
TRANSFORMING ENGINEERING
EDUCATION 2023

A A L B O R G U N I V E R S I T Y

Edited by: Aida Guerra, Juebei Chen, Rea Lavi, Lykke Bertel, and Euan Lindsay

9th International Research Symposium
on Problem-based Learning (IRSPBL):

Transforming Engineering Education
Edited by Aida Guerra, Juebei Chen, Rea Lavi, Lykke Bertel, and Euan Lindsay

Series: International Research Symposium on PBL

© The authors, 2023

Graphic design by Hjortlund Medier

ISBN: 978-87-7573-023-0

ISSN: 2446-3833

Published by Aalborg University Press | forlag.aau.dk

9th International Research Symposium on PBL, June 21-23, 2023

Transforming Engineering Education

Hosted by MIT School of Engineering, Harvard John A. Paulson School of Engineering and Applied Science, and
co-organised with Aalborg PBL Centre for PBL in Engineering Science and Sustainability under the Auspices of
UNESCO, Aalborg University.

All the IRSPBL proceedings are available at https://aauforlag.dk/ and https://www.ucpbl.net/global-network/
research-symposia

Responsibility for the content published, including any opinions expressed therein, rests exclusively with
the author(s) of such content.

General Copyrights
The authors and/or other copyright owners retain copyright and moral rights for the publications made acces-
sible in the public portal and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights. Users may download and print one copy of any publication
from the public portal for the purpose of private study or research. You may not further distribute the material or
use it for any profit-making activity or commercial gain. You may freely distribute the URL identifying the publica-
tion in the public portal.

Take down policy
If you believe that this document breaches copyright, please contact aauf@forlag.aau.dk providing details and
we will remove access to the work immediately and investigate your claim.

A A L B O R G U N I V E R S I T Y

https://aauforlag.dk/
https://www.ucpbl.net/global-network/research-symposia
https://www.ucpbl.net/global-network/research-symposia

Collaboration with IndustryEducational Innovation and
Curriculum Design

1

WWoorrkk iinn PPrrooggrreessss:: IInntteeggrraattiinngg PPyytthhoonn iinnttoo MMeecchhaanniiccaall
EEnnggiinneeeerriinngg uunnddeerrggrraadduuaattee ccuurrrriiccuulluumm

Lama Hamadeh
University College London, United Kingdom, l.hamadeh@ucl.ac.uk

Summary

Integrating the fundamentals of computer science and programming skills into the undergraduate
engineering curriculum has been a primary focus for many educational institutions around the world.
Learning the basics of programming from the beginning of undergraduate engineering education allows
students to incorporate such skills into their work in the future with ease. The department of mechanical
engineering at University College London has acknowledged this value and decided to implement a
programming element into the first-year mechanical engineering curriculum to teach the basics of Python
language and assess it using a real-life engineering problem. Python is general-purpose, concise, easy-to-read
and -learn programming language that has become one of the most popular and in-demand languages in the
world. Python has a vast ecosystem of tools, packages, and libraries that address a wide-ranging number of
programming scenarios and provide mechanical engineers with a large array of general-purpose
functionality. The addition of this element to the first-year curriculum during the last academic year 2021-
2022 has shown a high assessment passing rate and notable student engagement. In this extended abstract,
an overview of planning, implementing and the results obtained from this process will be illustrated, and
future work plans will be outlined.

Keywords: Python, mechanical engineering, computer science, undergraduate curriculum, programming
skills.

Type of contribution: Best practice extended abstracts

11 IInnttrroodduuccttiioonn:: PPyytthhoonn ffoorr MMeecchhaanniiccaall EEnnggiinneeeerrss..
Programming skills provide engineers with an opportunity to integrate innovative technologies into their
everyday work and make it more efficient. Even the knowledge of one programming language or
understanding of how to work with data gives engineers a substantial advantage in their work. For the aim
of giving rise to highly equipped engineering graduates, teaching these skills needs to be considered and
implemented from the very beginning of their undergraduate university journey. Learning how to code allows
students to start thinking like a programmer and improve their problem-solving abilities (Oliphant, 2007).
After all, both engineering and programming include multiple tries and attempts to develop high-quality
results, so with experience, they will start finding solutions for these problems much easier.

