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A SIMPLI (Single-cell Identification from MultiPLexed
Images) approach for spatially-resolved tissue
phenotyping at single-cell resolution
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Multiplexed imaging technologies enable the study of biological tissues at single-cell resolu-
tion while preserving spatial information. Currently, high-dimension imaging data analysis is
technology-specific and requires multiple tools, restricting analytical scalability and result
reproducibility. Here we present SIMPLI (Single-cell Identification from MultiPLexed Images),
a flexible and technology-agnostic software that unifies all steps of multiplexed imaging data
analysis. After raw image processing, SIMPLI performs a spatially resolved, single-cell analysis
of the tissue slide as well as cell-independent quantifications of marker expression to inves-
tigate features undetectable at the cell level. SIMPLI is highly customisable and can run on
desktop computers as well as high-performance computing environments, enabling workflow
parallelisation for large datasets. SIMPLI produces multiple tabular and graphical outputs at
each step of the analysis. Its containerised implementation and minimum configuration
requirements make SIMPLI a portable and reproducible solution for multiplexed imaging data
analysis. Software is available at “SIMPLI [https://github.com/ciccalab/SIMPLIT".
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detailed investigation of tissue composition and function

in health and disease requires spatially resolved, single-

cell approaches that precisely quantify cell types and states
as well as their interactions in situ. Recent technological advances
have enabled to stain histological sections with multiple tagged
antibodies that are subsequently detected using fluorescence
microscopy or mass spectrometry!. High-dimensional imaging
approaches such as imaging mass cytometry (IMC)?2, multiplexed
ion beam imaging (MIBI)3, co-detection by indexing (CODEX)%,
multiplexed immunofluorescence (mIF, including cycIF)® and
multiplexed immunohistochemistry (mIHC)%” enable quantifi-
cation and localisation of cells in sections from formalin-fixed
paraffin-embedded (FFPE) tissues, including clinical diagnostic
samples. This is of particular value for mapping the tissue-level
characteristics of disease conditions and predicting the outcome
of therapies that depend on the tissue environment, such as
cancer immunotherapy. For example, a recent IMC phenotypic
screen of breast cancer subtypes revealed the association between
the heterogeneity of somatic mutations and that of the tumour
microenvironment. Similarly, a CODEX-based profile of FFPE
tissue microarrays from high-risk colorectal cancer patients cor-
related PD1tCD4T T cells with patient survival®.

The analysis of multiplexed images requires the conversion of
pixel intensity data into single-cell data, which can then be char-
acterised phenotypically, quantified comparatively and localised
spatially in the tissue. Currently available tools are technology spe-
cific and cover only some steps of the whole analytical workflow
(Table 1). For example, several computational approaches have been
developed to process raw images and extract single-cell data either
interactively (Ilastik!?, CellProfiler4!!, CODEX Toolkit*) or via
command line (imcyto!?, ImcSegmentationPipeline!3). Distinct sets
of tools can then perform cell phenotyping (CellProfiler Analyst!4,
Cytomapper!®, Immunocluster'®) or analyse cell-cell spatial inter-
actions (CytoMap!7, ImaCytE!8, SPIAT!, neighbouRhood??).
Similarly, a few tools enable direct pixel-based analysis through pixel
classification!® or quantification of pixel positive areas!l. Despite
such a variety of tools, none of them can perform all of the required
analytical steps in a common pipeline. Two exceptions are histoCAT
+-+21 and QuPath?2, which however have been developed specifi-
cally for interactive use and are not well suited for the analysis of
large datasets. Moreover, all of these tools rely on ad hoc config-
uration files and input formats, making the analysis challenging for
users with limited computational skills and restricting the scalability,
portability and reproducibility in different computing environments.

Here we introduce SIMPLI (Single-cell Identification from
MultiPLexed Images), a tool that combines processing of raw
images, extraction of single-cell data, and spatially resolved
quantification of cell types or functional states into a single
pipeline (Table 1). This is achieved through the integration of
well-established tools and newly developed scripts into the same
workflow, enabling ad hoc configurations of the analysis while
ensuring interoperability between its different parts. SIMPLI can
be run on desktop computers as well as on high-performance-
computing environments, where it can be easily applied to large
datasets due to automatic workflow parallelisation. To demon-
strate the flexibility of SIMPLI to work with different technologies
and experimental conditions, we analyse the phenotypes and
spatial distribution of cells in different tissues (human colon,
appendix, colorectal cancer) using multiplexed images obtained
with distinct technologies (IMC, mIF, CODEX).

