Exercise in myositis: what is important, the prescription or the person?

Gita M Ramdharry^{1,2} and Martin Anderson³

- 1- Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London UK
- 2- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
- 3- Academic, Business Consultant and Director of Directed Evolution LTD and Directed Evolution: Resilience LTD, with 18 years of experience managing Immune-Mediated Necrotising Myopathy (IMNM)

Acknowledgement

The Cochrane Neuromuscular Information Specialist, Farhad Shokraneh, ran the updated search for this study. Katherine Jones (Cochrane Pain, Palliative and Supportive Care) screened titles and abstracts for the study and contributed to the write up of the methods section.

Abstract

Our aim for this narrative review was to undertake a search of studies into exercise for people living with Idiopathic Inflammatory myopathies (IIM). We explored the strength of existing evidence with a particular consideration for the implications for people living with IIM and what is important to them. The search strategy from the 2021 Cochrane Physical Activity review in neuromuscular disease was used, and we selected articles that included people with IIM, including Dermatomyositis (DM), Inclusion Body Myositis (IBM), Immune Mediated Necrotising Myopathy (IMNM) [also known as necrotizing autoimmune myopathy (NAM)], and Polymyositis (PM). 2967 records were screened and 16 were included in this review.

Safety of exercise was demonstrated in nine articles, using a range of measures of disease activity, serum creatine kinase, indicators of inflammation, pain, or fatigue. Two studies that took muscle biopsies showed no evidence of increased inflammation. Aerobic exercise protocols were used in 8 studies across conditions and demonstrated improvements in cardiorespiratory fitness or exercise capacity. Six studies of strength training observed improvements in muscle function, with two studies reporting muscle biopsy results of amplified immune response and up regulation of genes related to recycling of damaged proteins. Nine of 13 studies that measures functional outcomes showed significant improvements, and evidence for behaviour change was observed in a study of a self-management intervention.

The evidence of safety and effect of training is reassuring and welcome, and we now need to explore how we support people to incorporate exercise and physical activity longer term into active lifestyles.

Background

Idiopathic Inflammatory myopathies (IIM) are a heterogenous group of diseases, falling into subsets with varying clinical and pathophysiological features: Dermatomyositis (DM), Inclusion Body Myositis (IBM), Immune Mediated Necrotising Myopathy (IMNM) [also known as necrotizing autoimmune myopathy (NAM)], and Polymyositis (PM)(1,2). Acute or subacute onset is observed in NAM, PM or DM with muscle weakness and wasting feature clinically or sometimes subclinically in DM. People with IBM report an insidious onset with progressive muscle weakness and wasting. It is hypothesised that systemic and local inflammation in the acute phase impairs muscle contraction, fatigability and function, though the correlation between weakness and disease activity is not clearly related(3). MRI analysis reveals increasing percentage fat fraction in PM, DM (4,5) and IBM(6), that correlates with muscle function and disability and explains more prolonged presentations of weakness.

High dose steroids and other immunotherapies are offered to people with DM, PM and IMNM. People with IBM do not usually respond to immunosuppression with physical therapy recommended as the main management strategy(2).

Physical inactivity and sedentary lifestyles can lead to disuse muscle atrophy that could cause additional detriment in conditions where primary muscle weakness and wasting are features (7,8). People living with IIM show very low levels of physical activity compared to controls (9,10) and there are correlations between physical activity levels and disease severity (9–11). There is evidence of deconditioning in some IIM cohorts. MRI demonstrated volume loss in muscles less affected by fatty atrophy due to primary disease in IBM (12).

Exercise can be an important intervention to address the consequences of low levels of physical activity and the associated secondary impairments and non-communicable diseases (8). There have been two Cochrane reviews of exercise and physical activity interventions in people living with neuromuscular diseases (NMD), that included studies in myositis (13,14). There is uncertain evidence of effectiveness of strength and aerobic training more generally in NMDs (13), with slight increases in strength in DM, PM and juvenile DM, and slight increases in aerobic capacity in DM and PM. The review of physical activity interventions, revealed that they mainly consisted of structured exercise or physical activity support (14). There was high variation in the components of the interventions and methodological limitations which meant that the authors remained uncertain of the effectiveness of interventions to promote physical activity.

It has been suggested that endurance and aerobic exercise programs for people with IIM could have a direct impact on muscle metabolism to slow the muscle atrophy process. Activation of anaerobic muscle fibre phenotype and muscle growth pathways have been hypothesized (15). In addition positive effects on immune responses, epigenetics and endocrine pathways have also been suggested (16).

There has been a recent excellent review of exercise interventions in IIM focusing on the mechanistic changes within muscle, recommended to the reader who wishes to explore at this level (16). The emphasis of our paper will be through a different lens. A study of people with rare neurological conditions, including neuromuscular diseases, explored the areas of importance for change with physical activity interventions (17). People living with rare neurological conditions identified 3 domains: physical well-being (e.g., physical functioning and independence), psychological well-being (e.g., mood, enjoyment, confidence) and participation in activities.

Our aim for this narrative review was to update the search from the recent Cochrane review of physical activity interventions in neuromuscular diseases (14), apply it to interventions with IIM

cohorts, understand if the existing evidence-base meets the domains of importance of people living with neuromuscular and rare conditions and, consequently, to present some suggestions for future research, where gaps have been found to be present. To ensure real-world applicability and preserve ecological validity, this paper has been co-written with an academic diagnosed with an IIM.

<u>Method</u>

Exercise and myositis search and screening

To consider the most recently published evidence, we ran an updated search of the published search strategy from the Cochrane Physical Activity review in neuromuscular disease, which originally ran on 30 April 2020 (table 1). On 12 February 2022, Farhad Shokraneh updated the searches for CENTRAL, Embase and MEDLINE, which identified 3,487 new records before deduplication.

Types of studies	Randomised controlled trials, including randomised cross- over trials, and quasi-RCTs. Full text and abstract publications; no language restrictions (see Jones et al. 2021 review) (14).
	Although the search strategy is designed to identify RCTs we also included any single arm exploratory trials identified through the update search.
Types of participants	Adults, children or both with myositis diagnosed by any established criteria. We screened for the following conditions: myositis; sporadic inclusion body myositis; polymyositis; dermatomyositis; juvenile dermatomyositis; anti-SRP myositis; necrotising myositis.
Types of interventions	Any type of exercise, compared with no intervention or another intervention (see Jones et al. 2021 review for ACSM definition of exercise) (14). We did not restrict inclusion by the duration of exercise intervention although the duration is often at least 6 weeks (see Jones et al. 2021 review) (14). We included single arm exploratory trials in which the
	We included single arm exploratory trials in which the intervention is any type of exercise.

Table 1: Eligibility criteria for evidence for updated search

We planned for initial screening of titles/abstracts to be completed by Katherine Jones (first author of the Cochrane PA review that published the original search strategy)(14) and at least 20% of the search results to be dual screened independently by GR.

