(·, ·) that depends

on the (vector-valued) unobserved fixed effects αi ∈ Rdα and γt ∈ Rdγ , which are

allowed to be arbitrarily correlated with the observed regressors Xit , while εit is a

mean-zero error term that is uncorrelated with Xit . Our focus is on estimation of and

inference on the parameter β ∈ RK — the regression coefficient of Xit on Yit when

properly controlling for the unobserved αi and γt .

The key model restrictions in (3.1) are the linearity in Xit as well as the ad-

ditive separability between X ′
it β and uit . If the unobserved error term uit is of the

more general form uit = g(αi,γt ,ξit), for some idiosyncratic errors ξit that are iden-

tically distributed across i and over t, and independent of the covariates Xit , then

under appropriate regularity conditions we can define h(αi,γt) = E
[
uit
∣∣αi,γt

]
and



3.1. INTRODUCTION 52

εit = uit − h(αi,γt) to again obtain model (3.1). The additive separability between

h(αi,γt) and εit is therefore not strictly required. However, throughout this paper we

take the representation of the model in (3.1) as the starting point for our analysis.

Analogous to the singular value decomposition of a matrix, there exists, under

weak regularity conditions, the singular value decomposition of a function h : Rdα ×

Rdγ → R, which reads

h(α,γ) =
∞

∑
r=1

σr ϕr(α)ψr(γ), (3.2)

for some functional singular values σr > 0, and appropriate normalized functions

ϕr :Rdα →R and ψr :Rdγ →R, r ∈ {1,2,3, . . .}. Equation (3.2) allows us to rewrite

model (3.1) as

Yit = X ′
it β +

∞

∑
r=1

λir ftr + εit , (3.3)

with λir := σr ϕr(αi) and ftr := ψr(γt). Thus, our model can be viewed as a linear

panel regression model with unobserved “factor structure” or “interactive fixed ef-

fects”, but where the number of factors ftr and corresponding factor loadings λir is

infinite. The same rewriting of a function h(αi,γt) by an infinite sum ∑
∞
r=1 λir ftr is

used in Menzel (2021), but for a different model, and with the goal of analyzing the

bootstrap for multidimensional data.

Within a panel regression context, most of the existing literature assumes that

the number of unobserved factors is finite, which, from our perspective, corresponds

to a truncation of the infinite sequence of factors in (3.3), that gives

Yit = X ′
it β +

R

∑
r=1

λir ftr + eit , (3.4)

where eit := εit +∑
∞
r=R+1 λir ftr. The interactive fixed effect model in (3.4) is one

possible approximation of the model (3.1) that we explore in this paper, and we

will show that this approximation can be used to estimate β consistently. However,

we also explore another approximation of h(αi,γt) using two-way grouped fixed
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effects, see Section 3.2.2 below, and we also derive convergence rate results for the

resulting grouped fixed effect estimator. Other approximation methods for h(αi,γt)

are also conceivable, but are not explored in this paper.1

For datasets with both N and T large, the two currently dominant estimation

methods for the panel regression model in (3.4) are the common correlated effect

(CCE) estimator of Pesaran (2006) and the least-squares (LS) estimator (also called

quasi maximum likelihood estimator) in Bai (2009). Since those original papers

by Pesaran and Bai, a large literature has emerged that has extended the CCE and

LS estimation methods, and has analyzed the properties of those estimators in more

general settings — see Chudik and Pesaran (2013), Bai and Wang (2016), and Kara-

biyik et al. (2019) for recent surveys. We follow that literature here by also consid-

ering panels with both N and T large, that is, for our asymptotic results we consider

N,T → ∞.2

The “conventional” interactive fixed effect model in (3.4) is a special case

of our model (3.1), with αi = λi = (λi1, . . . ,λiR)
′, γt = ft = ( ft1, . . . , ftR)′, and

h(αi,γt)= λ ′
i ft . The key question that we ask in this paper is what happens when the

multiplicative factor structure λ ′
i ft is replaced by a more general non-linear factor

structure h(αi,γt). However, we do maintain all other assumptions of model (3.4),

in particular, the homogenous regression coefficient β , and the additive separability

between X ′
it β and the unobserved error.

The main challenge that we need to tackle when considering this extension

is that, if the data generating process is given by (3.1), then the error term eit in

(3.4) will generally be correlated with Xit , because eit contains the truncated part

∑
∞
r=R+1 λir ftr of the infinite factor structure,3 and λir = ϕr(αi) and ftr = ψr(γt) are

1For example, to justify (3.2) we rely on the paper by Griebel and Harbrecht (2014), which also
discusses the alternative “sparse grid” approximation. In our context, the sparse grid approximation
would correspond to replacing ∑

R
r=1 λir ftr by ∑

R
r,q=1 γrq λir ftq, with some sparsity condition on the

matrix γ = (γrq).
2There is of course also work on model (3.4) in the context of short T panels, for example, Holtz-

Eakin et al. (1988), Ahn et al. (2001, 2013), Sarafidis and Robertson (2009) Juodis and Sarafidis
(2018, 2022), Westerlund et al. (2019),

3Notice that the majority of these truncated factors will be “weak”, see Onatski Onatski (2010,
2012) and Chudik, Pesaran and Tosetti Chudik, Pesaran, and Tosetti (2011a) for the distinction
between “strong” and “weak” factors.
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functions of αi and γt , which can be correlated with Xit . Once eit is correlated with

Xit in this way, then the existing results for the CCE and the LS estimator are not

applicable anymore. The currently known results on the CCE and LS estimator in

the presence of an infinite number of factors (e.g. Pesaran and Tosetti 2011, Chudik

et al. 2011b, and Westerlund and Urbain 2013) require that the “unaccounted” fac-

tors ∑
∞
r=R+1 λir ftr are uncorrelated with the regressors, so that they can be consid-

ered part of the error term eit without generating an endogeneity problem.

For the case that Xit and eit are correlated, there exist instrumental variable (IV)

generalizations of both the CCE and LS method (e.g. Harding and Lamarche 2011,

Lee et al. 2012, Robertson and Sarafidis 2015, Moon et al. 2018, and Norkutė et al.

2021), but those require observed instruments Zit that are uncorrelated with eit . We

do not explore instrumental variable approaches in this paper.

The two main theoretical contributions of our paper are as follows: Firstly,

we formally show that the LS estimator of Bai (2009) can still provide consistent

estimates of β in model (3.1), as long as the number of factors R = RNT used in es-

timation grows to infinity jointly with N and T (a similar asymptotic with growing

number of factors is considered in Beyhum and Gautier 2022). Secondly, we sug-

gest an alternative estimator for β , which we denote the two-way group fixed-effect

estimator (generalizing ideas in Bonhomme et al. 2021 on the discretization of one-

way heterogeneity), and we provide conditions under which this new estimator is
√

NT -consistent as N,T → ∞. In addition, we also suggest inference procedures

using both of these estimators, but we do not formally derive inference results in

this paper. Instead, we study the properties of our suggested confidence intervals in

Monte Carlo simulations. We also apply the estimators to an empirical application

on UK house price data.

When employing the LS estimator with factors from Bai (2009) to model (3.1),

we are effectively estimating a misspecified model — the DGP is given by (3.1), but

the estimating equation by (3.4). Galvao and Kato (2014) and Juodis (2020) have

recently studied linear panel regression models with additive fixed effects under

misspecification. We consider interactive fixed effects for estimation here, and the
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type of misspecification we allow for is more restrictive. We therefore do not have

to introduce any pseudo-true parameter, but we find that the LS estimator is still

consistent for the true value of β under our assumptions.

It also natural to ask if our non-linear model h(αi,γt) is truly necessary, and

also if there is a way to test whether a more standard additive or multiplicative

error component structure would be sufficient to capture unobserved heterogeneity.

For example, Kapetanios et al. (2019) provide a test for whether the multiplicative

error component structure is necessary or whether a simpler two-way fixed effect

estimator would be sufficient. In many applications they find evidence that the

standard two-way fixed effect should work well without the need for interactive

fixed-effects. However, we do not pursue such a testing approach here, because

if the main goal is inference on β , then size distortions due to pre-testing quickly

become a concern (see e.g. Guggenberger 2010). Instead, our recommendation for

applied researcher is to report two-way fixed effect estimates jointly with factor

augmented estimates and grouped fixed effect estimates in one table that is then

subjected to human interpretation.

In related work, allowing for the number of factors to grow with sample size

has been considered in Li et al. (2017a), where they explicitly detail a factor model

with the number of factors growing with sample size. The difference to this paper is

our model admits an infinite number of factors even in small samples and considers

finite factor estimation as an approximation to the true data generating process.

There also exist other work on non-linear generalizations of the interactive

fixed effect and factor model specification. Zeleneev (2020) considers the same

model (3.1) in the context of network data, but in his baseline discussion, the out-

come Yi j (instead of Yit here) is symmetric in i and j. The main difference to our

work, however, is that Zeleneev estimates the model based on a strategy that iden-

tifies agents with similar fixed effect values based on the distribution of their out-

comes. His estimation method is accordingly also completely different to ours.

Bodelet and Shan (2020) also consider non-linear functions in place of the

standard linear factor model. In our notation, their model assumes a series of
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smooth univariate functions of the form ∑
Q
q=1 hiq(γtq) for unobserved heterogene-

ity. Their approach models individual specific responses to structural shocks but is

different to our approach, which uses a homogeneous bivariate function. Therefore,

their approach allows for discontinuities across how individual effects are modelled

whereas our assumption is more restrictive since variation across individuals, via

αi, must be smooth.

Other papers on unobserved two-way heterogeneity in panel or network mod-

els either make more parametric assumptions (e.g. Graham 2017, Dzemski 2019,

Chen et al. 2020), or employ stochastic block or graphon models (e.g. Holland et al.

1983, Wolfe and Olhede 2013, Gao et al. 2015, Auerbach 2019), and are therefore

less closely related to our paper.

There are also recent papers that use matrix completion methods for the pur-

pose of treatment effect estimation in panel models with two-way heterogeneity,

e.g. Athey et al. (2017) and Amjad et al. (2018), Chernozhukov et al. (2020), and

Fernández-Val et al. (2021). Those papers do not require the additive separability

between the regressors and error term in (3.1), but as a result they also have to make

stronger assumptions and employ more complicated estimation methods than we do

here. The same is true for Freyberger (2017), who considers a non-separable model

with interactive fixed effects. Alternative non-linear extensions of factor models are

discussed, for example, in Cunha et al. (2010) and Gunsilius and Schennach (2019).

The rest of the paper is organized as follows. Section 3.2 introduces our sug-

gested estimators and inference methods. Section 3.3 and Section 3.4 provide

asymptotic results for the LS estimator of Bai (2009) and for our new two-way

group fixed-effect estimator, respectively. Section 3.5 discusses the practical imple-

mentation. Monte Carlo simulations are presented in Section 3.6, and an empirical

application is worked out in Section 3.7.

3.2 Estimation approaches

In this section, we introduce the two estimation approaches that are afterwards an-

alyzed and used in the rest of the paper.
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3.2.1 Least-squares interactive fixed effect estimator

Following Bai (2009) we consider

(
β̂LS, λ̂ , f̂

)
= argmin

(β ,λ , f )∈RK+N×R+T×R

N

∑
i=1

T

∑
t=1

(
Yit −X ′

it β −
R

∑
r=1

λir ftr

)2

. (3.5)

This estimator was introduced for the exact factor model in equation (3.4), and Bai

(2009) shows that it is
√

NT -consistent and asymptotically normally distributed for

N,T → ∞ when the true number of factors is fixed and known. Moon and Weidner

(2015) extend this result to the case where the true number of factors is chosen too

large in the estimation.

To make the estimates λ̂ and f̂ in (3.5) unique, we choose the usual normal-

ization T−1 f̂ ′ f̂ = IR, and λ̂ ′λ̂ to be a diagonal matrix. In addition, it is convenient

to introduce the notation X ·β for the N ×T matrix with elements X ′
itβ .

As explained above, the model (3.1) that we consider in this paper can be

rewritten as the factor model in (3.3) with an infinite number of factors in the true

data generating process. This suggests that the least-squares estimators in (3.5) can

still be consistent as long as the number of factors R = RNT used in the estimation

is allowed to grow to infinity jointly with N and T . Estimation of
(

β̂LS, λ̂ , f̂
)

is

done using an iterative scheme. That is, we start by initialising β̂LS, and then iterate

between estimating the principal components of Y −X · β̂LS to obtain
(

λ̂ , f̂
)

and

least squares of Y = X ·β + λ̂ f̂ ′+ e to obtain β̂LS. The convergence metric we use

is the sum of squares in (3.5). However, this iteration scheme can converge to a

local minimum, and it is therefore important to repeat the procedure with multiple

starting values of β . For more details on the numerical computation of the estimator

in (3.5) we refer to Bai (2009) and Moon and Weidner (2015).

This least-squares estimator of Bai (2009) is very well-established in the panel

regression literature. It is used regularly both in empirical and in methodological

papers, e.g. Su and Chen (2013), Kim and Oka (2014), Lu and Su (2016), Gobil-

lon and Magnac (2016b), Totty (2017), Su and Wang (2017), Moon and Weidner

(2017), Giglio and Xiu (2021), to name just a few.
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3.2.2 Group fixed effects estimator

Here, we introduce two-way grouped fixed effects estimator, which discretizes the

unobserved heterogeneity that is parameterized by αi and γt in the spirit of Bon-

homme et al. (2021). We first describe the main idea of this estimator before ex-

plaining its practical implementation in more details.

3.2.2.1 Main idea

We partition the set {1, . . . ,N} of cross-sectional units into G = GNT groups such

that individuals in the same group have similar values of αi. Let gi ∈ {1, . . . ,G}

denote the group membership of individual i. Analogously, we partition the set

{1, . . . ,T} of time periods into C =CNT groups such that time periods in the same

group have similar values of γt . Let ct ∈ {1, . . . ,C} denote the group membership

of time period t. Details on how we construct those partitionings in practice are

described below. Notice that within each group the values of the αi and γt , re-

spectively, need not be the same, but in the asymptotic theory in Section 3.4 the

differences of those fixed effects within each group are asymptotically negligible.

Once we have obtained those groups, then we estimate β by applying pooled

OLS to the linear fixed-effect model

Yit = X ′
it β +δi,ct +νt,gi + εit , (3.6)

where δi,ct ∈R and νt,gi ∈R are nuisance parameters that are jointly estimated with

β , that is, the basic two-way grouped fixed effect estimator for β can be written as

β̂G = argmin
β∈RK

min
δ∈RN×C

min
ν∈RT×G

N

∑
i=1

T

∑
t=1

(
Yit −X ′

it β −δi,ct −νt,gi

)2
. (3.7)

Notice that within each pair of groups for i and t, that is, for fixed values of ct

and gi, the model in (3.6) is simply a standard additive two-way fixed effect model

Yit = X ′
it β +δi +νt + εit . However, as the group membership changes we allow the

parameters δi and νt to change arbitrarily, as indicated by the additional subscripts ct

and gi in (3.6). We could have written δi,gi,ct +νt,gi,ct to indicate explicitly that both
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the individual and time effect are allowed to change across groups, but the notation

in (3.6) of course already allows for that generality. The parameters δ therefore

form an N ×C matrix, while the parameters ν form a T ×G matrix.

In the introduction, we explained how the LS-estimator with interactive effects

can be justified for model (3.1) by a truncation of the functional singular value ex-

pansion in (3.2). In other words, a particular approximation of the function h(αi,γt)

naturally leads to the estimator in (3.5).

The grouped fixed effect estimator in (3.7) can be justified analogously by

a different approximation of the function h(αi,γt). Under appropriate regularity

conditions, by a joint Taylor expansion in αi and γt around the corresponding group

means αgi =
∑

n
j=11{gi=g j}α j

∑
n
j=11{gi=g j} and γct

= ∑
T
s=11{ct=cs}γs

∑
T
s=11{ct=cs}

, we find that

h(αi,γt) = δi,ct +νt,gi +O
(
∥αi −αgi∥

2 +∥γt − γct
∥2) , (3.8)

where for vectors ∥ · ∥ denotes the Euclidean norm, and

δi,ct := h(αgi,γct
)+

∂h(αgi,γct
)

∂α ′
i

(αi −αgi), νt,gi :=
∂h(αgi,γct

)

∂γ ′t
(γt − γct

).

This shows that the leading order dependence of h(αi,γt) on αi and γt can be de-

scribed by the additive specification δi,ct + νt,gi used in (3.6). Since this two-way

grouped fixed effect ignores the terms O
(
∥αi −αgi∥2 +∥γt − γct

∥2) entirely, it is of

course crucial to construct the groups such that αi −αgi and γt − γct
are small. The

clustering algorithm that we use to achieve that is described in Subsection 3.2.2.2

below.

Notice that a naive application of Bonhomme et al. (2021) to our two-way

fixed effect model would not result in our estimating equation (3.6) but in Yit =

X ′
it β +χgi,ct +εit , where χg,c is a fixed effect specific to each pair of groups (g,c) ∈

{1, . . . ,G}×{1, . . . ,C}. The analog of equation (3.8) for that alternative approach
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reads

h(αi,γt) = h(αgi,γct
)︸ ︷︷ ︸

=χgi,ct

+O
(
∥αi −αgi∥+∥γt − γct

∥
)
,

that is, the approximation error would be of linear order in the discrepancies αi −

αgi and γt − γct
within groups. By contrast, for our estimating equation (3.6) the

resulting approximation error in (3.8) is of quadratic order, which explains why we

prefer that approach.

Finally, notice that if our original model would only contain individual specific

fixed effects αi, that is, Yit = X ′
it β + h(αi) + εit , then the analog of (3.6) is the

standard additive fixed effect model Yit =X ′
it β +δi+εit , which requires no grouping

at all, and also entails no approximation error since we can set δi = h(αi). The way

in which we generalize the grouping ideas in Bonhomme et al. (2021) is therefore

quite specific to the two-way fixed effect model in (3.1).

3.2.2.2 Hierarchical clustering algorithm

To make the two-way grouped fixed effect estimator in (3.7) operational we employ

the following three-step algorithm:

A. Obtain the factor loading and factor estimates λ̂ and f̂ of the interactive fixed

effect LS estimator in (3.5) for a relatively large number of factors R. Only keep

the leading few R∗ factor loading and factor estimates and denote those by λ̂ ∗ =

(λ̂ir : i = 1, . . . ,N, r = 1, . . . ,R∗) and f̂ ∗ = ( f̂tr : t = 1, . . . ,T, r = 1, . . . ,R∗).

B. Use the λ̂ ∗
1 , . . . , λ̂

∗
N as inputs into the clustering algorithm in Table 3.1 to par-

tition the set of individuals {1, . . . ,N}. This algorithm returns the number G

of chosen groups and the group membership gi ∈ {1, . . . ,G} of each individ-

ual. Analogously, we use the inputs f̂ ∗1 , . . . , f̂ ∗T into the same algorithm to parti-

tion {1, . . . ,T}, resulting in the number of groups C and the group membership

ct ∈ {1, . . . ,C} for each time period. Notice that the words partition, cluster, and

group are used interchangeably in this paper.

C. Calculate the two-way grouped fixed effect estimator β̂G via pooled OLS ac-
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Algorithm
1: Input λ̂ ∗

i ∈ RR∗
for all i = 1, . . .N. Calculate all pairwise Euclidean distances Ai j =

∥∥∥λ̂ ∗
i − λ̂ ∗

j

∥∥∥, for i ̸= j, and set

Aii = ∞. Initialize P = {{1},{2}, . . . ,{N}} as a partition of {1, . . . ,N}.
2: if ∃C∗ ∈ P with |C∗|= 4 then for that C∗
3: Find the solution to

min
{i, j,l,m :C∗={i, j,l,m}}

Ai j +Alm,

and split C∗ into {i, j} and {l,m}, updating the partition P .
4: else if ∃C ∈ P with |C |= 1 then
5: Find the solution to

min
{i∈

⋃
{C∈P:|C |=1}}

min
{ j∈

⋃
{C∈P:|C |≤3}}

Ai j,

and merge the clusters containing i and j into a single cluster, updating the partition P .
6: end if
7: Repeat 2-6 until {|C | : C ∈ P} ⊂ {2,3}.

Table 3.1: Hierarchical clustering with minimum single linkage.

cording to equation (3.7).

It is constructive to briefly describe our algorithm from Table 3.1 in words be-

fore we discuss features of this whole procedure. Step 1 defines the proxy variable

to cluster on (λ̂ ∗
i in this instance) and sets the distance metric we wish to use, Eu-

clidean distance, which could easily be changed to another norm or metric. Then,

we initialise each individual into their own cluster. Steps 2 and 3 then splits any

groups of four into two groups of two, since we want groups of no larger than three

in our final output.4 The optimisation in Step 3 looks at all combinations of two by

two splits within this group of four and takes the smallest sum of distances. This

type of optimisation is only suitable for very small groups of individuals because it

is a combinatorially hard problem.

Steps 4 and 5 then finds the solitary individual with the smallest distance to any

other existing cluster and merges it to that cluster. Combined with Steps 2 and 3 we

create an iteration that merges single clusters one at a time to groups of one, two or

three, then splits any groups of four as and when they occur. This means Step 2 can

only ever return one group of four. Doing this iteration one at a time is important so

4We avoid singleton groups, because for those groups the within transformation removes all
information of the data. The restriction to groups of at most size three is somewhat arbitrary, but we
want to maintain small group sizes to guarantee that the differences in the fixed effects within each
group are small, and there is no incidental parameter problem for the linear fixed effect model in
(3.6).
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that we may split these groups of four immediately and have a larger choice set in

Step 5 for each unmatched individual. Also, splitting groups of four into two by two

groups rather than groups of one and three avoids infinite iterations. The repetition

of Steps 2-5 is guaranteed to converge, and delivers a partition of {1, . . . ,N} into

groups of size two or three.

Now to discuss the procedure as a whole. The choice of R in step A here is not

too important since we only need this to generate proxy variables for clustering and

otherwise dispose of β estimates from this initial LS step. The important hyperpa-

rameter is the number of proxies per observation, R∗, which we choose equal to two

to five. We discuss the theoretical properties of the hyperparameter in Section 3.4.1

but here outline a heuristic approach to this choice. Choosing R∗ to be more than

one is important to capture cases when αi and γt have higher dimension or when

the function h(., .) admits eigenfunctions that are not individually injective maps

from αi or γt . The aim is that a linear combination of non-injective maps provides a

better mapping to the closeness of the primitives αi and γt . An archetypal example

of this is discussed in Griebel and Harbrecht (2014) where they show that the first

few eigenfunctions of the exponential kernel are individually clearly not injective

maps.

It is also important to not use too many proxies so as to avoid clustering on

noise. This can make for poor matches that result in large deviations between

αi and α j, respectively γt and γs, that show up in the leading O
(
∥αi −α j∥2) and

O
(
∥γt − γs∥2) remainder terms in (3.8). Maintaining closeness in these primitives

when clustering is key to any argument using Taylor’s theorem, however, optimis-

ing this proxy hyperparameter is still rough and does require further development.

We defer discussion about the presence of noise in factors with relation to the LS

estimator to Section 3.3.

There are, of course, other choices for proxies such as the cross-sectional mo-

ments employed in Bonhomme et al. (2021). However, as displayed in (3.2) and

formulated in Griebel and Harbrecht (2014), using the eigenfunctions from the sin-

gular value decomposition are a more natural choice since these are direct functions
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of the primitives αi and γt and should in theory lead to closer proximity between

these. Since we require cross-sectional and time-dependent clusters for our method,

these eigenfunctions also provide a convenient means to find these. If one truly be-

lieves that other proxy variables have more precise injectivity with these primitives

then they could always make those the the input to Step 1 in our clustering algo-

rithm.

Another divergence from the existing literature is the use of clusters of size

two or three, rather than letting these cluster sizes grow with sample size. Our mo-

tivation for using these small cluster sizes comes directly from the within-group β

estimation, i.e. that we do not need consistent estimates of δ or ν since these are

treated as nuisance parameters that are simply differenced out. Hence, for our pur-

poses, it is more useful to have small groups that are very similar rather than to have

large groups that have better central tendency estimates. This very conveniently

removes one choice for the analyst, namely the setting of group sizes G or C.

This procedure is also a departure from the k-means approach taken in Bon-

homme et al. (2021). For example, k-means with k ≈ N/2 or k ≈ N/3 only requires

group sizes to be 2 or 3 on average. This allows for a large heterogeneity in group

sizes, which we avoid with our hierarchical approach. Considering the distance

metric in our algorithm is interchangeable, we expect our method to produce simi-

lar allocations to a k-means approach that manually limits cluster sizes to 2 or 3.

Other cluster methods also exist. For example, in the presence of heteroge-

neous coefficients βi, Su et al. (2016) and Su et al. (2019) propose clustering on βi.

The procedure proposed there may suggest useful ways to incorporate heterogene-

ity in the slope coefficients in this setting, or indeed provide good cluster proxies

for the unobserved heterogeneity term. It should be noted, however, that in those

settings there exists a true group structure, which departs from our approach that

considers groups as useful discretisations of the underlying parameter space.

3.2.2.3 Split-sample version of the estimator

As explained above, we estimate the group memberships gi and ct that enter into

the estimator for β in (3.7) via a clustering method applied to λ̂ ∗ and f̂ ∗. However,
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clustering in this way creates dependence across i and t through λ̂ ∗ and f̂ ∗. This

dependence creates technical difficulties when establishing asymptotic convergence

results. To mitigate this dependence we augment the clustering estimator by a sim-

ple sample splitting method. The resulting group fixed effect estimator with sample

splitting is given by

β̂GS = argmin
β∈RK

min
δ

min
ν

N

∑
i=1

T

∑
t=1

[
Yit −X ′

it β −
S

∑
s=1

1{(i, t) ∈ Os}
(

δ
(s)

i,c(s)t
+ν

(s)

t,g(s)i

)]2

,

(3.9)

where S is the number of partitions, and the sets Os, s= 1, . . . ,S, are the partitions of

the sample space {1, . . . ,N}×{1, . . . ,T}, that is, the observation (i, t) is a member

of the s’th partition if and only if (i, t) ∈ Os. Compared to the original group fixed

effect estimator in (3.6), the group membership indicators g(s)i and c(s)t and the group

fixed effect δ
(s)

i,c(s)t
and ν

(s)

t,g(s)i

are all specific to the partition s. For the purpose of this

paper, we choose the number of partitions to be S = 4 and we split the sample space

into four blocks as follows:

O1 = {1, . . . ,⌊N/2⌋}×{1, . . . ,⌊T/2⌋},

O2 = {1, . . . ,⌊N/2⌋}×{⌊T/2⌋+1, . . . ,T},

O3 = {⌊N/2⌋+1, . . . ,N}×{1, . . . ,⌊T/2⌋},

O4 = {⌊N/2⌋+1, . . . ,N}×{⌊T/2⌋+1, . . . ,T},

(3.10)

where ⌊·⌋ is the floor function.

We still need to explain how the group memberships g(s)i and c(s)t are obtained

here. The aim of the sample splitting is to avoid any stochastic dependence between

g(s)i and c(s)t and the idiosyncratic noise εit . For each partition s = 1, . . . ,S, we

therefore construct the group memberships g(s)i and c(s)t without using outcomes Yit
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for observations (i, t) of that partition Os. For that purpose, we define the sets

O∗
1 = {1, . . . ,N}×{1, . . . ,⌊T/2⌋},

O∗
2 = {1, . . . ,N}×{⌊T/2⌋+1, . . . ,T},

O∗
3 = {1, . . . ,⌊N/2⌋}×{1, . . . ,T},

O∗
4 = {⌊N/2⌋+1, . . . ,N}×{1, . . . ,T},

(3.11)

and for s̃ = 1, . . . ,4, we define the corresponding least-squares factor and loading

estimates

(
λ̂
(s̃), f̂ (s̃)

)
= argmin

(λ , f )∈RN∗
s̃ ×R+T∗s̃ ×R

min
β∈RK ∑

(i,t)∈O∗
s̃

(
Yit −X ′

it β −
R

∑
r=1

λir ftr

)2

, (3.12)

which is simply the LS estimator in (3.5) applied only to the N∗
s̃ ×T ∗

s̃ subpanel of

observations (i, t) ∈ O∗
s̃ , and we also impose the same normalization on the factors

and loadings explained after (3.5).5 Now, for the original partition Os, s = 1, . . .4,

we construct the group membership g(s)i of unit i by applying the clustering algo-

rithm in Table 3.1 to the loading estimates λ̂
(s̃)
i obtained from the subpanel Os̃ with

s̃ = s̃(s) given by

s̃ =



2 for s = 1,

1 for s = 2,

2 for s = 3,

1 for s = 4.

Analogously, for the partition Os, s = 1, . . .4, we construct the group membership

c(s)t of time period t by applying the clustering algorithm in Table 3.1 to the factor

5Notice that factor model proxies can only be used to compare observations from the same factor
estimation sample space. This is because factors are only identified up to rotations, where these
rotations may differ across estimation samples.
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Figure 3.1: Sample split for partition 1

estimates f̂ (s̃)t obtained from the subpanel Os̃ with s̃ = s̃(s) given by

s̃ =



4 for s = 1,

4 for s = 2,

3 for s = 3,

3 for s = 4.

Figure 3.1 details an example of this sample splitting technique for clustering

within partition O1. Here we see clearly how the partitions for proxy estimation

O∗
2 and O∗

4 do not overlap with the partition we are grouping within, O1. This

guarantees that we do not introduce any dependence between the group functions

and the noise term by making sure grouping within each partition is not a function

of the independent noise term, εit , from observations within that partition. This

becomes important in our derivations in Section 3.4.2, where we require that the

process Xit εit remains zero mean and independently distributed after group means

are projected out.

With these cluster assignments it then becomes straightforward to estimate

(3.9) by first taking within-cluster mean-differences for each partition and then sim-

ply apply pooled OLS on the transformed variables.
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Notice that by allowing the partitioning in (3.11) used to estimate proxy vari-

ables to extend over the whole sample of either N or T , we get better estimates than

just using the original partition (3.10). As discussed earlier, it is crucial to avoid

poor initial estimates of proxy variables to better approximate the residual terms in

the Taylor expansion in expression (3.8).

3.3 Asymptotic results for the least squares estimator
Here, we derive convergence rate results for the least-squares estimator (3.5) for a

data generating process given by (3.1). Thus, we generalize the consistency results

in Bai (2009) and Moon and Weidner (2015) to the case where the underlying panel

regression model does not satisfy the factor model in (3.4). However, as explained

in the introduction, the factor model in (3.4) can be viewed as an approximation of

(3.1), and this approximation idea can be formalized asymptotically, as long as we

allow the number of factors R = RNT used in the least-squares estimator (3.5) to

grow with N and T .

3.3.1 Consistency and convergence rate

From now on, we denote the true parameter β that generates the data by β 0. We

rewrite model (3.1) as

Yit = X ′
it β

0 +Γit + εit , (3.13)

where both Γit and εit are unobserved. Our main convergence rate results in The-

orem 3.3.5 actually hold for any N × T matrix Γ = (Γit) that satisfies Assump-

tion 3.3.4 below, but ultimately we are of course interested in the case Γit = h(αi,γt).

Arbitrary dependence between Xit and Γit is allowed for, so there is a potential en-

dogeneity problem.

Remember that the components of the K-vector Xit are denoted by Xit,k, k =

1, . . . ,K. Let Xk = (Xit,k) and ε = (εit) be N × T matrices. For a matrix A we

denote r’th largest singular value by σr(A), that is, σ2
r (A) is equal to the r’th largest

eigenvalue of AA′. Furthermore, for matrices we denote the spectral norm by ∥ · ∥,
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and for vectors the norm ∥ ·∥ denotes the Euclidean norm. We write wpa1 for “with

probability approaching one”. We impose the following assumptions.

Assumption 3.3.1 (Bounded norms of Xk and ε).

(i)
1

NT

N

∑
i=1

T

∑
t=1

(Xit,k)
2 = OP(1), for k = 1, . . . ,K.

(ii) ∥ε∥= OP

(√
max{N,T}

)
.

Assumption 3.3.2 (Weak Exogeneity of Xk).
N

∑
i=1

T

∑
t=1

Xit,kεit = OP(
√

NT ), for

k = 1, . . . ,K.

Assumption 3.3.3 (Non-Collinearity of Xk). Consider linear combinations δ ·

X :=∑
K
k=1 δkXk of the regressors Xk with vectors δ ∈RK such that ∥δ∥= 1. Assume

that there exists a constant b > 0 such that

min
{δ∈RK ,∥δ∥=1}

min(N,T )

∑
r=2RNT+1

σ
2
r

[
(δ ·X)√

NT

]
≥ b , wpa1.

Assumption 3.3.4 (Singular value decay). There exists a constant ρ > 3/2 such

that
1

NT

min(N,T )

∑
r=RNT+1

σ
2
r (Γ) = OP

(
R1−2ρ

NT

)
.