Results

Overview of the SIMPLI analytical workflow. SIMPLI performs
the analysis of multiplexed imaging data in three steps (Methods,
Fig. 1) integrating well-established and newly developed

imaging data.
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For each tool, reported are the steps of the analytical workflow that it can perform, whether it can be parallelised and the multiplexed imaging platform it can be applied to (1: IMC; 2: mIF; 3: CODEX; 4: MIBI; 5: mIHC; 6: spatial transcriptomic visualisation). A method was

considered compatible with a given imaging technology if this was reported in the original publication or other studies.
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Fig. 1 Schematics of the SIMPLI workflow. a Raw images are extracted from IMC or MIBI data or directly imported from other imaging technologies. After
their optional normalisation, these images are thresholded to remove the background noise and produce tissue compartments or marker masks. The
resulting images can be analysed using a cell-based or a pixel-based approach. b In the cell-based analysis, single cells are segmented with deterministic or
deep learning models and phenotyped using unsupervised or supervised approaches. The distribution of cells in the tissue can then be investigated through
a spatial analysis of homotypic or heterotypic aggregations. ¢ In the pixel-based approach, areas positive for a user-defined combination of markers are
measured and normalised over the area of the whole image or of the masks defining compartments or areas positive for certain markers.

standalone processes (Supplementary Fig. 1). Each process can be
run independently or even skipped with the possibility of using
alternative input data at each point of the workflow.

The first step of SIMPLI consists of processing raw data from
single or multi-channel images or text files from a variety of high-
dimensional imaging technologies (Fig. la and Supplementary
Fig. 1a). After data extraction, pixel values for each marker can be
optionally normalised by rescaling them in each sample. This
allows the user to apply the same thresholds for background noise
reduction across samples. Alternatively, the normalisation step
can be skipped and sample-specific thresholds can be applied
directly to individual, non-normalised images to minimise the
effect of non-uniform staining. This is recommended for example
if markers have low signal-to-noise ratios and the resulting
thresholds may be too restrictive or if platform-specific normal-
isation is required. In the last step of data processing, masks for
specific tissue compartments or markers are derived using a fully
customisable pipeline based on CellProfiler4!!, where the user
can apply filters, thresholds and morphological operations to each
image. The resulting processed images can then be analysed at the
cell (Fig. 1b) and pixel (Fig. 1c) levels.

The cell-based analysis aims to investigate the qualitative and
quantitative cell composition of the tissue and is composed of (1)
single-cell data extraction, (2) cell phenotyping and (3) spatial
analysis of cell-cell distances (Fig. 1b).

To extract cell data, SIMPLI implements single-cell segmenta-
tion using either a deterministic!! or a deep learning?? approach
(Supplementary Fig. 1b). The former enables deterministic
filtering based on cells size and shape, as well as marker

intensities. The latter applies pre-trained models (either provided
by SIMPLI or supplied by the user) to identify cells with high
accuracy. After cell segmentation, SIMPLI produces the masks of
the individual cells and calculates the expression values for each
marker in each cell. Cells belonging to tissue compartments or
positive for certain markers can then be identified based on their
overlap with the previously derived tissue or marker masks.

To define the cell phenotypes, SIMPLI uses two alternative
approaches (Supplementary Fig. 1b). The first applies unsuper-
vised clustering to all cells or preselected subsets of cells (for
example those mapping to specific tissue compartments or
positive for certain markers) using marker expression levels. This
leads to the unbiased classification of cells into clusters with
similar expression profiles indicating similar phenotypes. The
second approach identifies cells with designated phenotypes by
applying combinations of user-defined thresholds to the expres-
sion values of the markers of interest. These thresholds can be
identified through an expert-guided examination of the original
images or using the visualisation plots produced by SIMPLI. The
two approaches can be used independently or as cross-validation
of the cell phenotypes.

To identify cell aggregations within the same (homotypic) or
across different (heterotypic) cell types, SIMPLI implements a
spatial analysis of the distance between cells within the imaged
tissue (Supplementary Fig. 1b). In the case of homotypic
aggregations, SIMPLI identifies groups of cells of the same type
within a user-defined distance and visually localises them as
clusters in the tissue image. In the case of heterotypic
aggregations, SIMPLI computes the distance distribution between
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distinct cell types and compares them across cell types and
experimental conditions. Observed distance distributions can also
be compared to expected distributions obtained by randomly
reshuffling the cell identities in each sample.