We imported search results into Covidence to facilitate dual, independent screening of titles and abstracts. Covidence automatically removed 520 duplicate records, which left 2967 records for screening. KJ and GR screened titles and abstracts for inclusion based on the predefined eligibility criteria outlined above. As a narrative review, they also decided to consider search results of potential relevance to a broader neuromuscular or neurological population, and other types of evidence, such as reviews and non-interventional studies. However, it is important to note that the search strategy was primarily designed to capture RCTs and interventions for promoting physical activity. If there was any discrepancy for inclusion, the authors planned to resolve this by discussion.

Of the 676 records dual screened (23%), we found only five discrepancies (<1%), which were resolved through discussion in relation to the eligibility criteria. We agreed to exclude two studies that related to creatine supplementation, and provisionally included the three other studies for further consideration.

In total, we excluded 2934 of the 2967 records through screening of titles and abstracts. Two duplications of included records were also subsequently excluded, and full text publications were sought for the 31 remaining records (see list of records in Excel doc). KJ and GR retrieved 27 full text publications as two were conference abstracts and two were entries on a trials registry. One paper was translated from German to English using the translation option on the journal webpage.

GR (and MA) reviewed full text publications against the eligibility criteria and excluded 17 further publications because they did not include people with myositis (N=8); did not include an exercise intervention (N=6); protocol or commentary papers (N=4). Six papers were identified from two previous Cochrane reviews (13,14), and two additional papers were identified from the reference lists of included papers. In total, 16 articles were included in this review (18–32).

MA and GR consider the implications of the recently published evidence about exercise for people living with myositis, clinical practice and education.

Results

The main features of the articles included in the review are presented in table 2. We have considered the studies in terms of safety of exercise interventions, physiological change, functional change and behaviour change.

Safety of exercise interventions

Historically there was problematic advice telling people with IIM not to exercise to avoid worsening muscle damage. Secondary, disuse atrophy can be detrimental to function on top of the physical effects of primary disease. An important outcome from exercise research in this field is exploring the safety of exercise programmes.

A core outcome set for exercise trials in IIM was developed by the International Myositis Assessment and Clinical Studies (IMACS) group (33) that included a patient and physical global disease activity rating, using a 100 point visual analogue scale (VAS), Health Assessment Questionnaire (HAQ) and laboratory assessment of serum creatine kinase (CK). Four studies adopted the core outcome set (21,22,32,34), and of those that didn't, serum CK levels was also used in four other studies as an indicator of muscle damage (18,27,28,30). In addition, some studies measured additional indicators of inflammation, such as aldolase (28), erythrocyte sedimentation rate, serum C-reactive protein, creatine kinase, lactate dehydrogenase, myoglobin, and selected inflammatory cytokines, tumour necrosis factor or chemokines (32). No significant changes were observed with possible reductions in some inflammatory markers (32).

Symptoms were monitored using global activity scales (21) or visual analogies scales (VAS) for specific impairments such as pain and fatigue (27). Across the studies, there were no group changes in symptoms, though there were some individual reports of temporary symptoms, such as joint pain or delayed onset muscle soreness at the start of training programmes (27,32,35).

Muscle biopsy was used in two studies, one to explore changes in inflammatory infiltrates before and after exercise in people with early onset PM and DM (18), and another reported as a separate paper from the primary exercise intervention article in IBM (30), that allowed a more in depth

exploration of inflammatory responses (23). Reassuringly, both studies did not show any signs of increasing inflammation.

Interventions studies targeting physiological change

The majority of included studies designed exercise protocols to promote changes in cardiopulmonary fitness or muscle structure and function. Aerobic exercise protocols were used to train a combined total of 92 people with myositis across 8 studies. They included a total 11 people with junior DM (19,22), 31 with DM (18,20,28,34,35), 25 people with IBM (27,31,35), 19 with PM (18,28,34) and 6 with IMNM (20). The training programmes were either as a stand-alone intervention (27,28,35) included as part of a combined training and strength regime (19,20,22,34) or combined with another intervention, e.g. energy conservation (26) or activity and balance training (32). The duration of training varied from 6 to 16 weeks, with a range of frequency of 2-5 times per week. Exercise intensity was set with some programmes using heart rate, e.g. at 60% of maximum heart rate, and was progressed with some training protocols across the intervention period (27,31).

Cardiopulmonary exercise testing (CPET) was used in six studies, using incremental protocols with a bicycle ergometer (20,22,27,28,34,35). All measured maximum or peak oxygen uptake (VO₂ max or VO₂ peak) during the exercise test, with some also recording work rate (WR), maximum heart rate (HR_{max}) and time or VO2 at anaerobic threshold. All studies, with the exception of the pilot study by Habers et al. (22), demonstrated significant effect of exercise on CPET variables (18,20,34,35) or a large effect size (27) indicating improved cardiorespiratory fitness or exercise capacity.

Muscle strength training protocols were instigated by six studies, either as stand-alone programmes (21,23,29,30) or as part of combined intervention with aerobic training (18–20,22,34). Strength training protocols were used to train a total of 144 people with myositis across 8 study cohorts. They included 53 people with juvenile DM (19,22), 33 with DM (18,20,32,34), 26 people with PM (18,32,34), 21 with IBM (23,29,30) and 11 with IMNM (20,32). Most regimes aimed to increase peak muscle strength and were either prescribed as a programme of strength training using body weight (18,19) or using weight resistance, though the method of resistance training was not clear in one study (32). Endurance training of the muscles was included as part of a combined programme with aerobic training where the aim was to increase the strength of 5 repetitions rather than peak strength (34). Innovative methods of training were introduced in two cohorts: resistance training with blood flow resistance in 21 people with IBM (23,29,30) and water based plyometric training in 16 people with juvenile DM (21). Plyometric training involves fast, explosive movements and the adaptation to water could help to reduce the impact of forces in people with muscle disease (21). In this study, water based plyometrics were compared against a standard, out-patient exercise regime to ascertain superiority of this method of training. This was not the case with studies of resistance training with blood flow occlusion, as the control was a passive group of no exercise (23,29,30).

Changes in muscle function were assessed most frequently by manual muscle testing, as recommended for inclusion in the IMACS core outcome set of exercise interventions (33). It was the primary outcome measure in one study (32) but most often included as a battery of secondary outcomes (19,30,34). The one repetition maximum (1RM) method was used by Borges et al. (20) and other studies used quantitative muscle testing with handheld dynamometry (21) and isokinetic and/or isometric dynamometry (27,29,30). Voluntary muscle activation using twitch interpolation was used in combination with dynamometry in an IBM cohort (29). Interestingly one study that incorporated resistance training as a significant element of a combined programme did not measure

muscle function but performed muscle biopsies to explore changes in inflammation (18). Improvements in muscle function were observed with resistance training (stand alone or as part of a combined program) across all studies included in this review (table 2) compared to baseline (20), compared to control groups (20,29,32,34) or compared to a control condition in a cross-over trial (21).