Here, R = RNT is the number of factors that is chosen in the computation of the

least-squares estimator β̂LS in (3.5). We require RNT → ∞ as N,T → ∞ to obtain

consistency of β̂LS.

Lemma 3.3.1 below justifies Assumption 3.3.4 for our main case of interest

Γit = h(αi,γt), and we therefore postpone the discussion of that assumption until

we discuss that lemma. Assumptions 3.3.1-3.3.3 are very similar to the assumptions

used in Bai (2009) and Moon and Weidner (2015) to show consistency of β̂LS,6 and

the following discussion of those assumptions will, accordingly, be brief.
6Compared to the assumptions imposed in the consistency Theorem 4.1 of Moon and Weidner

(2015), the only two differences are that we allow for RNT to grow asymptotically, and that Assump-

tion 3.3.1(i) requires a bound on the Frobenius norm ∥Xk∥F :=
(

∑
N
i=1 ∑

T
t=1 X2

it,k

)2
instead of a bound

on the spectral norm ∥Xk∥. Since ∥Xk∥ ≤ ∥Xk∥F , our assumption here is technically stronger, but in
practice, one likely will justify any bound on ∥Xk∥ using the inequality ∥Xk∥ ≤ ∥Xk∥F anyway.
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Assumption 3.3.1(i) follows from Markov’s inequality as long as the second

moment of Xit,k is uniformly bounded. Assumption 3.3.1(ii) follows, for example,

from the inequality in Latala (2005) if εit has mean zero, uniformly bounded fourth

moment, and is independent across i and t. However, the assumption still holds if

εit is weakly correlated across i and over t, see Moon and Weidner (2015). Assump-

tion 3.3.2 is satisfied as long as Xitεit has zero mean, uniformly bounded second

moment, and is weakly correlated across i and over t.

To understand Assumption 3.3.3, notice first that for RNT = 0 the expression

∑r σ2
r

[
(δ ·X)√

NT

]
in that assumption becomes

min(N,T )

∑
r=1

σ
2
r

[
(δ ·X)√

NT

]
=

1
NT

N

∑
i=1

T

∑
t=1

(δ ·X)2
it .

Thus, for RNT = 0, the assumption is just a standard non-collinearity assumption on

the regressors, which demands that every non-trivial linear combination δ ·X of the

regressors has sufficient variation. Next, for RNT > 0 we have

min(N,T )

∑
r=2RNT+1

σ
2
r

[
(δ ·X)√

NT

]
=

1
NT

N

∑
i=1

T

∑
t=1

(δ ·X)2
it −

2RNT

∑
r=1

σ
2
r

[
(δ ·X)√

NT

]
,

that is, the assumption demands that the variation in the linear combination δ ·X

does not only come from the leading 2RNT singular values of this linear combina-

tion.

Of course, if rank(δ ·X) ≤ 2RNT , then for r > 2RNT all the singular values

σr (δ ·X) are equal to zero and the assumption is violated. Thus, a necessary condi-

tion for Assumption 3.3.3 is that rank(δ ·X)> 2RNT , that is, any linear combination

of the regressors needs to be a “high-rank matrix”. For example, a constant regres-

sor Xit,1 = 1 violates this assumption (it constitutes a rank one matrix, which could

be easily absorbed into the unobserved Γit), but if the regressors are drawn from a

DGP with random variation across both i and t, then they typically have full rank.

Again, we refer to the existing papers on the least-squares estimator with interactive

fixed effects for further discussion of this generalized non-collinearity condition on
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the regressors.

Theorem 3.3.5 (Consistency of β̂LS). Let Assumptions 3.3.1 – 3.3.4 hold, and

furthermore assume that RNT = o(min{N,T}) as N,T → ∞. Then we have

β̂LS −β
0 = OP

(
R(3−2ρ)/2

NT

)
+OP

(
RNT (min{N,T})−1/2

)
. (3.14)

Therefore, by choosing RNT ∝ (min{N,T})
1

2ρ−1 we obtain that

β̂LS −β
0 = OP

(
min{N,T}

3−2ρ

2(2ρ−1)
)
.

Assumption 3.3.4 demands ρ > 3/2, and the first term on the right-hand side of

(3.14) is therefore decreasing in the number of factors RNT used for estimation. By

contrast, the second term on the right-hand side of (3.14) is increasing in RNT . The

final part of the theorem simply gives the rate for RNT that optimally balances the

trade-off between those two terms. This is analogous the bias-variance trade-off for

bandwidth selection in non-parametric estimation. Indeed, the term OP

(
R(3−2ρ)/2

NT

)
is due to the approximation error of the N×T matrix Γ (which can have full rank) by

only a finite number of factors (of rank only RNT ). As expected, the approximation

error is small when choosing a more flexible model (large RNT ).

The second term on the right-hand side of (3.14) also occurs when one con-

siders a conventional interactive fixed effect model, where the true matrix Γ itself

is assumed to have low rank and the approximation error is therefore not present

(for RNT ≥ rank(Γ)). For that case, the first paper to derive the large N, T asymp-

totic properties for β̂LS was Bai (2009). He imposes assumptions (in particular,

RNT = rank(Γ) = constant, and all factors in Γ are “strong factors”) that are strong

enough to derive the result β̂LS − β 0 = OP(1/
√

NT ) when N and T grow at the

same rate.7 However, without such strong assumptions, the estimator β̂LS may very

well converge at a slower rate. For example, in Section 4.3 of Moon and Weidner

(2015) a concrete data generating process is given for which β̂LS only converges

7For general sequences of N,T → ∞ one finds β̂LS −β 0 = OP(1/N +1/T ) under Bai’s assump-
tions.
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at the slower rate (min{N,T})−1/2.8 The key difference between that example and

Bai (2009) is that RNT > rank(Γ), that is, the number of factors in the estimation

is larger than the true number of factors. More generally, as soon as the “strong

factor” assumption or the known number of factors assumption (RNT = rank(Γ))

are violated, there is no guarantee that β̂LS converges at the fast rate derived in Bai

(2009). In the absence of those assumptions, Theorem 4.1 in Moon and Weidner

(2015) shows that β̂LS−β 0 =OP

(
(min{N,T})−1/2

)
when RNT ≥ rank(Γ) is fixed.

The second term on the right-hand side of (3.14) exactly generalizes that rate to the

case where RNT is allowed to grow asymptotically.

In our setting, we cannot impose the “strong factor” or known number of fac-

tor assumptions in Bai (2009), because, as explained in the introduction, the data

generating process Γit = h(αi,γt) typically generates an infinite sequence of factors

of decreasing strength. Demanding all those factors in equation (3.3) to be strong

factors makes no sense in our setting. Deriving a convergence rate for β̂LS faster

than (min{N,T})−1/2 in our model therefore appears to very challenging, to say the

least. This is of course, the key motivation for why we also consider the two-way

grouped fixed effect estimator in this paper, see Section 3.4 below.

Remark 3.3.1. If we change Assumption 3.3.4 to

σr(Γ) ≤ c
√

NT r−ρ , (3.15)

for all r ∈ {RNT +1, . . .min{N,T}}, wpa1, and some constant c > 0, then the result

in equation (3.14) of Theorem 3.3.5 can be improved to

β̂LS −β
0 = OP

(
R1−ρ

NT

)
+OP

(
RNT (min{N,T})−1/2

)
,

and we can then obtain consistency of β̂ under the weaker condition ρ > 1. Condi-

tion (3.15) implies Assumption 3.3.4, but not vice versa, because Assumption 3.3.4

is a condition on the sum of the squared singular values, not on each of the singu-

8In that example, the unnecessarily estimated loadings λ̂ and factors f̂ are correlated with the
regressors, and by controlling for such endogenous λ̂ and f̂ one ends up reducing the convergence
rate of β̂LS from

√
NT to (min{N,T})1/2.
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lar values separately. It turns out to be technically much easier to verify Assump-

tion 3.3.4 than to verify (3.15) for our main case of interest Γit = h(αi,γt),9 as we

do in Lemma 3.3.1 below. This explains why we have chosen that formulation of the

assumption and theorem in our baseline presentation.

Despite the technical subtleties explained in the preceding remark, one should

still interpret Assumption 3.3.4 as imposing a particular decay rate for the singular

values Γ, as in display (3.15) of the remark. Thus, the leading few singular value

can have a magnitude of
√

NT , as would be the case under the “strong factor as-

sumption” in the usual interactive fixed effects model of Bai (2009). However, as

N, T , r all converge to infinity we require the σr(Γ) to converge at the polynomial

rate r−ρ in order to satisfy the summability condition in Assumption 3.3.4.

The results in this section so far have not made any use of the structure Γit =

h(αi,γt). Theorem 3.3.5 is applicable to any other data generating process for Γ that

satisfies Assumption 3.3.4. A full-rank matrix Γ satisfying that assumption could,

for example, also be generated by a dynamic factor model (see e.g. Forni et al. 2000,

2005, Stock and Watson 2002).10

In the following we now focus exclusively on the case Γit = h(αi,γt). The

following lemma provides conditions on the function h(·, ·) that guarantee that As-

sumption 3.3.4 is satisfied.

Lemma 3.3.1. Assume αi ∈ Ωα and γt ∈ Ωγ , and that h : Ωα × Ωγ → R is p

times continuously differentiable in both arguments, with uniformly bounded mixed-

derivatives up to order p, and the domains Ωα ⊂Rnα and Ωγ ⊂Rnγ are smooth and

bounded. Then for Γit = h(αi,γt) Assumption 3.3.4 is satisfied for RNT → ∞ with

ρ = p
min{nα ,nγ} .

Here, we measure the smoothness of the function h(·, ·) by p, which is the

number of times it is continuously differentiable. The decay rate ρ of the singular

values of Γ then depends on this measure of smoothness and the dimensions nα and
9This is because not only the decay of σr(Γ) as r → ∞ needs to be controlled, but also the

convergence rate of the expressions as N,T → ∞.
10One can generate an infinite number of “static factors”, as in (3.3), via a dynamic factor model

with a finite number of dynamic factors.
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nγ of the arguments αi and γt . The smoother the function h(·, ·), for fixed dimensions

nα and nγ , the faster the eigenvalues of Γ converge to zero.

The proof of Lemma 3.3.1 crucially relies on the functional singular value

decomposition in (3.2) and results on the decay rate of the corresponding singular

values in Griebel and Harbrecht (2014). The only technical contribution of the proof

is then to properly relate those known results on the functional singular value to the

matrix singular values of Γ.

Notice that Lemma 3.3.1 requires no assumptions on the data generating pro-

cess of αi and γt , apart from boundedness of the domains Ωα and Ωγ , which can

always be achieved by a reparameterization. Thus, those nuisance parameters can

be arbitrarily correlated with each other (across i and over t) and with the regres-

sors Xit,k. This result is analogous to the consistency Theorem 4.1 for β̂LS in Moon

and Weidner (2015), where also no assumptions on the interactive fixed effects are

imposed at all, apart from rank(λ f ′)≤ R.

From Theorem 3.3.5 and Lemma 3.3.1 we have the following corollary.

Corollary 3.3.1. Let Assumptions 3.3.1 – 3.3.3 and the assumption on h(., .) in

Lemma 3.3.1 be satisfied with p > 3min
{

nα ,nγ

}
/2, and also let RNT → ∞ such

that RNT/(min{N,T})1/2 → 0. Then we have

β̂LS −β
0 = oP(1).

This is our final consistency result for the least-squares estimator of Bai (2009)

in a data generating process given by (3.1). The convergence rate of the estimator

was already discussed after Theorem 3.3.5 above, in particular, the difficulty in

showing a convergence rate faster than (min{N,T})1/2 in our setting.

3.3.2 Further discussion

Here, we want to present some further intuition on the formal results on β̂LS pre-

sented above. The discussion in this subsection is purely heuristic and does not aim

to provide any formal derivations.

Remember the functional singular value decomposition in equation (3.2) of
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the introduction, which we now write as h(αi,γt) = ∑
∞
r=1 λ 0

ir f 0
tr. For the sake of

the following discussion, suppose that variation from h(αi,γt) dominates the vari-

ation in X ′
it β and εit for the leading RNT principal components of the residuals

Yit −X ′
it β −∑

R
r=1 λir ftr = ∑

∞
r=1 λ 0

ir f 0
tr −X ′

it (β − β 0) + εit . In this “best case sce-

nario”, the estimated factors ∑
R
r=1 λir ftr in the definition of β̂LS in (3.5) will coin-

cide with the leading RNT components ∑
R
r=1 λ 0

ir f 0
tr of h(αi,γt), and we then have

β̂LS −β
0 = ζNT +ξNT ,

where

ζNT =

(
1

NT

N

∑
i=1

T

∑
t=1

X ′
it Xit

)−1
1

NT

N

∑
i=1

T

∑
t=1

X ′
it εit

ξNT =

(
1

NT

N

∑
i=1

T

∑
t=1

X ′
it Xit

)−1
1

NT

N

∑
i=1

T

∑
t=1

X ′
it

∞

∑
r=R+1

λ
0
ir f 0

tr.

Under standard regularity conditions we have
√

NT ζNT ⇒ N (0,Σ), and under

the assumptions in the last subsection we have ξNT = OP

(
R(3−2ρ)/2

NT

)
. In this

“best-case scenario” we can therefore have RNT → ∞ quick enough such that

ξNT = oP(1/
√

NT ).

However, this is not a realistic scenario for RNT → ∞, because as RNT grows,

eventually the singular values of εit will dominate those of ∑
∞
r=R+1 λ 0

ir f 0
tr, and the

factor projection method will just project out idiosyncratic noise, or even contri-

butions from X ′
it (β̂LS −β 0). This implies that the problematic variation associated

with λ 0
ir f 0

tr for most singular values r remains. This explains why it is so difficult

to show anything better than the convergence rate results in Theorem 3.3.1 for the

estimator β̂LS in our setting.
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3.4 Asymptotic results for group fixed-effect estima-

tor
The main goal of this section is to derive asymptotic results for the estimator β̂GS

defined in (3.9), which is the sample-splitting version of the group fixed-effect es-

timator. But we are first going to discuss the initial group fixed-effect estimator β̂G

defined in (3.7) without sample-splitting. We will not actually derive convergence

rate results for β̂G itself, but the discussion of the approximation bias of β̂G will be

a very useful precursor of the results for β̂GS.

3.4.1 Results for β̂G

We can rewrite our estimating equation for the group fixed-effect estimator in (3.6)

as

Y = X ·β +δ D′
δ
+Dν ν

′+ ε, (3.16)

where δ and ν are the N ×C and T ×G matrices of nuisance parameters, while

Dδ and Dν are T ×C and N ×G are binary matrices in which each row contains

a single one, indicating the group membership of the corresponding unit or time

period, respectively. By standard partitioned regression results we can then rewrite

the group fixed-effect estimator in (3.7) as

β̂G =

(
N

∑
i=1

T

∑
t=1

X̃ ′
it X̃it

)−1 N

∑
i=1

T

∑
t=1

X̃ ′
it Ỹit , X̃k = MN Xk MT , Ỹ = MN Y MT , (3.17)

where X̃it =
(

X̃it,1, . . . , X̃it,K

)
, Ỹit and X̃it,k are the entries of the N × T matri-

ces X̃k and Ỹ , respectively, and MN = IN − Dν(D′
νDν)

−1D′
ν and MT = IT −

Dδ (D′
δ

Dδ )
−1D′

δ
are projection matrices of dimesion N×N and T ×T , respectively.

Using this representation of the group fixed-effect estimator and the model in

(3.13) we obtain that

β̂G −β
0 = φNT +κNT , (3.18)
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where

φNT :=

(
N

∑
i=1

T

∑
t=1

X̃ ′
it X̃it

)−1 N

∑
i=1

T

∑
t=1

X̃ ′
it εit , κNT :=

(
N

∑
i=1

T

∑
t=1

X̃ ′
it X̃it

)−1 N

∑
i=1

T

∑
t=1

X̃ ′
it Γ̃it ,

(3.19)

with Γ̃ defined analogously to X̃k and Ỹ in (3.17). In the definition of φNT we can

equivalently write ε̃it instead of εit , but since MN and MT are idempotent matrices,

and X̃it is already the projected regressor, this does not matter. The same is true, of

course, for Γ̃it vs Γit in the definition of κNT . However, the expressions in (3.19)

turn out to be convenient as written.

Here, κNT is the approximation error of having replaced the nonlinear specifi-

cation Γit = h(αi,γt) in our model in (3.1) by the much simpler additive specification

δi,ct +νt,gi in the estimation equation (3.6). To see this, we can use standard matrix

inequalities to bound the Euclidian norm of κNT by

∥κNT∥ ≤

∥∥∥∥∥∥
(

N

∑
i=1

T

∑
t=1

X̃ ′
it X̃it

)−1
∥∥∥∥∥∥
(

max
k

∥∥∥X̃k

∥∥∥
F

) ∥∥Γ̃
∥∥

F , (3.20)

where ∥ · ∥F refers to the Frobenius norm. Due to the definition of MN and MT we

have

∥∥Γ̃
∥∥2

F = min
δ∈RN×C

min
ν∈RT×G

N

∑
i=1

T

∑
t=1

[h(αi,γt)−δi,ct −νt,gi]
2 . (3.21)

The last two displays show that κNT is small whenever h(αi,γt) can be well ap-

proximated by δi,ct + νt,gi . In equation (3.8) we already informally discussed the

magnitude of this approximation error, and found that it is of order ∥αi −αgi∥2 +

∥γt −γct
∥2. We now want to provide a more formal discussion of this and show that

κNT is asymptotically small under appropriate regularity conditions.

In Section 3.2.2.2 we described the clustering algorithms that delivers the

group memberships gi and ct based on the initial estimates λ̂ ∗
i and f̂ ∗t . The goal

of the clustering is to group units i with approximately the same value of αi, and
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to group time periods t with approximately the same γt . It is therefore crucial that

λ̂ ∗
i and f̂ ∗t are good proxies for αi and γt . Specifically, we require that there exist

functions λ ∗ : A → RR∗ and f ∗ : C → RR∗ such that λ̂ ∗
i and f̂ ∗t converge to the

non-random limits λ ∗(αi) and f ∗(γt) as N,T → ∞. The following assumption for-

malizes this and states all the regularity condition that we require on h(·, ·), λ ∗(·),

f ∗(·), λ̂ ∗
i , f̂ ∗t , and Xit .

Assumption 3.4.1. There exists a sequence ξNT > 0 such that ξNT → 0 as N,T →∞,

and

(i) The function h(·, ·) is at least twice continuously differentiable with uniformly

bounded second derivatives.

(ii) Every unit i is a member of exactly one group gi ∈ {1, . . . ,G}, and every time

period t is a member of exactly one group ct ∈ {1, . . . ,C}. The size of all

G groups of units, and the size of all C groups of time periods is bounded

uniformly by Qmax.

(iii) There exists B > 0 such that ∥a−b∥ ≤ B∥λ ∗(a)−λ ∗(b)∥ for all a,b ∈ A ,

and ∥a−b∥ ≤ B∥ f ∗(a)− f ∗(b)∥ for all a,b ∈ C , and the domains A and C

are convex set.

(iv) 1
N ∑

N
i=1

(∥∥∥λ̂ ∗
i −λ ∗(αi)

∥∥∥2
)
= OP (ξNT ),

1
T ∑

T
t=1

(∥∥∥ f̂ ∗t − f ∗(γt)
∥∥∥2
)
= OP (ξNT ).

(v) 1
N ∑

N
i=1

∥∥∥λ̂ ∗
i − λ̂ ∗

j(i)

∥∥∥2
= OP (ξNT ) for any matching function j(i) ∈ {1, . . . ,N}

such that gi = g j(i), and 1
T ∑

T
t=1

∥∥∥ f̂ ∗t − f̂ ∗s(t)

∥∥∥2
= OP (ξNT ) for any matching

function s(t) ∈ {1, . . . ,T} such that ct = cs(t).

(vi) maxk,i,t

∣∣∣X̃it,k

∣∣∣= OP(1), and plimN,T→∞
1

NT ∑
N
i=1 ∑

T
t=1 X̃ ′

it X̃it = Ω, where Ω is a

positive definite non-random matrix.

Lemma 3.4.1. Under Assumption 3.4.1 we have

κNT = OP(ξNT )



3.4. ASYMPTOTIC RESULTS FOR GROUP FIXED-EFFECT ESTIMATOR 78

The lemma shows that the approximation error κNT vanishes at rate ξNT as

N,T → ∞. The assumption and lemma are formulated for arbitrary rates, but as will

become clear from the following discussion, the best we can achieve in our setting

is a rate of ξNT = 1/min(N,T ), which coincides with ξNT = 1/
√

NT in the special

case that N and T grow at the same rate.

Part (i) of Assumption 3.4.1 requires the function h(·, ·) to be sufficiently

smooth. This condition should not be surprising, because our informal discussion

of the approximation error in equation (3.8) already relies on a second order Tay-

lor expansion of h(·, ·), and the proof of Lemma 3.4.1 is based on exactly such an

expansion.

Part (iii) and (iv) of the assumption are analogous to “Assumption 2 (injective

moments)” in Bonhomme et al. (2021), except that they consider a one-way fixed

effect setting while we consider a two-way fixed effect setting. Part (iii) requires the

functions λ ∗(·) and f ∗(·) to be injective, that is, αi and γt can be uniquely recovered

from knowing λ ∗(αi) and f ∗(γt). A necessary condition for this is that

R∗ ≥ max(dα ,dγ), (3.22)

where dα and dγ are the dimensions of αi and γt , respectively. Part (iv) requires the

estimates λ̂ ∗
i and f̂ ∗t to converge to λ ∗(αi) and f ∗(γt) at the average rate of ξ

1/2
NT .

We expect that the estimated eigenfunctions of h(αi,γt), which correspond to the

estimated factor loadings and factors, proposed as cluster proxies in Section 3.2.2.2

satisfy this assumption by an application of Theorem 1 from Bai and Ng (2002).

Since T observations are available for unit i we expect that λ̂ ∗
i converges at a rate

of T 1/2, and since N observations are available for time period t we expect that f̂ ∗t

converges at a rate of N1/2, see also, for example, Theorem 1 and 2 in Bai (2003).

This explains why ξNT = 1/min(N,T ) is the best rate we can achieve here.

Part (v) of Assumption 3.4.1 is a high-level assumption on the clustering mech-

anism used to obtain the group memberships gi and ct . For units i and j in the same

group, and for time periods t and s in the same group, we demand the average differ-

ences λ̂ ∗
i − λ̂ ∗

j and f̂ ∗t − f̂ ∗s to be small as N,T → ∞. In other words, we require that
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the clustering mechanism does what it is intended to do, namely forming groups

such that the estimates λ̂ ∗
i and f̂ ∗t for units i and time periods t in the same group

are close to each other. For a given clutstering algorithms (e.g. the one describe in

Section 3.2.2.2) one could prove that this assumption holds under further regularity

conditions on the distribution of αi and γt , see, for example, Lemma 1 in Bonhomme

et al. 2021. In particular, a necessary condition for part (v) of Assumption 3.4.1 to

hold is the following:

Condition 3.4.1. 1
N ∑

N
i=1

∥∥αi −α j(i)
∥∥2

= OP (ξNT ) for any matching function j(i)∈

{1, . . . ,N} such that gi = g j(i), and 1
T ∑

T
t=1
∥∥γt − γs(t)

∥∥2
= OP (ξNT ) for any match-

ing function s(t) ∈ {1, . . . ,T} such that ct = cs(t).

This condition coincides with Assumption 3.4.1(v) in the unrealistic case that

λ̂ ∗
i = αi and f̂ ∗t = γt . Starting from this unrealistic case and then applying the

transformations λ ∗ : A →RR∗ and f ∗ : C →RR∗ and adding noise to the estimates

then gives part (v) of Assumption 3.4.1. Crucially, for this regularity condition to

hold, we need that ξNT ≳ 1/min(N2/dα ,T 2/dγ ), see Lemma 2 in Bonhomme et al.

(2021) for the analogous results in a one-way fixed effect model (also Graf and

Luschgy 2002). Since our actual clustering method is not based on the unobserved

αi and γt , but on λ̂ ∗
i and f̂ ∗t we require the stronger condition (in view of (3.22))

that

ξNT ≳ [min(N,T )]−2/R∗
.

This is a necessary condition for Assumption 3.4.1(v) to be satisfied.11 Therefore, if

we want to achieve the best possible rate ξNT = 1/min(N,T ), then we need R∗ ≤ 2,

which according to (3.22) implies that dα ≤ 2 and dγ ≤ 2. This discussion shows

that our group fixed-effect estimator β̂G suffers from a curse of dimensionality with

regards to the dimensions of αi and γt . However, this should be unsurprising, given

the semi-parametric nature of the estimation problem – with non-parametric com-

11Following the logic in Bonhomme et al. (2021) we believe that we actually only need ξNT ≳
1/min(N2/dα ,T 2/dγ ), that is, our group fixed effect estimator β̂G truly cannot achieve a convergence
rate faster than 1/min(N2/dα ,T 2/dγ ). Thus, if R∗ > max(dα ,dγ), then ξNT ≳ [min(N,T )]−2/R∗

is
probably not a necessary condition for the result of Lemma 3.4.1 itself, but only for our Assump-
tion 3.4.1(v).



3.4. ASYMPTOTIC RESULTS FOR GROUP FIXED-EFFECT ESTIMATOR 80

ponent h(αi,γt). This also shows that there is a tradeoff between the LS estimator

analyzed in Section 3.3 and the group fixed effects estimator discussed here – we

will further compare those two estimators in our MC analysis below.

Finally, part (vi) of Assumption 3.4.1 requires some regularity conditions on

the projected regressors X̃k = MN Xk MT defined in (3.17).

This concludes our discussion of the approximation error κNT . We have argued

that, under appropriate regularity conditions, including max(dα ,dγ) ≤ 2, we can

use Lemma 3.4.1 to obtain κNT = 1/
√

NT , for N and T growing to infinity at the

same rate. Since β̂G − β 0 = φNT + κNT we could then conclude that β̂G − β 0 =

OP(1/
√

NT ), if we could also show that φNT = OP(1/
√

NT ).

From the definition of φNT in (3.19) one might think that it is easy to derive this

result on φNT by imposing an approximate exogeneity condition on the regressors.

However, the problem is that X̃k depends on the group assignments of units i and

time periods t, which were constructed based on λ̂ ∗ and f̂ ∗, which depend on the

errors ε . Thus, X̃k depends on ε in complicated ways through the group assignment,

making a proof of φNT = OP(1/
√

NT ) technically challenging. In principle, we

expect that

√
NT φNT ⇒ N (0,ΣG) (3.23)

holds for an appropriate covariance matrix ΣG, and our simulations evidence suggest

that this is indeed the case. However, we are not aiming to prove this result in this

paper. As explained already in Section 3.2, this technical difficulty in analyzing

β̂G is exactly why we introduced the split-sample version of the group fixed-effect

estimator, for which we are going to derive results in the following.

3.4.2 Results for β̂ GS

The split-sample version of the group fixed effect estimator was introduced in Sec-

tion 3.2.2.3 above. Using the Frisch-Waugh-Lovell theorem we can rewrite β̂GS in
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equation (3.9) as follows:

β̂GS =

(
4

∑
s=1

∑
(i,t)∈Os

X̃ (s) ′
it X̃ (s)

it

)−1 4

∑
s=1

∑
(i,t)∈Os

X̃ (s) ′
it Yit ,

where the projected regressors X̃ (s)
it =

(
X̃ (s)

it,1, . . . , X̃
(s)
it,K

)′
for each subpanel s ∈

{1,2,3,4}, each regressor k = 1, . . . ,K, and observations (i, t) ∈Os within that sub-

panel, are the residuals of the least-squares problem

min
δ

min
ν

∑
(i,t)∈Os

(
Xit,k −δ

i,c(s)t
−ν

t,g(s)i

)2
. (3.24)

Following the decomposition of β̂G in (3.18), we can now introduce the analogous

decomposition for β̂GS by

β̂GS −β
0 = φ

(GS)
NT +κ

(GS)
NT , (3.25)

where

φ
(GS)
NT :=

(
4

∑
s=1

∑
(i,t)∈Os

X̃ (s) ′
it X̃ (s)

it

)−1 4

∑
s=1

∑
(i,t)∈Os

X̃ (s) ′
it εit ,

κ
(GS)
NT :=

(
4

∑
s=1

∑
(i,t)∈Os

X̃ (s) ′
it X̃ (s)

it

)−1 4

∑
s=1

∑
(i,t)∈Os

X̃ (s) ′
it Γ̃

(s)
it ,

Here, φ
(GS)
NT is a variance term that we will show to be unbiased and asymptotically

normal, and κ
(GS)
NT is the approximation error from having replaced h(αi,γt) by the

linear grouped fixed effect in the estimation for β̂GS in (3.9). The Γ̃
(s)
it are the resid-

uals of the least-squares problem (3.24) when Xit,k is replaced by Γit = h(αi,γt).

For each of the four subpaneles s ∈ {1,2,3,4}, the discussion of the approxi-

mation error κ
(GS)
NT is identical to the discussion of the approximation error κNT of

β̂G, see, in particular, the bounds (3.20) and (3.21) above. It is therefore straight-

forward to obtain the analogue of Lemma 3.4.1 for the approximation error of the

split-sample estimator.
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Lemma 3.4.2. Under Assumption B.2.1 (in appendix) we have

κ
(GS)
NT = OP(ξNT )

Assumption B.2.1 is stated in the appendix, but it is simply a restatement of

Assumption 3.4.1 for each subpanel s ∈ {1,2,3,4}. Those assumptions were dis-

cussed after Lemma 3.4.1 above. In particular, the best possible convergence rate

we can hope for here is ξNT = 1/min(N,T ), but that rate is only attainable for

dα ≤ 2 and dγ ≤ 2.

The key difference between β̂G and β̂GS is that for the split-sample estimator

we can derive the asymptotic behavior of the variance term very easily φ
(GS)
NT . For

this purpose, we impose the following assumption.

Assumption 3.4.2.

(i) Conditional on X , α , γ , we assume that εit is independently distributed across

i and over t, such that σ2
it :=E

(
ε2

it

∣∣X ,α,γ
)
≤ B < ∞, for some constant B that

is independent of i, t,N,T .

(ii) We have plimN,T→∞
1

NT ∑
4
s=1 ∑(i,t)∈Os X̃ (s) ′

it X̃ (s)
it = Ω > 0, and for each s ∈

{1, . . . ,S} we have plimN,T→∞
1

NT ∑(i,t)∈Os σ2
it X̃

(s) ′
it X̃ (s)

it = Σ(s). Furthermore,

we assume that, for s ∈ {1,2,3,4}, all the third-order sample moments of

X̃ (s) ′
it εit across (i, t) ∈ Os are bounded as N,T → ∞.

Assumption 3.4.2 together with the sample splitting method used to construct

β̂GS guarantees that, within each subpabel s ∈ {1,2,3,4}, the X̃ (s) ′
it εit are zero mean

and independently distributed across (i, t). Here, the split-panel construction is cru-

cial, since it guarantees that X̃ (s)
it is independent of εit . The remaining conditions in

Assumption 3.4.2 are regularity conditions to allow us to apply the Lyapunov central

limit theorem for each subpanel and to guarantee that φ
(GS)
NT has a finite asymptotic

variance. We therefore obtain the following lemma.
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Lemma 3.4.3. Under Assumption 3.4.2 we have, as N,T → ∞,

√
NT φ

(GS)
NT ⇒ N (0,ΣGS), ΣGS = Ω

−1

(
4

∑
s=1

Σ
(s)

)
Ω

−1.

Combining equation (3.25) with Lemma 3.4.2 and Lemma 3.4.3 then gives the

following theorem.

Theorem 3.4.3. Under Assumption 3.4.2 and Assumption B.2.1 we have

β̂GS −β
0 = OP

(
1√
NT

+ξNT

)
= oP(1)

Analogous to Corollary 3.3.1 for the least-squared estimator of Bai (2009),

we have this obtained a consistency result for β̂GS as well. We have not derived

asymptotic inference results using either of these estimators, but in the following

section we explain how we use those estimators to construct confidence intervals in

our simulations and empirical application.

3.5 Implementation
The asymptotic results derived for β̂LS, β̂G, and β̂GS in the last two sections are

insightful for how those estimates should be used in practice. In particular, our

discussions and derivations are helpful to appreciate the limitations and assumptions

needed for the estimation approaches, and we will summarize those again in our

conclusion section below.

In the following Monte Carlo simulations and empirical application we will

employ the estimates β̂LS, β̂G, and β̂GS in a way that goes beyond our formal asymp-

totic results. In particular, we will use all those estimators to construct confidence

intervals and we will also apply Jackknife methods for bias correction. In this sec-

tion, we want to briefly explain how those confidence intervals and bias corrected

estimates are constructed.