The pixel-based approach implemented in SIMPLI enables
quantification of areas positive for a specific marker or
combination of markers, independently of their association with
cells (Fig. 1c and Supplementary Fig. 1c). The obtained marker-
positive areas are then normalised over the area of the whole
image, or those of specific tissue compartments or positive for
certain markers using the predefined masks, to allow comparisons
across samples. The pixel-based analysis is useful for the
investigation of tissue features that are not detectable at the cell
level. For instance, extracellular or secreted proteins cannot be
quantified with approaches dependent on cell segmentation. In
addition, being completely cell agnostic, the pixel-based analysis
can provide independent validation of cell-based observations.

SIMPLI generates tables, plots and images as outputs of each
process, thus enabling the visualisation of results at every step of
the analysis.

IMC quantification of secreted and cell-associated IgA in
human colon. To test its performance and versatility, we applied
SIMPLI to four case studies of multiplexed images obtained with
different technologies and with diverse origin, size and resolution
of the tissue sections (Table 2).

As a first case study, we used SIMPLI to compare the levels of
secreted and cell-associated immunoglobulin A (IgA), the major
immunoglobulin isotype in intestinal mucosa?, from IMC-
derived multiplexed images of normal human colon. We stained
six colon sections (CLN1-CLN6, Supplementary Data 1) with 26
antibodies marking T cells, macrophages, dendritic cells and B
cells as well as stromal components (Supplementary Data 2) and
ablated one region of interest (ROI) per sample.

Using SIMPLI, we extracted and normalised the 28 single-
channel images (26 antibodies and two DNA intercalators) for
each of the six ROIs and combined them into a single image per
ROI (Fig. 2a). This normalisation enabled the selection of a single
threshold for each marker to be used across all samples, thus
reducing the complexity of the analysis configuration. By
applying these thresholds to the E-cadherin and vimentin
expression, we obtained the masks for the epithelium and the
lamina propria, respectively (Fig. 2b). We used these masks to
assign cells to the two compartments and normalise marker
values or positive areas in the downstream analyses.

We then used the pixel-based approach to quantify both the
IgA expressed by the plasma cells resident in the diffuse lymphoid
tissue of the lamina propria as well as the secreted IgA
undergoing transcytosis to traverse the epithelial compartment
(Fig. 2b). As expected, most secreted IgA was localised in the
epithelial crypts with only minimal presence of IgA* area in the
surface epithelium (Supplementary Fig. 2a). Quantification of the
normalised IgA™ areas in the two compartments (Supplementary
Fig. 2b) confirmed higher IgA™ levels in the lamina propria than
in the epithelium (Fig. 2c). To assess the impact of image
normalisation performed in the data processing step, we repeated
the same analysis starting from the raw images and applying
sample-specific thresholds to remove the background noise. The
resulting IgA levels correlated linearly with those obtained from
normalised images (Supplementary Fig. 2c), showing that data
normalisation does not impact the results.

Next, we quantified the IgA™ plasma cells in the lamina propria
using the cell-based approach. First, we performed single-cell
segmentation with the deterministic approach and retained only
cells overlapping for at least 30% or their area with the lamina

propria mask (Fig. 2d and Supplementary Fig. 2d). We verified that
varying the threshold of the overall had a minimal impact on the
proportion of cells assigned to the lamina propria (Supplementary
Fig. 2e). We then identified IgAT plasma cells, T cells, macrophages,
and dendritic cells resident in the lamina propria according to the
highest overlap between the cell area and the mask of each immune
cell population (Fig. 2e). Again, we verified that the relative
proportion of these cell populations changed only minimally
varying the threshold of the overlap with the lamina propria mask
(Supplementary Fig. 2f). Finally, we quantified the four immune cell
populations across the six samples and observed that [gA™ plasma
cells constitute approximately 25% of all immune cells (Fig. 2f).
This is consistent with previous quantifications of the fraction of
plasma cells over the total mononucleated cells in the lamina
propria of healthy individuals®°.

The relative proportion of IgA™T plasma cells positively
correlated with the normalised IgA™T area in the lamina propria,
demonstrating that the quantification from the single-cell analysis
is supported by the cell agnostic measurements at the pixel level
(Fig. 2g).

Localisation of T follicular helper cells in IMC images of a
germinal centre. As a second case study, we used SIMPLI to
spatially localise the immune cell populations within a FFPE
section of the healthy human appendix (APP1, Supplementary
Data 1). After staining the tissue section with 28 markers (26
antibodies and two DNA intercalators, Supplementary Data 2),
we performed IMC and used SIMPLI to extract and normalise the
single-channel images from the raw IMC data. The resulting
combined image revealed a germinal centre in the B cell area and
follicle-associated epithelium forming the boundary with the
appendiceal lumen (Fig. 3a).