The immunological reaction to exercise was examined in detail by Jensen et al. (23) in a paper reporting separate results for the cohort of people with IBM who underwent resistance training with blood flow occlusion (BFRE) in the study by Jørgensen et al. 2018 (30). Muscle biopsies were performed in 21 of the original cohort, 11 who underwent training and 10 no exercise controls. Biopsies were taken from either the tibialis anterior or vastus lateralis muscles for evaluation of CD3-, CD8-, CD68-, CD206-, CD244- and FOXP3-positive cells by three-colour immunofluorescence microscopy and Visiopharm-based image analysis quantification. The analysis found an upregulation in CD3-/CD8+ expressing natural killer cell content, suggesting an amplified immune response with training. However, there were no changes in macrophage or T cell infiltration. The authors concluded that these findings indicate no risk of intensified inflammatory activity with BFRE. The same study group also reported changes in muscle structure as well as function in the participants with IBM (30) using DEXA scanning to measure thigh lean muscle mass, but no response to the BRFE training was found.

Muscle biopsy was also used by Borges et al. 2021 (20) to investigate the effect of combined exercise programme on the ubiquitin-proteasome system (UPS) and genes related to autophagy on the skeletal muscle in people with DM and IMNM. In addition to the improvements in muscle strength reported earlier, genes related to UPS were downregulated, whereas genes related to autophagy, mitochondrial pathways, and antioxidative systems were upregulated. The authors suggested that this indicated an increase in the recycling of damaged proteins and organelles, which may also contribute to the performance and endurance of skeletal muscles in these patients.

Interventions targeting functional change

With improvements in muscle function and cardiopulmonary fitness, improvements in function and daily activities are assumed. A large variety of functional measures were used as secondary outcomes in many of the studies presented in this review, but only two trained functional activities specifically.

Špiritović at al. (32) included specific balance training and practice of activities of daily living (ADL) in addition to resistance training in this combined program. Balance was assessed using stabilometry (force vector area) and ADL using the Functional Index-2 score. Significant improvements were observed in both measures that accompanied the improvements in muscle strength.

An innovative method of gait training was used for people with neuromuscular diseases (including one person with IBM) using the HAL-HN01 cybernetic device N, which is a robot assisted gait training triggered by motor unit detection (25). The study demonstrated improvements in 2 metre timed walk function compared to a control group who practiced walking in a hoist. There was only one person with myositis in the cohort who actually showed a decline in walk time, so the effect of this intervention would need to be replicated in a larger myositis cohort.

Where functional measures were secondary to aerobic or resistance training, functional improvements were observed in most trials (18,21,22,28,30,31,34) but not all (19,27,29). Often trials

are powered for physiological or muscle performance outcomes, rather than functional activities, so this may account for where change is not observed, but it may also be due to lack of training specificity for more complex functions.

Interventions targeting behaviour change

Veenhuizen et. al. (26,31) developed the Energetic intervention of group self-management, aerobic exercise, energy conservation and relapse prevention. They included facilitated sessions with Occupational Therapists and Physiotherapists to provide support with the different elements of the program. Here the focus was on educating and empowering the person living with neuromuscular disease to adopt these positive behaviours. This 16-week programme was compared to usual care and demonstrated a significant improvement in the Canadian Occupational Measure (COPM) across all time points in participants receiving the Energetic programme.

Discussion

For many years, people with myositis were told not to exercise for fears of increasing inflammation and muscle damage. With exercise being recommended more often, it is of utmost importance for the person living with IIM to know what type and dosage of exercise is safe and effective. Some of the studies reviewed included people with myositis in larger studies of people with other muscle wasting diseases (25,27,31). The question for people living with IIM could be whether a more generic application of exercise programmes is appropriate or safe for people with IIM, with inflammation a key feature of these myositis, but not in other muscle diseases, e.g. muscular dystrophy.

What is striking from this review is that a large variety of exercise types, durations and prescriptions have been investigated with no increases in serum CK (refs) or inflammatory markers (32), with antiinflammatory effects (18) and increased recycling of damaged proteins (20) suggested. Another important finding from comparisons with no-exercise control groups is that a decline in muscle strength in IBM continues with no intervention (30) and exercise interventions improve muscle function parameters. These two conclusions support the premise that most activity is good for disease management and these studies provide a wider "menu" of exercise types that people may wish to engage with. For a person living with IIM, knowing that exercise can have a real effect on muscle function, as well as the other more generic benefits, is positive and motivating. Furthermore, with the increasing number of different exercise types that are being shown to yield positive effects, people living with IIM with particular exercise preferences can select what is more motivational for them while also understanding the strengths and limitations relating to how successful their chosen approach could be. We are moving towards a time where people living with IIM will be able to be presented with greater and more informed choice of how to manage their own treatment, which could lead to greater engagement with exercise and physical activity.

The safety monitoring data in these studies is reassuring and of particular interest are the muscle biopsy methods used to explore this. Not only is there no evidence of increasing inflammation with exercise, but there may even be an anti-inflammatory effect. Could this provide a disease modifying effect? Further longitudinal studies would be required to understand if disease trajectories are altered with people who exercise or are physically active, as has been observed in small cohorts of people with muscular dystrophy (36). We should be cautious, however, to ensure that longitudinal studies not only focus on the effect on the muscle, but also physical functioning that is meaningful to people living with the conditions. This adds complexity, as larger cohorts will need to be recruited, but required to understand the effect sizes and minimally clinically important differences.

Disease modifying drugs are being developed for some types of myositis so it is important to understand the effect sizes of strength training interventions in particular. For example, drugs targeting protein homeostasis may have potential to increase muscle mass (37). The question is whether the effects of those drugs are greater than the effect of resistance training, and could their effect actually be enhanced by a well thought out, individualised and targeted exercise programme?

There has been an assumption that engagement in structured exercise programmes will automatically lead to greater engagement in physical activity and exercise beyond the supportive environment of participation in a trial. Wallace et al. (27) stated their aim to improve self-management by participants training in their local leisure facilities. Astley et al. (19) responded to restrictions from the Covid-19 pandemic with a home based, virtually supported programme, and other studies included extended follow up or open-label periods to explore longer term effects (32,34). Exercise effects tended to tail off on cessation of the active elements of the programmes (32,34) with active "washout" periods included in two cross-over trail designs (21,27). This indicates that continued engagement is required to sustain beneficial effect but one study in IBM and other studies in NMDs find that a minority of participants continue to exercise independently beyond the training periods (8,27,38,39). Three studies included in this review incorporated qualitative methodologies to understand the experiences of participation in the trials (19,26,27). A consistent finding was that the support from trainers and coaches was very important for motivation and engagement.

We should now start to shift our focus from trials that focus on just changing the structure and function of muscle, but how can people living with IIM bring exercise and physical activity into their day to day lives. Voorn et al. (35) took an important step in co-designing the Be-FIT exercise programme with people living with muscle diseases with an aim to carrying over into the home or community. People living with IIM are best placed to tell us what will work best for them to achieve that aim. The Energetic study by Veenhuizen et al. (26,31) is the only one in this review that incorporates more psychological approaches to improve self-management through support and education. It has been argued that behaviour change theories need to underpin physical activity interventions for long term implementation and benefit (8), with increased engagement as the goal.