To calculate standard errors for each estimator we ignore the approximation

error discussed in our formal results and simply use formulas as if residuals were

independently distributed. For example, in section 3.4.1 where we split the residual
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term into φ and κ , we will ignore the κ term and estimate standard errors as if

we are left with only φ . We use the jackknife corrections to address the residual

terms related to approximation error in both the factor and grouped fixed-effects

estimation models.

For factor model standard errors we construct the heteroscedasticity-consistent

estimator from White (1980) as follows. Take Ω = ∑
N
i=1 ∑

T
t=1 X̃ ′

it X̃it and Σ̂ =

∑
N
i=1 ∑

T
t=1 û2

it X̃
′
it X̃it where ûit = Ỹit −∑k β̂LS,kX̃it,k and for a matrix A, in this con-

text, Ã represents the matrix with factors projected. We must make a degrees of

freedom correction for the factor projection by the ratio d f c =
√

NT
(N−R)(T−R) . Then

the vector of standard errors are,

se(β̂LS) = d f c ·
√

diag
(

Ω−1Σ̂Ω−1
)
.

As above, we use this same standard error estimator for jackknife corrected esti-

mates.

For the grouped fixed-effects models we use clustered standard errors where

clusters are taken as the combination of i and t clusters. That is, for the matrices of

clusters Dα and Dγ for i and t respectively we take clusters as the Kronecker product

between these two matrices, Dα ⊗Dγ . Remember here that the columns of Dα , resp.

Dγ , are the cluster assignments of i, resp. t with a 1 entry if that observation is in

the cluster and a 0 otherwise. Take m as the index for cluster assignment with

M = GC the total number of clusters. Hence, Dα ⊗Dγ := D is an NT by M matrix

with Dm representing a column of this matrix and Dn,m representing an entry. A

combination (i, t) can be identified by the row, n, of the matrix D as t = ⌈n/N⌉ and

i = n− (⌈n/N⌉−1)N, which is similar to the usual matrix flattening procedure.

Then, the column-vector Dm consists of a 1 if the (i, t) combination implied by that

row, n, is in that column’s cluster and 0 otherwise.

Define as above Ω = ∑
N
i=1 ∑

T
t=1 X̃ ′

it X̃it and ûit = Ỹit −∑k β̂G,kX̃it,k where in this

context for matrix A, the matrix Ã represents the matrix with group fixed-effects

projected out. Call the index function n(i, t)= i+(t−1)N, such that Dn(i,t),m returns

the binary indicator of whether (i, t) is in the mth combination cluster. Now define
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Σ̂ = ∑
M
m=1 ∑

N
i=1 ∑

T
t=1 Dn(i,t),mû2

it X̃
′
it X̃it . This collapses the familiar block-diagonal

matrix where values within each block corresponds to a combination cluster and

are unrestricted but zero outside each block. The clustered standard errors can thus

be defined as

se(β̂G) = d f c ·
√

diag
(

Ω−1Σ̂Ω−1
)

where in this context d f c =
√

NT
(N−G)(T−C) . The standard error estimator is identical

for the split sample version except there are many more combination clusters by the

nature of this split sample estimators clustering method.

Finally, in our Monte Carlo simulations below we also explore whether Jack-

knife bias correction methods are able to reduce the approximation bias and the

incidental parameter bias of the various estimates. We do not have any theoretical

results on the leading order bias of the various estimates, but we nevertheless we

follow Fernández-Val and Weidner (2016) to estimate the jackknife bias corrected

analog to each estimator as follows. This procedure is closely related to Dhaene

and Jochmans (2015). First, split the sample along the i dimension into two N/2

by T samples. For each of these samples run and call the related estimates from

estimator E, β̂
1,1
E and β̂

1,2
E , respectively. Repeat this process along the t dimension

to return β̂
2,1
E and β̂

2,2
E . Then the final jackknife bias corrected analog for estimator

E is

β̂E,JK = 3β̂E − 1
2

(
β̂

1,1
E + β̂

1,2
E

)
− 1

2

(
β̂

2,1
E + β̂

2,2
E

)
,

where β̂E is simply the estimate without any sample split. We maintain the assump-

tion that standard errors are the same across split samples so we can simply take the

standard error estimate from the whole sample.
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3.6 Monte Carlo simulations

For our Monte Carlo simulations, we choose a data generating process with a single

regressor (K = 1), and we generate outcomes and regressor as follows:

Yit = Xitβ
0 +h(αi,γt)+ εit ,

Xit = g(αi,γt)+µit ,
(3.26)

with

εit , αi, γt , µit ∼ all mutually independent and i.i.d.N (0,1) (3.27)

This setting assumes that the endogeneity in Xit depends on the specification of

g(., .) vis–à–vis h(., .). The decay in singular values for either the unobserved term

in Yit or for Xit can be directly manipulated through the specification of h(., .) and

g(., .), which will dictate the number of significant factors in each decomposition.

We set β 0 = 1 and,

h(a,b) = g(a,b) =
1√
2πθ

exp
(
−(a−b)2

θ 2

)
, θ = (1/2)3. (3.28)

The θ value here dictates the speed of decay in singular values for h(., .) and g(., .),

holding fixed the variation in their arguments, where a lower value implies a slower

decay. This particular value for θ was chosen as it implies a slow decay in singular

values such that the endogenous component of the unobserved term and X persists

even as many factors are included. The value for θ carries no fundamental economic

meaning. Note, the nature of bias in this simulation is by design monotonic and

positive for illustrative purposes.

Table 3.2 below shows the results from 10,000 Monte Carlo simulations. These

results display our theoretical result on bias reduction succinctly. We see that as we

increase the number of factors the average bias reduces and the standard deviation of

estimates increases. We also see a significant improvement in bias using the grouped

fixed-effects estimator, without a large increase in standard deviation. The GFE split
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sample estimator performs much worse in terms of bias, which is expected given the

significantly smaller candidate pool for clustering in this estimator. The jackknife

analog to each estimator reduces bias in all cases except the factor model with 5

factors, but significantly increases standard deviation in all cases. Note that we only

report factor model estimated after first applying a within transformation, but we

actually do not find any substantial difference compared to not applying the within

transformation first.

Table 3.2: Monte Carlo simulations

Bias St. Dev. Mean ŝe CDF(β 0) Cover MC cover
OLS 0.5201 0.0089 0.0085 0.00 0% 0%

Fixed-effects 0.5166 0.0095 0.0086 0.00 0% 0%
LS (R = 5) 0.0420 0.0115 0.0105 0.00 3% 0%

LS (R = 20) 0.0160 0.0148 0.0110 0.14 64% 28%
LS (R = 50) 0.0138 0.0317 0.0135 0.33 56% 66%

LS JK (R = 5) -0.4210 0.0319 0.0105 1.00 0% 0%
LS JK (R = 20) -0.0079 0.0283 0.0110 0.61 53% 78%
LS JK (R = 50) -0.0019 0.0798 0.0135 0.51 26% 96%

GFE 0.0025 0.0177 0.0179 0.44 95% 89%
GFE jackknife 0.0002 0.0322 0.0179 0.50 73% 99%

GFE splits 0.0210 0.0182 0.0126 0.13 57% 25%

N = T = 100 with 10,000 repetitions.
All results refer to estimation of β . Bias is simply the mean of the bias across simulations.
Standard deviation is the standard deviation of the estimates, again across simulations. LS
JK is the Jackknife version of the least squares estimator. Mean ŝe is the mean across
simulations of the standard error estimate. CDF(β 0) is value of the empirical CDF across
simulations evaluated at the true value of β 0 = 1. Cover is defined here as the percentage
of the 95% confidence intervals containing the true β 0. MC cover reports coverage if
estimates are normally distributed with mean bias from column 2 and standard deviation
from column 3.

If we compare the mean standard error estimates to standard deviation across

simulations we see evidence that the standard error calculation may underestimate

the true standard error of the estimator. In light of discussion in Section 3.5, we

explicitly ignore fixed-effects approximation error and assumed only a noise term

remains when estimating standard errors, which may explain this discrepancy. The

divergence between estimated standard errors and standard deviation across simu-

lations is particularly noticeable for the factor model with a large number of factors

and for jackknife bias corrected estimators. For large factor models it is likely our
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inference approach misses out dependence structures introduced by the factor pro-

jection. This divergence is less pronounced for the group fixed-effects estimator

without bias correction. It is also worth noting the assumption of equal standard

errors across the components of the jackknife estimator appears to be violated from

the difference in standard deviations between jackknife and non-jackknife estima-

tors. These results suggest an alternative method, for example using bootstrap, is

necessary to do feasible inference in this setting with these estimators. As men-

tioned, we leave matters of inference for future research. Since we do not expressly

advocate a particular inference approach for any estimator used in this paper we do

not discuss this issue any further and leave it for future research.

In Table 3.2 we also compare where the true value of β 0 = 1 lies in the empir-

ical CDF of each estimator to the coverage based on a normal distribution with the

simulated mean bias and standard deviation as the distribution parameters. We see

that in instances where bias is low and β 0 = 1 is close to the median of the empirical

CDF then 2|CDF(β 0) - 0.5| ×100% is approximately equal to 1 - MC cover. This

is some evidence that the estimators may approach the normal distribution, where

the simulations correctly estimate the standard deviations. However, given that the

estimated standard errors are usually far from the simulation standard deviations,

this still does not present a feasible inference procedure.

To compare the rates of convergence across estimators we repeat the above

simulation exercise across different sample sizes, namely N = T ∈{20,40,80,160}.

The results are displayed in Table 3.3. The table shows that for this range of data

the convergence rates for the GFE estimators are all better or equal to the paramet-

ric rate. Note, in this setting the parametric rate suggests the bias should halve for

each increment in sample size. The factor model looks to be decaying at about the

parametric rate, however, for the specification with a small number of factors (fac-

tors equal N1/4 and N3/8) the bias is substantially above standard deviation. This

suggest there is a statistically significant persistence in bias for this estimator. For

the factor model with N9/20 factors, which is near the upper bound of number of

factors, min{N,T}1/2, as per Theorem 3.3.5, the bias does converge to within two
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standard deviations of zero. The standard deviations for each estimator do look to

settle on the parametric rate by at the latest the last sample size increment, which is

seen by comparison of the second last and last columns across estimators. In Ap-

pendix B.1 we also include a simulation exercise with lagged dependent variables,

which highlights the importants of having a correctly specified model.

Table 3.3: Convergence rate simulation

N = T = 20 40 80 160
Mean Bias

(Standard Deviation)
LS (N1/4 factors) 0.4461 0.2782 0.2696 0.1609

(0.0983) (0.0405) (0.0194) (0.0097)
LS (N3/8 factors) 0.3546 0.1748 0.0860 0.0177

(0.1245) (0.0388) (0.0159) (0.0067)
LS (N9/20 factors) 0.2763 0.1077 0.0320 0.0122

(0.1411) (0.0386) (0.0158) (0.0071)
Group fixed-effects 0.2690 0.0064 0.0045 0.0008

(0.1525) (0.0545) (0.0224) (0.0110)
GFE jackknife 0.2458 0.0334 0.0023 0.0004

(0.2225) (0.0942) (0.0406) (0.0201)
GFE splits 0.3829 0.1524 0.0249 0.0036

(0.1200) (0.0657) (0.0237) (0.0111)
10,000 Monte Carlo rounds.
All results refer to estimation of β . Mean bias is simply the mean of the bias across simulations.
Standard deviation is the standard deviation of the estimates, again across simulations.

3.7 Empirical application
We apply our estimation procedure to an analysis of the UK housing market, fol-

lowing Giglio et al. (2016) (GMS16). Specifically, we study the effects of extremely

long lease agreements on the price of housing, when compared to freehold agree-

ments. In the UK housing market it is common for real estate property to be sold

under each agreement. GMS16 posit that any change in price due to exogenous vari-

ation in whether the property was sold under extremely long lease or freehold must

be attributed to so–called “housing bubbles associated with a failure of the transver-

satility condition”. The empirical challenge in making this comparison, and much

discussed in GMS16, is to sufficiently control for observable and unobservable co-
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variates such that variation in the variable of interest can be reasonably described as

exogenous.

In the following, we compare estimates using our method with the more flexi-

ble approach taken in their paper. We note first that given differences in data, these

results should not be directly compared with GMS16. Rather, this should be seen as

an internal validity check across estimation models, i.e., to check if the aggregated

setting produce similar estimates to the granular setting from GMS16 within the

same set of data.

Consider the granular model from GMS16

Yiprt = ExtremelyLongLeaseiβ + controls′itδ +φprt + εiprt (3.29)

where i are individual transactions (i.e. not necessarily properties), p is property

type, r are regions and t is the month of transaction. Controls include hedonic

variables, e.g. number of bedrooms, bathrooms and floorspace. φprt is a scalar

fixed effect particular to the region, property type and month, and is identified via

variation across transactions i. Compare this to an aggregated setting,

Yrt = ExtremelyLongLeasertβ + controls′rtδ +h(αr,γt)+ εrt (3.30)

where Yrt , ExtremelyLongLeasert and controlsrt are the sample means aggregated

to the region and transaction month. The multidimensional array with entries φprt

varies with higher rank than the matrix with entries h(αr,γt) because the latter is

constant across p if extended to the equivalent multidimensional array with dimen-

sions across (p,r, t). This is why we believe the model in (3.29) will better capture

fixed-effects.

For purposes of this exercise we take the granular model with fixed-effects be-

low as being, in theory, the better model to approximate unobserved heterogeneity.

Hence we refer to this as the benchmark model. We use this benchmark approach to

understand how well each estimator performs in practical instances where granular

levels of aggregation are not always available, for example when data is aggregated
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for privacy reasons or for other feasibility reason. Hence, estimates close to the

granular model estimates should be seen as performing “well” in this setting.

Table 3.4 shows that when we control for fixed effects in the granular model

there is a 0.3% reduction in price when a long leasehold transaction is made com-

pared to a freehold. Whilst this is statistically significant, it translates to a decrease

in the median house price of less than £1,000 so is arguably a small reduction eco-

nomically. The OLS estimates do not change much across the different aggregation

schemes and perhaps unsurprisingly the panel aggregated OLS has a much higher

standard deviation due to the lower effective sample size. In the panel setting the

factor model shows a convergence to the granular model with fixed effects as factors

are increased and, interestingly, also to the grouped fixed-effects estimate, which is

the closest to the benchmark estimates.12 These results show a similar pattern to

the simulation exercise where, according to the benchmark model, we see a bias

reduction as the number of factors increases and when using the group fixed-effects

estimator.

Table 3.4: Empirical Results

Model Estimate Standard Errors
Granular Model Ordinary Least Squares 0.203 0.0054

(3.29) with Fixed Effects -0.003 0.0006
Panel Model Ordinary Least Squares 0.229 0.106

(3.30) LS factor model (5 factors) 0.024 0.012
LS factor model (15 factors) 0.007 0.007
LS factor model (30 factors) 0.007 0.008

Group fixed-effects 0.006 0.020
UK housing market results for N = 2088 and T = 48.

3.8 Conclusions
Panel regressions are very popular estimation tools, because they allow to control

for omitted variables that are unobserved and potentially correlated with the ob-

served covariates. Both Pesaran (2006) and Bai (2009), and most of the literature

12In Table 3.4, our usual computation for the clustered standard errors of the group fixed-effect
estimator was infeasible here due to the sample size. These standard error estimates are generated
by resampling region clusters with replacement over 10,000 resamples.
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following those seminal papers, assume that those unobserved omitted variables

take the form of a low-rank matrix, which can be interpreted as a static factor model

or interactive fixed effects. In this paper, we deviate from this interactive fixed

effect model by assuming that the unobserved omitted variables enter the model in

the more general form h(αi,γt), where h(·, ·) is an unknown smooth function, and αi

and γt are (multidimensional) fixed effects that can be arbitrarily correlated across

i, over t, and with the observed covariates.

We first explore the behavior of Bai’s least-squares esimator in this new setting.

We show that this LS esimator estimator is still consistent, as long as the number

of factors used in the estimation is allowed to grow asymptotically. However, as

explained in detail in Section 3.3, it seems impossible to derive convergence rates

faster than (min{N,T})1/2 for this estimator in our setting.

We therefore develop a new estimation approach called the two-way grouped

fixed effects approach, which generalize ideas in Bonhomme et al. (2021) to our

two-way setting. We derive convergence rate results for the resulting new estimators

and show that, depending on the dimension of αi and γt , and the relative size of N

and T , convergence rates up to
√

NT can be achieved with our new estimation

approach.

We also explore the performance of those various estimators in simulations

and in an empirical application. We find that both Bai’s least-squares esimator and

our grouped fixed effect estimators tend to perform well in practice. Interestingly,

the theoretical convergence rate of (min{N,T})1/2 for the LS esimator may often

understate the performance of this esimator in practice.

We also find that Jackknife bias correction helps to further reduce the bias

of the various estimators, but at the cost of increasing the variance. Overall, the

(Jackknife corrected) group fixed-effects estimator tends to have the smallest bias,

but not necessarily the smallest variance. The empirical application shows that,

according to our benchmark estimation, the LS estimation approach improves with

more factors and that the group fixed-effects estimator does indeed provide a bias

reduction compared to the LS estimator.
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In the simulation exercise and empirical application we implemented standard

error calculations for each estimator, but we leave formal inference results in the

setting of our paper as an open question for future research.



Chapter 4

Multidimensional Interactive

Fixed-Effects

4.1 Introduction
Models of multidimensional data – panel data with more than two dimensions –

are fast becoming popular in econometric analysis as large data sets with a multidi-

mensional structure become available. For example, in gravity models of trade that

are repeated over time one may be interested in studying trade patterns between

an importer, i, an exporter, j, that is repeated every quarter or year, t. One may

also be interested in studying demand elasticities through consumption data that

may vary by product, i, store, j, with repeated observation over week or month,

t.1 In these examples it is clear that there may exist unobserved characteristics in

each dimension that can determine variation across both the dependent and inde-

pendent variables that needs to be controlled for to avoid issues with endogeneity.

For example, this could be shifts in taste preferences, that are unobserved by the

econometrician, that may effect sales of particular products in certain stores differ-

ently over time. Thus far, most analysis has addressed unobserved heterogeneity

in the higher-dimensional setting by using a combination of additive scalar fixed-

effects. These additive scalar fixed-effects approaches, however, can only accom-

modate variation in unobserved heterogeneity over a subset of dimensions with any

1A non-exhaustive list of related examples can be found in the introduction of Matyas (2017) in
trade, housing and prices, migration, country productivity and consumer price setting.
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one of the scalar fixed-effects terms. For example, in the three-dimensional model

this type of fixed-effect approach can only control for variation over i j, it and jt, but

not over all i jt. In the face of more complicated relationships that admit multiplica-

tive variation across dimensions, these additive effects are unsatisfactory to control

for unobserved heterogeneity. This paper develops tools to control for unobserved

heterogeneity in the form of interactive fixed-effects in models of multidimensional

panel data. The main body of the paper focuses on the linear and additively separa-

ble model. More generic applications of these tools are discussed in the introduction

but are not formally studied.

To fix ideas consider linear parameter estimation in the following interactive

fixed-effects model with three dimensions,

Yi jt = X ′
i jtβ +

L

∑
ℓ=1

ϕ
(1)
iℓ ϕ

(2)
jℓ ϕ

(3)
tℓ + εi jt , (4.1)

where all terms in ∑
L
ℓ=1 ϕ

(1)
iℓ ϕ

(2)
jℓ ϕ

(3)
tℓ are unobserved and L is unknown but small

relative to sample size. Reducing the problem to three dimensions is without loss

of generality for the methods considered herein. Additive fixed-effects are omitted

for brevity but are subsumed by the interactive fixed-effect term or can be removed

with a simple within transformation. Let Xi jt be arbitrarily correlated with the un-

observed interactive fixed-effects term, ∑
L
ℓ=1 ϕ

(1)
iℓ ϕ

(2)
jℓ ϕ

(3)
tℓ , but uncorrelated with the

noise term, εi jt . The challenge to estimating β is isolating variation in Xi jt that is

not correlated with the interactive fixed-effects term. This paper develops the multi-

dimensional group fixed-effects and kernel weighted transformations to project out

this unobserved heterogeneity and also shows settings were standard factor methods

work well. The kernel weighted within transformation is a novel contribution to the

best of the author’s knowledge. The group fixed-effects method uses similar cluster-

ing techniques from Bonhomme et al. (2021) and the within-cluster transformation

in Freeman and Weidner (2022).

This paper makes two main contributions to the literature. The first is to

show that the three or higher dimensional model can be couched in a standard
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two-dimensional panel data model and to derive sufficient conditions for consis-

tency using these methods. The second contribution is to introduce kernel weighted

fixed-effects methods and extend group fixed-effects methods to the multidimen-

sional setting. The asymptotic results show that under certain conditions the group

and kernel weighted fixed-effects can retrieve the parametric rate of convergence;

and shows the merits of the two-dimensional panel methods. With existing proof

techniques, it has not yet be shown that the panel methods can in general achieve the

parametric rate in the three dimensional setting. The simulation results corroborate

these theoretical findings and an empirical application that estimates the demand

elasticity of beer demonstrates how these methods work in practice.

The within-cluster transformation can be motivated by considering a very sim-

ple extension to the usual within transformation. First, consider methods to project

additive fixed-effects of the form ai j +bit + c jt , which is usually projected using

Ẏi jt = Yi jt − Ȳ· jt − Ȳi·t − Ȳi j·+ Ȳ··t + Ȳ· j·+ Ȳi··− Ȳ···, (4.2)

applied equivalently to Xi jt , where the bar variables denote the average taken

over the “dotted” index for the entire sample. That is, Ȳ· jt := 1
N1

∑
N1
i=1Yi jt , Ȳ··t :=

1
N1N2

∑
N1
i=1 ∑

N2
j=1Yi jt , etc. The within-cluster transformation simply constrains the

sample these averages are taken over to just within each unit’s cluster. With a slight

abuse of notation, this is done using,

Ỹi jt = Yi jt − Ȳi∗ jt − Ȳi j∗t − Ȳi jt∗ + Ȳi∗ j∗t + Ȳi∗ jt∗ + Ȳi j∗t∗ − Ȳi∗ j∗t∗ (4.3)

where the bar variables combined with the star indices denote means taken within

that indice’s cluster. For example, Ȳi∗ jt is the mean value of all i∗’s assigned to i’s

cluster, Ȳi∗ jt∗ is the mean across both i∗ in i’s cluster and t∗ in t’s cluster, and so on.

This is equivalent to including fixed-effects of the form ai jg3(t)+ big2( j)t + cg1(i) jt ,

where gn(·) maps to the cluster assignment for units in dimension n. Furthermore,

the kernel weighted method simply uses weights rather than cluster assignments

to take these averages, for example Ȳi∗ jt = ∑i′ wi,i′Yi′ jt for some weights on each i′
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for i, that need not be symmetric. This projects out the more generic fixed-effect,

∑t ′ wt,t ′ai jt ′+∑ j′ w j, j′bi j′t +∑i′ wi,i′ci′ jt . It is therefore apparent that with a relatively

small change to how the within transformation is performed, much more general

fixed-effects can be controlled for, including, as is shown later, the interactive fixed-

effects considered in this paper.

The model for interactive fixed-effects has precedent in the standard two-

dimensional panel data setting. For instance take the model considered in Bai

(2009) and similar to Pesaran (2006),

Yit = X ′
itβ +

L

∑
ℓ=1

λiℓ ftℓ+ eit . (4.4)

In that setting, Bai (2009) show that the interactive term ∑
L
ℓ=1 λiℓ ftℓ also sufficiently

captures variation in additive individual and time effects without the need to specify

these separately, so these are again naturally omitted. For multidimensional applica-

tions it may be preferable to simply transform the problem in (4.1) to a two dimen-

sional problem and estimate (4.4) directly using the transformed data. However,

and as will be explained in further detail in Section 4.3.1, problems persist when

L is large and only a subset of the unobserved heterogeneity parameters are low-

dimensional. For consistent estimation of β , transforming the multidimensional

array to a matrix then estimating (4.4) requires either: (a) all fixed-effects are low-

dimensional, or; (b) that a subset of the fixed-effects are low-dimensional and the

analyst knows which ones are. The requirement that the analyst has this knowledge

can be highly restrictive. Furthermore, only a very slow rate of convergence can be

shown for this approach even when the analyst does know which fixed-effects live

in a low-dimensional space. Alternatively, the within-cluster and kernel weighted

transformations analysed in this paper requires only that a subset of the fixed-effect

parameters are low-dimensional, though the analyst does not need to know which

of the fixed-effect parameters make up this subset. Further, when fixed-effects in

all dimensions can be estimated well, the usual parametric rate of consistency is

possible with these within transformations.
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The demand elasticity for beer application uses Dominick’s supermarket data

from the Chicago area from 1991-1995, where price and quantity vary over prod-

uct, store, and month. The log-log and logit models are estimated. The log-log

model is implemented with and without cross-elasticities to demonstrate the limited

ability of the fixed-effects estimators to project relevant covariates that vary across

all dimensions. The elasticities for the fixed-effects estimators, including the sim-

ple additive fixed-effects, are all similar within each model, indicating that whilst

fixed-effects probably exist, they are most likely of a simple form. The estimates

with and without cross-elasticities are also substantially different, which indicates

that if cross-elasticities are important then even the more sophisticated fixed-effects

estimators cannot project them out. Hence, relevant covariates with high variation

across all dimensions still need to be included in the regression line. The estimates

from the log-log with cross-elasticities closely reflect the own-price elasticities in

Table 1 from Hausman et al. (1994).

The technical component of this paper is highly related to the numerical anal-

ysis literature on low-rank approximations of multidimensional arrays. As pointed

out in De Silva and Lim (2008), the optimisation problem of finding low-rank ap-

proximations in the tensor setting is not well-posed, hence most results in this lit-

erature rely on numerical evidence. See Kolda and Bader (2009) for a summary

of the multidimensional array decomposition problem and Vannieuwenhoven et al.

(2012); Rabanser et al. (2017) for examples of numerical results. As such, it is

necessary to innovate on this tensor low-rank problem to find appropriate analyti-

cal results. To this end, this paper utilises well-posed components of the numerical

analysis literature for use in nuisance parameter applications. These applications

have the advantage that they do not require the multidimensional array of fixed-

effects to be reconstructed, hence do not attempt to directly solve the low-rank ten-

sor problem. It is worth a note that Elden and Savas (2011), along with related

papers, suggest a reformulation of the low multilinear rank problem that may have

promising applications in econometrics, but this is left for future research.

Some extensions of this modelling approach are now informally discussed but
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not considered further in this paper. Under sufficient regularity conditions, the

methods considered in this paper may also control for variation from arbitrary func-

tions of the fixed-effects. Similar to that considered in Zeleneev (2020) and Freeman

and Weidner (2022), the functional representation of model (4.1) could be,

Yi jt = X ′
i jtβ +h(ϕ(1)

i ,ϕ
(2)
j ,ϕ

(3)
t )+ εi jt ,

for vector-valued ϕ
(1)
i , ϕ

(2)
j and ϕ

(3)
t . The set of fixed-effects to be transformed

by the function h(·, ·, ·) could also extend to fixed-effects over multiple indices,

e.g. αi j from above. It should be noted that the setting considered in Zeleneev

(2020) requires that the transformation is non-smooth, and it is not trivial to see

that a “within-type” transformation will sufficiently project this type of hetero-

geneity. With sufficient smoothness conditions on the function transforming the

fixed-effects, existing literature could be generalised to show consistency using the

proposed within-cluster transformation in the multidimensional case.

Models with discrete explanatory variables (Chernozhukov et al., 2013b;

Hoderlein and White, 2012b; Evdokimov, 2010; Fernández-Val et al., 2021), pro-

vide another interesting application of these group fixed-effects estimators. Take

the following regression line for discrete valued Xi jt ,

Yi jt = h
(

Xi jt ,ϕ
(1)
i ,ϕ

(2)
j ,ϕ

(3)
t ,εi jt

)
.

Then, under sufficient smoothness conditions on the function h, the unobserved

heterogeneity may also be projected out with a group fixed-effect estimator. Tensor

completion techniques also have useful generalisations in this setting, for example,

Tomioka et al. (2010); Li et al. (2019); Xu (2020), for some examples of methods

that consider sparse multidimensional arrays. The sparse multidimensional array

problem has similar complexities to the low-rank tensor approximation problem in

that they do not extend from the matrix problems in a straightforward way, hence

require non-trivial extensions.

It is also important to consider unobserved heterogeneity in applications that
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admit discrete dependent variables. For example, for binary response variable with

known F(·),

P
(
Yi jt = 1

∣∣∣Xi jt ,ϕ
(1)
i ,ϕ

(2)
j ,ϕ

(3)
t

)
= F

(
X ′

i jtβ +
L

∑
ℓ=1

ϕ
(1)
iℓ ϕ

(2)
jℓ ϕ

(3)
tℓ

)
. (4.5)

Estimation of the unobserved heterogeneity term may then be performed with a

similar iterative scheme as that proposed in Chen et al. (2021) or the sufficient

statistic approach in Chapter 6 of Matyas (2017). The incidental parameter problem

in this setting can be alleviated using methods in this paper by allowing cluster

sizes to grow with data size coupled with taking grouped fixed-effects along fewer

dimensions, for example in Bonhomme et al. (2021) and also Appendix C.2.

Menzel (2021) consider a special case of multidimensional data for bootstrap-

ping methods where the data is D-adic. That is, each dimension of the data refers

to the same set of observations, like a network graph where each index refers to an

individual in the network. An example of the multidimensional version of this could

be a binary indicator of a three step path, Yi jk = Gi jG jk, detailing if there exists a

path from i to k. In any case, the type of multidimensional data considered in that

work is a distinct special case of the type of data structures considered in this paper.

The paper is organised as follows. Section 4.2 introduces the model, and no-

tation and preliminaries; Section 4.3 details the estimators and associated assump-

tions with convergence results; Section 4.4 discusses the convergence results along

with some alternative assumptions, and further motivates the estimation approach;

Section 4.5 displays the simulation results; Section 4.6 shows the beer demand es-

timation empirical application; and Section 4.7 concludes.
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4.2 Model

Let β 0 denote the true parameter value for the slope coefficients. The model in full

dimensional generality is, 2

YYY =
K

∑
k=1

XXXkβ
0
k +A + εεε, (4.6)

where YYY ,XXXk,εεε ∈ RN1×N2×···×Nd . A = ∑
L
ℓ=1 ϕ

(1)
ℓ ◦ · · · ◦ϕ

(d)
ℓ where ϕ

(n)
ℓ ∈ RNn for

each n = 1, . . . ,d and “◦” is the outer product. L is naturally restricted to have

upper bound minn{∏n′ ̸=n Nn′}, see Kruskal (1989). εεε is a noise term uncorrelated

with all XXXk and all unobserved fixed-effects terms. Take in ∈ {1, . . . ,Nn} for all n ∈

{1, . . . ,d} as the dimension specific index, where Nn is the sample size of dimension

n. The regressors XXXk may be arbitrarily correlated with A . Throughout this paper

all dimensions are considered to grow asymptotically, that is Nn → ∞ for all n.

Model (4.6) can be seen as a natural extension of the Bai (2009) model to three

(or more) dimensions with the A term interpreted as a “higher-dimensional” factor

stucture. Similar to this strain of the literature, all terms in A are considered fixed

nuisance parameters. There are potentially many extensions to the factor model

setting in Bai (2009) to the higher dimension case. This paper starts with what

seems the most natural extension.

The term A may also incorporate additive fixed effects that vary in any strict

subset of the dimensions. For example, in the three dimensional setting one may

want to control for the additive terms, ai j + bit + c jt . These can be controlled for

using L = min{N1,N2}+min{N1,N3}+min{N2,N3}, with the first min{N1,N2}

terms ∑
min{N1,N2}
ℓ=1 ϕ

(1)
iℓ ϕ

(2)
jℓ = ai j by setting ϕ

(3)
tℓ = 1 for ℓ= 1, . . . ,min{N1,N2}, and

so on for the bit and c jt . These could also be controlled for directly using the

standard within-transformation before considering the model in (4.6).

2For example, in index notation this model can be written as,

Yi1,i2,...,id =
K

∑
k=1

Xi1,i2,...,id ;kβ
0
k +Ai1,i2,...,id + εi1,i2,...,id

with Ai1,i2,...,id = ∑
L
ℓ=1 ϕ

(1)
i1ℓ

. . .ϕ
(d)
idℓ

.
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This paper comprises of two main modelling approaches. The first is to embed

the multidimensional model into a standard panel data model by simply flattening

all arrays into matrices. The second approach uses weighted differences across

each dimension to reduce each ϕ(n) component of A separately for each n. For this

reason the model assumptions are split out and stated in Section 4.3 alongside each

estimation approach.