We performed single-cell segmentation with both approaches
implemented in SIMPLI and observed high overlap in the
identified cells (Supplementary Fig. 3a), indicating a good
concordance between the two methods. We then classified 7573
cells obtained with the deterministic segmentation approach in
immune and epithelial cells based on the highest overlap with the
corresponding masks obtained in the data processing step
(Fig. 3b, c¢). We obtained similar proportions of cells starting
from the raw data and applying the z-score normalisation and
k-means clustering as implemented in Histocat?¢ (Supplementary
Fig. 3b), again demonstrating that the normalisation implemen-
ted in SIMPLI does not impact the downstream analysis.

Next, we used both methods implemented in SIMPLI to
further phenotype the T cells identified within the ROL First, we
applied unsupervised clustering using seven markers of T cell
function (Supplementary Data 2). After inspection of the
resulting clusters at different resolution levels, we selected 0.25
resolution that returned five distinct cell clusters (Fig. 3d). Based
on the marker expression profiles, we assigned cluster 1 to CD4+
T cells, cluster 2 to CD8TCD45RO" T cells, cluster 3 to
CD4TCD45RA™T T cells, cluster 4 to CD4TCD45RO* T cells and
cluster 5 to PD1TCD4" T cells (Fig. 3e). The latter likely
represented a set of PD1T T follicular helper cells known to be
located in the germinal centre?’. Interestingly, at higher
resolution levels, cluster 5 was further divided into two smaller
clusters showing PD1 high and low expression (Supplementary
Fig. 3c). Similarly, clusters 1 and 2 were further divided into
smaller subpopulation based on CD4 and CD45RO expression
levels, respectively (Supplementary Fig. 3c). Therefore, although
higher resolution levels increase the granularity of cell phenotyp-
ing, the unsupervised clustering approach implemented in
SIMPLI is robust in identifying similar phenotyping clusters
independently of the chosen resolution.
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Table 2 Description of the case studies used to test SIMPLI.

Analysed Channels (n) ROI (mm?2) Resolution HPC platform CPU time (h) Elapsed real RAM (GB) Processes
time (h)

Imaging

Case study

(um/pixel)
1.00

samples (n)

technology

IMC

Raw data processing

Cell masking

00:06:10

00:20:41

SGE

1.00

28

1 (Fig. 2)

Single-cell quantification

Pixel intensity comparison
Raw data processing

Cell masking

SLURM 00:06:25 00:05:30

1.00

28 1.00

MC

2 (Fig. 3)

Unsupervised clustering

Expression thresholding
Homotypic cell distances

Thresholding and masking
Expression thresholding

6.7

0.50 SLURM 00:11:45 00:08:23 1

5.45

mlF

3 (Fig. 4)

Heterotypic cell distances

Expression thresholding

225

58 113 0.38 SGE 02:32:35 00:26:01

35

CODEX

4 (Fig. 5)

Heterotypic cell distances

For each case study, listed are the imaging technologies used to generate the tissue images, the number of samples and markers used, the size of the analysed region of interest (ROI), the resolution of the obtained images, the high-performance (HPC) platform and the

computational resources employed to perform the analysis. These include the central processing unit (CPU) time and the elapsed real time, as well as the maximum random access memory (RAM) memory used. Finally, the specific analytical processes performed in each case

study are also listed (single-cell segmentation was performed in all of them).
SGE Sun Grid Engine, SLURM Simple Linux Utility for Resource Management.

We re-identified the PD1+ T follicular helper cells with the
second phenotyping approach based on expression thresholding
of CD4 and PD1. Starting from all T cells, we first extracted
CD47 T cells (=0.1 CD4 expression, Fig. 3f) and, within those, we
further identified PD17" cells (=0.15 PD1 expression, Fig. 3g).
Both thresholds were chosen after manual inspection of the
histological images. The expression profile of the resulting
PD1+CD4™" T cells (Fig. 3h) closely recapitulated that of cluster
5 (Fig. 3e). We repeated the same analysis for clusters 1-4
confirming the high overlap between cells in unsupervised
clusters and those re-identified using marker expression thresh-
olds (Supplementary Fig. 3d). Moreover, these cells showed
similar expression profiles (Supplementary Fig. 3e) and spatial
localisation (Supplementary Fig. 3f), indicating that cell pheno-
types identified with unsupervised clustering can be confirmed
through user-guided thresholding of marker expression.