The work to date indicates improvement in aerobic capacity and functional improvement, reflecting the more in depth metanalysis performed (40). However, this and other systematic reviews in muscle disease have highlighted methodological issues with studies in this field. There are particular issues with small sample sizes in trials of rare diseases so incorporating core outcome sets, such as the measures recommended by IMACS (33) will aid future metanalysis. With the suggested shift of focus to the individual, we would also recommend inclusion of co-designed core outcome sets that prioritise what is important to people living with rare neurological diseases, relating to the real life situations they encounter every day (17). If engagement is the key ingredient, then pragmatic trials using wearable technologies could be designed where activity and physical effort is tracked as an intervention goal as well as an outcome measure (41–43).

The research community in this field needs to build on this change of focus to further a paradigm shift to include people living with IIM in the design of programmes (35), outcome measurement (17) and support of the person rather than just focus on the muscle (26,31).

Study citation	Design & methods	Participants	Interventions	Outcomes	Results
Alexander son et al. 2014	Single blinded, randomised, controlled trial for 24 weeks, with 80-week open label follow up	Polymyositis (PM) or Dermatomyos itis (DM) N=19 [10 intervention group, 9 control group] Onset <3 months Median age 60 years (52- 67)	Intervention group (EG): 12 weeks, 5 times per week, supported resistance training and brisk walking at home, followed by 12 weeks, twice a week, home/gym combined with immunosuppressi on. Control group (CG): range of motion exercises plus immunosuppressi on	Disease- Specific Functional Index (FI), Aerobic capacity, Nottingham Health Profile, CPK levels, Muscle biopsy (inflammation)	N=6 dropouts. Improved FI and aerobic capacity in both groups at 24 and 52 weeks, exercise group at 104 weeks. No increase in inflammation through CPK and muscle biopsy analysis
Astley et al. 2021	Quasi- experimental, mixed methods study for 12 weeks	Juvenile DM N=11 Mean age 13.2 years (±3.2 years)	12 week aerobic and bodyweight exercise training program, 3 times per week. One session per week with live, online supervision (1-5 participants), 2 sessions with feedback to the trainer via messaging app. Online instructional materials.	Strength & Difficulties Questionnaire (SDQ), Paediatric Quality of Life inventory (PedsQL), Pittsburgh Sleep Qquality Index (PSQI), Manual Muscle Test (MMT), Childhood Muscle Assessment Scale (CMAS), Disease Activity Score (DAS), qualitative data (text or voice message)	N=2 dropouts. No change in SDQ, PedsQL and PSQI with the exercise intervention. Some perceived health benefits from qualitative data, e.g., improved energy, mood and sleep. The online format was mostly received positively, and the trainer support was valued by participants.

Porgos of	Quaci	Sustamia	12 wooks twics a	Muselo biones:	Doct oversice
Borges et al. 2021	Quasi- experimental, longitudinal	Systemic Auto-immune Myopathies: N=7 with DM, N=6 with Immune Mediated Necrotising Myopathy (IMNM). Health control group N=10 Mean age: DM 49.8 (±2.3), IMNM 58.5 ±10.6), control 48.7 (±3.9) years	12 weeks, twice a week combined program of resistance, aerobic and stretching exercises.	Muscle biopsy: identification of auto- antibodies RNA integrity & concentration, Maximal cardiopulmon ary exercise test (CPET). Variables: VO ₂ peak, time of ventilatory anaerobic threshold (VAT), point of respiratory compensation (RCP), time to exhaustion. 1 repetition maximum test, Timed- up-and-go (TUG), Timed stands test (TST)	Post exercise, several genes related to UPS were downregulate d, whereas genes related to autophagy, mitochondrial pathways, & antioxidative systems were upregulated in the DM and IMNM groups. DM: improvement in time to VAT and exhaustion, leg & bench press loads, TST & TUG. IMNM: improvement in time to RCP, bench press load &
Elnaggar et al. 2021	Single-blind, randomised, cross-over pilot study	Juvenile DM N=16 [8 intervention group, 8 control group] Mean age: 13.44 (±2.85)	Training condition: 45 minutes of supervised water- based, plyometric exercise, 3 times a week for 4 weeks Control condition: standard outpatient care consisting of 45 minutes of supervised, combine flexibility, aerobic and resistance exercises, 3 times	Maximum Isometric Force (MIF) using hand- held dynamometry (make-test) for hip flexors & abductors, knee flexors & extensors, PedsQL Multidimensio nal Fatigue Scale, Childhood Health Assessment Questionnaire (CHAQ), Patient/parent	TUG Improvement in all outcome measures following both water-based and standard exercise training. Greater improvements were observed in muscle strength, fatigue, functional ability & disease activity with plyometric training.

			a week for 4 weeks 1 month washout prior to crossover	global disease activity assessment	
Habers et al. 2016	Multicentre, randomised controlled trial, parallel group	Juvenile DM N=26 [14 intervention group, 12control group] Median age: 12.3 years (range 8.3- 17.6)	Intervention group: interval training on a treadmill, resistance exercise. Supervision every other week. Waiting list control group:	Feasibility: tolerability, safety & adherence; Aerobic fitness: VO2 peak, VO2 at ventilatory anaerobic threshold, endurance time. Visual Analogue Scale (VAS) for pain, muscle function subscale of	N=8 dropouts. 75% of remaining participants completed median 30/32 sessions. No adverse events. No difference between groups in aerobic fitness or secondary measures except for 3 items of the Bruininks-
				Bruininks- Osteretsky Test of Motor Proficiency, Childhood Myositis Scale, 6 Minute Walk Test (6MWT), Physical Activity Enjoyment Scale, PedsQL Generic Core Assessment, Childhood Health Assessment Questionnaire, VAS global disease activity, physical activity (acceleromete ry)	Osteretsky scale (long jump, push ups and sit ups) in favour of the training group.

longer it	Donolousteed	Comercial			In energy is
Jensen et	Randomised,	Same cohort	Intervention	Muscle biopsy:	Increase in
al. 2019	controlled	as Jørgensen	group: 12 weeks,	immunological	CD3 and CD8
	trial. Single	et al. 2018	twice a week, low	markers for T	NK cells in the
	Blinded.	and 2021	load (25	cells, natural	intervention
			repetition	killer (NK), M1	group.
		Sporadic	maximum), blood	and M2	Decrease in
		Inclusion Body	flow occluded	macrophages.	CD28 T cells in
		Myositis	resistance		the control
		(SIBM)	training. Blood		group. No
		N=21 [11	flow occlusion		changes in
		intervention	using inflatable		cytotoxic or
		group, 10	pneumatic cuff		regulatory T
		control	on proximal thigh		cells, M1 or
		group]. One	or calf.		M2
		participant of	Control group: no		macrophages
		the original 22	exercise		in either
		refused			group.
		repeat biopsy			
Jørgensen	Randomised,	Same cohort	Intervention	Short Form	N=2 dropouts
et al.	controlled	as Jensen et	group: 12 weeks,	Health Survey	from
2018	trial. Single	al. 2019 and	twice a week, low	(SF36);	intervention
	Blinded.	Jørgensen et	load (25	2-minute walk	group. Low
		al. 2021	repetition	test (2MWT),	training
		0	maximum), blood	Timed-up-and-	adherence
		Sporadic	flow occluded	go (TUG), 30	with 1
		Inclusion Body	resistance	seconds sit to	participant
		Myositis	training. Included	stand test	(<66%). No
		(SIBM)	muscles: knee	(STS),	between
		N=22 [11	extension,	Inclusion Body	group
		intervention	flexion,	Myositis	differences in
		group, 11	plantarflexion &	Functional	SF36, 2MWT,
			dorsiflexion.		TUG or STS.
		control group]		Rating Scale	_
			Blood flow	(IBMFRS),	Between
			occlusion using	Myositis	group
			inflatable	Disease	difference in
			pneumatic cuff	Activity	IBMFRS in
			on proximal thigh	Assessment	favour of the
			or calf.	Tool (MDAAT),	intervention
				Patient &	group.
			Control group: no	Physician	Increased
			exercise	Global Activity	decline in
				& Damage	knee extensor
				VAS, Myositis	torque in the
				Damage Index	control group
				(MDI) <i>,</i>	with per
				Creatine	protocol
				Kinase levels	analysis.
				(CK), Health	
				Assessment	
				Questionnaire	
				(HAQ), Manual	
		1	1		