4.2.1 Notation and preliminaries

For a d-order tensor, A, a factor-n flattening, denoted as A(n), is the rearrange-

ment of the tensor into a matrix with dimension n varying along the rows and

the remaining dimensions simultaneously varying over the columns. That is,

A(n) ∈ RNn×Nn+1Nn+2...N1...Nn−1 . The Frobenius norm, ∥ · ∥F , of a matrix or tensor

is the entry-wise norm, ∥A∥2
F = ∑

N1
i1=1 . . .∑

Nd
id=1 A2

i1...id . The spectral norm, denoted

∥ · ∥, is the largest singular value of a matrix. For a d-order tensor, A, the multi-

linear rank, denoted r, is a vector of matrix ranks after factor-n flattening in each

dimension, with each component of this vector rn = rank
(
A(n)

)
. Tensor rank, dif-

ferent to multilinear rank, is defined as the least number of outer products of vectors

to replicate the tensor. That is, for tensor A and vectors u(n)ℓ ∈ RNn , tensor rank is

the smallest L such that A = ∑
L
ℓ=1 u(1)ℓ ◦ · · · ◦ u(d)ℓ , where ◦ is the outer product of

a vector. The notation a ≲ b means the asymptotic order of a is bounded by the

asymptotic order of b.

The n-mode product between a tensor A and matrix B is denoted A×n B and

has elements

(A×n B)i1,..., j,...,id =
Nn

∑
in=1

Ai1,...,in,...,id B j,in ,

which is equivalent to saying the flattening (A×n B)(n) = BA(n). This can be re-

ferred to as “hitting” the tensor A with matrix B in the nth dimension, though this

terminology is only stated to help with understanding of the definition.

The singular value decomposition is used in both estimation approaches in this

paper so it is important to understand some of its properties. The singular value
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decomposition of a matrix, A ∈ RN1×N2 is

A =UΣV ′ =
min{N1,N2}

∑
r=1

σrurv′r, (4.7)

where U is the matrix of left singular vectors, ur, V is the matrix of right singular

vectors, vr, and Σ is a diagonal matrix of singular values, σr, with values running in

descending order down the diagonal. For a rank-r matrix, the first r entries on the

diagonal of Σ are strictly positive and the remaining entries are zero.

Take the approximation problem,

min
A′

∥A−A′∥F such that rank(A′) = k. (4.8)

It is well known from the Eckart-Young-Mirsky theorem that the solution to this

approximation problem is the first k terms of the singular value decomposition, i.e.

∑
k
r=1 σrurv′r. The Eckart-Young-Mirsky theorem effectively picks out the row and

column subspaces that best explain variation in the matrix A as the leading columns

of the matrix U , respectively of V . The sum of squared error at the minimiser is thus

∑
min{N1,N2}
r=k+1 σ2

r . This is commonly called a low-rank approximation and forms the

cornerstone for estimation of unobserved heterogeneity in the factor model and in-

teractive fixed-effects models in Bai and Ng (2002); Bai (2009); Moon and Weidner

(2015) amongst others.

The Eckart-Young-Mirsky theorem, however, does not extend to the three or

higher dimensional setting, see De Silva and Lim (2008) for details. This is why

the multidimensional problem either needs to be translated to the two-dimensional

setting to utilise the Eckart-Young-Mirsky theorem, or the fixed-effects parameters

need to be shrunk separately, as is done with the group fixed-effects and kernel

methods.

4.3 Estimation
This section details the three estimation approaches used. The first subsection de-

tails how to apply standard two dimensional estimators to the problem and the as-
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sumptions required for consistent estimation. The second and third subsections

detail the group fixed-effect and kernel weighted approaches and the required as-

sumptions for consistency in those settings.

4.3.1 Matrix low-rank approximation estimator

This section provides a description of some matrix methods that can be applied

directly to the multidimensional model and stipulates the assumptions required for

consistency. Note that Kapetanios et al. (2021) employ a similar approach for three-

dimensional arrays in conjunction with the Pesaran (2006) common correlated ef-

fects estimator.

Consider recasting the multidimensional array problem into a two dimensional

panel problem by flattening Y and X in the n-th dimension,

Y(n) = X ′
(n)β

0 +ϕ
(n)

Γ
′
n + ε(n)

where Y(n),X(n),ε(n) ∈ RNn×∏n′ ̸=n Nn′ , ϕ(n) is an Nn × rn matrix and Γn is an

∏n′ ̸=n Nn′×rn matrix that accounts for variation in the remaining ϕ(n′) for all n′ ̸= n.

The term rn is indexed by the dimension n because it may vary non-trivially accord-

ing to the flattened dimension. It should then be apparent that this is exactly the

model described in (4.4), that is, the standard linear model with factor structure

unobserved heterogeneity as studied in Bai (2009).

The two-dimensional estimator for a given flattening, n, optimises the follow-

ing objective function,

R(β , r̂n,n) = min
ϕ(n)∈RNn×r̂n ,

Γn∈R
∏n′ ̸=n Nn′×r̂n

∥∥∥Y(n)−X ′
(n)β −ϕ

(n)
Γ
′
n

∥∥∥2

F
. (4.9)

Then β̂ 2D
(n) = argminβ R(β , r̂n,n) is the slope estimate for the two-dimensional setup.

The analyst must choose both the dimension to flatten in, n, and the rank of the

estimated interactive fixed-effects term, r̂n. It is well known that the minimum in

(4.9) is achieved using the leading r̂n terms from the singular value decomposition

of the error term, Y(n)−X ′
(n)β . This gives ϕ̂(n) as the first r̂n columns of Û Σ̂ and
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Γ̂n as the first r̂n columns of V̂ where Û , Σ̂ and V̂ are the terms from (4.7) of the

singular value decomposition of Y(n)−X ′
(n)β . Because this error term is a function

of β , an iteration is naturally required between estimating β and finding the singular

value decomposition of the error term. This is a well studied iteration procedure,

for convergence details see Bai (2009); Moon and Weidner (2015).

In the following assumptions let r̂n be the estimated number of factors for

the (n)-flattening of the regression line when applying the least square methods

in (4.9). Also, let L ⊂ {1, . . . ,d} be a non-empty subset of the dimensions. The

tensor rank parameter, L, may without loss be restricted to the upper bounded by

L ≤ minn{∏n′ ̸=n Nn′}. This is a result of elementary bounds on the tensor rank of an

arbitrary tensor. In the following, the multilinear rank of A is restricted such that it

is low-rank along at least one of the flattenings.

Assumption 4.3.1 (Bounded norms of covariates and exogenous error).

(i).
∥∥Xk
∥∥

F = Op
(
∏

d
n=1

√
Nn
)

for each k

(ii).
∥∥ε(n∗)

∥∥= Op
(
max{

√
Nn∗,∏m ̸=n∗

√
Nm}

)
for each n∗ ∈ L

Assumption 4.3.2 (Weak exogeneity). vec(Xk)
′vec(ε) = Op

(
∏

d
n=1

√
Nn
)

for each

k

Assumption 4.3.3 (Low multilinear rank). For some positive integer, c, rn∗ < c

for all n∗ ∈ L , where rn is the nth component of the multilinear rank of A .

Assumption 4.3.4 (Non-singularity). Let σs(A) be the sth singular value for a ma-

trix A. Consider linear combinations δn∗ ·X(n∗) =∑k δn∗,kX(n∗),k. For each dimension

n∗ ∈ L that satisfies Assumption 4.3.3, then for K ×1 unit vector δn∗ ,

min
{δn∗∈RK ,∥δn∗∥=1}

min{Nn∗ ,∏m ̸=n∗ Nm}

∑
s=rn∗+r̂n∗+1

σ
2
s

(
(δn∗ ·X(n∗))

∏n
√

Nn

)
> b > 0 wpa1.

Assumptions 4.3.1, 4.3.2 and 4.3.4 are standard regularity assumptions already

well established in the literature, e.g. see Moon and Weidner (2015). Assump-

tion 4.3.1.(i) ensures that the covariates have bounded norms, for example having
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bounded second moments. Assumption 4.3.1.(ii) allows for some weak correla-

tion across dimensions, see Moon and Weidner (2015), or is otherwise implied if

the noise terms are independently distributed with bounded fourth moments, see

Latała (2005). Assumption 4.3.2 is implied if Xi1,i2,...,id ;kεi1,i2,...,id are zero mean,

bounded second moment and only admits weak correlation across dimensions for

each k = 1, . . . ,K. Assumption 4.3.4 simply states that, after factor projection, the

set of covariates still collectively admit full-rank variation.

Assumption 4.3.3 is new and asserts that there exists at least one flattening of

the interactive term, A , that is low-dimensional or simply low-rank. Given that the

true value for L is left mostly unrestricted at this stage, this requires that at least one

of the unobserved terms ϕ(n) is low dimensional. Note that not all dimensions must

satisfy Assumption 4.3.3 for the below result. If the correct dimension is chosen

then variation from the interactive term can be sufficiently projected out using the

factor model approach. This makes up the statement of the following Proposition.

Proposition 4.3.1. Let β̂ 2D
(n∗) be the estimator from Bai (2009) after first flatten-

ing along dimension n∗ ∈ L . If Assumptions 4.3.1-4.3.4 hold, the subset L is

non-empty, and the estimated number of factors r̂n∗ ≥ rn∗ , then, for each n∗ ∈ L

satisfying Assumption 4.3.3,

∥∥∥β̂
2D
(n∗)−β

0
∥∥∥= Op

(
1√

min{Nn∗,∏n̸=n∗ Nn}

)
. (4.10)

Proposition 4.3.1 follows directly from Moon and Weidner (2015) since the

flattening procedure reduces the problem to the standard linear factor model. Notice

that this result only applies to estimates in the dimension(s) that satisfy the low-

rank assumption in Assumption 4.3.3. That is, implicit in Proposition 4.3.1 is that

the analyst has chosen the correct dimension to flatten over when reformulating the

problem as a two-dimensional panel. Assumption 4.3.3 can be relaxed to rn∗ =

o
(
min{Nn∗ ,∏n ̸=n∗ Nn}

)
as long as the estimated number of factors is allowed to

increase with data size at a faster rate than this. The constraint r̂n∗ ≥ rn∗ can also

be changed to r̂n∗ ≥ c, however, this is more conservative than required for the
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statement of the result.

The estimation procedure from Proposition 4.3.1 can also be augmented to

flatten over multiple indices. For instance, the analyst may flatten such that both the

rows and columns in the matrix contain multiple indices from the original array. Of

course, this augmentation makes Assumption 4.3.3 harder to satisfy as it requires

multiple parameters to vary in low-dimensional space. To see this take the tensor

A flattened over the first two indices as A(1,2) ∈RN1N2×∏n/∈{1,2} Nn . If the parameters

ϕ(n) for n = 3, . . . ,d are high-dimensional, Assumption 4.3.3 is only satisfied when

both ϕ(1) and ϕ(2) and their product space is low-dimensional. Clearly this is more

restrictive than requiring only one of the parameter spaces to be low-dimensional.

However, flattening along multiple dimensions can improve the convergence rate in

Proposition 4.3.1 to Op

(
1√

min{N1N2,∏n/∈{1,2} Nn}

)
, so there are benefits if this more

restrictive assumption can be made. Further discussion of the matrix method results

are relegated to Section 4.4.1, in particular some avenues to choosing the dimension

to flatten over.

4.3.2 Group fixed-effects

This section describes the group fixed-effects estimator. Take again the model in

array notation,

Y =
K

∑
k=1

Xkβ
0
k +A +εεε.

A cluster assignment, C , is a length d list of partition matrices, Cn ∈ {0,1}Nn×Gn ,

where Gn is the number of clusters in dimension n and each entry of Cn is a binary

indicator of a unit’s membership to a given cluster. Clusters are assigned sepa-

rately along each dimension. Let ΘC be the space of group fixed-effects parameters

associated to cluster assignment C . Each θθθ ∈ ΘC is an ordered set of size d of

×d
n=1 Nn tensors. For each n in {1, . . . ,d}, the tensor θn varies freely over dimen-

sions {1, . . . ,n − 1} and {n + 1, . . . ,d} but is constant within each cluster along

dimension n.3 The objective function for the group fixed-effect estimation of β

3This parameter space is exemplified in Remark 4.3.1 for the three dimensional setting for clarity.
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under cluster assignment C is

Q(β ,C ) = min
θ∈ΘC

∥∥∥∥∥Y−
K

∑
k=1

Xkβk −
d

∑
n=1

θn

∥∥∥∥∥
2

F

(4.11)

and β̂GFE,C := argminβ∈RK Q(β ,C ).

The minimum within (4.11) is obtained from the within-cluster transformation

in (4.3) from the Introduction. Remark 4.3.1 below details this objective function

for the three-dimensional setting for clarity. It should be clear that the parameter

space ΘC is indexed by cluster assignment C because this assignment defines how

the parameters may vary. That is, this is the estimated parameter space under a

specific group fixed-effects estimator, which may only be an approximation of the

true parameter space.

The within-cluster transformation can be stated in more general fashion as fol-

lows. Take Mn to be an Nn×Nn matrix defined as INn −Cn(C′
nCn)

†C′
n, where † is the

Moore-Penrose generalised inverse. Then, the within-cluster transformation can be

formed by the following series of n-mode products, Y×1 M1 ×2 M2 ×3 · · · ×d Md .

This sequentially differences out the group specific means from each dimension

separately. Then the Frisch-Waugh-Lovell theorem straightforwardly applies.

Cluster assignments may be known or estimated, with suggestions of how to

estimate these discussed in Section 4.4.2. In the case these are estimated from the

error term, Y−∑
K
k=1 Xkβk, there is an iteration between estimating cluster assign-

ments and estimating slope coefficients, like in Section 4.3.1, but this can also be

optimised with a grid space over β . Alternatively, estimated proxy variables used

to form groups may come from the matrix method procedure, then no iteration is

required. Both implementations are discussed in Section 4.4.5.

Assumption 4.3.5 (Clustering).

Let jn(in) be any unit in the same cluster as in from using cluster assignment

C . Then,

(i). For all n as Nn → ∞, 1
Nn

∑
Nn
in=1

∥∥∥ϕ
(n)
in

∥∥∥2
≲ Op(1), and,
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(ii). For a non-empty subset M ⊂ {1, . . . ,d} take for any n∗ ∈ M a sequence

ξNn∗ → 0 as Nn∗ → ∞. Then,

1
Nn∗

Nn∗

∑
in=1

∥∥∥ϕ
(n∗)
in∗

−ϕ
(n∗)
jn∗(in∗)

∥∥∥2
= Op(ξNn∗ )

Assumption 4.3.5.(i) restricts fixed-effects parameter space to have finite sec-

ond moments. This implies that as {N1, . . . ,Nd} → ∞, cluster allocations can-

not become increasingly disparate in the underlying parameter space. Assump-

tion 4.3.5.(ii) states that for at least one dimension the clustering procedure finds

matches with asymptotically negligible difference in the underlying parameter

space. Since cluster assignments are not always estimated, and actually sometimes

group assignments may be given extraneously, it is useful to state Assumption 4.3.5

in generic terms that ignore these clustering mechanics. These assumptions restrict

the cluster assignment to uncover closeness in the true parameter space, which im-

plies a restriction on the underlying parameter space and on how clusters are as-

signed.

Below is a refinement to the regularity conditions contained within the As-

sumptions listed in Section 4.3.1 that account for the within-cluster transformation.

Assumption 4.3.6 (Regularity conditions). Let T̃i1,...,id be the entries of tensor T

after the group fixed-effects from the minimiser of (4.11) are differenced out. Then,

(i).
(

1
∏n Nn

∑i1 . . .∑id X̃i1,...,id X̃ ′
i1,...,id

)
= Op(1) converges to a nonrandom positive

definite matrix as N1, . . . ,Nd → ∞.

(ii). 1
∏n Nn

∑i1 . . .∑id X̃i1,...,id εi1,...,id = Op

(
1√

∏n Nn

)
.

Assumption 4.3.6.(i) is very similar to Assumption 4.3.4 except that here full

rank is required after the within-cluster projection rather than the factor projection.

Assumption 4.3.6.(ii) is an exogeneity condition that requires weak exogeneity in

the covariates after the within-cluster transformation, which can be viewed as sim-

ilar to Assumption 4.3.2. This is stricter than Assumption 4.3.2 because the noise



4.3. ESTIMATION 110

term ε can foreseeably impact cluster allocation if clusters are estimated as func-

tionals of a residual term. This limitation is alleviated by, for instance, making sure

cluster assignments are based on variables extraneous to the regression line, hence

independent of ε , or perhaps through some sample splitting methods such as that

proposed in Freeman and Weidner (2022).

Proposition 4.3.2 (Upper bound on group fixed-effects estimator). Let Assump-

tions 4.3.5 and 4.3.6 hold for cluster allocation C . Let M be the set defined in

Assumption 4.3.5.(ii). Then, for tensor rank LN that may depend on sample size,

∥∥β̂GFE,C −β
0∥∥=√LNOp

(
∏

n∗∈M

√
ξNn∗

)
+Op

(
d

∏
n=1

1√
Nn

)
.

Discussed in Section 4.4.2 are methods and restrictions that restrict ξNn∗ from

Assumption 4.3.5 and Proposition 4.3.2 to 1/Nn∗ . This suggests that as long as

M = {1, . . . ,d} and LN is bounded the parametric rate of convergence is achievable.

Related to M , an implicit requirement on the latent parameters from this subset

of dimensions is some form of low-dimensionality in the vectors ϕ
(n∗)
in∗

for n∗ ∈

M . For a discussion on the curse of dimensionality using clustering methods, see

Bonhomme et al. (2021) that suggests the dimension of these parameters should be

≤ 2 to be well-clustered. A sufficient condition for parameters in these dimension to

be low-dimensional is low multilinear rank for each n∗ ∈ M . Hence, it is expected

that the set M should be a subset of L , from Assumption 4.3.3. The advantage

with the group fixed-effects methods is that the analyst does not need to choose

which n does admit low multilinear rank, hence it is more flexible. However, since

the matrix factor methods do not suffer such a large curse of dimensionality, if the

low multilinear rank dimension is known then there is still some advantage in using

this method, for example if the smallest multilinear rank parameter is bounded but

of order 5-10.

Remark 4.3.1. In the three dimensional setting, the group fixed-effect objective
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function,

Q(β ,g) = min
α,γ,δ

∑
i, j,t

(
Yi jt −X ′

i jtβ −θ1;g1(i) jt −θ2;ig2( j)t −θ3;i jg3(t)
)2 (4.12)

where θ1 ∈ Rncol(g1)×N2×N3 , θ2 ∈ RN1×ncol(g2)×N3 , and θ3 ∈ RN1×N2×ncol(g3); and

ncol(·) returns the number of columns of a matrix. Then, taking the within-cluster

transformation on Y and X from (4.3) is equivalent to differencing out the minimis-

ers from (4.12). g is a list of group assignment for each dimension. For example,

g1(i) maps to the group identity of individual i. This is why θ1 is restricted to vary

across only ncol(g1) different values in the first dimension, which is less than N1.

Notice that the optimisers for θ1, θ2 and θ3 from (4.12) can be described as

combinations of the within-cluster projection as follows,

θ̂1;g1(i) jt ≈ ¯Ai∗ jt − ¯Ai∗ j∗t + ¯Ai∗ j∗t∗

θ̂2;ig2( j)t ≈ ¯Ai j∗t − ¯Ai∗ j∗t

θ̂2;i jg3(t) ≈ ¯Ai jt∗ − ¯Ai∗ jt∗,

though this representation is not unique.

Additional to controlling for any additive terms, this projection leaves the fol-

lowing interactive fixed-effects residual,

Ãi jt =
L

∑
ℓ=1

(ϕ
(1)
iℓ − ϕ̄

(1)
i∗ℓ )(ϕ

(2)
jℓ − ϕ̄

(2)
j∗ℓ)(ϕ

(3)
tℓ − ϕ̄

(3)
t∗ℓ ). (4.13)

where ϕ̄
(1)
i∗ℓ is the group mean of ϕ

(1)
i∗ℓ for the i∗’s in i’s group, and so on for the other

terms. Hence, sufficient projection of the interactive fixed-effects terms relies on the

weaker condition that parameters converge to their group means, namely, ϕ
(1)
iℓ →

ϕ̄
(1)
i∗ℓ , ϕ

(2)
jℓ → ϕ̄

(2)
j∗ℓ or ϕ

(3)
tℓ → ϕ̄

(3)
t∗ℓ for each ℓ. Indeed, the group mean differencing

could be seen as a weighted mean difference across the population, with equal

weight given to observations within the cluster and zero weight to observations

outside of each cluster. This fact is utilised for the more generic kernel weighted
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difference estimator in Section 4.3.3, which is synonymous to a Nadaraya-Watson

type estimator for each fixed-effects term.

So far it has been shown that with the relatively innocuous shift from the within

transformation to the within-cluster transformation, any additive terms are automat-

ically controlled for and there are conditions to also control for the interactive term.

Choice of clusters for this transformation is key to suffice this less restrictive con-

dition. Given a set of proxies to cluster on, clustering or matching methods can be

used to find these groups, for example Bonhomme et al. (2021). Developing a set

of proxies to cluster on is important and is discussed in Section 4.4.2.

4.3.3 Kernel weighted fixed-effects

Let ϕ̂
(n)
in generically denote a proxy measure for unit in in dimension n that may be

known or estimated. The use of this notation will become clear in the statement

of Proposition 4.3.3 and in discussion of how to estimate these proxy measures in

Section 4.4.2. Let W be an ordered set of weight matrices, where the nth item

W(n) ∈ RNn×Nn has elements,

w(n)
in, jn :=

k
(

1
hn

∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
jn

∥∥∥)
∑

Nn
i′n=1 k

(
1
hn

∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
i′n

∥∥∥) , (4.14)

where k is a kernel function, and hn is a bandwidth parameter. Let ∆ be a d-list

of×d
n=1 Nn tensors δn ∈ RN1×···×Nd . For a given set of proxy measures and kernel

function, the kernel weighted fixed-effects estimator optimises

S(β ,W ) = min
δ∈∆

∥∥∥∥∥Y−
K

∑
k=1

Xkβk −
d

∑
n=1

δn ×n W(n)

∥∥∥∥∥
2

F

. (4.15)

Then, β̂KER,W := argminβ∈RK S(β ,W ). The notation ×n is the n-mode product de-

fined at the beginning of this section. Like in the discrete group case, these weighted

fixed-effects can be projected out using the weighted-within version of (4.3), where

discrete groups are replaced with weights. Again, if proxy measures are estimated

from the error term Y−∑
K
k=1 Xkβk, then there is an iteration between slope estima-
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tion and estimation of kernel weights, much like in the other estimators presented

already. This can also be optimised over a grid space for β if β is low-dimensional.

Alternatively, estimates used to calculate weights may come from the matrix method

procedure, and again no iteration is required. Both implementations are discussed

in Section 4.4.5.

Like the within-cluster transformation, the weighted-within transformation can

also be stated in more general fashion as follows. Take Mn to be an Nn ×Nn matrix

defined as INn −W(n)(W ′
(n)W(n))

†W ′
(n), where † is the Moore-Penrose generalised in-

verse. Then, the weighted-within transformation can be formed by the following

series of n-mode products, Y×1 M1 ×2 M2 ×3 · · · ×d Md . This sequentially differ-

ences out the weighted means from each dimension separately. Then, again, the

Frisch-Waugh-Lovell theorem straightforwardly applies.

Assumption 4.3.7 (Kernels). Denote the kernel function used as k(·) and let this

function be bounded. Then for a ≥ 0 and h > 0 there exists an α > 0 such that

k(a/h)a ≲ O(hα).

Assumption 4.3.7 refers to a bandwidth parameter, h, and restricts the kernels

to penalise distance at a rate equal to or faster than O(hα/a). For consistency using

the kernel methods, the sequence h → 0 is considered, such that an upper bound on

α is the critical object of interest.

As an example of a class of kernel functions that satisfies Assumption 4.3.7,

the exponential class of the form considered in Remark 4.3.2 may be utilised.

Remark 4.3.2. For c1,c2 > 0, let k′(a) ∝ c1exp(−c2a2) for all a ≥ 0 and k′ ∈ K ′.

Then argmaxa k′(a/h)a = h/
√

2c2, and,

max
a

k′(a/h)a ∝
c1√
2c2

e−1/2h = O(h)

Thus, Assumption 4.3.7 is satisfied for the exponential class of kernel functions K ′

with α = 1. Further, for h → 0, it suffices that α ∈ (0,1].

Assumption 4.3.7 is stated more generically than Remark 4.3.2 as there is a

larger class of bounded kernel functions that satisfy the sufficient restriction for the
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result below. The point here is to show that Assumption 4.3.7 is satisfied for some

very standard kernel functions, hence is not too restrictive.

Assumption 4.3.8 (Regularity of proxy measures). Let ϕ̂
(n)
in ∈ Φ̂n be the proxy

space for the fixed-effects and let k(·) be a bounded kernel function. Let Kin(hn) :=

max jn k
(

1
hn

∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
jn

∥∥∥). For 0 < ein < Kin(hn) define

Mn

(
ϕ̂
(n)
in ,ein

)
:=

Nn

∑
j=1
1

(
k
(

1
hn

∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
jn

∥∥∥)> ein

)

Then for any ein ∈ (0,Kin(hn)),

plim
Nn→∞

Mn

(
ϕ̂
(n)
in ,ein

)
Nn

≥ c(n)in ∈ (0,1]. (4.16)

for all in ∈ 1, . . . ,Nn.

The upper bound on ein , Kin , is expected to be k(0) for most classes of kernels.

That is, the kernel function evaluated at ϕ̂
(n)
in = ϕ̂

(n)
jn should maximise the value of

the kernel function. For example, the Gaussian kernel function is maximised at

k(0) = (1/
√

2π). An example of a low-level condition for Assumption 4.3.8 is

presented in Remark 4.3.3.

Assumption 4.3.8 is a restriction on the data generating process of the fixed-

effect proxy parameter space. This is similar to Assumption 5.5 in Altonji and

Matzkin (2005), except in this case related to the fixed-effect parameter space. Note

that for these to be satisfied, the probability over the support of the fixed-effect space

must be strictly positive. Whilst this paper focuses on fixed-effects, that is, effects

that are taken as given and not modelled as random variables, it is still useful to

understand that these parameters are sampled from some space. This is the space

that the restriction in Assumption 4.3.8 pertains to.

Assumption 4.3.8 places a restriction on the bounds of the kernel function and

on the space of proxy measures used. The restriction on the proxy measures may be

satisfied if they are generated such that the neighbourhood around each realisation

grows proportionally with the sample size, such as in Remark 4.3.3,
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Remark 4.3.3 (Regularity of proxy measures). Let ϕ̂
(n)
in ∈ Φ̂n and redefine

Mε
n

(
ϕ̂
(n)
in

)
as

Mε
n

(
ϕ̂
(n)
in

)
:=

Nn

∑
jn=1

1

(
ϕ̂
(n)
jn ∈ Bε

(
ϕ̂
(n)
in

))
,

where Bε (x) is the ε-neighbourhood around x. Then Assumption 4.3.8 is satisfied

for the dimension n for any ε > 0 if,

plim
Nn→∞

Mε
n

(
ϕ̂
(n∗)
in

)
Nn

≥ c(n)in ∈ (0,1].

for all ϕ̂
(n)
in ∈ Φ̂n.

Defined in Remark 4.3.3 is essentially the building blocks of the probability

space for the fixed-effects proxy parameter space. This is a lower level restriction

than Assumption 4.3.8 in that it relates to the space of the proxy measures without

reference to the kernel functions used.

Assumption 4.3.9 (Regularity conditions). Let Ťi1,...,id be the entries of tensor T

after the kernel weighted fixed-effects from the minimiser of (4.15) are differenced

out. Then,

(i).
(

1
∏n Nn

∑i1 . . .∑id X̌i1,...,id X̌ ′
i1,...,id

)
= Op(1) converges to a nonrandom positive

definite matrix as N1, . . . ,Nd → ∞.

(ii). 1
∏n Nn

∑i1 . . .∑id X̌i1,...,id εi1,...,id = Op

(
1√

∏n Nn

)
.

Assumption 4.3.9 is exactly Assumption 4.3.6 but with the kernel weighted

fixed-effects in place of the group fixed-effects.

Proposition 4.3.3 (Upper bound on kernel estimator). Let the class of kernel

functions used to formulate the weights and the proxy measure used in these

kernel functions for the kernel weighted fixed-effects estimator satisfy Assump-

tion 4.3.7 and 4.3.8. Also, let Assumption 4.3.9 hold for the set of regressors.

Let 1
Nn∗

∑in∗

∥∥∥ϕ
(n∗)
in∗

− ϕ̂
(n∗)
in∗

∥∥∥2
=Op(C−2

n∗ ) for n∗ ∈M ′ and 1
Nn′

∑in′

∥∥∥ϕ
(n′)
in′

− ϕ̂
(n′)
in′

∥∥∥2
=

Op(1) for n′ /∈ M ′, where M ′ is a non-empty subset of dimensions. Let hn be the



4.3. ESTIMATION 116

bandwidth parameter from Assumption 4.3.8. Then, for LN that may depend on

sample size,

∥∥∥β̂KER,W −β
0
∥∥∥=√LNOp

(
∏

n∗∈M ′

√
Op
(
C−2

n∗
)
+Op

(
h2α

n∗
))

+Op

(
d

∏
n=1

1√
Nn

)
.

For hα
n ≲ O(C−1

n ) this reduces to

∥∥∥β̂KER,W −β
0
∥∥∥=√LNOp

(
∏

n∗∈M ′
Op
(
C−1

n∗
))

+Op

(
d

∏
n=1

1√
Nn

)
.

Proposition 4.3.3 shows that the convergence rate for the kernel estimator is

bounded by the convergence rate of the proxy estimates. That is, as long as the

bandwidth parameter approaches zero sufficiently fast, the kernel estimator con-

verges at a rate no worse than the convergence of the proxies when proxies are

estimations of the true parameter values at or slower than
√

Nn-convergence. This

is expected and also a good result that the kernel method does not hinder the con-

vergence rate from these proxies. These kernel methods do, however, suffer a curse

of dimensionality since Assumption 4.3.8 becomes increasingly difficult to justify

as the dimension of the fixed-effects increases. Discussions in Section 4.4.2 sug-

gest Op(C−1
n∗ ) can be Op

(
1/

√
Nn∗
)
. This shows the parametric rate is attainable if

M ′ = {1, . . . ,d} and LN is fixed.

Remark 4.3.4. The motivation for the kernel weighted fixed-effect estimator is very

similar to the group fixed-effect estimator. Take (4.3), stated again here in the three-

dimensional setting for the kernel weighted transformation,

Y̌i jt = Yi jt − Ȳi∗ jt − Ȳi j∗t − Ȳi jt∗ + Ȳi∗ j∗t + Ȳi∗ jt∗ + Ȳi j∗t∗ − Ȳi∗ j∗t∗.

In the Introduction, the within-cluster transformation took the average within each

starred indices’ cluster. For the kernel weighted difference this average is instead

taken as a weighted average over the whole sample. For example, the term Yi∗ j∗t
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from this is,

Yi∗ j∗t =
N1

∑
i′=1

N2

∑
j′=1

w(1)
i,i′ w

(2)
j, j′Yi′ j′t ,

where w(1)
i,i′ and w(2)

j, j′ are defined in (4.14). The arguments for the group fixed-effects

estimator then translate directly to the kernel weighted fixed-effect estimator, where

smooth weights are applied instead of the binary weights implied by the within-

cluster differencing.

4.4 Discussion of estimators
This section serves to discuss the results in Section 4.3, motivate further some of

the chosen methods, and provide some methods to estimate cluster assignments or

proxies for kernel weights. A few iteration procedures are also discussed at the end

of this section.

4.4.1 Matrix method results

As stated already, Proposition 4.3.1 takes for granted the dimension to flatten across

admits a low rank interactive fixed-effect term for the least square method in Bai

(2009). Under Assumption 4.3.1.(ii) the singular values of the flattened normalised

noise term dissipates as follows;

1√
∏n Nn

∥∥ε(n)
∥∥= Op

(
1√

min{Nn,∏m ̸=n Nm}

)
.

Since A is a collection of fixed-effects, the normalised singular values of its flat-

tenings are Op (1), that is, the singular values are not asymptotically negligible like

those of the noise term.4 This ensures that, after flattening A , each of the singular

4To see this consider the standard two dimension model and take the Frobenius norm any arbi-
trary component of the interactive fixed-effects term, λr f ′r , normalised by 1/

√
NT

1√
NT

∥∥λr f ′r
∥∥

F =

√
1

NT ∑
i

∑
t
(λir ftr)2 =

√
1
N ∑

i
λ 2

ir

√
1
T ∑

t
f 2
tr = O(1).

The last equality comes from λir and ftr being bounded fixed-effects.
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values eventually dominate those of the noise term. These conditions make up sim-

ilar restrictions imposed in Ahn and Horenstein (2013) that allow for the use of the

eigenvalue ratio test (ER) to diagnose the number of factors. Hence, in large sam-

ples, the analyst maybe able to use this test or similar to not only decide how many

factors to use but also decide which dimension is likely to be low-dimensional.

Consider the factor model applied to a flattening that may not be low-rank.