Choosing the right introductory programming language to teach undergraduate mechanical engineering
students should be based on several factors, e.g., its simple syntax that makes it easy to learn for all
beginners, its adaptability to analyze and explain most of the mechanical engineering problems, and its
popularity within the computational communities, industry, and academia, which greatly helps with
students’ employability. For example, MATLAB is a widely taught software in most undergraduate STEM

9TH INTERNATIONAL RESEARCH SYMPOSIUM ON PROBLEM-BASED LEARNING (IRSPBL):

TRANSFORMING ENGINEERING EDUCATION 2023 190

Collaboration with IndustryEducational Innovation and
Curriculum Design

2

subjects that are used to write code for solving assignments, plotting graphs, and data analysis (Liu, 2020;
Mueller, 2003). In addition, C language is especially useful for mechanical engineers because it is the language
of choice for hardware interfaces, and is commonly used for microcontroller data acquisition and real-time
robotic control (Furman et al, 2010; Salzman et al, 2013; Rehberger et al, 2013). Python is another high-level
language and at first sight very similar to MATLAB: it is interpreted, has an interactive prompt, allows
dynamics typing, and provides automatic memory management (Raymond, 2008; Nanz & Furia, 2015;
Fangohr, 2004; Manish, 2021; Kumar et al, 2020). A comparison between these three programming
languages in the context of teaching in engineering has been studied in (Fangohr, 2004). It has been found
that Python is selected to be the best choice in terms of clarity and functionality of a programming language
that provides engineering students with clear, unambiguous, and intuitive syntax that allows them to express
their algorithms quickly. Python has a small core of commands, which provides nearly all the functionality
beginners will require. Additionally, its vast ecosystem of tools, packages, and libraries addresses many
programming scenarios and provides engineers with a large array of general- and special-purpose
functionality. Most interestingly, Python has seen rapid growth as an introductory language in computer
science courses and is becoming one of the most popular programming languages in industry and academia
(Wende et al, 2020; Davim et al, 2019). When Python was released in 1991, the premier languages at the
time were FORTRAN, COBOL, C, and C++. Since the mid-90s, it has steadily been increasing in popularity and
overtaking its old competitors as its programs tend to be much shorter than equivalent programs in other
languages. Learners' rates have also skyrocketed due to the fact that Python is an open-source language,
meaning that anyone can contribute to the code. This surely makes Python stands out from all the other
introductory programming languages. Fig 1 shows the percentage of questions received by Stack Overflow,
a public question-answer platform for developers, from Python users over roughly 10 years. It can be clearly
seen how the interest in Python has noticeably increased compared to other programming languages (Stack
Overflow, 2023).

Figure 1: A snapshot of how programming languages have trended over time based on their tags on Stack Overflow

since 2008 (Stack Overflow, 2023).

This has given motivation to some academics to transition to Python in their mechanical engineering teaching
courses (Furman et al, 2020). As a result, a decision has been consensually made to implement Python in this
element since it encapsulates largely all the pre-mentioned factors an introductory programming language
must meet for teaching first-year mechanical engineering undergraduates.

22 FFrraammeewwoorrkk ffoorr aa BBeesstt PPrraaccttiiccee
The aim of introductory courses in the first year of mechanical engineering is to provide students with the
engineering fundamentals and show how they are applied to basic real-life problems. When it comes to
designing an introductory programming element and integrating it into the first-year curriculum, it must go

9TH INTERNATIONAL RESEARCH SYMPOSIUM ON PROBLEM-BASED LEARNING (IRSPBL):