				Muscle Test]
				for 8 muscles	
				(MMT-8),	
				isokinetic	
				dynamometry for knee	
				extensor	
Iduation	Deve deverie e d	Course colocut		torque.	N. 2 due ve e ute
Jørgensen	Randomised,	Same cohort	Intervention	Training load	N=3 dropouts,
et al.	controlled	as Jørgensen	group: 12 weeks,	(kg) and	and 1
2022	trial. Single	et al. 2018	twice a week, low	volume (load x	insufficient
	Blinded.	and Jensen et	load (25	reps),	adherence to
		al. 2019	repetition	isometric	program
			maximum), blood	dynamometry:	(<66%). Per
		Sporadic	flow occluded	maximum	protocol
		Inclusion Body	resistance	knee extensor	analysis.
		Myositis	training. Included	strength &	Between
		(SIBM)	muscles: knee	rate of force	group
		N=22 [11	extension,	production,	differences
		intervention	flexion,	maximum	observed:
		group, 11	plantarflexion &	knee extensor	Increase in
		control group]	dorsiflexion.	muscle power,	knee extensor
			Blood flow	thigh lean	strength and
			occlusion using	mass (DEXA	rate of force
			inflatable	scan),	development
			pneumatic cuff	voluntary	with training
			on proximal thigh	activation of	in the
			or calf.	knee	stronger leg
				extensors	with a decline
			Control group: no	(twitch	in the control
			exercise	interpolation),	group,
				index of limb	decrease in
				asymmetry, 2-	knee in
				minute walk	extensor
				test (2MWT),	power in
		-		Timed-up-and-	control group
				go (TUG), 30	with no
				seconds sit to	change in
				stand test	training
				(STS) <i>,</i>	group. No
					between
					group
					differences
					observed in
					weaker leg,
					lean mass,
					voluntary
					activation, or
					functional
					measures.

N.A	N 4 	NI-21 DN4 (0)	lakan castia.	During curry	
Munters	Multicentre	N=21 PM (9)	Intervention	Primary	N= 2 dropouts
et al.	randomised,	and DM (12)	group: 12-week,	outcome:	Between
2013	control trial,	patients (n =	supervised	VO2 max from	group effects
	single blinded	11 in	endurance	incremental	were
		the	training program.	cycling test.	observed
		intervention	1 hour, 3 times a	Secondary	favouring the
		group and	week. Exercise	outcomes:	intervention
		n=10 in the	bicycle training	Short form 36	group for the
		control group)	for 30 minutes	(SF36),	following
			then muscle	McMaster	measures:
			endurance	Toronto	VO2 max (O2
			exercises at 30-	Arthritis	uptake &
			40% of 1	Patient	work, Physical
			repetition	Preference	function &
			maximum.	Disability	Vitality
				Questionnaire	domains of
			Control group:	(MACTAR),	the SF36,
			12-weeks of no	Myositis	physician's
			exercise. Invited	Activities	global disease
			to participate in	Profile	activity,), 5RM
			exercise after 12	(MAP), 5	for the left
			weeks.	repetition	leg, 'moving
				maximum	around'
			52-week open	(RM) for knee	domain of the
			extension follow	extensors,	MAP.
			up	patient's &	
				physician's	Participants
				global disease	were
				activity	identified as
				(VAS; range 0–	responders, if
				100), MMT in	they improved
				8	by ≥20% in 5
				groups, Health	VRM or by
				Assessment	≥10% in
				Questionnaire,	VO2 max
				serum CPK,	compared to
				Myositis	baseline: 8 in
				Intent-to-Treat	the
				Activity Index	intervention
				and global	group & 2 in
				extra-skeletal	the control
				muscle activity	group.
				VAS	C
					Some
					indication of
					reduced
					disease
					activity in the
					intervention
					group.

Nakajima et al. 2021	Multicentre randomised, crossover trial. Open label but blinding of assessors of gait parameters	N=24 participants with slowly progressive neuromuscula r diseases including SIBM. N=24 (N = 13 in the intervention group and N=11 in the control group) Only 1 participant with myositis (IBM) assigned to intervention group Idiopathic	HAL-HN01 cybernetic device: robot assisted gait training triggered by motor unit detection. Intervention condition: 40 minutes gait training with a walking hoist plus HAL-HN01 device Control condition: 40 minutes gait training with a walking hoist plus HAL-HN01 device	Primary outcome: 2 MTW. Secondary outcome: 10MTW (speed, cadence), VAS 0-100 for perception; Rivermead Visual Gait Assessment; Manual Muscle Testing (MMT), Barthel Index; 12 lead ECG,	Open extension between group effects in favour of the intervention group for the 'Vitality' domain of the SF36, the 'Work' domain of the MAP and a trend to continued improvement in SRM for the left leg. The participant with IBM showed a negative change in 2MTW with the intervention, but the magnitude of negative change was greater with the control condition.
et al. 2021	controlled, assessor- blinded, non- randomized, single-centre trial	Inflammatory Myopathy N=57 (N = 30 in the intervention	inclusion in the study. All participants given educational materials on activities of daily living and	outcomes: manual muscle resting (MMT-8) & Functional Index-2 (FI-2).	improvement in MMT-8 in the intervention group at 24 weeks, with a decline in the