For a concrete example of when this can occur see the data generating process in

the simulations in Section 4.5, where ϕ(n) are designed to be low-dimensional for

some n, and high-dimensional otherwise. Along the dimensions of A that do not

conform to the low-rank assumption in Assumption 4.3.3, the tail singular values

may become difficult to discern from the singular values of the noise term in small

samples. This means variation from those tail factors are less likely to be projected

out from the factor model unless many factors are used in this projection. If rn

for n /∈ L is allowed to increase adversely, for example at exactly the upper bound,

then factor projection may never sufficiently project all relevant factors. Also, as the

number of estimated factors increases, Assumption 4.3.4 becomes harder to satisfy

since variation in the set of covariates is also projected out. This demonstrates the

importance of choosing the correct dimension to flatten over, which is supported by

the simulation results in Section 4.5.

Hence, a standard factor model that estimates at least rn factors should result in

consistent estimation of the slope coefficients, see Moon and Weidner (2015). How-

ever, this relies on an important structural feature of the unobserved heterogeneity

term. When flattened in the chosen dimension – the first dimension in the above

example – the rank of the matrix after flattening must be low relative to data size.

This implies that to successfully project out the variation in the fixed-effect term

either the matrix of fixed-effects from any flattening is low-rank, or, at least one

flattening leads to a low-rank matrix of fixed-effects and the analyst knows which

flattening this is. To use the above example again, this means the analyst knows

that ϕ(1)Γ′
1 is low-rank, hence flattening in the first dimension is the correct way to

recast the model to a panel data model, and so forth for the other flattenings. Whilst
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requiring low-rankness in at least one dimension may be an acceptable restriction,

having knowledge of which dimension this low-rankness resides in is potentially

more restrictive.

To understand the problem, consider the following two examples, one where

the flattening is not low-rank and one where it is. First, assume ϕ(1) varies in a

high-dimensional parameter space, e.g. with N1 < N2N3, ϕ(1) ∈ RN1×N1 and Γ ∈

RN2N3×N1 with each column mutually orthogonal for both these matrices. Then

the product of these matrices is full-rank and any factor projection approach will

not fully control for this term. On the contrary, consider ϕ(1) ∈ RN1×N1 where all

columns are linearly dependent. Then the matrix ϕ(1)Γ′ is rank-1 regardless of L

and of how ϕ(2) and ϕ(3) vary, thus can be projected with a factor model estimated

with 1 factor. Hence it is important which dimension the analyst chooses to flatten

over.

Well established diagnostics in Bai and Ng (2002), Ahn and Horenstein (2013)

and Hallin and Liška (2007) can be used to determine the number of factors. These

diagnostics can be repeated across different flattenings, which may be informative

of the dimension to use for flattening. Note these procedures require an initial guess

of β and relies on this guess not eradicating the factor structure in the residual;

see the beginning of Section 4.4.5 for a concrete example of this. It should also

be noted that these diagnostics are not without restrictions and can lead to spurious

conclusions on the optimal number of factors. For example, the eigenvalue ratio test

in Ahn and Horenstein (2013) can undershoot the number of factors when singular

values decay quickly for the leading few factors. This does not interfere with the

asymptotic result in that paper but can have implications in small sample estimation.

Indeed, however, these diagnostics can be helpful in both the matrix recasting of the

problem and the group fixed-effects estimation in the sequel.

4.4.2 Estimating cluster and kernel proxies

Discussed here are some important functionals of multidimensional arrays that are

useful for estimating proxies to cluster on or use for kernel weights. This includes a

discussion on how to uncover proxies from multidimensional array data, and a dis-
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cussion on why standard matrix methods do not extend well to the multidimensional

setting.

First, consider how to cluster in the within-cluster transformation. In most

clustering algorithms, for example K-means or K-nearest neighbour, there is some

notion of a distance metric between units considered for each cluster. To arrive at a

distance there must be some space to measure that distance over. For example, using

some vector ui and the Euclidean norm of differences, ∥ui − u j∥, to measure the

distance between units. Algorithms to arrive at these groupings are well established

when the distance metric and variable to take distance over are given. However, in

this setting there is no clear variable through which to take distance over. Motivated

here are methods to extract proxies that serve to measure distance across units in a

way that isolates variation in each dimension of the unobserved heterogeneity term.

It is important to find proxies that isolate variation in each dimension since

clustering is to be performed one index at a time. Discussed here are decompo-

sitions of multidimensional arrays that can perform this, Kolda and Bader (2009)

contains a nice summary of some candidate decompositions. The method discussed

here uses the higher order singular value decomposition (HOSVD), and focuses on

components of this decomposition that have well formulated theoretical properties.

The HOSVD is traditionally used in pursuit of a low-rank tensor decomposition by

either direct truncation of left singular vectors or by some iteration approach similar

to this, see for example the higher order orthogonal iteration scheme. The problem

of direct truncation, however, is not well-posed because the solution to the low-rank

tensor problem may not be unique and reformulating the original tensor after the

aforementioned truncation is not guaranteed to be lower tensor rank. See De Silva

and Lim (2008) for an extensive explanation of the ill-posedness issues. Hence, this

method cannot be used in the pursuit of analytic consistency results. Problems also

arise in this setting where the reformulated tensors can be arbitrarily well approxi-

mated by a tensor of lower tensor rank, which is a result of the border rank issue of

the tensor rank decomposition.

Reconsider the three dimensional model with heterogeneity of the following
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form

Ai jt =
L

∑
ℓ=1

ϕ
(1)
iℓ ϕ

(2)
jℓ ϕ

(3)
tℓ . (4.17)

As shown in De Silva and Lim (2008), the Eckart–Young–Mirsky theorem cannot

be relied upon to guarantee an optimal low-rank approximation for the multidi-

mensional array A . This motivates the use of the group fixed-effects and kernel

weighted fixed-effects as alternative solutions.

Also reconsider the singular value decomposition for matrices, applied to each

of the n-flattenings of A ∈ RN1×,...,×Nd as

A(n) =U (n)
ΣnV (n) ′. (4.18)

By the same logic as in the matrix case and formalised with the Eckart-Young-

Mirsky theorem, variation over the rows of each U (n) explains variation over the nth

dimension of the multidimensional array A . Thus, if A(n) is low rank, the leading

few columns of U (n) provide good proxies for closeness in nth dimension of A .

If A(n) is not low rank then these leading columns still provide the best proxies

for bias reduction using the group or kernel fixed-effects. Hence, by reconsidering

the tensor problem as a sequence of matrix problems, the usual singular value de-

composition properties can be utilised for this reduction. This shows that a simple

rearrangement of the data provides readily available techniques to measure close-

ness in each dimension separately.

Consider for any of the dimensions n the corresponding matrix of left singular

vectors from above, U (n), estimated with noise εi jt . That is, each Un are calculated

from the object V = A + εεε . Under reasonable regularity conditions on the noise

term εεε , the left singular vectors from this decomposition comprise of a signal of

the underlying fixed-effect parameter and noise from εεε . For example, in the three

dimensional case, define the L1-vector Û (1)
i as the i-th row of the left singular matrix
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of A + εεε flattened in the first dimension. Then the vector Û (1)
i may comprise of,

Û (1)
i = ϕ

(1)
i +Op

(
1√

min{N1,N2N3}

)
.

Likewise, for any dimension n define Û (n) as the matrix of singular vectors from

A + εεε flattened in the n-th dimension, where A is the unobserved fixed-effects

component of interest and εεε is the usual idiosyncratic noise term. Then, Bai and

Ng (2002) detail conditions required for the following “up-to-rotation” consistency

result, which has been amended to this paper’s setting;

Lemma 4.4.1 (Theorem 1 from Bai and Ng (2002)). For any fixed integer k ≥

1, there exists an (rn × k) matrix Hk
n with rank(Hk

n) = min{k,rn} and Cn =

min
{√

Nn,∏n′ ̸=n
√

Nn′
}

such that for each n under some regularity conditions

C2
n

∥∥∥Û (n)
in −Hk ′

n ϕ
(n)
in

∥∥∥2
= Op(1).

This establishes a consistency result for estimating cluster proxies and suggests

these left singular vectors are viable options to cluster in each dimension if the true

error, V = A + εεε , is observed. It also makes concrete the limitation implied by the

value of Cn for each index - that short indices have poorly estimated proxies. Given

that the error term displayed in (4.13) is multiplicative across dimension, the error

from this poor approximation should become negligible as long as enough other

dimension proxies are well estimated. Also, the presence of the rotation matrices,

Hk
n , in Lemma 4.4.1 can be ignored since these do not change relative distances

of each unit under standard distance metrics used in either the cluster or kernel

methods.

However, it is not necessarily justified to assume the true error, V = A + εεε ,

is observed. In fact, an estimate of the error V̂i jt = Yi jt −Xi jt β̂ = Xi jt(β
0 − β̂ )+

Ai jt + εi jt , clearly depends on the estimate β̂ , hence should be bound by the rate of

convergence for this estimate. For this reason, the uniform convergence result from

Lemma 4.4.1 is unlikely to be useful. Proposition A.1 in Bai (2009) does provide
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bounds for the mean squared deviation,

1
Nn

Nn

∑
in=1

∥∥∥Û (n)
in −Hk ′

n ϕ
(n)
in

∥∥∥2
= Op(∥β

0 − β̂∥2)+Op

(
1

min{Nn,∏n′ ̸=n Nn′

)
,

if Û (n)
in come from the Bai (2009) least squares problem in each dimension. This es-

tablishes, ignoring Hk
n , 1

Nn
∑

Nn
in=1

∥∥∥Û (n)
in −ϕ

(n)
in

∥∥∥2
= Op

(
1

Nn

)
if each dimension sam-

ple size grows at the same rate and the convergence rate for ∥β 0 − β̂∥ in Proposi-

tion 4.3.1 is used. Then, C−2
n from Proposition 4.3.3 is 1/Nn and the parametric rate

for the kernel weighted estimator can be established.

4.4.3 Group fixed-effect convergence result

Before discussing the result from Proposition 4.3.2, an alternative restriction on the

cluster assignments is proposed. If clustering is performed on a proxy measure of

the fixed-effect then Assumption 4.3.5 can be stated in terms of the proxies, which

forms the statement of Remark 4.4.1. This requires that the proxies form an injective

mapping to the true fixed-effect parameters. An example of this are the conditions

imposed in Freeman and Weidner (2022), stated in similar terms here:

Remark 4.4.1 (Clustering). The statement of Assumption 4.3.5 can be reformulated

in terms of the cluster proxies as follows. Let ϕ̂
(n)
in := ϕ̂(n)(ϕ(n)

in

)
∈Rr̂n be the proxy

for individual in used to cluster along dimension n. Then,

(i). For all n as Nn → ∞,

1
Nn

Nn

∑
in

∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
jn(in)

∥∥∥2
≲ Op(1)

(ii). For a non-empty subset M ⊂ {1, . . . ,d} take for any n∗ ∈ M a sequence

ξNn∗ → 0 as Nn∗ → ∞. Then,

1
Nn∗

Nn∗

∑
in∗

∥∥∥ϕ̂
(n∗)
in∗

− ϕ̂
(n∗)
jn∗(in∗)

∥∥∥2
= Op(ξNn∗ )

(iii). Let ϕ
(n)
in ∈ Φn be the rn-column vector of fixed effects, where Φn are convex
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sets for each n. For each a,b ∈ Φn there exists a scalar cn > 0 such that

∥a−b∥ ≤ cn ·
∥∥ϕ̂(n)(a)− ϕ̂(n)(b)

∥∥
If these alternate restrictions hold along with Assumption 4.3.6, then the bound in

Proposition 4.3.2 holds for the GFE estimator.

Restrictions (i) and (ii) in Remark 4.4.1 are exactly Assumption 4.3.5.(i) and

(ii) but with cluster proxies in place of the true parameter values. These are

high level restrictions on the clustering mechanism that requires the mechanism

to find closeness in the proxy space. Restriction (iii) in Remark 4.4.1 is an in-

jectivity assumption on the proxy functions that demands closeness in the under-

lying parameter space given closeness in the proxy space. This requires that the

proxies do actually provide a mapping to the true parameter space, that is, that

they are reasonable proxies. An example of proxies that do this are the singu-

lar vectors from Section 4.4.2 that fit the requirements of Lemma 4.4.1. To see

this expand the term ∥a − b∥ and use the triangle inequality to see, ∥a − b∥ ≤

∥a− ϕ̂(n)(a)∥+∥ϕ̂(n)(b)−b∥+∥ϕ̂(n)(a)− ϕ̂(n)(b)∥, where the first two terms are

bound at the rate Op(C−1
n ). Note the rotation matrices are ignored for brevity and

Cn is the convergence rate from Lemma 4.4.1. Hence, asymptotically, Remark

4.4.1.(iii) can be achieved with cn = 1. Again, this argument requires knowledge of

the true error term V = A + εεε , which may be unreasonable. By similar discussion

from the kernel weighted estimator, this condition might relax to the mean squared

deviation from Section 4.4.2, but is not formally discussed further here.

This display also makes clear the bottle-neck when clustering in high-

dimensional objects. The distance of the proxies, ∥ϕ̂(n)(a)− ϕ̂(n)(b)∥, is difficult

to bound using clustering methods when the dimension of the proxies are larger

than two, see Graf and Luschgy (2002) and further discussion in Bonhomme et al.

(2021). This implies that a low-dimensional set of proxies must bound the true

parameter values for clustering methods to work well in this setting. Hence, whilst

the relationship in restriction (iii) of Remark 4.4.1 may be satisfied for an arbitrarily

high-dimensional set of proxies, for a reasonable family of cluster mechanisms to

bound these proxies as per restrictions (i) and (ii) of this remark, restriction (iii)
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must also hold for a low-dimensional set of proxies. This can be highly restrictive

with, for example, fixed-effects ϕ
(n)
in that are high-dimensional.

How the sequences ξNn∗ converges to zero and how LN is bounded are impor-

tant for the convergence result in Proposition 4.3.2. First note that for fixed LN the

first term in the result simplifies to Op
(
∏n∗∈M

√
ξNn∗

)
. Also note, if the conditions

for Lemma 4.4.1 hold and clustering is based on singular vector estimates that ad-

here to Remark 4.4.1, then it is possible to achieve ξNn∗ = Op

(
1

min{Nn∗ ,∏n ̸=n∗ Nn}

)
. If

each Nn grow at the same rate then the consistency result is,

∥∥β̂GFE,C −β
0∥∥=√LNOp

(
N−|M |/2

n

)
.

In the worst case scenario
√

LN is upper bound by
√

LN ≲ N(d−1)/2
n , which is taken

from LN ≤ minn ∏n′ ̸=n Nn′ . The convergence result is then Op

(
N(d−1−|M |)/2

n

)
,

which is of course conservative but shows that if |M |= d, then consistency is guar-

anteed albeit at the slow rate of N1/2
n . This means that all dimensions must have

good cluster assignments, which is obviously not an ideal worst case but shows the

limitations of this method when LN is unrestricted.

For the special case of d = 3 it can be shown that LN ≤ minn ∏n′ ̸=n rn′ . From

the discussion above, it is expected that n ∈ M is sufficient for n ∈ L , that is, rn is

small for the set of dimensions n ∈M . This tightens the bound in Proposition 4.3.2

to Op

(
Nmax{−|M |/2,1−|M |}

n

)
, such that only |M | ≥ 1 is required for consistency.

The analogous tensor rank bound is so far not known for the case with d ≥ 4.

4.4.4 Curse of Dimensionality

The curse of dimensionality appears in both the group fixed-effects estimator and

the kernel weighted fixed-effects estimator. To see this, revisit the objective when

finding groups or weights, which is to find closeness in the vector space of ϕ
(n)
in

using some proxies or estimates, ϕ̂
(n)
in . For ϕ

(n)
in ∈ RL it is expected that closeness

around each ϕ
(n)
in is increasingly difficult as L increases, which is a standard result

in nonparametric analysis.

Take for example the condition in Remark 4.3.3 that demands the neighbour-
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hood of each ϕ
(n)
in is well populated. As a concrete example, if ϕ

(n)
in ∼ U(0,1)L,

then P
{

ϕ
(n)
jn ∈ Bε

(
ϕ
(n)
in

)}
= O(εL). Then for a fixed sized neighbourhood around

ϕ
(n)
in , call it Ñ(n)

in , the dimension size Nn must grow exponentially in L for this to stay

fixed in expectations. To see this note E
(
Ñ(n)

in

)
= NnO(εL), such that Nn = O(ε−L)

to keep E
(
Ñ(n)

in

)
fixed. This shows that for generically distributed fixed-effects pa-

rameters the regularity condition for the proxy measures in Assumption 4.3.8 suffers

exponentially from the curse of dimensionality.

The group fixed-effect estimator also suffers as it uses quantization methods

to approximate the true fixed-effect parameter values. This is thoroughly discussed

in Graf and Luschgy (2002) and Bonhomme et al. (2021), which conclude each

fixed-effect should have dimension less than or equal two.

It may be possible to break the curse of dimensionality by noting, without loss

of generality, each entry in the vector for ϕ
(n)
in can be written as mutually orthogonal

entries, if just one dimension is considered. Then, the weighted-within transforma-

tions may be run sequentially to purge variation in each member of the vector ϕ
(n)
in ,

for example using a backfitting style algorithm from Breiman and Friedman (1985).

What is not yet apparent is if the steps in this algorithm can be straightforwardly

applied to the weighted within transformations proposed here, and if the vectors,

ϕ
(n)
in , can truly be written as the sum of orthogonal parts when all dimensions are

considered simultaneously. Hence, this line of exploration is left for future research.

4.4.5 Implementation

Estimation can be performed either as a simple least squares problem with groups

or weights pre-estimated or by an iterative procedure. Discussed below is a sugges-

tion of how to pre-estimate weights along with two possible iteration procedures.

Both approaches are applicable to the kernel weighted fixed-effect estimator and the

group fixed-effect estimator.

First, the kernel weighted fixed-effect estimator with weights estimated from

the matrix methods procedure is detailed. Optimise the two-dimensional least

squares objective function R(β , r̂n,n) from (4.9) for each dimension n. Obtain the

estimates of ϕ
(n)
in from each of these estimation procedures. Use the estimates ϕ̂

(n)
in
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to form the kernel weights in (4.14) then perform the weighted-within transforma-

tion on Y and X, then perform pooled OLS on the transformed data. This procedure

effectively utilises the computational simplicity of the matrix methods to find close-

ness in each dimension fixed-effect before projecting these out directly. This is

convenient because it also avoids any unnecessary iteration from cluster methods or

from trying to directly estimate the error term.

Second, an iterative procedure is discussed that could be used for either estima-

tor, but is detailed just for the group fixed-effect estimator. The rest of the subsection

is dedicated to a few options on how to perform this. Numerical results suggest the

iterative procedure performs well, which suggests errors are well estimated.

Consider taking cluster proxies from the estimated error term W = Y−X′β̃ .

Define β̃ as the interim estimator used to obtain W, and notice that this forms the

basis of an iterative procedure, between forming clusters and estimating slope co-

efficients. This is illustrated in the following two-step procedure. For the below

let r̂n be a hyperparameter that defines the number of singular vectors to use in the

clustering stage.

1. For given β̃ , take the left singular matrices from each n-flattening of W =

Y−X′β̃ to obtain
{

Ûn
}d

n=1.

2. Cluster on the leading r̂n columns of Ûn to generate cluster assignments in the

nth dimension. Use these cluster assignments in the within-cluster transfor-

mation on Y and X then perform pooled OLS to obtain β̂ .

3. Iterate steps 1 and 2 until convergence in the slope coefficients

This procedure may also be used as a debias estimator for a given initial estimate

of β̃ by ignoring step 3. Iteration here may not be stable given that step 1 and 2

do not optimise the same objective function, hence for theoretical purposes it may

be convenient to only consider this as a debias procedure. In practice, iterating

between step 1 and 2 after some initial grid search to initialise β may be optimal.

Of course, other clustering or transformations may be used in place of the

residual clustering and within-cluster transformation. In the below, two alternatives
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are provided. The first maintains the within-cluster transformation but considers a

different set of proxies. The second approach considers a kernel weighted transfor-

mation procedure that uses a generic set of proxies. At this stage and in the below

estimator refinements the analyst may be concerned with the number of parame-

ters required to conduct these transformation. Appendix C.2 discusses a number

of ways to reduce the size of the parameter space, including only projecting fixed-

effects over a subset of dimensions and letting group sizes increase to reduce the

number of groups.

Whether used as an iterative scheme or an update, the above method has some

identification issues. As an illustration take the data generating process for model

(4.1) with just one covariate,

Xi jt =−Ai jt +µi jt ,

where µi jt is a white noise term. Consider an initial guess of β̃ = 0 when the true

value is β 0 = 1. This leaves the residual term from Step 1 to base cluster assignment

on as, W = Y−Xβ̃ = Y, which reduces to W = µµµ + εεε . Thus, clustering is based

solely on noise and can be reasonably described as random. The associated within-

cluster transformation will not project variation in the A terms that appear in both

Y and X such that the OLS step in stage 2 produces

β̂ ≈
Var(µi jt)

Var(µi jt)+Var(Ai jt)
+op(1).

For Var(µi jt)
Var(Ai jt)

→ 0, β̂ → 0 and the algorithm does not update the initial guess of

β̃ = 0. This problem also arises in the matrix methods in Section 4.3.1 and is a

more fundamental issue with this algorithmic approach. For this reason in practice

it is important that the variation in Xi jt is not completely dominated by the fixed-

effect term Ai jt , i.e. there is a non-negligible source of variation coming from the

term µi jt .

This example clearly displays some identification issues with the above

method. Worth noting is that this may be alleviated with a grid search approach,
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though this can be computationally infeasible even for a moderate number of co-

variates since the grid grows exponentially in the number of covariates. To avoid

this, proposed below is a method to extract cluster allocations from only variation in

the set of covariates. As discussed below, this clustering may also be conducted on

control variables extraneous to the regression line. The two-step procedure works

as follows.

1. Take the left singular matrices from each n-flattening of X to obtain
{

Ûn
}d

n=1.

2. Cluster on the leading r̂n columns of Ûn to generate cluster assignments in the

nth dimension. Use these cluster assignments in the within-cluster transfor-

mation on Y and X then perform pooled OLS to obtain β̂ .

An advantage of using covariate clustering is that it can make use of control

variables that are a good signal of cluster but are not included in the regression

line. For example, a control variable Zi that is constant across j and t may be a good

candidate to cluster along the i dimensions but will be projected out with the within-

cluster transformation, so cannot be used directly in the pooled OLS estimation of

β stage. This refinement also makes optimisation over β a convex problem, and no

iteration is required because clustering is not a function of β estimates like in the

first iteration procedure.

4.5 Simulation
Table 4.1 shows simulation results for the following DGP,

Yi jt = Xi jtβ +Ai jt +Bi jt + εi jt

Xi jt = Ai jt +Bi jt +νi jt

with Ai jt = ∑
N1
ℓ=1 ϕ

(1)
iℓ ϕ

(2)
jℓ ϕ

(3)
tℓ , Bi jt = αi j + γit +δ jt . Also,

εi jt ,νi jt ,αi j,γit and δ jt
i.i.d.∼ N(0,1) and for each ℓ, ϕ

(1)
iℓ ,ϕ

(3)
tℓ

i.i.d.∼ N(0,1).

ϕ
(2)
j1

i.i.d.∼ N(0,1) with ϕ
(2)
j1 = ϕ

(2)
j2 = · · ·= ϕ

(2)
jN1
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Ai jt and Bi jt are normalised to have unit variance. A is specified such that it is

rank 1 when flattened in the second dimension and rank N1 when flattened in either

dimension one or three. That is, the multilinear rank is r = (N1,1,N1). This comes

directly from the data generating process for each ϕ(n), where the matrix ϕ(2) is

designed to be rank-1 and the matrices ϕ(1) and ϕ(3) are designed to be rank-N1.

In Table 4.1, the estimators OLS and Fixed-effects are simply the pooled OLS

estimator and the pooled OLS estimator after additive fixed-effects are projected

out, respectively. As expected both of these two have poor bias. The four GFE

estimators perform well with reasonably low bias and standard deviation. GFE

(K-means) is GFE estimator with clustering based on the K-means algorithm, with

proxies taken from the residual. GFE (K-means on X) is the same estimator with

proxies taken from the scalar covariate of interest. GFE (1-NN) and GFE (1-NN on

X) are likewise the same estimators but using the one nearest neighbours clustering.

The factor model is used after first flattening along each dimension as Factor(dim =

n), where n is the dimension used for flattening. In each case, 2 factors are projected.

The results show the theoretical result succinctly, where the bias is close to zero

when the correct dimension is flattened over (the second dimension in this case) and

very poor bias when the incorrect dimension is used (the first and third dimensions).

Lastly, the kernel differencing estimator is estimated with Gaussian kernel function

with bandwidths 0.5, 1 and 1.5; which are standardised to be equivalent to standard

deviations of the proxy measures. All kernel estimators have comparable bias but

substantially better standard deviation for bandwidth equal 1 and 1.5.

This analysis is repeated for the four dimensional case in Table 4.2, where the

second and third dimensions admit low-dimensional unobserved interactive fixed-

effects parameters. For computational reasons, the GFE nearest neighbour estima-

tors are omitted. The simulations suggest similar results as the three dimensional

case, where the factor models perform well when flattened in the low-dimensional

dimensions (second and third) and poorly in the high-dimensional dimensions (first

and fourth).
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3-D Mean bias St. dev. MSE
OLS 0.6668 0.0033 4.45e-01
Fixed-effects 0.4997 0.0114 2.50e-01
GFE (K-means) 0.0118 0.0096 2.32e-04
GFE (K-means on X) 0.0129 0.0112 2.91e-04
GFE (1-NN) 0.0112 0.0153 3.61e-04
GFE (1-NN on X) 0.0111 0.0154 3.61e-04
Kernel (h = 0.5) 0.0030 0.0090 8.94e-05
Kernel (h = 1.0) 0.0031 0.0068 5.58e-05
Kernel (h = 1.5) 0.0037 0.0062 5.24e-05
Factor (dim = 1) 0.4319 0.0135 1.87e-01
Factor (dim = 2) 0.0030 0.0050 3.40e-05
Factor (dim = 3) 0.4319 0.0135 1.87e-01

Table 4.1: 3D model (N1 = N2 = N3 = 36), with 10,000 Monte Carlo rounds. All results
are in relation to β estimation.

4-D Mean bias St. dev. MSE
OLS 0.6670 0.0018 4.45e-01
Fixed-effects 0.4981 0.0282 2.49e-01
GFE (K-means) 0.0012 0.0049 2.58e-05
GFE (K-means on X) 0.0013 0.0051 2.82e-05
Kernel (h = 0.5) 5.23e-05 0.0114 1.00e-04
Kernel (h = 1.0) 4.42e-05 0.0057 3.26e-05
Kernel (h = 1.5) -1.32e-05 0.0045 2.03e-05
Factor (dim = 1) 0.3733 0.0311 1.40e-01
Factor (dim = 2) 0.0030 0.0030 1.82e-05
Factor (dim = 3) 0.0030 0.0030 1.82e-05
Factor (dim = 4) 0.3734 0.0311 1.40e-01

Table 4.2: 4D model (N1 = N2 = N3 = N4 = 20), with 10,000 Monte Carlo rounds.

A two-dimensional simulation exercise is also performed to compare the

grouped fixed-effects approach to the factor model approach in a setting where the-

oretical results for the factor model are well known. Table 4.3 shows the results of

this two-way setting where the data generating process is a factor model with two

factors. The GFE estimators have less bias than the factor model even when the

factor model overestimates the number of factors. To see this, compare the factor

estimates with 2, 4 and 6 factors projected out with the GFE estimator. For increase

in variance of order ≈ 4, the GFE estimator reduces bias by an order ≈ 10. This is

a surprising improvement in estimates for a setting that is purpose designed for the
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factor model. Where this comparison falls down is for models with a larger num-

ber of factors because generally clustering does not perform well when the latent

parameter space has dimension greater than 2.

Mean bias St. dev. MSE
OLS 0.6672 0.0033 4.45e-01
Fixed-effects 0.5000 0.0043 2.50-e01
GFE 0.0002 0.0090 8.05e-05
Kernel (h = 0.5) 0.0003 0.0055 3.06e-05
Kernel (h = 1.0) 0.0003 0.0054 2.87e-05
Kernel (h = 1.5) 0.0004 0.0053 2.81e-05
Factor (R = 2) 0.0024 0.0047 2.76e-05
Factor (R = 4) 0.0031 0.0048 3.25e-05
Factor (R = 6) 0.0024 0.0049 3.03e-05

Table 4.3: 2D model (N1 = N2 = 216), with 10,000 Monte Carlo rounds.

4.6 Empirical application - demand estimation for

beer
The methods proposed in this paper are applied to estimated the demand elasticity

for beer. Price and quantity for beer sales is taken from the Dominick’s supermarket

dataset for the years 1991-1995 and is related to supermarkets across the Chicago

area. Price and quantity vary over three dimensions in this example – product (i),

store ( j) and month (t). Fixed-effects that interact across all three dimensions can

control for taste shocks to beer consumption that differ over both product and store.

Take for instance a large sporting event (temporary t shock) that changes prefer-

ences differently across locations ( j) and across certain subsets of sponsored beer

(i). For example, in the stadiums for the many NBA finals playoffs the Chicago

Bulls played in the early 1990’s, Miller Lite beer advertisements could be seen

alongside advertisements for the substitute product Canadian Club whisky. This

suggests these events attracted large marketing campaign spends for these and other

beer substitute brands that most likely also included price offers at local supermar-

kets. Whilst the impact of these advertisements and price offers on the demand for

or price of beer is not clear and, further, that it is reasonably safe to assume the
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econometrician does not observe the plethora of marketing campaigns around these

events, the analyst would most likely still want to control for aggregate shocks like

these. For this reason it is important to use methods that robustly control for un-

observed fixed-effects, such as unobserved marketing campaigns, that may impact

both quantity demanded and prices in unforeseen ways.

Models for demand estimation ideally account for endogenous variation in

prices and quantity. The classic instrumental variable approach is to find a vari-

able that varies exogenously to the production process but can reasonably describe

price fluctuations. A popular instrument in the estimation of beer demand is the

commodity price for barley, one of the product’s main ingredients, see e.g. Saleh

(2014); Tremblay and Tremblay (1995); Richards and Rickard (2021). Since the

price of barley is arguably not driven by the demand for it by any one supplier of

beer, it can be a useful variable to instrument for price shifts. In the following, it is

taken as given that the price of barley is exogenous with respect to the noise term,

ε .

For validity the instrument is also required to be strong, in the sense that it

is strongly correlated with price. In this dataset correlation between the price of

barley, which varies over only t, and price of beer depends on how beer price is

aggregated. If beer price is first integrated over i and j, such that it only varies over

t, then it is highly correlated with the price of barley, at 0.61. However, if beer

price is not aggregated at all it is only correlated at 0.05. This suggests there are

important product and store level price drivers for beer that are not accounted for

by fluctuations in the price of barley. This implies that price fluctuations in barley

alone may not be viable to fully capture beer prices when considering variation

over all three dimensions. For exogeneity, the price of barley must be independent

of common unobserved shocks to both price and demand, which translates to being

independent of ϕ
(3)
t,ℓ and any scalar fixed-effects that vary over t in the interactive

fixed-effects model.

The second column from Table 4.4 refers to the estimates for demand elastici-
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ties for the following regression model,

log(quantityi jt) = log(pricei jt)β +Ai jt + εi jt (4.19)

where Ai jt is the usual interactive fixed-effects term from the prequel. This amounts

to estimating the standard log-log model for demand with fixed-effects. That is,

quantityi jt = priceβ

i jt exp(Ai jt + εi jt).

Again, no controls are included here since they are low-dimensional and subsumed

by the fixed-effects term. This model specification estimates reasonably similar

elasticities as the logit case across each of the different fixed-effects estimators but

relatively large differences in estimates for pooled OLS and IV. The similar elastic-

ities for the different fixed-effects estimators within Table 4.4 again suggests that

whilst some form of fixed-effects should be included, they may not need be as com-

plex as implied by the GFE and kernel methods.

The third column from Table 4.4 reports estimates of the same log-log model

controlling for the average log price of other products,

log(quantityi jt) = log(pricei jt)β +δ ∑
i′ ̸=i

log(pricei′ jt)+Ai jt + εi jt . (4.20)

This model assumes homogeneous cross-elasticity over all other beer products.

That is, it refers to the demand model,

quantityi jt = priceβ

i jt ∏
i′ ̸=i

priceδii′
i′ jt exp(Ai jt + εi jt),

where δii′ = δ for all i and i′. Whilst this may oversimplify the system of cross-

elasticities in the market for beer, it does significantly change the estimates for

β in the log-log model. This suggests that cross-elasticities should probably be

controlled for since β estimates do seem sensitive to their inclusion. It also shows

that for a covariate with full rank variation over all dimensions, not even the more
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complex fixed-effects estimators can control for these. Note that most estimators

returned a negative value for δ , which opposes the theory that other brands of beer,

on aggregate, are substitutes. However, since prices are aggregated in such a crude

way, the cross-elasticity estimates should not be taken too seriously. If interested in

the cross-elasticities, then some care should be taken to segment or group products

in such a way that actual substitution is being identified here, not just aggregate

market forces. For this model, all fixed-effects estimates are within statistical noise

of each other, this time with the control variable approach being closely aligned.