TRANSFORMING ENGINEERING EDUCATION 2023 191

Collaboration with IndustryEducational Innovation and
Curriculum Design

3

in line with this aim (Sheth et al, 2016). The content, objectives, and the way everything is learned, taught,
and assessed need a lot of thought to be successful (Sobral, 2021). For this introductory programming
element, and since no prior programming experience is required, the content and its associated activities
should be progressive, i.e., starting from the most fundamental with simpler questions and advancing
gradually toward more complex concepts (Gomes & Mendes, 2009). This hierarchical structure means that
in order for the students to be able to explain and analyze a given engineering problem using Python, they
must attain prerequisite knowledge (understanding the principles of algorithmic thinking and the language
syntax), and skills (implementing Python commands correctly while making use of its available libraries), in
the course of a certain teaching and learning approach. Furthermore, it is easier to achieve goals when they
are well-defined. The clear and structured definition of instructional objectives, considering the acquisition
of knowledge and skills, will direct the teaching process towards the appropriate choice of strategies,
methods, delimitation of specific content, and assessment instruments, and, consequently, effective and
lasting learning (Sobral, 2021). For the aim of designing an introductory programming element and creating
clear learning objectives, the levels of the revised Bloom’s taxonomy (Krathwohl, 2002) are chosen to be the
drive for creating a holistic teaching and learning plan. This taxonomy has been proven to be effective in
formulating undergraduate introductory programming content (Sobral, 2021; Gomes & Mendes, 2009; Britto
& Usman, 2015) and assessments (Chatzopoulou & Economides, 2010). The revised Bloom’s taxonomy is a
hierarchical two-dimensional framework: Knowledge and Cognitive Processes with six levels: remember,
understand, apply, analyze, evaluate, and create, as shown in Fig 2. In this element, and as shown in Fig 2, a
mapping to each level of the revised Bloom’s taxonomy has been drawn to its design and its underlying
objectives. The first four levels correspond to the teaching and learning classes that deliver the main
programming materials and ultimately build foundational knowledge and skills. A blend of both the fourth
and fifth levels is directed toward assessing students’ comprehension of the programming material. The final
level, i.e., creating, is targeted at higher undergraduate years where students can implement and advance
their Python knowledge onto new engineering projects.

Figure 2: Revised Bloom’s Taxonomy projected onto the programming element introduced for the first-year

mechanical engineering undergraduate course.

To systemize the best practice, the plan, as shown in Fig 3, starts with four teaching and learning classes
where all the material is delivered in live-coding sessions depicting the first four levels of the taxonomy,
followed by an assessment that tests students’ apprehension and their ability to analyze and evaluate a
given mechanical engineering system.

Remembering

Understanding

Applying

Analysing

Evaluating

Creating

RReeccaallll rreelleevvaanntt kknnoowwlleeddggee aabboouutt mmaatthh,,
ee..gg..,, vveeccttoorrss,, mmaattrriicceess,, aanndd

pprrooggrraammmmiinngg,, ee..gg..,, pprrooggrraamm,, aallggoorriitthhmm..

UUnnddeerrssttaanndd tthhee mmeeaanniinngg bbeehhiinndd eeaacchh
PPyytthhoonn ccoommmmaanndd aanndd iittss rreelleevvaanntt oouuttppuutt..

AAppppllyy PPyytthhoonn ccoommmmaannddss oonn qquueessttiioonnss
aanndd ssiimmppllee pprroobblleemmss..

EExxppllaaiinn tthhee aallggoorriitthhmmiicc sstteeppss yyoouu wwoouulldd ppeerrffoorrmm ffoorr aa ggiivveenn
pprroobblleemm bbyy bbrreeaakkiinngg iitt ddoowwnn ttoo iittss ccoonnssttiittuueenntt ppaarrttss aanndd ddeetteecctt
hhooww tthhee ppaarrttss rreellaattee ttoo oonnee aannootthheerr aanndd ttoo aann oovveerraallll ssttrruuccttuurree..

UUssee tthhee iinnffoorrmmaattiioonn ggiivveenn iinn tthhee wwoorrkksshhooppss ttoo EExxaammiinnee
aanndd aannaallyyssee aa ddaattaasseett oobbttaaiinneedd ffrroomm oonn aa rreeaall--lliiffee

eennggiinneeeerriinngg ssyysstteemm..

AAppppllyy tthhee nneeww kknnoowwlleeddggee oonn ootthheerr ddiiffffeerreenntt
eennggiinneeeerriinngg pprroobblleemmss iinn hhiigghheerr uunnddeerrggrraadduuaattee yyeeaarrss..

Teaching and
Learning Classes

Assessment

Higher Years…
Kn

ow
le

dg
e

Sk
ill

s

9TH INTERNATIONAL RESEARCH SYMPOSIUM ON PROBLEM-BASED LEARNING (IRSPBL):

TRANSFORMING ENGINEERING EDUCATION 2023 192

Collaboration with IndustryEducational Innovation and
Curriculum Design

4

Figure 3: Teaching and Learning plan for the Introductory Python Programming Element.