		· · · ·		C	
		group and	exercise as usual	Secondary:	control group
		N=27 in the	treatment (TAU)	Health	over that
		control group)		Assessment	period. The
			Intervention	Questionnaire	effect of the
		Allocated	group: 24 weeks,	(HAQ), Short	intervention
		according to	supervised	Form 36 (SF-	was not
		proximity to	activities of daily	36), Fatigue	sustained at
		the centre	living, resistance,	Impact	48 weeks.
		running the	and stability	Scale (FIS),	Significant
		trial	training (ADLRSp)	Beck's	improvement
			followed by 24	Depression	in FI-2 with
			weeks of TAU	Inventory-II	exercise.
				(BDI-II), static	
			Control group: 48	balance: force	Significant
			weeks of TAU	vector area	between
				(FVA)	group effects
				basal	at 24 weeks
				metabolic rate	with
				(BMR)	improvements
				and muscle	in HAQ,
				fitness	BDIOII, FVA,
				(extracellular	BMR and
				mass to body	ECM/BCM in
				cell mass	the
				ratio	intervention
				[ECM/BCM])	group. No
				assessed by	difference in
				bioelectric	SF-36.
				impedance.	
					No increase in
					inflammatory
					markers
Veenhuiz	Multicentre,	Participant	Intervention	Primary	N=3 dropouts
en et al.	single blinded	with NMDs,	group: 16 week	outcome:	but included
2019	RCT	including IBM.	Energetic	Canadian	in Intention to
			intervention: 9	Occupational	Treat Analysis
	Assessment	N=29 in the	weeks aerobic	Performance	(ITT)
	prior to	invention	exercise training	Measure	
	randomisatio	group	(AET)(twice a	COPM)	Significant
	n (T0), after	(including 3	week supervised,		between
	intervention	people with	once a week at	Secondary	group effect
	period (T1), 3	IBM), N=24 in	home), 7 weeks	outcome:	with
	months	the control	AET (once a week	Checklist	significantly
	follow up (T2)	group	supervised, twice	Individual	higher COPM
	and 11	(including 2	a week at home)	Strength-	performance
	months	people with	using bicycle,	Fatigue	at T1, T2 and
	follow up (T3)	IBM).	treadmill or	Subscale, 6-	ТЗ.
			rowing training at	minute time	
			50-70% or	walk (6MTW),	Significant
			maximum heart	Activity card	improvements
1			rate.	sort (ACS,	in 6MTW (T1-

	[
			Education	Hospital	T3) HADS-
			sessions on	Anxiety and	Depression
			exercise, energy	Depression	(T1 and T2)
			conversation,	Scale (HADS)	and ACS (T1).
			relapse	and	
			prevention,	Generalised	No significant
			support to apply	Self-efficacy	differences in
			exercise at home.	Scale (GSES	Checklist
			Additional		Individual
			booster session 2		Strength,
			months after the		GSES or
			end with		HADS-Anxiety.
			Physiotherapist		
			or Occupational		
			Therapist.		
			Control		
			intervention:		
			Treatment as		
			usual (TAU)		
Veenhuiz	Mixed	Participant	Intervention	Satisfaction	N=25
en et al.	methods	with NMDs,	group: 16 week	questionnaire	completed
2021	evaluation of	including IBM.	Energetic	for	satisfaction
	trial reported		intervention	participants	questionnaire
	in	N=29 in the	delivered in small		
	Veenhuizen	invention	groups: 9 weeks	Qualitative	N=7 individual
	et al. 2019	group	aerobic exercise	interviews	interviews,
		(including 3	training	(individual and	N=12 focus
		people with	(AET)(twice a	focus groups)	groups, N=2
		IBM), N=24 in	week supervised,	to explore the	partner
		the control	once a week at	experiences of	interviews
		group	home), 7 weeks	patients and	
		(including 2	AET (once a week	healthcare	96% of the
		people with	supervised, twice	professionals	participants
		IBM).	a week at home)	and	were entirely
			using bicycle,	into	or largely
			treadmill or	facilitators and	satisfied with
			rowing training at	barriers	the results of
			50-70% or	regarding the	the
			maximum heart	Energetic	intervention.
			rate.	programme.	Mean
			Education		satisfaction
			sessions on		score 8.7 (±
			exercise, energy		SD 1.1).
			conversation,		Management
			relapse		of the
			prevention,		impairments
			support to apply		was perceived
			exercise at home.		as
			Additional		'entirely' or
			booster session 2		'largely'

			r		
			months after the		improved by
			end with		88% of
			Physiotherapist		participants.
			or Occupational		
			Therapist.		Themes from
			Therapists		interviews:
			trained in self-		Combination
			management and		of modules
			behaviour change		makes a
					complete
			Control		picture; being
			intervention:		prepared to
			Treatment as		change
			usual (TAU)		lifestyle is
					pivotal;
					sustainability
					of
					implementati
					on in daily live
					is essential;
					sports
					performance
					in one's own
					environment
					is challenging;
					the program is physically and
					mentally
					intensive; the
					group setting
					is valuable;
					therapists are
					coaches,
					therapists
					need
					education
					cudeation
Voorn et	Multi-centre,	N=31	BE-FIT training	Measures	N=5 dropouts.
al. 2021	prospective	(including N=3	guides: therapist	taken one	Of the
	pilot study to	with IBM &	and participant	week prior to	participants
	evaluate	N=1 with DM)	manuals.	the	who
	feasibility &			intervention	remained,
	preliminary		Intervention: 5	(T0) and	>75% of
	effectiveness		visits to set goals,	immediately	training
			monitor progress	afterwards	sessions were
			and provide	(T1).	completed.
			support.		
			Additional	Feasibility:	Overall
			telephone	completion	satisfaction
			support.	rate of	from
				logbook.	
			i		

	[4-month home-	Satisfaction	participante 0
					participants &
			based	questionnaires	therapists
			intervention with	for	
			a combination of	participants	Mean HRsubmax
			high and low	and therapists.	
			intensity on a	Change in	reduced
			bicycle	Change in	significantly
			ergometer	HR _{max} with	by -6.5 beats
				incremental	per minute
				exercise	at baseline to after
				testing between T0	intervention.
				and T1. HR _{rest}	A significant reduction was
				and	
				submaximal	also found for
				RPE	RPE _{submax} (-1.5
				(RPE _{submax}), and increased	points on the
				peak workload	Borg Scale,
				(W _{peak}), and	significant increases in
				(Wpeak), and workload at	W _{peak} & WAT
				anaerobic	VV peak & VVAI
				threshold	
				(WAT)	
Wallace	Single-	N=17 people	Training	Primary	N=1 dropout,
et al.	blinded,	with IBM	condition: 12	outcome: VO_2	included in
2019	single centre,	With Divi	weeks, 3 times	peak from	ITT. N=1
2015	randomised,		per week training	incremental,	unable to
	cross-over		on a recumbent	cardiopulmon	complete
	feasibility		bicycle	ary exercise	exercise
	trial		ergometer at a	test (CPET) on	testing due to
			local, community	a bicycle	high blood
			gym. 30 minutes	ergometer.	pressure, but
			aerobic training	5	secondary
			starting at 60%	Secondary	outcomes
			maximum HR for	outcomes:	assessed.
			0-4 weeks, 70%	work rate with	
			at 4-8 weeks &	CPET testing	Completion of
			80% at 8-12	(W), body	97% of
			weeks. Weekly	mass index	exercise
			support from	(BMI) <i>,</i>	sessions.
			physical trainers	percentage	
			trained in the	body fat,	17.4%
			protocol,	blood	improvement
			monthly support	pressure,	in VO ₂ peak
			from trial	spirometry;	with training,
			physiotherapist.	Fatigue	1.3%
				Severity Scale	deterioration
			Control	(FSS); VAS for	with control
			condition: discouraged from	pain; isometric & isokinetic	condition. Cohen's D