These are also similar to the own-price elasticity estimates from Table 1 in Hausman

et al. (1994). IV is estimated with very high variation in both log-log models, which

may be due to barley being a weak instrument, or due to losing the richness in

variation over products and stores after first-stage fitting of prices.

Estimator β̂ (St. dev.) no cross elas. β̂ (St. dev.) with cross elas.
Pooled OLS 1.18 (0.31) 1.22 (0.32)
Pooled IV -4.87 (1.69) -4.04 (1.34)
Additive Fixed-effects -1.86 (0.31) -3.10 (0.30)
Factor (dim = 1) -1.60 (0.26) -2.90 (0.27)
Factor (dim = 2) -1.83 (0.30) -3.07 (0.30)
Factor (dim = 3) -2.17 (0.30) -3.18 (0.29)
GFE -1.85 (0.33) -2.86 (0.30)
Kernel (Gaussian) -1.83 (0.28) -2.92 (0.29)

Table 4.4: Log-log demand elasticities (73 products, 41 stores, 57 months).

Standard deviations were bootstrapped by resampling along each dimension separately.
In the first dimension, product 1 is fixed across bootstrap samples. Column 2 displays
estimates for the model (4.19) with no cross elasticities. Column 3 displays estimates
for the model (4.20), which controls for cross elasticities.

Table 4.5 refers to estimates from the standard logit demand model,

log(quantityi jt)− log(quantity1 jt) = pricei jtβ +Ai jt + εi jt

where Ai jt is the usual interactive fixed-effects and no covariates are included

since the set of available covariates are rank-deficient and automatically projected

out with standard scalar fixed-effects and from differencing out the outside op-

tion. The outside option is encoded as product number 1 and is the aggregate
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consumption of products with small quantities consumed. This serves the pur-

pose of creating an outside option to do the necessary logit demand transforma-

tion as well as to avoid issues related to an unbalanced panel for the many niche

products with sparse consumption amounts. Own price elasticity is calculated as

ηi jt = pricei jtβ (1−quantityi jt/∑i jt quantityi jt) and the mean elasticity is taken as

the mean of this measure for each estimator. The pooled instrumental variable ap-

proach estimates relatively large elasticities, but with much higher standard errors.

All of the fixed-effects approaches estimate statistically similar slope coefficients

and elasticities at the mean. This implies that whilst some fixed-effects may exist in

the true model for demand, they are unlikely complex enough to require the high-

dimensional projections from the GFE or kernel methods. To robustly test for the

existence of fixed-effects in an IV model there must be an instrument with variation

over all dimensions such that fixed-effects can be projected out alongside the IV

model. This of course also takes for granted that the IIA logit model is the true

model for demand.

Estimator Coefficient (bootstrap st. dev.) Elasticity at mean
Pooled OLS -0.60 (0.04) -3.26 (0.22)
Pooled IV -0.72 (0.27) -3.91 (1.49)
Additive FE -0.32 (0.05) -1.74 (0.27)
Factor (dim = 1) -0.29 (0.04) -1.58 (0.22)
Factor (dim = 2) -0.32 (0.05) -1.74 (0.27)
Factor (dim = 3) -0.37 (0.05) -2.01 (0.27)
GFE -0.32 (0.05) -1.74 (0.27)
Kernel (Gaussian) -0.30 (0.05) -1.63 (0.27)

Table 4.5: Logit demand estimates (73 products, 41 stores, 57 months).

Standard deviations were bootstrapped by resampling along each dimension separately.
In the first dimension, product 1 is fixed across bootstrap samples as the outside option
and the remaining products are resampled with replacement.

4.7 Conclusion
This paper develops methods to generalise the interactive fixed-effect to multi-

dimensional datasets with more than two dimensions. Theoretical results show

that standard matrix methods can be applied to this setting but require additional
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knowledge of the data generating process. The multiplicative interactive error from

the group fixed-effects and kernel methods show a potential improvement on the

asymptotic rate of convergence and suggest a more robust approach to projecting

fixed-effects. Simulations corroborate these theoretical results and show the rela-

tive advantage of using a standard factor model when the structure of the interactive

term is known. They also show the robustness of the group fixed-effects and kernel

weighted fixed-effects estimators to not having this same knowledge. Inference in

these models is still an open question for further research.

The model is applied to a simple demand model for beer consumption. The ap-

plication demonstrates that if fixed-effects do exist in this setting, they are unlikely

to be complex enough to require the GFE or kernel methods to control for them.

This is a useful analysis, as it provides a robustness check for the specification of

fixed-effects in model specifications. It also showed that in datasets with many di-

mensions, the instrumental variable approach can be limited if the instrument used

only varies over a subset of dimensions, hence is weak.



Appendix A

Appendix – Chapter 2

A.1 Proofs

We start with a preliminary result that relates the nuclear norm of ΓΓΓ
∞(x) with the

sum of the singular values of the function (aaa,bbb) 7→ m(x,aaa,bbb). This link will be

useful to bound the approximation error of Γ̂ΓΓ(x). We define

∥m(x, ·, ·)∥∗ :=
∞

∑
j=1

s j(x).

Lemma A.1.1. Let Assumptions 2.3.1 and 2.3.2 hold. Then, as N,T → ∞,

∥ΓΓΓ
∞(x)∥1 ≤

√
NT ∥m(x, ·, ·)∥∗+oP(

√
NT ) = OP(

√
NT ).

Lemma A.1.1 implies that ∥ΓΓΓ
∞(x)∥1 grows with N and T at the same rate

as any low-rank matrix MMM with elements that are of order one with bounded sec-

ond moments such that ∥MMM∥1 ≤
√

rank(MMM)∥MMM∥2 =
√

rank( MMM) ∑
N
i=1 ∑

T
t=1 M2

it =

OP(
√

NT ). This result will be useful for the proofs of Lemma 2.3.1 and of Theo-

rem 2.3.4. The proof of Lemma A.1.1 is provided at the end of the appendix.

The following technical lemma provides the key step in the proof of

Lemma 2.3.1 in the main text.
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Lemma A.1.2. Under Assumptions 2.3.1 and 2.3.2,

1
n(x) ∑

(i,t)∈D(x)

(
Γ̂it(x)−Γ

∞
it (x)

)2
≤ 2ρ ∥ΓΓΓ

∞(x)∥1

n(x)
− 2

n(x) ∑
(i,t)∈D(x)

Γ
∞
it (x)Eit ,

for all ρ ≥ ∥EEE(x)∥∞.

Notice that Lemma A.1.2 is a non-stochastic finite sample result, which only

requires that Eit(x) and Γ̂ΓΓ(x) are as defined in (2.14) and (2.15). The proof of

Lemma A.1.2 is provided at the end of the appendix. We are now ready to pro-

vide the proof of the lemma in the main text.

Proof of Lemma 2.3.1:

The definition of Eit(x) in (2.14) guarantees that

E
[
Eit(x) | AAAN ,BBBT ,XXXNT ] = 0, and Assumption 2.3.3 furthermore guarantees that

Eit(x) is independent across i and t and has a finite fourth moment, conditional

on XXXNT , AAAN and BBBT . Furthermore, Γ∞
it (x) = m(x,AAAi,BBBt) only depends on AAAN and

BBBT . We therefore find

E

( 1
n(x) ∑

(i,t)∈D(x)
Γ

∞
it (x)Eit

)2
∣∣∣∣∣∣ AAAN ,BBBT ,XXXNT


=

1
n2(x) ∑

(i,t)∈D(x)
[Γ∞

it (x)]
2 E
[

E2
it
∣∣ AAAN ,BBBT ,XXXNT ]

≤ b1/2

n2(x) ∑
(i,t)∈D(x)

[Γ∞
it (x)]

2 = OP(1/n(x)),

where b is the constant from Assumption 2.3.3. From this we conclude that

1
n(x) ∑

(i,t)∈D(x)
Γ

∞
it (x)Eit = OP

(
1

n1/2(x)

)
= oP(1). (A.1)
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Next, applying Assumption 2.3.3 and Theorem 2 in Latała (2005) we find

E
[
∥EEE(x)∥∞ | AAAN ,BBBT ,XXXNT ]≤C

{
max

t

√
∑

i
E
[
Eit(x)2 | AAAN ,BBBT ,XXXNT ]

+max
i

√
∑
t

E
[
Eit(x)2 | AAAN ,BBBT ,XXXNT ]

+

(
∑
i,t

E
[
Eit(x)4 | AAAN ,BBBT ,XXXNT ])1/4}

≤C b1/4
{√

N +
√

T +n(x)1/4
}
= OP

(√
N +T

)
,

where C is a universal constant. We therefore have ∥EEE(x)∥∞ = OP
(√

N +T
)
, and

since we assume that ρ = ρNT satisfies ρNT/
√

N +T → ∞ we conclude that

ρNT ≥ ∥EEE(x)∥∞

with probability approaching one. We can therefore apply Lemma A.1.2 to find

that, with probability approaching one, we have

1
n(x) ∑

(i,t)∈D(x)

(
Γ̂it(x)−Γ

∞
it (x)

)2
≤ 2ρNT ∥ΓΓΓ

∞(x)∥1

n(x)
− 2

n(x) ∑
(i,t)∈D(x)

Γ
∞
it (x)Eit

=
2ρNT OP(

√
NT )

n(x)
+oP(1)

= oP(1),

where we applied (A.1) and Lemma A.1.1, as well as the condition ρNT
√

NT/n(x)→

0.

□

In the following consider a generic reduced form parameter

ν0(x) =
1

NT

N

∑
i=1

T

∑
t=1

Wit(x)Γ
∞
it (x), (A.2)
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with corresponding estimator

ν̂(x) =
1

NT

N

∑
i=1

T

∑
t=1

Wit(x) Γ̂it(x), (A.3)

where Wit(x) are given weights.

The following proposition provides a finite-sample non-stochastic bound for

the error of this reduced form estimator.

Proposition A.1.1. Let the Assumptions 2.3.1, 2.3.2 and 2.3.3 hold. Let Pit(x) be

non-zero real numbers for all (i, t) ∈ N×T. Define

Vit(x) :=
Wit(x)P−1

it (x)(Dit(x)−Pit(x))
1

NT ∑
N
i=1 ∑

T
t=1Wit(x)2P−1

it (x)
,

c1 :=
1− 1

NT ∑
N
i=1 ∑

T
t=1Wit(x)P−1

it (x)Vit(x)
1

NT ∑
N
i=1 ∑

T
t=1Wit(x)2P−1

it (x)
,

c2 :=
1

NT

N

∑
i=1

T

∑
t=1

Vit(x)Γ
∞
it (x),

c3 :=
2ρ

c1 NT
∥ΓΓΓ

∞(x)∥1 −
2

c1 NT ∑
(i,t)∈D(x)

Eit(x)Γ
∞
it (x)+

(
c2

c1

)2

,

c4 :=
√

c3 +
|c2|
c1

,

and let VVV (x) be the N×T matrix with elements Vit(x). If c1 > 0 and ρ > ∥EEE(x)∥∞+

c4∥VVV (x)∥∞, then

|ν̂(x)−ν0(x)| ≤ c4.

The proof of Proposition A.1.1 is provided at the end of the appendix. Proposi-

tion A.1.1 is the key step required for the proof of Theorem 2.3.4. However, before

proving this main text result we want to provide an informal remark on the useful-

ness of Proposition A.1.1 more generally.

Remark A.1.1 (Consistency of ν̂(x)). Proposition A.1.1 holds for all Pit(x) ∈ R\

{0}, but for the proposition to be useful in showing consistency of ν̂(x) we need
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to choose Pit(x) such that c2 and ∥VVV (x)∥∞ are not too large. The easiest way to

guarantee this is to consider Xit to be random and weakly correlated across both i

and t, and to define Pit(x) as the propensity score, that is,

Pit(x) = Pr
(
Xit = x | AAAN ,BBBT) ,

which is assumed to be positive and not too small — e.g. we need that

q :=

[
1

NT

N

∑
i=1

T

∑
t=1

Wit(x)2P−1
it (x)

]−1

converges to some positive constant. Then Vit(x) has mean zero, analogous to Eit(x),

and

c1 = q+OP(1/
√

NT ),

c2 = OP(1/
√

NT )

c3 =
2ρ

qNT
∥ΓΓΓ

∞(x)∥1 +OP(1/
√

NT ),

c4 =

√
2ρ

qNT
∥ΓΓΓ

∞(x)∥1 + smaller order terms.

Thus, if, like in Lemma 2.3.1, ρ = ρNT such that ρNT/
√

N +T → ∞ and

ρNT/
√

NT → 0 as N,T → ∞, then

ν̂(x) = ν0(x)+oP(1).

The following proof formalizes this heuristic argument for the case that Wit(x) = 1.

Proof of Theorem 2.3.4: Let Wit(x) = 1, and let ν0(x) and ν̂(x) be as defined

in (A.2) and (A.3) above. We then have

µ(x) = ν0(x),

µ̂(x) = ν̂(x)+
1

NT ∑
(i,t)∈D(x)

Eit(x)−
1

NT ∑
(i,t)∈D(x)

[
Γ̂it(x)−Γ

∞
it (x)

]
. (A.4)
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We drop all the arguments x in the rest of this proof. We want to apply Propo-

sition A.1.1 with Pit = Pr
(
Xit = x | AAAN ,BBBT) > 0. Let Git = P−1

it (Dit − Pit) be

as defined in Theorem 2.3.4, and also define q :=
[ 1

NT ∑
N
i=1 ∑

T
t=1 P−1

it
]−1

. Since

Pit ∈ [0,1] we also have q ∈ [0,1], and the theorem assumes that q−1 = OP(1). Us-

ing Lemma A.1.1 we know that ∥ΓΓΓ
∞∥1 = OP(

√
NT ), and we have already found

that ∑(i,t)∈DΓ∞
it Eit = OP

(
n1/2

)
in (A.1) above. Using this together the other as-

sumptions in the theorem we find that

Vit = qGit

c1 = q

(
1− q

NT

N

∑
i=1

T

∑
t=1

P−1
it Git

)
= q [1−oP(1)],

c2 =
q

NT

N

∑
i=1

T

∑
t=1

Git Γ
∞
it = oP(1),

c3 =
2ρ OP(

√
NT )

c1 NT
−

OP

(
n1/2

)
c1 NT

+

(
c2

c1

)2

= oP(1),

c4 =
√

c3 +
|c2|
c1

= oP(1).

We furthermore have

∥VVV∥∞ = q∥GGG∥∞ = OP(1)OP(
√

N +T ) = OP(
√

N +T ).

In the proof of Lemma 2.3.1 we already argued that ∥EEE∥∞ = OP
(√

N +T
)
. Since

we assume that ρ = ρNT satisfies ρNT/
√

N +T → ∞ we conclude that

ρ > ∥EEE∥∞ + c4∥VVV∥∞

with probability approach one. We can therefore apply Proposition A.1.1 to find

that with probability approach one we have

|ν̂ −ν0| ≤ c4 = oP(1).

We have thus shown that ν̂ = ν0 +oP(1).
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Furthermore, analogous to the result in (A.1) we can show that ∑(i,t)∈DEit =

OP

(
n1/2

)
, and we therefore have 1

NT ∑(i,t)∈DEit = oP(1). Finally, applying

Lemma 2.3.1 we have Next, from we know that

[
1
n ∑
(i,t)∈D

(
Γ̂it −Γ

∞
it

)]2

≤ 1
n ∑
(i,t)∈D

(
Γ̂it −Γ

∞
it

)2
= oP(1),

and therefore 1
NT ∑(i,t)∈D(x)

[
Γ̂it(x)−Γ∞

it (x)
]
= oP(1). Plugging those result into

(A.4) we find µ̂(x) = µ(x)+oP(1).

□

In this section we present and prove a more general version of Theorem 2.4.2.

Let φφφ i = φφφ(x,AAAi) and ψψψ t = ψψψ(x,BBBt) be transformations of AAAi and BBBt . Let φ̂φφ i and ψ̂ψψ t

be corresponding estimators. In the main text we presented the special case where

φ̂φφ i and ψ̂ψψ t were equal to the factor loadings and factors obtained from Γ̂ΓΓ(x), but

many other choices of φ̂φφ i and ψ̂ψψ t are conceivable. We again define

Ni =
{

j ∈ N\{i} :
∥∥∥φ̂φφ i − φ̂φφ j

∥∥∥≤ τNT

}
, Tt =

{
s ∈ T\{t} :

∥∥ψ̂ψψ t − ψ̂ψψs
∥∥≤ υNT

}
,

for some bandwidth parameters τNT > 0 and υNT > 0. A debiased estimator of the

reduced form parameter in (A.2) is given by

ν̃(x) =
1

NT

N

∑
i=1

T

∑
t=1

Wit(x)Ỹit(x),

where Ỹit(x) is defined as in (2.18). In the main text we only discussed the special

case Wit(x) = 1. We can write ν̃(x) as

ν̃(x) =
1

NT

N

∑
i=1

T

∑
t=1

ωit Yit ,

where the weights ωit are functions of φ̂φφ j and ψ̂ψψs for all j ∈ N and s ∈ T. Assump-

tion 2.4.1 in the main text is generalized as follows.
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Assumption A.1.1. There exists a sequence ξNT > 0 such that ξNT → 0 as N,T →

∞, and

(a) 1
NT ∑

N
i=1 ∑

T
t=1Wit(x)1{Xit ̸= x&nit = 0}= OP (ξNT ).

(b) Yit and Wit(x) are uniformly bounded over i, t,N,T .

(c) Yit is independent across both i and t, conditional on XXXNT , AAAN , BBBT .

(d) The function (aaa,bbb) 7→ m(x,aaa,bbb) is twice continuously differentiable with uni-

formly bounded second derivatives.

(e) There exists c > 0 such that ∥aaa1 −aaa2∥ ≤ c∥φφφ(aaa1)−φφφ(aaa2)∥ for all aaa1,aaa2 ∈ A,

and ∥bbb1 −bbb2∥ ≤ c∥ψψψ(bbb1)−ψψψ(bbb2)∥ for all bbb1,bbb2 ∈ B.

(f) 1
N ∑

N
i=1

(∥∥∥φ̂φφ i −φφφ i

∥∥∥2
+max j∈Ni

∥∥∥φ̂φφ j −φφφ j

∥∥∥2
)
= OP (ξNT ).

1
T ∑

T
t=1

(∥∥ψ̂ψψ t −ψψψ t
∥∥2

+maxs∈Tt

∥∥ψ̂ψψs −ψψψs
∥∥2
)
= OP (ξNT ).

(g) τ2
NT = OP (ξNT ) and υ2

NT = OP (ξNT ).

(h) 1
NT ∑

N
i=1 ∑

T
t=1 E

[
ω2

it

∣∣XXXNT , AAAN , BBBT ]= OP(NT ξ 2
NT ).

(i) Let YYY NT
−(i,t),−( j,s) be the outcome matrix YYY NT , but with Yit and Yjs replace by zero

(or some other non-random number), and all other outcomes unchanged. We

assume

1
(NT )2

N

∑
i, j=1

T

∑
t,s=1

1{(i, t) ̸= ( j,s)}E
[∣∣∣ωit

(
YYY NT
−(i,t),−( j,s)

)
ω js

(
YYY NT
−(i,t),−( j,s)

)
−ωit(YYY NT )ω js(YYY NT )

∣∣∣ ∣∣∣∣XXXNT , AAAN , BBBT
]
= OP

(
ξ

2
NT
)
.

The generalized version of Theorem 2.4.2 is given in the following.

Theorem A.1.2. Under Assumptions 2.2.1 and A.1.1,

ν̃(x)−ν0(x) = OP (ξNT ) .
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Proof of Theorem A.1.2 (containing Theorem 2.4.2 as a special case)

Define mit(x) := m(x,AAAi,BBBt). We decompose

ν̃(x)−ν0(x) = e0(x)+ e1(x)+ e2(x), (A.5)

where

e0(x) =
1

NT

N

∑
i=1

T

∑
t=1

Wit(x)1{Xit ̸= x&nit = 0} [mit(Xit)−mit(x)] ,

and

e1(x) :=
1

NT

N

∑
i=1

T

∑
t=1
1{Xit ̸= x&nit > 0}Wit(x)e1,it(x),

e1,it(x) :=
∑ j∈Ni ∑s∈Tt 1{Xis = X jt = X js = x}

[
mis(x)+m jt(x)−m js(x)−mit(x)

]
∑ j∈Ni ∑s∈Tt 1{Xis = X jt = X js = x}

,

and

e2(x) :=
1

NT

N

∑
i=1

T

∑
t=1

ωit Eit ,

In the following we consider e0(x), e1(x), e2(x) separately.

# Bound on e0(x): Assumption A.1.1(i) and (ii) guarantee that

|e0(x)| ≤
(

max
it

|mit(Xit)−mit(x)|
)

1
NT

N

∑
i=1

T

∑
t=1

Wit(x)1{Xit ̸= x&nit = 0}

= OP (ξNT ) . (A.6)

# Bound on e1(x): Assumption A.1.1(iv) guarantees that there exists a constant b >

0 such that∣∣∣∣m(x,aaa,bbb)−m(x,AAAi,BBBt)− (aaa−AAAi)
′ ∂m(x,AAAi,BBBt)

∂AAAi
− (bbb−BBBt)

′ ∂m(x,AAAi,BBBt)

∂BBBt

∣∣∣∣
≤ b

(
∥aaa−AAAi∥2 +∥bbb−BBBt∥2

)
.
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Using this we find that

mis(x)+m jt(x)−m js(x)−mit(x)≤ 2b
(∥∥AAAi −AAA j

∥∥2
+∥BBBt −BBBs∥2

)
,

and therefore

∣∣e1,it(x)
∣∣≤ 2b ∑ j∈Ni ∑s∈Tt 1{Xis = X jt = X js = x}

(∥∥AAAi −AAA j
∥∥2

+∥BBBt −BBBs∥2
)

∑ j∈Ni ∑s∈Tt 1{Xis = X jt = X js = x}

≤ 2b
(

max
j∈Ni

∥∥AAAi −AAA j
∥∥2

+max
s∈Tt

∥BBBt −BBBs∥2
)
.

We thus find

|e1(x)| ≤ 2b
(

max
i j

|Wit(x)|
)( 1

N

N

∑
i=1

max
j∈Ni

∥∥AAAi −AAA j
∥∥2

+
1
T

T

∑
t=1

max
s∈Tt

∥BBBt −BBBs∥2

)

≤ 2bc
(

max
i j

|Wit(x)|
)( 1

N

N

∑
i=1

max
j∈Ni

∥∥φφφ(AAAi)−φφφ(AAA j)
∥∥2

+
1
T

T

∑
t=1

max
s∈Tt

∥ψψψ(BBBt)−ψψψ(BBBs)∥2

)

= 2bc
(

max
i j

|Wit(x)|
)( 1

N

N

∑
i=1

max
j∈Ni

∥∥∥φφφ i −φφφ j

∥∥∥2
+

1
T

T

∑
t=1

max
s∈Tt

∥ψψψ t −ψψψs∥
2

)
.

Using the triangle inequality, the definition of Ni, and the general inequality (x1 +

x2 + x3)
2 ≤ 3(x2

1 + x2
2 + x2

3), for x1,x2,x3 ∈ R, we have

max
j∈Ni

∥∥∥φφφ i −φφφ j

∥∥∥2
≤ max

j∈Ni

(∥∥∥φ̂φφ i − φ̂φφ j

∥∥∥+∥∥∥φ̂φφ i −φφφ i

∥∥∥+∥∥∥φ̂φφ j −φφφ j

∥∥∥)2

≤ max
j∈Ni

(
τNT +

∥∥∥φ̂φφ i −φφφ i

∥∥∥+∥∥∥φ̂φφ j −φφφ j

∥∥∥)2

≤ 3τ
2
NT +3

∥∥∥φ̂φφ i −φφφ i

∥∥∥2
+3max

j∈Ni

∥∥∥φ̂φφ j −φφφ j

∥∥∥2
.

Analogously we find

max
s∈Tt

∥ψψψ t −ψψψs∥
2 ≤ 3υ

2
NT +3

∥∥ψ̂ψψ t −ψψψ t
∥∥2

+3max
s∈Tt

∥∥ψ̂ψψs −ψψψs
∥∥2

.
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We thus obtain

|e1(x)| ≤ 6bc
(

max
i j

|Wit(x)|
){

τ
2
NT +υ

2
NT

+
1
N

N

∑
i=1

(∥∥∥φ̂φφ i −φφφ i

∥∥∥2
+max

j∈Ni

∥∥∥φ̂φφ j −φφφ j

∥∥∥2
)

+
1
T

T

∑
t=1

(∥∥ψ̂ψψ t −ψψψ t
∥∥2

+max
s∈Tt

∥∥ψ̂ψψs −ψψψs
∥∥2
)}

= OP (ξNT ) . (A.7)

# Bound on e2(x): We have

[e2(x)]
2 =

1
(NT )2

N

∑
i, j=1

T

∑
t,s=1

ωit(YYY NT )ω js(YYY NT )Eit E js = T0 +T1 +T2,

where

T0 :=
1

NT

N

∑
i=1

T

∑
t=1

ω
2
it(YYY

NT )E2
it ,

T1 :=
1

(NT )2

N

∑
i, j=1

T

∑
t,s=1

1{(i, t) ̸= ( j,s)}

×
[
ωit(YYY NT )ω js(YYY NT )−ωit

(
YYY NT
−(i,t),−( j,s)

)
ω js

(
YYY NT
−(i,t),−( j,s)

)]
Eit E js,

T2 :=
1

(NT )2

N

∑
i, j=1

T

∑
t,s=1

1{(i, t) ̸= ( j,s)}ωit

(
YYY NT
−(i,t),−( j,s)

)
ω js

(
YYY NT
−(i,t),−( j,s)

)
Eit E js.

We have

E
[
T0

∣∣∣XXXNT , AAAN , BBBT
]
≤
(

max
i,t

|Eit |
)2 1

(NT )2

N

∑
i=1

T

∑
t=1

E
[
ω

2
it
(
YYY NT)∣∣∣XXXNT , AAAN , BBBT

]
= OP(ξ

2
NT ),
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and

∣∣∣E[T1

∣∣∣XXXNT , AAAN , BBBT
]∣∣∣

≤
(

max
i,t

|Eit |
)2 1

(NT )2

N

∑
i, j=1

T

∑
t,s=1

1{(i, t) ̸= ( j,s)}

×E
[∣∣∣ωit(YYY NT )ω js(YYY NT )−ωit

(
YYY NT
−(i,t),−( j,s)

)
ω js

(
YYY NT
−(i,t),−( j,s)

)∣∣∣ ∣∣∣XXXNT , AAAN , BBBT
]

= OP(ξ
2
NT ).

where we used that Yit (and thus Eit) is uniformly bounded, together with Assump-

tion A.1.1(viii) and (ix). Next, for (i, t) ̸= ( j,s) we

E
[
ωit

(
YYY NT
−(i,t),−( j,s)

)
ω js

(
YYY NT
−(i,t),−( j,s)

)
Eit E js

∣∣∣YYY NT
−(i,t),−( j,s), XXXNT , AAAN , BBBT

]
= ωit

(
YYY NT
−(i,t),−( j,s)

)
ω js

(
YYY NT
−(i,t),−( j,s)

)
E
[
Eit E js

∣∣∣YYY NT
−(i,t),−( j,s), XXXNT , AAAN , BBBT

]
= ωit

(
YYY NT
−(i,t),−( j,s)

)
ω js

(
YYY NT
−(i,t),−( j,s)

)
E
[
Eit

∣∣∣YYY NT
−(i,t),−( j,s), XXXNT , AAAN , BBBT

]
E
[
E js

∣∣∣YYY NT
−(i,t),−( j,s), XXXNT , AAAN , BBBT

]
= 0,

where we used E
[
Eit | XXXNT ,AAAN , BBBT ]= 0 together with the assumption that Yit (and

thus Eit) is independent across both i and t, conditional on XXXNT , AAAN , BBBT . By the

law of iterated expectations the last display result also implies that for (i, t) ̸= ( j,s)

we have

E
[
ωit

(
YYY NT
−(i,t),−( j,s)

)
ω js

(
YYY NT
−(i,t),−( j,s)

)
Eit E js

∣∣∣XXXNT , AAAN , BBBT
]
= 0.

Using this we obtain that

E
[
T2

∣∣∣XXXNT , AAAN , BBBT
]
= 0.
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Combining those results on T0, T1, T2 we obtain

E
{
[e2(x)]

2
∣∣∣XXXNT , AAAN , BBBT

}
= OP(ξ

2
NT ),

which implies e2 = OP(ξNT ). Together with (A.5), (A.6), and (A.7) this gives the

statement of the theorem.

□

Proof of Lemma A.1.1: Let uuu j(x) be the N-vector with elements u j(x,AAAi),

and let vvv j(x) be the T -vector with elements v j(x,BBBt). Then we have ΓΓΓ
∞(x) =

∑
∞
j=1 s j(x)uuu j(x)vvvT

j(x), and therefore

∥ΓΓΓ
∞(x)∥1 ≤

∞

∑
j=1

s j(x)
∥∥uuu j(x)

∥∥ ∥∥vvv j(x)
∥∥

=
√

NT
∞

∑
j=1

s j(x)

√
1
N

N

∑
i=1

[u j(x,AAAi)]2

√
1
T

T

∑
t=1

[v j(x,BBBt)]2

≤
√

NT
∞

∑
j=1

s j(x)

(
1+

1
N ∑

N
i=1[u j(x,AAAi)]

2 −1
2

)(
1+

1
T ∑

T
t=1[v j(x,BBBt)]

2 −1
2

)

=
√

NT
∞

∑
j=1

s j(x)+
√

NT RNT

=
√

NT ∥m(x, ·, ·)∥∗+
√

NT RNT ,

where for the second inequality we used that
√

z ≤ 1+ z−1
2 , for all z ≥ 0, and we

defined RNT = 1
NT ∑

N
i=1 ∑

T
t=1 rit , with

rit =
∞

∑
j=1

s j(x)
{
[u j(x,AAAi)]

2 +[v j(x,BBBt)]
2

4
+

[u j(x,AAAi)]
2[v j(x,BBBt)]

2

4
− 3

4

}
.

Assumption 2.3.2 guarantees that [u j(x,AAAi)]
2 and [v j(x,BBBt)]

2 have mean equal to

one, which implies that rit has mean zero. Assumption 2.3.1 and the WLLN

therefore guarantees that RNT = oP(1). We have thus shown that ∥ΓΓΓ
∞(x)∥1 ≤

√
NT ∥m(x, ·, ·)∥∗+ oP(

√
NT ), and since ∥m(x, ·, ·)∥∗ is finite and non-random we

also have ∥ΓΓΓ
∞(x)∥1 = OP(

√
NT ).
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□

Proof of Lemma A.1.2 The nuclear norm (or trace norm) can be defined by

∥ΓΓΓ∥1 = max
{MMM∈RN×T :∥MMM∥∞≤1}

Tr
(
MMM′

ΓΓΓ
)︸ ︷︷ ︸

=
N

∑
i=1

T

∑
t=1

Mit Γit

. (A.8)

Our assumption ρ ≥∥EEE(x)∥∞ guarantees that a possible choice in this maximization

is MMM = ρ−1EEE(x), and we therefore have

ρ ∥ΓΓΓ∥1 ≥
N

∑
i=1

T

∑
t=1

Dit(x)Eit(x) Γit .

Using this and the model Yit = Γ∞
it (x)+Eit(x), for Xit = x, we find that

QNT (ΓΓΓ,ρ,x)

=
1
2

N

∑
i=1

T

∑
t=1

Dit(x)(Yit −Γit)
2 +ρ∥ΓΓΓ∥1

≥ 1
2

N

∑
i=1

T

∑
t=1

Dit(x)(Γ∞
it (x)+Eit(x)−Γit)

2 +
N

∑
i=1

T

∑
t=1

Dit(x)Eit(x) Γit

=
1
2

N

∑
i=1

T

∑
t=1

Dit(x)(Γ∞
it (x)−Γit)

2 +
N

∑
i=1

T

∑
t=1

Dit(x)Γ
∞
it (x)Eit(x)

+
1
2

N

∑
i=1

T

∑
t=1

Dit(x)E2
it(x).

By definition we have

QNT (Γ̂ΓΓ(x),ρ,x)≤ QNT (ΓΓΓ
∞(x),ρ,x) =

1
2

N

∑
i=1

T

∑
t=1

Dit(x)E2
it(x)+ρ∥ΓΓΓ

∞(x)∥1

Combining the results in the last two displays gives the statement of the lemma.