Finally, we investigated the spatial localisation of PD1T T
follicular helper cells within the ROI by analysing their
homotypic aggregations. This allowed us to localise a single
high-density cluster containing 84% of PD17CD47 T cells within
the germinal centre (Fig. 3i). This distribution of PD1TCD4*
T cells was in accordance with the localisation of T helper cells in
the follicles of secondary lymphoid organs?’ and was confirmed
by the histological inspection of the tissue image (Fig. 3j).

mlF analysis of spatially resolved cell-cell interactions in rectal
cancer. As a third case study, we applied SIMPLI to the spatial
analysis of mIF-derived images of a rectal cancer sample (CRC1,
Supplementary Data 1) stained with anti CD8, PD1, Ki67, PDLI,
CD68, GzB and 4’,6-diamidino-2-phenylindole (DAPI) anti-
bodies (Supplementary Data 2). We focused on a 5-mm? ROI,
rich in T cells and located at the invasive margin of the tumour
(Fig. 4a). This allowed us to characterise the cell-cell interactions
between PDL1T cells and PD1TCD8% T cells at the tumour
boundary in a larger ROI, supporting the scalability of SIMPLI to
the analysis of large regions (Table 2).

After image normalisation and single-cell segmentation, we
identified PDL1" and PD1TCD8" cells by applying expert-
defined thresholds to PDL1 (=0.01), CD8 (=0.01), and PD1
(=0.005) expression levels, respectively. We extracted 2026
PDL1* cells (Fig. 4b) and 3177 CD87 cells, 94 of which also
expressed PD1 (Fig. 4c). The two sets of PDL11 and PD1TCD8+
cells constituted 3.7% and 0.2% of all cells in the analysed region,
respectively (Fig. 4d). We confirmed similar proportions of
PDL1" and PD17CD8 cells by performing signal unmixing, cell
segmentation and cell phenotyping with the Inform tissue
analysis software?8 (Akoya Biosciences, Fig. 4e).

We characterised the spatial relationship between these cells,
focusing on the ones in close proximity to each other. Using the
Euclidean distances between their centroids, we identified 35 PDL1+
cells and 21 PD1TCD8T T cells at a distance lower than 12 pm
apart, which corresponded to twice the maximum cell radius length.
We considered these cells proximal enough to be engaging in PD1-
PDLI mediated interactions. By comparing PD1tCD8%" T cells
proximal to PDL1" cells and PD1TCD8* T cells distal to PDL1T
cells, we found no difference in the expression of cytotoxicity (GzB)
or proliferation (ki67) markers (Fig. 4f). This is in line with the
broad range of cytotoxic activity in this T cell subset observed in
colorectal cancer?®. On the contrary, PDL1T cells proximal to
PD1TCD8* T cells expressed higher levels of CD68 than PDL1+
cells distal to PD1TCD8" T cells (Fig. 4g), suggesting spatial
proximity between PDL1T macrophages and PD1TCD8" T cells.
To validate this observation, we identified 1392 macrophages by
applying an expert-defined threshold to CD68 expression value
(20.01, Fig. 4h). We then classified these macrophages as PDL1" and
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Fig. 2 IgA quantification in human colon mucosa. a IMC image of a representative sample (CLN6) of normal colon mucosa after extraction and
normalisation of raw data. b Masks defining the lamina propria and the epithelial compartments overlaid with IgA* areas. Lamina propria and epithelial
masks were obtained by thresholding the vimentin and E-cadherin channels, respectively. € Comparison of normalised IgA* areas in the lamina propria and
epithelial compartments in six independent biological samples (CLN1-CLN6). Normalised areas were measured as the proportion of IgA* area over the
lamina propria and epithelium masks, respectively. Data are presented as a box centred around the median and extending from the first to the third
quartile. Whiskers represent the minimum and maximum values. An exact p value was calculated using a two-sided Wilcoxon test. d Outlines of the cells in
the lamina propria. After single-cell segmentation, all cells overlapping with the lamina propria mask by at least 30% of their area were considered as cells
resident in the lamina propria. @ Outlines of immune cells resident in the lamina propria identified according to the highest overlap between their area and
the masks for IgAt cells, T cells, macrophages and dendritic cells. f Relative proportions of T cells, IgAT cells, macrophages and dendritic cells over all
immune cells in the lamina propria across CLN1-CLN6. g Correlation between normalised IgA* area and the proportion of IgA* cells over the total immune
cells in the lamina propria in six independent biological samples (CLN1-CLN6). Pearson correlation coefficient R and associated p value based on Fisher's Z
transform are shown. Images in panels (a), (b), (d), (e) were derived from a representative sample (CLN6, Supplementary Data 1). CD3 and T cells,
magenta; IgA and IgAT cells, yellow; Smooth Muscle Actin (SMA), orange; CD68 and macrophages, cyan; E-cadherin and epithelial cells, green; Lamina
propria and lamina propria cells, red; Dendritic cells, blue. Scale bar in all images = 100 um. Source data are provided as a Source Data file.