r	Γ.	· ·	
	increasing usual	lower limb	effect size:
	activity level.	muscle	1.72 (strong).
	Monthly	strength;	
	telephone calls	6MTW & 10	Secondary
		metre timed	outcomes:
	Crossover: 8-	walk	17.3%
	week TAU	(10MTW);	improvement
	between	Walk-12 scale;	in work rate
	conditions	7 days	with training,
		, accelerometer	0.4%
		y; Self-efficacy	improvement
		for Managing	with control
		Chronic	condition. No
		Diseases Scale;	major changes
		Barriers to	in other
		Activity	outcomes
		& Exercise	measured.
		scale; Short	measureu.
		Form–36;	No changes in
		Pittsburgh	serum CK
		Sleep Quality	levels, pain or
		Scale; Epworth	•
		Sleepiness	fatigue. Qualitative
		Scale;	interviews:
		International	
			participants
		Physical	reported
		Activity Questionnaire	finding the
		Questionnaire	training
		Qualitative,	acceptable but
		semi-	
			highlighted
		structured	the
		interviews & 3	importance of
		month follow	support from
		up telephone	trainers %
		call on	physiotherapi
		cessation of	sts. Perceived
		participation.	improvement
			& wished to
		Monitoring:	continue
		exercise	exercising.
		diaries, VAS	Telephone
		for pain and	calls at 3
		fatigue, serum	months: 5
		creatine	participants
		kinase.	still exercising.
			Reasons for
			cessation:
			gym costs,
			time, loss of
			confidence.

Wiesinger	Randomised,	N=9 people	Intervention	Primary	ADL: 20.5%
et al.	controlled	with DM, N=5	group: 6 weeks	outcome not	improvement
1998a	trial. Blinding	people with	training, twice a	identified.	in ADL score
	not reported.	PM	week for weeks		in
			1-2, 3 times a	Functional	intervention
		7 participants	week for weeks	assessment:	group, 2.9%
		in each group	3-6. One-hour	Functional	improvement
			sessions of static	Assessment	in the control
			cycling at 60%	Screening	group with
			maximum HR for	Questionnaire	significant
			30 minutes,	for activities of	group effect.
			followed by 30	daily living	X
			minutes of step	(ADL);	Lower limb
			aerobic exercises.	isokinetic	muscle
			Training	strength of	strength:
			supervised by a	knee	29.4%
			physiotherapist.	extensors &	improvement
				flexors	in the
			Control group: no		intervention
			training.	VO ₂ max from	group, 11.1%
				incremental,	improvement
				cardiopulmon	in the control
				ary exercise	group with
				test (CPET) on	significant
				a bicycle	group effect.
				ergometer.	
					VO2 max: 12%
				Monitoring:	improvement
				Serum CK and	in
				Aldolase.	intervention
					group, 2.6%
					deterioration
					in control
					group.
		K			Significant
					group effect.
					No significant
					chank in
					serum CK or
					aldolase

Table 2: Summary of data extraction from

References:

1. Lazarou IN, Guerne PA. Classification, Diagnosis, and Management of Idiopathic Inflammatory Myopathies. J Rheumatol. 2013 May 1;40(5):550–64.

2. Dalakas MC. Inflammatory myopathies: update on diagnosis, pathogenesis and therapies, and COVID-19-related implications. Acta Myol. 2020 Dec 1;39(4):289–301.

3. Alemo Munters L, Alexanderson H, Crofford LJ, Lundberg IE. New insights into the benefits of exercise for muscle health in patients with idiopathic inflammatory myositis. Curr Rheumatol Rep. 2014 Jul;16(7):429.

4. Yao L, Yip AL, Shrader JA, Mesdaghinia S, Volochayev R, Jansen AV, et al. Magnetic resonance measurement of muscle T2, fat-corrected T2 and fat fraction in the assessment of idiopathic inflammatory myopathies. Rheumatol Oxf Engl. 2016 Mar;55(3):441–9.

5. Qi J, Olsen NJ, Price RR, Winston JA, Park JH. Diffusion-weighted imaging of inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging JMRI. 2008 Jan;27(1):212–7.

6. Morrow JM, Sinclair CDJ, Fischmann A, Machado PM, Reilly MM, Yousry TA, et al. MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol. 2015 Nov 5;

7. Ramdharry GM. Rehabilitation in practice: management of lower motor neuron weakness. Clin Rehabil. 2010 May;24(5):387–97.

8. Busse M, Ramdharry G. Targeting sedentary behaviour in neurological disease. Pract Neurol. 2020;20(3):187–8.

9. Ramdharry GM, Wallace A, Hennis P, Dewar E, Dudziec M, Jones K, et al. Cardiopulmonary exercise performance and factors associated with aerobic capacity in neuromuscular diseases. Muscle Nerve. 2021 Sep 22;

10. Pinto AJ, Yazigi Solis M, de Sá Pinto AL, Silva CA, Maluf Elias Sallum A, Roschel H, et al. Physical (in)activity and its influence on disease-related features, physical capacity, and health-related quality of life in a cohort of chronic juvenile dermatomyositis patients. Semin Arthritis Rheum. 2016;46(1):64–70.

11. Landon-Cardinal O, Bachasson D, Guillaume-Jugnot P, Vautier M, Champtiaux N, Hervier B, et al. Relationship between change in physical activity and in clinical status in patients with idiopathic inflammatory myopathy: A prospective cohort study. Semin Arthritis Rheum. 2020 Oct 1;50(5):1140–9.

12. Morrow JM, Sinclair CDJ, Fischmann A, Machado PM, Reilly MM, Yousry TA, et al. MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol. 2015 Nov;

13. Voet NB, van der Kooi EL, Riphagen II, Lindeman E, van Engelen BG, Geurts AC. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev [Internet]. 2013;7. Available from:

http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD003907.pub4/pdf/standard http://www.ncbi.nlm.nih.gov/pubmed/23835682

14. Jones K, Hawke F, Newman J, Miller JA, Burns J, Jakovljevic DG, et al. Interventions for promoting physical activity in people with neuromuscular disease. Cochrane Database Syst Rev. 2021 May 24;5:CD013544.

15. Munters LA, Alexanderson H, Crofford LJ, Lundberg IE. New Insights into the Benefits of Exercise for Muscle Health in Patients with Idiopathic Inflammatory Myositis. Curr Rheumatol Rep. 2014 Jul;16(7):429.

16. Talotta R, Porrello I, Restuccia R, Magaudda L. Physical activity in idiopathic inflammatory myopathies: two intervention proposals based on literature review. Clin Rheumatol. 2022 Mar;41(3):593–615.

17. Ramdharry G, Buscemi V, Boaz A, Dawes H, Jaki T, Jones F, et al. Proposing a Core Outcome Set for Physical Activity and Exercise Interventions in People With Rare Neurological Conditions. Front Rehabil Sci. 2021;2:62.

18. Alexanderson H, Munters LA, Dastmalchi M, Loell I, Heimbürger M, Opava CH, et al. Resistive Home Exercise in Patients with Recent-onset Polymyositis and Dermatomyositis — A Randomized Controlled Single-blinded Study with a 2-year Followup. J Rheumatol. 2014 Jun 1;41(6):1124–32.

19. Astley C, Sieczkowska SM, Marques IG, Ihara BP, Lindoso L, Lavorato SSM, et al. Home-based exercise program for adolescents with juvenile dermatomyositis quarantined during COVID-19 pandemic: a mixed methods study. Pediatr Rheumatol. 2021 Nov 13;19(1):159.