□

Proof of Proposition A.1.1 In this proof we drop the argument x everywhere,

and we define θ = NT ν and θ0 = NT ν0. Define the NT -vectors γγγ = vec(ΓΓΓ), γγγ∞ =
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vec(ΓΓΓ∞), www = vec(Wit : i ∈ N, t ∈ T), ddd = vec(Dit : i ∈ N, t ∈ T), and ppp = vec(Pit :

i ∈ N, t ∈ T). Then, diag(ppp) is an NT ×NT diagonal matrix. For ρ > 0 and θ ∈ R

we define

LNT (θ ,ρ) = min
{ΓΓΓ∈RN×T :θ=www′γγγ}

QNT (ΓΓΓ,ρ),

which is the profile objective function that minimizes QNT (ΓΓΓ,ρ) over almost

all parameters ΓΓΓ, only keeping our parameter of interest fixed at θ = www′γγγ =

∑
N
i=1 ∑

T
t=1WitΓit . Our goal is to show that the minimizing value

θ̂ := argmin
θ∈R

LNT (θ ,ρ) =
N

∑
i=1

T

∑
t=1

Wit Γ̂it

is close to θ := www′γγγ∞ = ∑
N
i=1 ∑

T
t=1WitΓ

∞
it . Using the definition of QNT (ΓΓΓ,ρ) and

Yit = Γ∞
it +Eit , for Dit = 1, we find that

LNT (θ ,ρ)≤ QNT (ΓΓΓ
∞,ρ) =

1
2

N

∑
i=1

T

∑
t=1

Dit E2
it +ρ∥ΓΓΓ

∞∥1. (A.9)

If for a given value of θ = www′γγγ we have that the matrix MMM(θ) with elements

Mit(θ) := Dit Eit − www′(γγγ−γγγ∞)
www′diag(ppp)−1www

(Dit−Pit)Wit
Pit

satisfies ∥MMM(θ)∥∞ ≤ ρ , then by the defini-

tion of ∥ · ∥1 in (A.8) we have ρ∥ΓΓΓ∥1 ≤ Tr(ΓΓΓ′MMM(θ)) = ∑
N
i=1 ∑

T
t=1 Mit(θ)Γit . Using

this and Yit = Γ∞
it +Eit , for Dit = 1, we find that

QNT (ΓΓΓ,ρ) =
1
2

N

∑
i=1

T

∑
t=1

Dit (Yit −Γit)
2 +ρ∥ΓΓΓ∥1

≥ 1
2

N

∑
i=1

T

∑
t=1

Dit [(Γ
∞
it −Γit)+Eit ]

2 +
N

∑
i=1

T

∑
t=1

{
Dit Eit −

[(γγγ − γγγ∞)′ www]
www′diag(ppp)−1www

(Dit −Pit)Wit

Pit

}
Γit

=
1
2

N

∑
i=1

T

∑
t=1

Dit (Γit −Γ
∞
it )

2 − [(γγγ − γγγ∞)′ www]
www′diag(ppp)−1www

N

∑
i=1

T

∑
t=1

(Dit −Pit)Wit

Pit
(Γit −Γ

∞
it )︸ ︷︷ ︸

=:Q(low,1)
NT (ΓΓΓ)

+
N

∑
i=1

T

∑
t=1

Mit(θ)Γ
∞
it +

1
2

N

∑
i=1

T

∑
t=1

Dit E2
it︸ ︷︷ ︸

=:Q(low,2)
NT

,

where in the last step we added and subtracted ∑
N
i=1 ∑

T
t=1 Mit(θ)Γ∞

it , and we mul-
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tiplied out [(Γ∞
it −Γit)+Eit ]

2, which leads to some simplifications. Notice that

Dit Eit = Eit by construction of Eit , so that some occurrences of Dit above could

be dropped, but we find it clearer to keep track of Dit explicitly here.

Next, we define the NT ×NT idempotent matrices P = diag(ppp)−1wwwwww′

www′diag(ppp)−1www and R =

INT −P. We then have

Q(low,1)
NT (ΓΓΓ)

=
1
2
(γγγ − γγγ

∞)′ diag(ddd)(γγγ − γγγ
∞)− [(γγγ − γγγ∞)′ www]

www′diag(ppp)−1www

[
www′ diag(ppp)−1 diag(ddd − ppp)(γγγ − γγγ

∞)
]

=
1
2
(γγγ − γγγ

∞)′
(
P′+R′)diag(ddd)(P+R)(γγγ − γγγ

∞)

− (γγγ − γγγ
∞)′P′diag(ddd − ppp)(P+R)(γγγ − γγγ

∞)

=
1
2
(γγγ − γγγ

∞)′R′diag(ddd)R(γγγ − γγγ
∞)+

1
2
(γγγ − γγγ

∞)′P′diag(2ppp−ddd)P(γγγ − γγγ
∞),

=
1
2
(γγγ − γγγ

∞)′R′diag(ddd)R(γγγ − γγγ
∞)

+
1
2
(γγγ − γγγ

∞)′P′diag(ppp−ddd)P(γγγ − γγγ
∞)+

1
2
[(γγγ − γγγ∞)′www]2

www′diag(ppp)−1www

where all the “mixed terms” (that involve both P and R) cancel because we have

P′ diag(ppp)R = 0, and in the last step we used that P′ diag(ppp) P = wwwwww′

www′diag(ppp)−1www . We

have

min
{ΓΓΓ∈RN×T :θ=www′γγγ}

(γγγ − γγγ
∞)′R′ diag(ddd)R(γγγ − γγγ

∞) = 0,

because γγγ∗ = Rγγγ∞+θ
diag(ppp)−1w

w′diag(ppp)−1w is a possible choice in the minimization problem,

which satisfies w′γγγ∗ = θ and R(γγγ∗− γγγ∞) = 0. We therefore have

min
{ΓΓΓ∈RN×T :θ=www′γγγ}

Q(low,1)
NT (ΓΓΓ)

=
1
2
(θ −θ0)

2
(

1
www′diag(ppp)−1www

+
www′diag(ppp)−1diag(ppp−ddd)diag(ppp)−1www

(www′diag(ppp)−1www)2

)
=

1
2
(θ −θ0)

2

(
1

∑
N
i=1 ∑

T
t=1W 2

it P−1
it

+
∑

N
i=1 ∑

T
t=1W 2

it P−2
it (Pit −Dit)

(∑N
i=1 ∑

T
t=1W 2

it P−1
it )2

)
=

NT
2

c1 (ν −ν0)
2,
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with c1 as defined in the statement of the proposition, and ν−ν0 =(NT )−1 (θ −θ0).

Thus, if Mit(θ) = Dit Eit − (ν −ν0)Vit satisfies ∥MMM(θ)∥∞ ≤ ρ , then we have

LNT (θ ,ρ)≥ min
{ΓΓΓ∈RN×T :θ=www′γγγ}

Q(low,1)
NT (ΓΓΓ)+Q(low,2)

NT

=
NT
2

c1 (ν −ν0)
2 +

N

∑
i=1

T

∑
t=1

Mit(θ)Γ
∞
it +

1
2

N

∑
i=1

T

∑
t=1

Dit E2
it ,

and combing this with (A.9) gives

LNT (θ ,ρ)−LNT (θ0,ρ)

NT
≥ c1

2
(ν −ν0)

2 +
1

NT

N

∑
i=1

T

∑
t=1

Mit(θ)Γ
∞
it −

ρ

NT
∥ΓΓΓ

∞∥1

=
c1

2
(ν −ν0)

2 +
1

NT

N

∑
i=1

T

∑
t=1

Dit Eit Γ
∞
it

− (ν −ν0)
1

NT

N

∑
i=1

T

∑
t=1

Vit Γ
∞
it −

ρ

NT
∥ΓΓΓ

∞∥1.

Using the assumption c1 > 0 and definitions of c2 and c3 in the proposition this

inequality can equivalently be written as

2 [LNT (NT ν ,ρ)−LNT (NT ν0,ρ)]

c1 NT
≥ (ν −ν0)

2 − 2c2

c1
(ν −ν0)+

(
c2

c1

)2

− c3

=

(
ν −ν0 −

c2

c1

)2

− c3. (A.10)

Notice that c3 > 0 because our assumptions guarantee that ∥EEE∥∞ < ρ and therefore

ρ∥ΓΓΓ
∞∥1 ≥ ∑

N
i=1 ∑

T
t=1 Eit Γ∞

it , according to (A.8).

The inequality in (A.10) was derived under the assumption that ∥MMM(NT ν)∥∞ ≤

ρ . Define ν∗
+(ε) ∈ R and ν∗

−(ε) ∈ R by

ν
∗
±(ε) := ν0 ± (c4 + ε) , for 0 < ε ≤ ρ −∥EEE∥∞ − c4∥VVV∥∞

∥VVV∥∞

.

Our assumption ∥EEE∥∞ + c4∥VVV∥∞ < ρ guarantees that such an ε > 0 exists. Using

the triangle inequality we find that

∥MMM(NT ν
∗
±(ε))∥∞ = ∥EEE − (ν∗

±(ε)−ν0)VVV∥∞ ≤ ∥EEE∥∞ + |ν∗
±(ε)−ν0|∥VVV∥∞ ≤ ρ,
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where the final inequality follows from the definition of ν∗
±(ε). The conditions for

(A.10) is therefore satisfies by ν = ν∗
±(ε), that is, we have

2
[
LNT (NT ν∗

±(ε),ρ)−LNT (NT ν0,ρ)
]

c1 NT
≥
(

ν
∗
±(ε)−ν0 −

c2

c1

)2

− c3

=

(
c4 + ε ∓ c2

c1

)2

− c3

=

(
√

c3 + ε +
|c2|∓ c2

c1

)2

− c3

≥ (
√

c3 + ε)2 − c3

> 0.

where we used the definition c4 =
√

c3 +
|c2|
c1

.

LNT (NT ν ,ρ) is a convex function of ν = θ/NT , because it was obtained

via profiling of the convex function QNT (ΓΓΓ,ρ). The value ν0 lies in the interval

[ν∗
+(ε),ν

∗
−(ε)], and we have shown that LNT (NT ν0,ρ) < LNT (NT ν∗

±(ε),ρ). It

must therefore be the case that the optimal ν̂ = NT θ̂ that minimizes LNT (NT ν ,ρ)

also lies in the interval [ν∗
+(ε),ν

∗
−(ε)] — otherwise we obtain a contradiction to the

convexity of LNT (NT ν ,ρ). Thus, we have shown that

|ν̂ −ν0| ≤ c4 + ε,

and because we can choose ε > 0 arbitrarily small it must be the case that

|ν̂ −ν0| ≤ c4,

which is what we wanted to show.

□



Appendix B

Appendix – Chapter 3

B.1 Simulations with lagged dependent variable
In Table B.1 we display the simulation results for the following DGP,

Yit = Yi,t−1ρ +Xitβ +h(αi,γt)+ εit ,

Xit = g(αi,γt)+µit ,
(A.1)

where all parameters are set to the same values as Section 3.6, along with ρ = 0.5.

Note that even though γt is simulated to be independent across t, there is no direct

omitted variable bias from simply ignoring Yi,t−1 in the regression. However, and as

we see in Table B.1, omitting Yi,t−1 makes factor estimation more difficult because

of the additional Yi,t−1ρ term in the fitted residual. To see this take the fitted residual

with and without lagged Y projected out,

Ŵ1 = (Y −X β̂ ) = X(β − β̂ )+Y−1ρ +h(α,γ)+ ε

Ŵ2 = (Y −X β̂ −Y−1ρ̂) = X(β − β̂ )+Y−1(ρ − ρ̂)+h(α,γ)+ ε,

where Y−1 is simply the matrix of lagged Y . We see then when lagged Y , or any

control variable for that matter, is not projected out, then it makes identifying fac-

tors related to h(α,γ) more difficult due to Y−1ρ in the residual. Hence, whilst the

presence of the lagged dependent term in the residual may not be directly problem-

atic, it obfuscates estimation of the factors. This is especially highlighted by the

fact that increased number of factors do not necessarily improve bias.
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Table B.1: Lagged dependent variable simulation

Without lagged Y With lagged Y
Mean bias (Standard deviation)

OLS 0.5232 (0.0347) 0.5626 (0.0101)
Fixed-effects 0.4974 (0.0319) 0.5110 (0.0095)

LS (10 factors) -0.0601 (0.0133) 0.0191 (0.0123)
LS (20 factors) -0.1445 (0.0134) 0.0156 (0.0150)
LS (40 factors) -0.2281 (0.0174) -0.0379 (0.0838)

LS jackknife (10 factors) -0.1970 (0.0249) -0.0378 (0.0228)
LS jackknife (20 factors) -0.2697 (0.0258) -0.0088 (0.0290)
LS jackknife (40 factors) -0.3302 (0.0406) -0.0614 (0.2443)

GFE -0.0358 (0.0249) 0.0179 (0.0193)
GFE jackknife -0.0144 (0.0445) 0.0153 (0.0341)

10,000 Monte Carlo rounds.
All results refer to estimation of β . Mean bias is simply the mean of the bias across simulations.
Standard deviation is the standard deviation of the estimates, again across simulations.

B.2 Proofs

B.2.1 Proofs for Section 3.3

We first establish a technical lemma, which is afterwards used to prove the main text

theorem. Remember that we write ∥ · ∥ for the spectral norm of a matrix. Define

the projection matrix PA = A(A′A)†A′ for any matrix A and remember we write the

annihilation matrix MA = I−PA. Here, † refers to the Moore-Penrose inverse.

Lemma A.1. Let Assumption 3.3.3 hold and consider N,T → ∞. Furthermore,

assume that

Y =
K

∑
k=1

Xk β
0
k + e∗+ e, (A.2)

with rank(e∗) = RNT ≤ min(N,T )/2, ∥e∥ = OP(ηNT ), ∥Xk∥ = OP(
√

NT ), and
1√
NT

Tr(Xke′) = OP(ξNT ), for k = 1, . . . ,K. Then, the LS estimator in (3.5) cal-

culated with R = RNT factors in the estimation procedure, satisfies β̂LS − β 0 =

OP
(
(ξNT +RNT ηNT )/

√
NT
)
.

Proof of Lemma A.1. This proof is relatively minor modification of the consis-

tency proof for the LS estimator in Moon and Weidner (2015), and more technical
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details can be found there. For simplicity we just write R, η , ξ instead of RNT , ηNT ,

ξNT in this proof. We rewrite the definition of β̂LS as

β̂LS = argmin
β

LNT (β ),

LNT (β ) := min
{λ∈RN×R, f∈RT×R}

1
NT

Tr
[(

Y −X ·β −λ f ′
)(

Y −X ·β −λ f ′
)′]

.

(A.3)

Since rank(e∗) = R we can write e∗ = λ ∗ f ∗′ for some N ×R matrix λ ∗ and T ×R

matrix f ∗′.

We now first establish a lower bound on LNT (β ). Let ∆β = β −β 0. Consider

the definition of LNT (β ) in equation (A.3) and plug in the model Y = β · X +

λ ∗ f ∗′+ e. We then have

LNT (β ) =

min
{λ∈RN×R, f∈RT×R}

1
NT

Tr
[(

∆β ·X + e+λ
∗ f ∗′−λ f ′

)(
∆β ·X + e+λ

∗ f ∗′−λ f ′
)′]

≥ min
{λ̃∈RN×(2R), f̃∈RT×(2R)}

1
NT

Tr
[(

∆β ·X + e− λ̃ f̃ ′
)(

∆β ·X + e− λ̃ f̃ ′
)′]

=
1

NT
min

f̃∈RT×(2R)
Tr
[
(∆β ·X + e)M f̃ (∆β ·X + e)′

]
=

1
NT

min
f̃∈RT×(2R)

{
Tr
[
(∆β ·X)M f̃ (∆β ·X)′

]
+Tr

(
ee′
)
−Tr

(
ePf̃ e′

)
+2Tr

[
(∆β ·X)e′

]
−2Tr

[
(∆β ·X)Pf̃ e′

]}

≥ 1
NT

{
T

∑
r=2R+1

µr
[
(∆β ·X)′(∆β ·X)

]
+Tr

(
ee′
)
−2R∥e∥2

+2Tr
[
(∆β ·X)e′

]
−4R∥e∥∥∆β ·X∥

}

≥ b∥∆β∥2 +
1

NT
Tr
(
ee′
)
+OP

(
Rη2

NT

)
+OP

(
(ξ +Rη)∥∆β∥√

NT

)
. (A.4)

Here, we applied the inequality |Tr(A)| ≤ rank(A)∥A∥ with A = (∆β ·X)Pf̃ e′

and also with A = ePf̃ e′. We also used that min f̃ Tr
[
(∆β ·X)M f̃ (∆β ·X)′

]
=
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∑
T
r=2R+1 µr [(∆β ·X)′(∆β ·X)]. In the last step of (A.4) we applied the various as-

sumptions in the lemma.

Next, we establish an upper bound on LNT (β
0). We can choose λ = λ ∗ and

f = f ∗ in the minimization problem in (A.3), and therefore

LNT (β
0)≤ 1

NT
Tr
(
ee′
)
. (A.5)

Since we could choose β = β 0 in the minimization of β , the optimal β̂LS needs to

satisfy LNT (β̂LS)≤ LNT (β
0). Together with (A.4) and (A.5) this gives

b∥β̂LS −β
0∥2 ≤ OP

(
(ξ +Rη)∥β̂LS −β 0∥√

NT

)
+OP

(
Rη2

NT

)
(A.6)

Since R → ∞ as N,T → ∞, we have

OP

(
Rη2

NT

)
≤ OP

((
Rη√
NT

)2
)

≤ OP

((
ξ +Rη√

NT

)2
)
,

and (A.6) thus implies

∥β̂LS −β
0∥2 ≤ OP

(
(ξ +Rη)∥β̂LS −β 0∥

b
√

NT

)
+OP

(
1
b

(
ξ +Rη√

NT

)2
)

=: 2B1 ∥β̂LS −β
0∥+(B2)

2,

with random variables B1 =OP

(
ξ+Rη√

NT

)
and B2 =OP

(
ξ+Rη√

NT

)
, and where we used

that b is a positive constant. Completing the square gives

(
∥β̂LS −β

0∥−B1

)2
≤ (B2)

2 +(B1)
2,

by taking the square root we thus obtain

∥β̂LS −β
0∥ ≤ B1 +

√
(B2)2 +(B1)2.
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Since B1 and B2 are both of order OP

(
ξ+Rη√

NT

)
it thus follows that

∥β̂LS −β
0∥= OP

(
(ξ +Rη)/

√
NT
)
,

which is what we wanted to show. ■

Using Lemma A.1 we are now ready to prove Theorem 3.3.5.

Proof of Theorem 3.3.5. To apply Lemma A.1 we first need to define e and e∗ such

that (A.2) is an implication of our model (3.13). Decompose Γ = ∑
min{N,T}
r=1 λ ∗

r f ∗′r ,

which is a reformulation of the singular value decomposition of a matrix. De-

fine e∗ = ∑
RNT
r=1 λ ∗

r f ∗′r such that rank(e∗) = RNT . Also define e = S + ε where

S = Γ−∑
RNT
r=1 λ ∗

r f ∗′r . With these definitions model (3.13) can be rewritten as (A.2)

and it remains to show Assumptions 3.3.1-3.3.3 are sufficient for Lemma A.1 and

to characterise the sequences ηNT and ξNT .

First, use the norm inequality ∥S+ ε∥≤∥S∥+∥ε∥ with ∥ε∥=OP(
√

max{N,T})

from Assumption 3.3.1 (ii) to show ∥e∥ ≤ ∥S∥+OP(
√

max{N,T}). To bound ∥S∥

use the fact that the spectral norm is bounded by the Frobenius norm and Assump-

tion 3.3.4 to show

∥S∥2 ≤ ∥S∥2
F =

∞

∑
r=RNT+1

σ
2
r (Γ)

≤ OP
(
NT R1−2ρ

NT
)
.

This shows that ∥e∥ is asymptotically bounded in probability by the sequence ηNT

with

ηNT =
√

max{N,T}+
√

NT R(1−2ρ)/2
NT .

That is, ∥e∥= OP(ηNT ).

Secondly, the bound on ∥Xk∥ is direct from Assumption 3.3.1.(i) again because

the spectral norm is bounded by the Frobenius norm. That is, ∥Xk∥2 ≤ ∥Xk∥2
F =

∑
N
i=1 ∑

T
t=1 X2

it,k = OP(NT ).
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Lastly, we need to show that 1√
NT

Tr(Xke′) = OP(ξNT ) and to find ξNT . To do

this we decompose e and use the Cauchy-Schwarz inequality, the triangle inequality

and linearity of the trace operator in the following,∣∣∣∣ 1√
NT

Tr(Xke′)
∣∣∣∣= ∣∣∣∣ 1√

NT
Tr(Xk(S+ ε)′)

∣∣∣∣
≤ 1√

NT
∥Xk∥F ∥S∥F +

1√
NT

|Tr(Xkε
′)|

= OP(1)∥S∥F +OP(1).

(A.7)

The third line follows from Assumption 3.3.1.(i) and Assumption 3.3.2. From

above we know ∥S∥F = OP
(√

NT R(1−2ρ)/2
NT

)
, hence we have found ξNT =

√
NT R(1−2ρ)/2

NT +1.

Thus, we have shown that all conditions for Lemma A.1 are satisfied and found

the rates ηNT and ξNT . This shows that LS estimation in (3.5) on the model (3.13)

with R = RNT factors satisfies β̂LS −β 0 = OP
(
(ξNT +RNT ηNT )/

√
NT
)
, with

OP

(
(ξNT +RNT ηNT )√

NT

)
= OP

(
R(1−2ρ)/2

NT

)
+OP

( 1√
NT

)
+OP

(
R(3−2ρ)/2

NT

)
+OP

(
RNT

√
max{N,T}

NT

)
= OP

(
R(3−2ρ)/2

NT

)
+OP

(
RNT min{N,T}−1/2

)
.

■

Proof of Remark 1. Note that if we weaken the singular value decay to that sup-

posed in Remark 1, i.e. σr(Γ) = c
√

NT r−ρ , and otherwise maintain Assump-

tions 3.3.1-3.3.3 we can further bound the bias in LS estimation found in Theo-
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rem 3.3.5 as follows. For ∥S∥F , note,

∥S∥2
F =

∞

∑
r=RNT+1

σ
2
r (Γ)

≤
∞

∑
r=RNT+1

cNT r−2ρ wpa.1 (Assumption 3.3.4)

≤ cNT
∫

∞

RNT

r−2ρdr wpa.1 (integral bound)

=
c

2ρ −1
NT R1−2ρ

NT wpa.1

In the third line we use an integral bound and the fourth line simply evaluates this in-

tegral. From line two all arguments are wpa.1, hence ∥S∥F = OP(
√

NT R(1−2ρ)/2
NT ),

where (c/2ρ −1) is the bounding constant. We can then directly bound

∥S∥= max
r∈{RNT+1,...,min{N,T}}

σr(Γ)

= OP
(√

NT (RNT +1)−ρ
)
,

where we use the convention that singular values are indexed in descending or-

der. We then simplify the last bound to ∥S∥ = OP
(√

NT R−ρ

NT
)
, replacing RNT + 1

with RNT as RNT → ∞. We can then rely on the same working in the proof

of Theorem 3.3.5 to show that the conditions in Lemma A.1 are satisfied with

ξNT =
√

NT R(1−2ρ)/2
NT + 1 and ηNT =

√
max{N,T}+

√
NT R−ρ

NT , where the sec-

ond term in ηNT is slightly different to Theorem 3.3.5. Hence, β̂LS − β 0 =

OP
(
(ξNT +RNT ηNT )/

√
NT
)
, with

OP

(
(ξNT +RNT ηNT )√

NT

)
= OP

(
R(1−2ρ)/2

NT

)
+OP

( 1√
NT

)
+OP

(
R1−ρ

NT

)
+OP

(
RNT

√
max{N,T}

NT

)
= OP

(
R1−ρ

NT

)
+OP

(
RNT min{N,T}−1/2

)
.

■
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To prove Lemma 3.3.1 we rely on the following result from (Griebel and Har-

brecht, 2014), which we state without proof.

Let H p(Ωα ×Ωγ) denote the Sobolev space W p,k on the product domain (Ωα ×

Ωγ) for k = 2, which is in turn a Hilbert space. In the one dimensional case, this

space admits functions in L2(R)-space whose derivatives up to order p are also in

L2(R)-space. In multiple dimensions this definition extends as follows. Let ∇ :=

{∇α ,∇γ} be a multi-index that captures all the dimensions of α and γ respectively.

Define the mixed partial derivative as,

f (∇) =
∂ |∇| f

∂a∇α
1

1 . . .∂a
∇α

dα

dα
∂c∇

γ

1
1 . . .∂c

∇
γ

dγ

dγ

,

where a ∈ Ωα and c ∈ Ωγ with (Ωα ×Ωγ) the domain of f . Then |∇|= |∇α |+ |∇γ |

and the bivariate function h is said to be in Hilbert space of order p if the mixed

partial derivative exists (weakly) and

∥∥∥h(∇)
∥∥∥

L2
≤ ∞ for all |∇| ≤ p.

This space of functions places a bound on the function itself as well as its derivative,

which is why we refer to it as a smoothness condition.

Lemma A.2 (Theorem 3.5 in Griebel and Harbrecht 2014). Let h ∈ H p(Ωα ×Ωγ)

and p > min
{

nα ,nγ

}
/2, then

∥∥∥∥∥h−
R

∑
l=1

σl(ϕl ⊗ψl)

∥∥∥∥∥
L2(Ω1×Ω2)

= O
(

R
1
2−

p
min{nα ,nγ}

)
. (A.8)

In the following proof we use the Frobenius norm, which as a reminder is

defined as ∥A∥2
F = ∑

N
i=1 ∑

T
t=1 |Ait |2 for any N ×T matrix A.
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Proof of Lemma 3.3.1. From Lemma A.2 we have,

E
[(

h(αi,γt)−
R

∑
s=1

σrϕr(αi)ψr(γt)
)2]

=
∫

Ωα

∫
Ωγ

(
h(a,c)−

R

∑
s=1

σrϕr(a)ψr(c)
)2 fαi,γt (a,c)dadc

≤
∫

Ωα

∫
Ωγ

(
h(a,c)−

R

∑
s=1

σrϕr(a)ψr(c)
)2dadcsup

a,c
fαi,γt (a,c)

=

∥∥∥∥∥h−
R

∑
l=1

σlϕl ⊗ψl

∥∥∥∥∥
2

L2(Ωα×Ωγ )

O(1)

= O
(

R
1− 2p

min{nα ,nγ}
)
,

(A.9)

where in the second line we use a supremum bound on the probabilities, in the third

line we use the definition of the L2(Ωα ×Ωγ)-norm and in the final line we use

Lemma A.2. This shows that, in expectations, the entry-wise functional representa-

tion decays at polynomial rate r1−2ρ , with ρ = p/min
{

nα ,nγ

}
.

Using the Markov inequality gives

(
Γit −

r

∑
ℓ=1

σℓϕℓ(αi)ψℓ(γt)
′
)2

= OP

(
r

1− 2p
min{nα ,nγ}

)
,

which we use to bound singular values of the matrix Γ as follows.

We know

Γit = h(αi,γt) =
∞

∑
r=1

σrϕr(αi)ψr(γt) =
∞

∑
r=1

σrwirvtr

and in matrix form,

Γ = h(α,γ) =
∞

∑
r=1

σrϕr(α)ψr(γ)
′ =

∞

∑
r=1

σrwrv′r.



B.2. PROOFS 165

Hence, we have

min{N,T}

∑
ℓ=r+1

σ
2
ℓ (Γ) = min

λ∈RN×r
min

f∈RT×r

∥∥Γ−λ f ′
∥∥2

F

≤

∥∥∥∥∥Γ−
r

∑
ℓ=1

σℓϕℓ(α)ψℓ(γ)
′

∥∥∥∥∥
2

F

= ∑
i

∑
t

(
∞

∑
ℓ=r+1

σℓϕℓ(αi)ψℓ(γt)

)2

= ∑
i

∑
t

OP

(
r

1− 2p
min{nα ,nγ}

)
= NTOP

(
r

1− 2p
min{nα ,nγ}

)
.

Hence, we have 1
NT ∑

min{N,T}
ℓ=r+1 σ2

ℓ (Γ) = OP
(
r1−2ρ

)
with ρ = p/min

{
nα ,nγ

}
, and

Assumption 3.3.4 is satisfied. ■

B.2.2 Proofs for Section 3.4

Proof of Lemma 3.4.1. From Section 3.4 we have

κNT :=

(
N

∑
i=1

T

∑
t=1

X̃ ′
it X̃it

)−1 N

∑
i=1

T

∑
t=1

X̃ ′
it Γ̃it ,

with Γ̃ defined analogously to X̃k and Ỹ .

Take

∥κNT∥ :=

∥∥∥∥∥∥
(

N

∑
i=1

T

∑
t=1

X̃ ′
it X̃it

)−1 N

∑
i=1

T

∑
t=1

X̃ ′
it Γ̃it

∥∥∥∥∥∥ .
Using the inequality ∥Az∥ ≤ ∥A∥∥z∥ for general matrices A and vectors z we find

∥κNT∥ ≤

∥∥∥∥∥∥
(

N

∑
i=1

T

∑
t=1

X̃ ′
it X̃it

)−1
∥∥∥∥∥∥
∥∥∥∥∥ N

∑
i=1

T

∑
t=1

X̃ ′
it Γ̃it

∥∥∥∥∥ .
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Use
∣∣∣∑N

i=1 ∑
T
t=1 X̃it,kΓ̃it

∣∣∣≤ ∑
N
i=1 ∑

T
t=1

∣∣∣X̃it,kΓ̃it

∣∣∣ and Hölder’s inequality such that


∣∣∣∑N

i=1 ∑
T
t=1 X̃it,1Γ̃it

∣∣∣
...∣∣∣∑N

i=1 ∑
T
t=1 X̃it,KΓ̃it

∣∣∣

≤


∑

N
i=1 ∑

T
t=1

∣∣∣X̃it,1Γ̃it

∣∣∣
...

∑
N
i=1 ∑

T
t=1

∣∣∣X̃it,KΓ̃it

∣∣∣

≤


∥vec(X1)∥∞

...

∥vec(XK)∥∞

∥∥∥vec(Γ̃)
∥∥∥

1
,

where vec(A) vectorises a matrix A such that ∥vec(A)∥
∞
= maxi,t |Ait | yields the

maximum norm and ∥vec(A)∥1 = ∑
N
i=1 ∑

T
t=1 |Ait | yields the entry-wise 1-norm of

such a matrix.

Take the ∥·∥ to show

∥∥∥∥∥ N

∑
i=1

T

∑
t=1

X̃ ′
it Γ̃it

∥∥∥∥∥=
(

∑
k

∣∣∣∣ N

∑
i=1

T

∑
t=1

X̃it,kΓ̃it

∣∣∣∣2
)1/2

≤

(
∑
k

(∥∥vec(X̃k)
∥∥

∞

∥∥vec(Γ̃)
∥∥

1

)2
)1/2

=

(
∑
k

(∥∥vec(X̃k)
∥∥

∞

)2
)1/2∥∥vec(Γ̃)

∥∥
1

≤

(
∑
k

∥∥vec(X̃k)
∥∥

∞

)∥∥vec(Γ̃)
∥∥

1,

where in the last line we use that
∥∥∥vec(Γ̃)

∥∥∥
1

is a scalar and that
∥∥vec(Xk)

∥∥
∞
> 0 ∀k.

Thus we can bound the norm of κNT by

∥κNT∥ ≤

∥∥∥∥∥∥
(

N

∑
i=1

T

∑
t=1

X̃ ′
it X̃it

)−1
∥∥∥∥∥∥
(

K

∑
k=1

∥∥vec(X̃k)
∥∥

∞

)∥∥vec(Γ̃)
∥∥

1.

Concentrate on
∥∥vec(Γ̃)

∥∥
1. Let nN

i be the size of each i’s cluster and nT
t be the

size of each t’s cluster, then

Γ̃it = h(αi,γt)−
1

nN
i

∑
j∈gi

h(α j,γt)−
1

nT
t

∑
s∈ct

h(αi,γs)+
1

nN
i

1
nT

t
∑
j∈gi

∑
s∈ct

h(α j,γs).
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Take the following Taylor expansions,

h(α j,γs) = h(αi,γt)+
∂h(αi,γt)

∂α ′ (α j −αi)+
∂h(αi,γt)

∂γ ′
(γs − γt)+ r(i, j, t,s)

h(α j,γt) = h(αi,γt)+
∂h(αi,γt)

∂α ′
i

(α j −αi)+ r′(i, j, t)

h(αi,γs) = h(αi,γt)+
∂h(αi,γt)

∂γ ′
(γs − γt)+ r′′(t,s, i),

where r, r′ and r′′ are remainder terms from the Taylor expansion.