22..11 TTeeaacchhiinngg aanndd LLeeaarrnniinngg CCllaasssseess

In order to incorporate the first four levels of the pyramid into the students’ programming learning journey,
i.e., remembering, understanding, applying, and analyzing, it is essential to structure the programming
classes so that they enhance students’ engagement with the material, enable students to receive instant
feedback and stimulate peer-to-peer discussion. Another aspect that must be considered is that a variation
in programming abilities and skills between students should be expected. Some students will enter with a
certain programming background, whilst the majority are novices in this field (Cawthorne, 2021). Assuming
that all students have no prior programming experience, and for the aim of creating inclusive and active
coding classes, four, 2-hours, in-person, live coding workshops were scheduled for the entire cohort that has
roughly 200 students to be delivered throughout four weeks, i.e., one workshop per week. During these
workshops, students are strongly advised to attend with their laptops so they can practice and develop their
coding-writing skills and master the syntax of the language. Moreover, to provide programming material that
is suitable for all students, the fundamentals of Python were chosen to be delivered; Python basics, iterative
loops, conditionals, functions, working with data, and visualization. After explaining each topic and its
required syntax, several problems are followed so students can solve using the correct concept. This is
essential as it builds the required skillset that allows students to break down a larger task into smaller blocks
that can be performed by code (Cawthorne, 2021). To manage the large number of students and to make
certain that all of them receive the necessary feedback while they solve and code the questions, four
postgraduate teaching assistants and I are constantly roaming around the lecture theatre to make sure
students’ questions are answered and their learning journey is on track.

22..22 AAsssseessssmmeenntt

A typical introductory programming course will assess students by having them complete coursework so
students are assessed on their ability to apply programming to solve problems (Cawthorne, 2021). For this
element’s assessment, and since it is directed toward first-year mechanical engineering students, it is
designed so that it examines and measures the students’ practical and programming skill sets. In this
assessment, Students are required to collect a dataset from a 3D-printed Stirling Engine and use it to answer
coursework questions that analyze its physics, dynamics, and kinematics in a single Jupyter Notebook using

Applied Programming Element Structure for 1st

Year Mechanical Engineering Students at UCL

Teaching & Learning Classes Assessment

Python
Basics

Loops &
Conditionals

Functions &
Data Analysis

Data
Visualisation

Data
Collection

Data
Analysis

9TH INTERNATIONAL RESEARCH SYMPOSIUM ON PROBLEM-BASED LEARNING (IRSPBL):

TRANSFORMING ENGINEERING EDUCATION 2023 193

Collaboration with IndustryEducational Innovation and
Curriculum Design

5

Python language and submit it into the online associated submission portal. Stirling Engine is a mechanical
engineering system that uses cyclic compression and expansion of a gas at different temperatures to convert
heat energy into mechanical work at a certain frequency. The collected dataset, which has the format of a
.csv file, includes parameters such as the engine’s running time, the upper and lower temperatures, the
number of revolutions, etc. Students are required to use this dataset to answer questions presented to them
as coursework with the aim of evaluating and quantifying the physics, dynamics, kinematics, and efficiency
of the engine. Their coursework answers must be written and submitted as a single Jupyter Notebook file.
This would surely allow evaluating objectively students’ technical skills and scientific knowledge.

22..33 NNeexxtt SStteeppss..

The top of the revised Bloom’s pyramid is reserved for “creating”. For this element, the content of Python
programming provided in Year 1 is linked to skills in data analysis and the visual presentation of graphics. This
builds the foundational knowledge and essential skills that are helpful in subsequent years when higher-level
programming is necessary.

● In Year 2, the students primarily use data analysis and visual presentation skills in laboratories, such
as Aerofoil testing (in Intermediate Fluid Mechanics), beam buckling (Solid Mechanics), and strain
gauge measurements (Instrumentation).

● In Year 2, the above skills are used in laboratories related to Advanced Dynamics and Control.
Importantly, the students undertake a significant year-long individual research project, where they
apply advanced data analysis. Several projects require advanced programming skills, e.g. in machine
learning (ML), parametric model setup, and artificial intelligence. The success of these projects was
limited in the past because the students lacked knowledge of basic programming, and this was fed
back to the curriculum development team on multiple occasions.

● In Year 4, the students undertake a year-long group design project that is worth 50% of the year's
credits. There is always a requirement for advanced data analysis in these projects. the students also
undertake complex projects that involve building and testing ML platforms, creating advanced codes
for image recognition, etc., where advanced knowledge of programming languages is required. These
students are much better equipped now that the fundamentals of Python are acquired in Year 1.