20. Borges IBP, de Oliveira DS, Marie SKN, Lenario AM, Oba-Shinjo SM, Shinjo SK. Exercise Training Attenuates Ubiquitin-Proteasome Pathway and Increases the Genes Related to Autophagy on the Skeletal Muscle of Patients With Inflammatory Myopathies. JCR J Clin Rheumatol. 2021 Sep;27(6S):S224.

21. Elnaggar RK, Abd El-Nabie WA. Efficacy of aqua-based plyometric exercises in the rehabilitation of patients with juvenile dermatomyositis: A randomized crossover pilot study. Int J Rheum Dis. 2021;24(7):930–40.

22. Habers GEA, Bos GJFJ, van Royen-Kerkhof A, Lelieveld OTHM, Armbrust W, Takken T, et al. Muscles in motion: a randomized controlled trial on the feasibility, safety and efficacy of an exercise training programme in children and adolescents with juvenile dermatomyositis. Rheumatology. 2016 Jul 1;55(7):1251–62.

23. Jensen KY, Jacobsen M, Schrøder HD, Aagaard P, Nielsen JL, Jørgensen AN, et al. The immune system in sporadic inclusion body myositis patients is not compromised by blood-flow restricted exercise training. Arthritis Res Ther. 2019 Dec 18;21(1):293.

24. Alemo Munters L, Dastmalchi M, Andgren V, Emilson C, Bergegård J, Regardt M, et al. Improvement in health and possible reduction in disease activity using endurance exercise in patients with established polymyositis and dermatomyositis: a multicenter randomized controlled trial with a 1-year open extension followup. Arthritis Care Res. 2013 Dec;65(12):1959–68.

25. Nakajima T, Sankai Y, Takata S, Kobayashi Y, Ando Y, Nakagawa M, et al. Cybernic treatment with wearable cyborg Hybrid Assistive Limb (HAL) improves ambulatory function in patients with slowly progressive rare neuromuscular diseases: a multicentre, randomised, controlled crossover trial for efficacy and safety (NCY-3001). Orphanet J Rare Dis. 2021 07;16(1):304.

26. Veenhuizen Y, Satink T, Graff MJ, Geurts AC, Groothuis JT, Engelen BG van, et al. Mixed methods evaluation of a self-management group programme for patients with neuromuscular disease and chronic fatigue. BMJ Open. 2021 Aug 1;11(8):e048890.

27. Wallace A, Pietrusz A, Dewar E, Dudziec M, Jones K, Hennis P, et al. Community exercise is feasible for neuromuscular diseases and can improve aerobic capacity. Neurology. 2019 Apr 9;92(15):e1773–85.

28. Wiesinger GF, Quittan M, Aringer M, Seeber A, Volc-Platzer B, Smolen J, et al. Improvement of physical fitness and muscle strength in polymyositis/dermatomyositis patients by a training programme. Br J Rheumatol. 1998 Feb;37(2):196–200.

29. Jørgensen A, Jensen K, Nielsen J, Frandsen U, Hvid L, Bjørnshauge M, et al. Effects of bloodflow restricted resistance training on mechanical muscle function and thigh lean mass in sIBM patients. Scand J Med Sci Sports. 2022;32(2):359–71.

30. Jørgensen A, Aagaard P, Frandsen U, Boyle E, Diederichsen L. Blood-flow restricted resistance training in patients with sporadic inclusion body myositis: a randomized controlled trial. Scand J Rheumatol. 2018 Sep 3;47(5):400–9.

31. Veenhuizen Y, Cup EHC, Jonker MA, Voet NBM, Keulen BJ van, Maas DM, et al. Selfmanagement program improves participation in patients with neuromuscular disease: A randomized controlled trial. Neurology. 2019 Oct 29;93(18):e1720–31.

32. Špiritović M, Heřmánková B, Oreská S, Štorkánová H, Růžičková O, Vernerová L, et al. The effect of a 24-week training focused on activities of daily living, muscle strengthening, and stability in idiopathic inflammatory myopathies: a monocentric controlled study with follow-up. Arthritis Res Ther. 2021 Jun 21;23(1):173.

33. Isenberg DA, Allen E, Farewell V, Ehrenstein MR, Hanna MG, Lundberg IE, et al. International consensus outcome measures for patients with idiopathic inflammatory myopathies. Development and initial validation of myositis activity and damage indices in patients with adult onset disease. Rheumatol Oxf Engl. 2004 Jan;43(1):49–54.

34. Alemo Munters L, Dastmalchi M, Katz A, Esbjörnsson M, Loell I, Hanna B, et al. Improved exercise performance and increased aerobic capacity after endurance training of patients with stable polymyositis and dermatomyositis. Arthritis Res Ther. 2013 Aug 13;15(4):R83.

35. Voorn EL, Koopman FS, Nollet F, Brehm MA. Individualized Aerobic Exercise in Neuromuscular Diseases: A Pilot Study on the Feasibility and Preliminary Effectiveness to Improve Physical Fitness. Phys Ther. 2020 Dec 16;101(3):pzaa213.

Janssen B, Voet N, Geurts A, van Engelen B, Heerschap A. Quantitative MRI reveals
decelerated fatty infiltration in muscles of active FSHD patients. Neurology. 2016 May;86(18):1700–
7.

37. Ahmed M, Machado PM, Miller A, Spicer C, Herbelin L, He J, et al. Targeting protein homeostasis in sporadic inclusion body myositis. Sci Transl Med. 2016 Mar 23;8(331):331ra41.

38. Elsworth C, Winward C, Sackley C, Meek C, Freebody J, Esser P, et al. Supported community exercise in people with long-term neurological conditions: a phase II randomized controlled trial. Clin Rehabil. 2011 Jul;25(7):588–98.

39. Elsworth C, Dawes H, Sackley C, Soundy A, Wade D, Hilton-Jones D, et al. A study of perceived facilitators to physical activity in neurological conditions. Int J Ther Rehabil. 2009 Jan 14;16(1):17–24.

40. Voet NB, Kooi EL van der, Engelen BG van, Geurts AC. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev [Internet]. 2019 [cited 2022 Mar 24];(12). Available from:

https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003907.pub5/references

41. Bortolani S, Brusa C, Rolle E, Monforte M, De Arcangelis V, Ricci E, et al. Technology outcome measures in neuromuscular disorders: A systematic review. Eur J Neurol [Internet]. [cited 2022 Feb 8];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/ene.15235

42. Saygin D, Rockette-Wagner B, Oddis C, Neiman N, Koontz D, Moghadam-Kia S, et al. Consumer-based activity trackers in evaluation of physical activity in myositis patients. Rheumatology. 2021 Sep 16;keab700.

43. Stephenson A, McDonough SM, Murphy MH, Nugent CD, Mair JL. Using computer, mobile and wearable technology enhanced interventions to reduce sedentary behaviour: a systematic review and meta-analysis. Int J Behav Nutr Phys Act [Internet]. 2017 Aug 11 [cited 2020 Feb 19];14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553917/

Accepted Manuscille