From these expansions we have

1
nN

i
∑
j∈gi

h(α j,γt) = h(αi,γt)+
1

nN
i

∑
j∈gi,
j ̸=i

(
∂h(αi,γt)

∂α ′ (α j −αi)+ r′(i, j, t)
)
,

1
nT

t
∑
s∈ct

h(αi,γs) = h(αi,γt)+
1

nT
t

∑
s∈ct ,
s ̸=t

(
∂h(αi,γt)

∂γ ′
(γs − γt)+ r′′(t,s, i)

)
,
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and

1
nN

i

1
nT

t
∑
j∈gi

∑
s∈ct

h(α j,γs) =
1

nN
i nT

t
h(αi,γt)

+
1

nN
i nT

t

 ∑
j∈gi,
j ̸=i

∑
s∈ct ,
s ̸=t

h(α j,γs)+ ∑
j∈gi,
j ̸=i

h(α j,γt)+ ∑
s∈ct ,
s ̸=t

h(αi,γs)


= h(αi,γt)

+
1

nN
i nT

t
∑
j∈gi,
j ̸=i

∑
s∈ct ,
s ̸=t

(
∂h(αi,γt)

∂α ′ (α j −αi)+
∂h(αi,γt)

∂γ ′
(γs − γt)+ r(i, j, t,s)

)

+
1

nN
i nT

t
∑
j∈gi,
j ̸=i

(
∂h(αi,γt)

∂α ′ (α j −αi)+ r′(i, j, t)
)

+
1

nN
i nT

t
∑

s∈ct ,
s ̸=t

(
∂h(αi,γt)

∂γ ′
(γs − γt)+ r′′(t,s, i)

)

= h(αi,γt)+
1

nN
i

∑
j∈gi,
j ̸=i

(
∂h(αi,γt)

∂α ′ (α j −αi)+ r′(i, j, t)
)

+
1

nT
t

∑
s∈ct ,
s ̸=t

(
∂h(αi,γt)

∂γ ′
(γs − γt)+ r′′(t,s, i)

)

+
1

nN
i nT

t
∑
j∈gi,
j ̸=i

∑
s∈ct ,
s ̸=t

r(i, j, t,s).

We explicitly split the sum in the second line to make clearer the fact that almost all

terms cancel out once we difference these identities. From the last line it should be

clear that,

Γ̃it =
1

nN
i nT

t
∑
j∈gi,
j ̸=i

∑
s∈ct ,
s ̸=t

r(i, j, t,s).

From h(., .) being twice continuously differentiable and a uniformly bounded sec-

ond derivative, we have from Cauchy-Schwarz

r(i, j, t,s) = O
(∥∥αi −α j

∥∥2
+∥γt − γs∥2

)
.
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For the entry-wise 1-norm, we have,

∥∥∥vec(Γ̃)
∥∥∥

1
= ∑

i
∑
t

∣∣∣∣∣∣∣
1

nN
i nT

t
∑
j∈gi,
j ̸=i

∑
s∈ct ,
s̸=t

r(i, j, t,s)

∣∣∣∣∣∣∣
≤ ∑

i
∑
t

∣∣∣∣∣∣∣
1

nN
i nT

t
∑
j∈gi,
j ̸=i

∑
s∈ct ,
s̸=t

O
(∥∥αi −α j

∥∥2
)∣∣∣∣∣∣∣

+∑
i

∑
t

∣∣∣∣∣∣∣
1

nN
i nT

t
∑
j∈gi,
j ̸=i

∑
s∈ct ,
s ̸=t

O
(
∥γt − γs∥2

)∣∣∣∣∣∣∣ .

Now, concentrate on the first term,

∑
i

∑
t

∣∣∣∣∣∣∣
1

nN
i nT

t
∑
j∈gi,
j ̸=i

∑
s∈ct ,
s ̸=t

O
(∥∥αi −α j

∥∥2
)∣∣∣∣∣∣∣

≤ ∑
i

∑
t

∣∣∣∣∣∣(n
N
i −1)(nT

t −1)
nN

i nT
t

max
j∈gi,
j ̸=i

O
(∥∥αi −α j

∥∥2
)∣∣∣∣∣∣

= O(T )∑
i

max
j∈gi,
j ̸=i

∥∥αi −α j
∥∥2

Use Assumption 3.4.1(iii) to show for j ∈ gi,

∥∥αi −α j
∥∥2 ≤ B2∥∥λ (αi)−λ (α j)

∥∥2

= B2
∥∥∥λ (αi)− λ̂i − (λ (α j)− λ̂ j)+ λ̂i − λ̂ j

∥∥∥2

≤ B2
(∥∥∥λ (αi)− λ̂i

∥∥∥+∥∥∥λ (α j)− λ̂ j

∥∥∥+∥∥∥λ̂i − λ̂ j

∥∥∥)2
.

An application of Cauchy-Schwarz and Assumption 3.4.1(iv) gives

N

∑
i=1

max
j∈gi,
j ̸=i

∥∥αi −α j
∥∥2 ≤ B2

N

∑
i=1

max
j∈gi,
j ̸=i

(∥∥∥λ (αi)− λ̂i

∥∥∥2
+
∥∥∥λ (α j)− λ̂ j

∥∥∥2
+
∥∥∥λ̂i − λ̂ j

∥∥∥2
)
,
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hence we have

N

∑
i=1

T

∑
t=1

∣∣∣∣∣∣∣
1

nN
i nT

t
∑
j∈gi,
j ̸=i

∑
s∈ct ,
s ̸=t

O
(∥∥αi −α j

∥∥2
)∣∣∣∣∣∣∣= NTOP(ξNT ).

The t-dimension analogy is direct such that

N

∑
i=1

T

∑
t=1

∣∣∣∣∣∣∣
1

nN
i nT

t
∑
j∈gi,
j ̸=i

∑
s∈ct ,
s ̸=t

O
(
∥γt − γs∥2

)∣∣∣∣∣∣∣= NTOP(ξNT ).

Lastly, use Assumption 3.4.1.(vi), which implies
(

∑
N
i=1 ∑

T
t=1 X̃ ′

it X̃it

)−1
=

Op(1/NT ), to show

∥κNT∥= Op(ξNT )

⇒ κNT = Op(ξNT )

■

For each partition Oq, with q ∈ {1,2,3,4}, the Nq ×G(q) matrix D(q)
ν , respec-

tively Tq×C(q) matrix D(q)
δ

, represent the i, respectively t, cluster assignment matri-

ces for (i, t) ∈ Oq where the columns of each matrix are binary indicators of cluster

assignment. That is, any given column of D(q)
ν represents a cluster equal to 1 if that

row is a member of the cluster and 0 otherwise, and likewise for D(q)
δ

. Here G(q) are

the number of i clusters and C(q) are the number of t clusters in Oq. For each

partition define the annihilation matrix M(q)
ν = INq − D(q)

ν

(
[D(q)

ν ]′D(q)
ν

)−1
[D(q)

ν ]′

and M(q)
δ

= ITq − D(q)
δ

(
[D(q)

δ
]′D(q)

δ

)−1
[D(q)

δ
]′. To perform within-cluster mean-

differences we can then take, for matrix A(q) being the partition Oq of matrix A,

Ǎ(q) = M(q)
ν A(q)M(q)

δ
.1 Take Ǎ as the block matrix with blocks Ǎ(q). Further, for

each regressor, k, let X̌k be defined similarly for each k separately such that X̌it a K

dimensional column vector.

1Note these are very similar to the Ã variables in the main text, but here we make the distinction
that projection is done at the partition level.
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Assumption B.2.1. Let Oq denote partitions for cluster formation and O∗
q denote

partitions for proxy sampling. Across each partition, α
(q)
i has common support A

for each q, γ(q) has common support C for each q, and both of these are bounded

and convex sets. Also, assume each partition is of equal size, up to rounding error,

such that they all grow proportionally with N,T . There exists a sequence ξNT > 0

common to all partitions such that ξNT → 0 as N,T → ∞, and

(i) The function h(·, ·) is at least twice continuously differentiable with uniformly

bounded second derivatives.

(ii) For each q, every unit i ∈ Oq is a member of exactly one group g(q)i ∈

{1, . . . ,G(q)}, and every time period t is a member of exactly one group

c(q)t ∈ {1, . . . ,C(q)}. The size of all G(q) groups of units, and the size of all

C(q) groups of time periods is bounded uniformly by Qmax for all q.

(iii) There exists B > 0 such that for all q there is, ∥a−b∥ ≤ B
∥∥∥λ (q)(a)−λ (q)(b)

∥∥∥
for all a,b ∈ A , and ∥a−b∥ ≤ B

∥∥∥ f (q)(a)− f (q)(b)
∥∥∥ for all a,b ∈ C .

(iv) For each q there is,
1

N∗
q T ∗

q
∑

N
i=1 ∑

T
t=11{(i, t) ∈ O∗

q}
(∥∥∥λ̂

(q)
i −λ (q)(αi)

∥∥∥2
)
= OP (ξNT ),

1
N∗

q T ∗
q

∑
N
i=1 ∑

T
t=11{(i, t) ∈ O∗

q}
(∥∥∥ f̂ (q)t − f (q)(γt)

∥∥∥2
)
= OP (ξNT ).

(v) For each q there is,
1

N∗
q T ∗

q
∑

N
i=1 ∑

T
t=11{(i, t) ∈ O∗

q}
∥∥∥λ̂

(q)
i − λ̂

(q)
j(i)

∥∥∥2
= OP (ξNT ) for any matching

function ( j(i), t) ∈ Oq such that g(q)i = g(q)j(i), and

1
N∗

q T ∗
q

∑
N
i=1 ∑

T
t=11{(i, t) ∈ O∗

q}
∥∥∥ f̂ (o)t − f̂ (o)s(t)

∥∥∥2
= OP (ξNT ) for any matching

function (i,s(t)) ∈ Oq such that c(q)t = c(q)s(t).

(vi) maxk,i,t
∣∣X̌it,k

∣∣= OP(1), and plimN,T→∞
1

NT ∑
N
i=1 ∑

T
t=1 X̌ ′

it X̌it = Ω, where Ω is a

positive definite non-random matrix.

Proof of Lemma 3.4.2. Recall from the proof of Lemma 3.4.1 the definition of



B.2. PROOFS 172

κNT . Take the split sample version as follows,

κ
(GS)
NT :=

(
N

∑
i=1

T

∑
t=1

X̌ ′
it X̌it

)−1 N

∑
i=1

T

∑
t=1

X̌ ′
it Γ̌it

=

(
N

∑
i=1

T

∑
t=1

X̌ ′
it X̌it

)−1 4

∑
o=1

∑
(i,t)∈Oq

[X̌ (q)
it ]′ Γ̌

(q)
it .

By Assumption B.2.1 and the proof steps of Lemma 3.4.1 we have that for each

partition ∑(i,t)∈Oq[X̌
(q)
it ]′ Γ̌

(q)
it = OP(NqTqξNT ), where Nq and Tq are the number

of i and t, respectively, in partition q. Thus we have ∑
4
o=1 ∑(i,t)∈Oq[X̌

(q)
it ]′ Γ̌

(q)
it =

∑
4
o=1 OP(NqTqξNT )≤ OP(NT ξNT ). The statement of the lemma then follows from

∑
N
i=1 ∑

T
t=1 X̌ ′

it X̌it = OP(NT ). ■

Proof of Lemma 3.4.3. Using the definition of φ GS
NT in the main text we have

√
NT φ

GS
NT := Ω̂

−1
4

∑
s=1

φ
(s)
NT

where

Ω̂ :=
1

NT

4

∑
s=1

∑
(i,t)∈Os

X̃ (s) ′
it X̃ (s)

it , φ
(s)
NT :=

1√
NT ∑

(i,t)∈Os

X̃ (s) ′
it εit .

By construction, the projected regressors X̃ (s)
it for subpanel s ∈ {1,2,3,4} only de-

pend on X = (Xit), and on outcomes Yit (and thus error terms εit) that are not in

that subpanel, i.e. (i, t) /∈ Os. Therefore, under Assumption 3.4.2(i), we have that

for s ∈ {1,2,3,4}, conditional on {X̃ (s)
it : (i, t) ∈ Os}, the X̃ (s) ′

it εit are mean zero and

independently distributed across all the observations (i, t) ∈ Os in that subpanel.

Using the regularity conditions in Assumption 3.4.2(ii), for each s ∈ {1,2,3,4}, we

can therefore apply Lyapunov’s CLT to find

(
Σ̂
(s)
)−1

φ
(s)
NT ⇒ N (0,1K), Σ̂

(s) := ∑
(i,t)∈Os

σ
2
it X̃

(s) ′
it X̃ (s)

it ,

and the limiting distributions of
(

Σ̂(s)
)−1

φ
(s)
NT are independent across s. Using that
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Σ̂(s) converges to the constant Σ(s) we thus find that

4

∑
s=1

φ
(s)
NT ⇒ N

(
0,

4

∑
s=1

Σ
(s)

)
.

Since Ω̂ converges to Ω > 0, the continuous mapping theorem then gives the state-

ment of the lemma. ■



Appendix C

Appendix – Chapter 4

C.1 Proofs
Proof of Proposition 4.3.2. In the following, let vec

(
X̃
)

be the ∏n Nn ×K matrix

of vectorised covariates after the within-cluster transformations where each column

is a vectorised transformed covariate. The vec operator on other variables is the

standard vectorisation operator. Also let N = ∏n Nn and the subscript i = 1, . . . ,N

be the index for the vectorised data when i has no subscript. Then,

βGFE,C =
(

vec
(
X̃
)′vec

(
X̃
))(−1)

vec
(
X̃
)′vec

(
Ỹ
)

=
(

vec
(
X̃
)′vec

(
X̃
))(−1)

vec
(
X̃
)′(vec

(
X̃
)
β

0 +vec
(
Ã
)
+vec

(
ε̃εε
))

= β
0 +
(

vec
(
X̃
)′vec

(
X̃
))(−1)

vec
(
X̃
)′(vec

(
Ã
)
+vec

(
ε̃εε
))

,

such that,

∥∥βGFE,C −β
0∥∥= ∥∥∥(vec

(
X̃
)′vec

(
X̃
))(−1)

vec
(
X̃
)′(vec

(
Ã
)
+vec

(
ε̃εε
))∥∥∥

≤ ∥κN∥+∥ωN∥

where

∥κN∥ :=
∥∥∥(vec

(
X̃
)′vec

(
X̃
))(−1)

vec
(
X̃
)′vec

(
Ã
)∥∥∥;

∥ωN∥ :=
∥∥∥(vec

(
X̃
)′vec

(
X̃
))(−1)

vec
(
X̃
)′vec

(
ε̃εε
)∥∥∥.
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The terms κN and ωN are dealt with separately.

First to bound κN . Notice,

∥κN∥ ≤
∥∥∥(vec

(
X̃
)′vec

(
X̃
))(−1)∥∥∥∥∥∥vec

(
X̃
)′vec

(
Ã
)∥∥∥

Focus on the right hand part, and let
〈
., .
〉

F be the Frobenius inner product,

∥∥∥vec
(
X̃
)′vec

(
Ã
)∥∥∥=

∥∥∥∥∥∥∥∥∥


〈
X̃1,Ã

〉
F

...〈
X̃K,Ã

〉
F


∥∥∥∥∥∥∥∥∥≤

∥∥∥∥∥∥∥∥∥


∑

N
i=1

∣∣∣X̃i,1Ãi

∣∣∣
...

∑
N
i=1

∣∣∣X̃i,KÃi

∣∣∣


∥∥∥∥∥∥∥∥∥ (A.1)

where the triangle inequality is used entry-wise. By Hölder’s inequality

N

∑
i=1

∣∣∣X̃i,kÃi

∣∣∣≤ ∥∥∥vec
(
X̃k
)∥∥∥∥∥∥vec

(
Ã
)∥∥∥ for each k = 1, . . . ,K

This bounds the norm in (A.1) as,

∥∥∥vec
(
X̃
)′vec

(
Ã
)∥∥∥≤

√√√√ K

∑
k=1

∥∥∥vec
(
X̃k
)∥∥∥2∥∥∥vec

(
Ã
)∥∥∥ .

From Assumption 4.3.1.(i) there is

√
∑

K
k=1

∥∥∥vec
(
X̃k
)∥∥∥2

= Op

(√
∏n Nn

)
. This

leaves
∥∥∥vec

(
Ã
)∥∥∥. Take gn(in) as the indices in in’s cluster such that |gn(in)| is the

cluster size. Also, let ϕ̄
(n)
i∗n

be the cluster average for in’s cluster. Then,

∥∥∥vec
(
Ã
)∥∥∥2

=
∥∥∥Ã ∥∥∥2

F
= ∑

i1,...,id

(
L

∑
ℓ=1

d

∏
n=1

(
ϕ
(n)
in,ℓ− ϕ̄

(n)
i∗n,ℓ

))2

(Jensen’s inequality) ≤ L2
∑

i1,...,id

L

∑
ℓ=1

1
L

d

∏
n=1

(
ϕ
(n)
in,ℓ− ϕ̄

(n)
i∗n,ℓ

)2

≤ L

(
d

∏
n=1

Nn

)
d

∏
n=1

1
Nn

∑
in

∥∥∥ϕ
(n)
in − ϕ̄

(n)
i∗n

∥∥∥2
.
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Expand the term,
∥∥∥ϕ

(n)
in − ϕ̄

(n)
i∗n

∥∥∥2
,

∥∥∥ϕ
(n)
in − ϕ̄

(n)
i∗n

∥∥∥2
=

∥∥∥∥∥ϕ
(n)
in − 1

|gn(in)| ∑
jn∈gn(in)

ϕ
(n)
jn

∥∥∥∥∥
2

≤ 1
|gn(in)|2

(
∑

jn∈gn(in)

∥∥∥ϕ
(n)
in −ϕ

(n)
jn

∥∥∥)2

≤ max
jn∈gn(in)

∥∥∥ϕ
(n)
in −ϕ

(n)
jn

∥∥∥2
(A.2)

Then by Assumption 4.3.5,

∥∥∥vec
(
X̃
)′vec

(
Ã
)∥∥∥≤√

L

(
d

∏
n=1

Nn

)
Op

(
∏

n∈M

√
ξNn

)

Lastly, Assumption 4.3.6.(i) implies the left hand term of ∥κN∥ is Op(1/∏n Nn).

This leaves

∥κN∥=
√

LOp

(
∏

n∗∈M

√
ξNn∗

)

Finally, to bound ∥ωN∥. Note that

∥ωN∥ ≤
∥∥∥(vec

(
X̃
)′vec

(
X̃
))(−1)∥∥∥

F

∥∥∥vec
(
X̃
)′vec

(
ε̃εε
)∥∥∥.

Use Assumption 4.3.2 to bound the right hand term,
∥∥∥vec

(
X̃
)′vec

(
ε̃εε
)∥∥∥ =

Op
(√

∏n Nn
)
. Then, as above, the left hand term is Op(1/∏n Nn) such that

∥ωN∥= Op

(
1√

∏n Nn

)
.

■

Proof of Remark 4.4.1. Begin from A.2 in the proof of Proposition 4.3.2. The
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right hand terms,
∥∥∥ϕ

(n)
in −ϕ

(n)
jn

∥∥∥2
, are bound as,

∥∥∥ϕ
(n)
in −ϕ

(n)
jn

∥∥∥2
≤ c2

n

∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
jn

∥∥∥2
,

by Remark 4.4.1.(iii). The result then follows immediately by applying the condi-

tions Remark 4.4.1.(i) and (ii) after this inequality. ■

Proof of Proposition 4.3.3. As in the proof of Proposition 4.3.2, after the weighted

within transformation, the estimation error can be written as,

∥∥βKFE,C −β
0∥∥≤ ∥κN∥+∥ωN∥ .

As above, ∥ωN∥ is bounded at the parametric rate, so ∥κN∥ is again the focus here.

Again from above this can be bound as,

∥κN∥ ≤
∥∥∥(vec

(
X̃
)′vec

(
X̃
))(−1)∥∥∥

√√√√ K

∑
k=1

∥∥∥vec
(
X̃k
)∥∥∥2∥∥∥vec

(
Ã
)∥∥∥ .

As above, this is bounded as

∥κN∥ ≤ Op

(
d

∏
n=1

N−1/2
n

)∥∥vec
(
Ã
)∥∥

The interactive fixed-effect approximation error can be summarised as,

∥∥∥vec
(
Ã
)∥∥∥2

= ∑
i1,...,id

(
L

∑
ℓ=1

d

∏
n=1

(
ϕ
(n)
in,ℓ− ϕ̄

(n)
i∗n,ℓ

))2

.

By similar steps as the proof of Proposition 4.3.2 this can be bound by

∥∥∥vec
(
Ã
)∥∥∥2

≤ L

(
d

∏
n=1

Nn

)
d

∏
n=1

1
Nn

∑
in

∥∥∥ϕ
(n)
in − ϕ̄

(n)
i∗n

∥∥∥2
.
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Hence,

∥κN∥2 ≤ LOp

(
d

∏
n=1

1
Nn

∑
in

∥∥∥ϕ
(n)
in − ϕ̄

(n)
i∗n

∥∥∥2
)

Concentrate on the term, 1
Nn

∑in

∥∥∥ϕ
(n)
in − ϕ̄

(n)
i∗n

∥∥∥2
, in each dimension separately,

1
Nn

∑
in

∥∥∥ϕ
(n)
in − ϕ̄

(n)
i∗n

∥∥∥2
≤ 1

Nn
∑
in

(
∑ jn k

(
1
hn

∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
jn

∥∥∥)∥∥∥ϕ
(n)
in −ϕ

(n)
jn

∥∥∥)2

(
∑ jn k

(
1
hn

∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
jn

∥∥∥))2 , (A.3)

where elementary norm bounds are used to bound the left hand side. Use as short-

hand â(n)i j :=
∥∥∥ϕ̂

(n)
in − ϕ̂

(n)
jn

∥∥∥. This can be bound as, with PNn := ∑ jn k
(

â(n)i j /hn

)
,

1
P2

Nn

1
Nn

∑
in

∑
jn

k
(

â(n)i j /hn

)2∥∥∥ϕ
(n)
in −ϕ

(n)
jn

∥∥∥2
+

+
1

P2
Nn

1
Nn

∑
in

∑
jn

∑
j′n ̸= jn

k
(

â(n)i j /hn

)
k
(

â(n)i j′ /hn

)∥∥∥ϕ
(n)
in −ϕ

(n)
jn

∥∥∥∥∥∥ϕ
(n)
in −ϕ

(n)
j′n

∥∥∥

Call

A :=
1

P2
Nn

1
Nn

∑
in

∑
jn

k
(

â(n)i j /hn

)2∥∥∥ϕ
(n)
in −ϕ

(n)
jn

∥∥∥2

and

B :=
1

P2
Nn

1
Nn

∑
in

∑
jn

∑
j′n ̸= jn

k
(

â(n)i j /hn

)
k
(

â(n)i j′ /hn

)∥∥∥ϕ
(n)
in −ϕ

(n)
jn

∥∥∥∥∥∥ϕ
(n)
in −ϕ

(n)
j′n

∥∥∥
Expand

∥∥∥ϕ
(n)
in −ϕ

(n)
jn

∥∥∥ around the proxies for each fixed-effect term and bound using

the triangle inequality as,

∥∥∥ϕ
(n)
in −ϕ

(n)
jn

∥∥∥≤ ∥∥∥ϕ
(n)
in − ϕ̂

(n)
in

∥∥∥+∥∥∥ϕ
(n)
jn − ϕ̂

(n)
jn

∥∥∥+∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
jn

∥∥∥ .
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Then,

A ≤ 1
P2

Nn

1
Nn

∑
in

∑
jn

k
(

â(n)i j /hn

)2
× . . .

× . . .
(∥∥∥ϕ

(n)
in − ϕ̂

(n)
in

∥∥∥+∥∥∥ϕ
(n)
jn − ϕ̂

(n)
jn

∥∥∥+∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
jn

∥∥∥)2

and by a few applications of Cauchy-Schwarz inequality this is bound as

A ≤ 1
P2

Nn

1
Nn

∑
in

∑
jn

k
(

â(n)i j /hn

)2
× . . .

× . . .O
(∥∥∥ϕ

(n)
in − ϕ̂

(n)
in

∥∥∥2
+
∥∥∥ϕ

(n)
jn − ϕ̂

(n)
jn

∥∥∥2
+
∥∥∥ϕ̂

(n)
in − ϕ̂

(n)
jn

∥∥∥2
)

Take

1
Nn

∑
in

∑
jn

k
(

â(n)i j /hn

)2
O
(∥∥∥ϕ

(n)
in − ϕ̂

(n)
in

∥∥∥2
)

=
1

Nn
∑
in

O
(∥∥∥ϕ

(n)
in − ϕ̂

(n)
in

∥∥∥2
)

∑
jn

k
(

â(n)i j /hn

)2

≤ O

(
1

Nn
∑
in

∥∥∥ϕ
(n)
in − ϕ̂

(n)
in

∥∥∥2
)

O(Nn) ,

where the last inequality comes from bounded kernel functions. Hence this term is

Op
(
C−2

n Nn
)
. By similar arguments the second term is also Op

(
C−2

n Nn
)
. The final

term,

1
Nn

∑
in

∑
jn

O
(

k
(

â(n)i j /hn

)2∥∥∥ϕ̂
(n)
in − ϕ̂

(n)
jn

∥∥∥2
)
=

1
Nn

∑
in

∑
jn

O
(
h2α
)
= O

(
Nnh2α

)
from Assumption 4.3.7.

This establishes

A ≤ Nn

P2
Nn

(
Op
(
C−2

n
)
+O

(
h2α
))

.
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Now it is shown that B = O(NnA) such that B is the leading asymptotic term.

B =
1

P2
Nn

1
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∑
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= NnA

The second line is simply rearrangement, the third line is from the Cauchy-Schwarz

inequality, the fourth line simply adds an additional weakly positive term to the final

sum such that the inequality is valid, and the fifth line uses Jensen’s inequality.

Hence, the leading factor

B ≤ N2
n

P2
Nn

(
Op
(
C−2

n
)
+O

(
h2α
))

.

Now for PNn = ∑ jn k
(

â(n)i j /hn

)
. Assumption 4.3.8 implies that

(1/Nn)∑
jn

k
(

â(n)i j /hn

)
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converges to a bounded and strictly positive sum, where boundedness comes from

having bounded kernel functions. This means the inverse
(
(1/Nn)∑ jn k

(
â(n)i j /hn

))−1

also converges to a bounded and strictly positive sum, hence
(

∑ jn k
(

â(n)i j /hn

))−2
=

Op(1/N2
n ), so N2

n
P2

Nn
= Op(1). This can also be found by noting N2

n
P2

Nn
= (PNn/Nn)

−2,

which is bounded O(1) because PNn/Nn converges to a strictly positive constant.

Hence,

1
Nn

∑
in

∥∥∥ϕ
(n)
in − ϕ̄

(n)
i∗n

∥∥∥2
≤
(
Op
(
C−2

n
)
+O

(
h2α
))

.

Taking the product of these terms over all dimensions then forms the statement of

the result.

■

C.2 Reducing the number of estimated parameters
Analysts may be concerned with the number of parameters implied by the least

squares problem (4.12). In practice, this equation implies a total of N1N2g(N)+

N1g(N)N3 + g(N)N2N3 parameters, where g(N) is the number of groups in each

dimension that may depend on total data size N = ∏n Nn. This implies the number

of fixed-effects parameters with respect to total data size is

g(N)∑
d
n=1 ∏n′ ̸=n Nn′

∏n Nn
= g(N) ·O

(
1

minn∈{1,...,d}Nn

)
(A.4)

Hence, in the linear setting, the loss of degrees of freedom is negligible as long as

the group size g(N) does not grow too fast with respect to total data size. However,

this makes estimation in non-linear settings like (4.5) problematic because of the

incidental parameter bias, see in Chen et al. (2021). For this reason it is useful to

consider versions of the within-cluster transformation that do not require so many

parameters. The following is a non-exhaustive list of methods to reduce the number

of estimated parameters.

The first approach to consider is to simply ensure the group sizes are small
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with respect to data size. To do this consider gn := g(Nn) as the number of groups

in dimension n. Take a similar calculation to (A.4) to obtain the total number of

parameters ∑n gn ∏n′ ̸=n Nn′ . It should then be clear that as long as gn = o(Nn), the

number of estimated parameters is small with respect to total data size and the inci-

dental parameter problem is asymptotically negligible. However, the condition that

gn = o(Nn) may be highly restrictive. For example, if a sample of the unobserved

parameter space is very disparate then this condition restricts the analyst to make

poor approximations of the fixed-effects terms as each ϕ
(n∗)
in∗ ,ℓ

−ϕ
(n∗)
jn∗(in∗),ℓ

will be very

large. This is why it is important to consider the alternatives provided below. As

can be seen in (4.13), the approximation error is multiplicative across dimensions,

which means the analyst needs only to approximate a subset of these well. This fact

is utilised in the below displays.

Consider clusters along just one dimension. The within-cluster transformation

associated with this is simply,

Ãi jt = Ai jt −Ai∗ jt =
L

∑
ℓ=1

(ϕ
(1)
iℓ − ϕ̄

(1)
i∗ℓ )ϕ

(2)
jℓ ϕ

(3)
tℓ .

Under some high-level assumptions on the unobserved fixed-effects, ϕ̄
(1)
i∗ℓ = ϕ

(1)
iℓ +

O
(

1
N1

)
. Also, the term ϕ̄

(1)
i∗ℓ may have to be estimated - call the estimate ϕ̂

(1)
i∗ℓ .

Again, under some high-level assumptions, this could be estimated as ϕ̂
(1)
i∗ℓ = ϕ̄

(1)
i∗ℓ +

Op

(
1√

N2N3

)
. Combining this leaves the estimated Ãi jt = Op

(
1

min{N1,
√

N2N3}

)
. So

selection of which dimension, d∗, to cluster and difference over solves the opti-

misation d∗ = argmaxd∈{1,2,3}min{Nd,∏n,m ̸=d;n̸=m
√

NnNm}. This procedure re-

quires Nn̸=d∗Nm/∈{d∗,n}×g(d∗) parameters to estimate, where g(d∗) is the number of

groups for dimension d∗. Of course, choice of d∗ may also incorporate the number

of parameters required for estimation. Note that this method does not automatically

project the additive terms from B, so this should be performed after an initial within

projection.
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This logic can be extended to a difference across two-dimensions as,

Ãi jt = Ai jt −Ai∗ j∗t =
L

∑
ℓ=1

(
ϕ
(1)
iℓ ϕ

(2)
jℓ − ϕ̄

(1)
i∗ℓ ϕ̄

(2)
j∗ℓ

)
ϕ
(3)
tℓ .

By the same reasoning as above this leads to

Âi jt = Op

((
min

d∈{1,2}
min

{
Nd,
√

N{1,2}\dN3

})−1
)

The optimal dimensions to cluster and difference on is

{d∗
1 ,d

∗
2}= argmax

d1,d2

min
d∈{d1,d2}

min
{

Nd,
√

N{d1,d2}\dNn/∈{d1,d2}

}
.

This requires g(d∗
1)g(d

∗
2)×Nn/∈{d∗

1 ,d
∗
2} parameters.

Take a further difference to obtain

Ãi jt =
(
Ai jt −Ai∗ j∗t

)
−
(
Ai jt∗ −Ai∗ j∗t∗

)
=

L

∑
ℓ=1

(ϕ
(1)
iℓ ϕ

(2)
jℓ − ϕ̄

(1)
i∗ℓ ϕ̄

(2)
j∗ℓ)(ϕ

(3)
tℓ − ϕ̄

(3)
t∗ℓ ).

This reduces to

Ãi jt = Op

((
min

d∈{1,2}
min

{
Nd,
√

N{1,2}\dN3

}
min

{
N3,

√
N1N2

})−1
)
,

which is smaller than the two cluster difference. d∗ can be found similarly. This

requires g(d∗
1)g(d

∗
2)×Nn/∈{d∗

1 ,d
∗
2}+Nn/∈{d∗

1 ,d
∗
2}minm∈{d∗

1 ,d
∗
2}Nmg(d∗

n̸=m).

The above parameter reduction exercises and specifically the choice of which

dimension(s) to cluster on are also subject to the proxies used for clustering. For

example, along some dimensions there may exist observable characteristics that

provide a good signal of individual unobserved fixed-effect cluster. Diagnostics

discussed in Section 4.3.1 also uncover which dimension exhibits low-rank varia-

tion, making it a good candidate for single dimension clustering. The d∗’s above are

given as guides in applications where there is no obvious dimension to concentrate

on when parameter reduction is required. It should also be clear that more esti-
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mated parameters can lead to tighter asymptotic rates of decay in the unobserved

remainder term, which becomes obvious in the asymptotic results discussed later.

One last consideration when choosing from these reduced parameter options is the

implication on the additive fixed-effects terms, where not all additive terms are au-

tomatically projected with each of these reduction methods.
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