33 OOuuttccoommeess,, CCoonncclluussiioonn,, aanndd FFuuttuurree PPllaannss
Introducing the Python programming element to the first-year students of a cohort of roughly 200 students
last academic year, 2021-2022, has shown significant success. This can be evaluated based on two factors:

● Coursework results. As mentioned in 2.2, students had to submit a single Jupyter Notebook file that
contains the answers to coursework questions that analyze the dynamics of a Stirling Engine. The
marking criteria have been set out in a way that they depend on three main aspects: quality of code,
the use of markdown cells, and the accuracy of scientific content. Grades are split into four bands: A
(excellent), B (well executed), C (competent), D (marginally accepted), and F (fail). Fig 4 shows the
coursework grades distribution where it can be seen that 94% of students passed the coursework
with the 44% majority falling into the B (well executed) grade. It is worth noting here that the
dominant cause behind the 6% fail rate was mostly technical as most of these students were unable
to save their Jupyter Notebooks properly (they used the “save as” option from the browser rather
than Jupyter software), and as a result, markers were unable to open and see their submitted files.
This issue has been stressed on it this year to prevent it from re-occurring.

9TH INTERNATIONAL RESEARCH SYMPOSIUM ON PROBLEM-BASED LEARNING (IRSPBL):

TRANSFORMING ENGINEERING EDUCATION 2023 194

Collaboration with IndustryEducational Innovation and
Curriculum Design

6

Figure 4: Grades percentages distribution of the programming assessment.

● Students’ motivation. Throughout the entire teaching and learning journey of this element, students
showed several behavioral signs that proved their motivation and interest in learning Python. The
average workshop attendance was roughly 70%. This created vibrant and interactive learning classes
where students tended to sit in groups that positively enhanced their collaborative discussion.
Moreover, many students did not apply the material blindly during workshops; they engaged with
the thought process and often proposed alternative algorithmic ways to solve questions. These are
certainly good indications that students had an enjoyable introductory programming experience.
Worth mentioning that for the existing later-year students who have not had the basic Python
experience and showed interest in this introductory course as many emails were received asking for
more details, all the material was shared with them so they can go through the content at their own
pace.

In conclusion, integrating an introductory Python programming element into the first-year mechanical
engineering curriculum has shown to be a necessary course of action. Putting together an effective
instructional design for this element would certainly lay out the required foundational programming
knowledge and skills that our students need for their academic progression in higher years and their future
careers. Surely, and since this element is new and still in progress, several future ideas are needed to be
thoughtfully considered so this learning activity is taught as smoothly and holistically as possible for the next
years. For instance, the problems introduced during the active learning workshops that students use to solve
computationally must be related to other modules taught in the course, e.g., thermodynamics, elasticity,
solid body kinematics, fluid dynamics, etc. This will build a holistic element that not only equips students with
the necessary programming skills but also allow them to project these skills on the topics taught in their
courses. Furthermore, and as mentioned before, since higher-year students deal with engineering projects
that require advanced programming and data analysis knowledge and skills, new elements that focus on
algorithms and methodologies that address key tasks in data-driven engineering can be introduced and
integrated suitably into relevant modules. This would provide students with additional expertise to not only
analyze their projects effectively and extract useful insights from them but also add an auxiliary hard
employability skill into their academic package.

9TH INTERNATIONAL RESEARCH SYMPOSIUM ON PROBLEM-BASED LEARNING (IRSPBL):

TRANSFORMING ENGINEERING EDUCATION 2023 195

Collaboration with IndustryEducational Innovation and
Curriculum Design

7

44 RReeffeerreenncceess
Britto, R. & Usman, M., (2015). Bloom's taxonomy in software engineering education: A systematic
mapping study. IEEE Frontiers in Education Conference (FIE), El Paso, TX, USA, pp. 1-8.

Cawthorne, L. (2021). Invited Viewpoint: Teaching Programming to Students in Physical Sciences
and Engineering. Journal of Materials Science, vol. 56, pp. 16183-16194.

Chatzopoulou D. I., & Economides A. A. (2010). Adaptive Assessment of Student’s Knowledge in
Programming Courses, Journal of Computer Assisted Learning, 26(4), pp 258-269.

Davim, J. P., Díaz Vicente García, & Solanki, V. K. (2019). Handbook of IoT and Big Data. CRC Press.

Fangohr, H. (2004). A comparison of C, MATLAB, and python as teaching languages in engineering.
Computational Science - ICCS 2004, 1210–1217. https://doi.org/10.1007/978-3-540-25944-2_157

Furman, B. J., Ahsan, S., & Wertz, E. (2020). Making the move from C to Python with mechanical
engineering students. Paper presented at 2020 ASEE Annual Conference & Exposition Virtual
Conference.

Furman, B., & Wertz, E. (2010). A first course in computer programming for mechanical engineers.
In Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded
Systems and Applications (pp. 70–75).

Gomes, A. & Mendes, A. (2009). Bloom’s taxonomy based approach to learn basic programming.
In G. Siemens & C. Fulford (Eds.), Proceedings of ED-MEDIA 2009--World Conference on
Educational Multimedia, Hypermedia & Telecommunications (pp. 2547-2554).

Krathwohl, D. R. (2002). A Revision of Bloom’s Taxonomy: An Overview. Theory Into Practice, vol.
41, no. 4, pp. 212-218.

Kumar, G., Singh, V., & Thombre, M. (2020). Importance of Learning Python Programming in the
Field of Mechanical Engineering. United International Journal for Research & Technology, 1(12),
16-18.

Liu, Y. C. (2020). Implementation of MATLAB/Simulink into a vibration and control course for
mechanical engineering students. In Proceedings of the ASEE SE Section Annual Conference (pp. 8-
10).

Manish, P. (2021). Exploring Integration of Python Libraries in Computation Intensive Mechanical
Engineering Courses, International Journal of Engineering Research & Technology (IJERT) ICDML –
2020 (Volume 09 – Issue 02).

Mueller, D. (2003). Introducing the finite element method to mechanical engineering students
using MATLAB. In 2003 Annual Conference (pp. 8-781).

Nanz, S., & Furia, C. A. (2015). A comparative study of programming languages in Rosetta Code.
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
https://doi.org/10.1109/icse.2015.90

9TH INTERNATIONAL RESEARCH SYMPOSIUM ON PROBLEM-BASED LEARNING (IRSPBL):

TRANSFORMING ENGINEERING EDUCATION 2023 196

Collaboration with IndustryEducational Innovation and
Curriculum Design

8

Oliphant, T. E. (2007). Python for Scientific Computing. Computing in Science & Engineering, vol. 9,
no. 3, pp. 10-20.

Raymond, E. S. (2008). The art of Unix programming: With contributions from thirteen Unix
pioneers, including its inventor, Ken Thompson. Addison-Wesley.

Rehberger, S., Frank, T. & Vogel-Heuser, B. (2013). Benefit of e-learning teaching C-programming
and software engineering in a very large mechanical engineering beginners class. IEEE Global
Engineering Education Conference (EDUCON), Berlin, Germany, pp. 1055-1061.

Salzman, N., & Meckl, P. H. (2013). Microcontrollers for Mechanical Engineers: From Assembly
Language to Controller Implementation. Paper presented at 2013 ASEE Annual Conference &
Exposition, Atlanta, Georgia. 10.18260/1-2—22290

Sheth, S., Murphy, C., Ross, K. A., & Shasha, D. (2016). A course on programming and problem
solving. Proceedings of the 47th ACM Technical Symposium on Computing Science Education -
SIGCSE '16. https://doi.org/10.1145/2839509.2844594

Sobral, S. R. (2021). Bloom's Taxonomy to Improve Teaching-Learning in Introduction to
Programming. International Journal of Information and Education Technology, 11(3), 148-153.
DOI: 10.18178/ijiet.2021.11.3.1504. ISSN: 2010-3689. Disponível no Repositório UPT,
http://hdl.handle.net/11328/3368

Stack Overflow is a question and answer website for professional and enthusiast programmers.
Stack Overflow Trends show how technologies have trended over time based on use of their tags
since 2008, when Stack Overflow was founded. https://insights.stackoverflow.com/trends

Wende, M., Giese, T., Bulut, S., & Anderl, R. (2020). Framework of an active learning python
curriculum for First Year mechanical engineering students. 2020 IEEE Global Engineering Education
Conference (EDUCON). https://doi.org/10.1109/educon45650.2020.9125259

9TH INTERNATIONAL RESEARCH SYMPOSIUM ON PROBLEM-BASED LEARNING (IRSPBL):

TRANSFORMING ENGINEERING EDUCATION 2023 197

	Blank Page
	Blank Page
	Blank Page