PDL1T cells, respectively, using 0.1 PDL1 expression threshold. cells, as well as the presence of both PD1TCD8TGzB" T cells and
Comparing the distance of the resulting two populations from the PD1TCD8TGzB* T cells proximal to PDL17 cells (Fig. 4j).
nearest PD1TCD8" T cells, we confirmed that PDL1TCD68"

macrophages were significantly closer to PD1TCD8' T cells than

PDL1-CD68" macrophages (Fig. 4i). By inspecting the imaged tissue ~ Comparison of cell distances in CODEX images of colorectal
at x40 magnification, we confirmed the localisation of cancer subtypes. As a fourth case study, we used SIMPLI to
PDL1tCD68% macrophages in close proximity to PD1TCD8%" compare the distances between immune cells and tumour or
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endothelial cells in Crohn’s-like reaction (CLR) and diffuse (Supplementary Data 2). Such a large number of antibodies
inflammatory infiltration (DII) colorectal cancer subtypes®. The enabled the identification and spatial localisation of T cells, B
high-dimensional imaging data were derived from 35 colorectal  cells, plasma cells, macrophages, NK cells, granulocytes, dendritic
cancer samples (17 CLRs and 18 DIIs, Supplementary Data 1) cells, tumour cells, neuroendocrine cells, smooth muscle, nerves,
and were obtained using CODEX with a 56 marker panel® lymphatic and blood vessels (Fig. 5a).
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Fig. 3 Single-cell characterisation of T cells in a human germinal centre. a IMC image of a normal appendix (APP1) showing a central germinal centre
with the columnar epithelium delimiting the appendiceal lumen. b Outlines of T cells, B cells, macrophages, dendritic and epithelial cells identified through
the highest overlap with the respective masks. ¢ Proportions of T cells, B cells, macrophages, dendritic and epithelial cells over all cells. d UMAP plot of
1466 T cells grouped in five clusters resulting from unsupervised clustering according to the expression of seven markers of T cell function (Supplementary
Data 2). Cluster 5 (circled) corresponds to PD1+CD4+ T cells. e Expression profiles of the five clusters identified in (d). The mean intensity value of each
marker across all cells is reported. The colour scale was normalised across all markers and cells. f Density plots of CD4 expression in T Cells. Cells with
>0.1 CD4 expression were considered as CD4+ T cells. g Density plot of PD1 expression in CD4T T cells. Cells with >0.15 PD1* expression were

considered as PD1TCD4* T cells. Thresholds for CD4 and PDL1 were identified through histological inspection of the PD1 channel images. h Expression
profiles of the PD1TCD4+ T cells and the rest of T cells. For both populations, the mean intensity value of each marker across all cells is shown. The colour
scale was normalised across all markers and cells. i Position map of T cells within the ROI. The area of a high-density cluster of >5 PD1tCD4+ T cells per
10,000 pm? is highlighted in red. j IMC image showing the localisation of the PD1 signal within the ROI. Images in (@), (b), (i), and (j) were derived from a
single experiment (APP1, Supplementary Data 1). Panels (a), (b), (c), (i), and (j): E-cadherin and epithelial cells, green; CD11c and Dendritic cells, cyan;
CD68 and macrophages, magenta; CD20 and B cells, yellow; CD3 and T cells, blug; PD1 and PD1tCD4* cells, red. Panels (d) and (e): cluster 1, violet;

cluster 2, orange; cluster 3, green; cluster 4, blue; cluster 5, red. Scale bar for all images = 100 pm. Source data are provided as a Source Data file.

We processed the raw data from the original study, including
normalisation. We then performed single-cell segmentation and
quantified the main cell types identified in the original study® by
applying expert-defined thresholds to the expression of markers
representative of each population (CDX2, MUCI or cytokeratin
for tumour cells; CD34 or CD31 for endothelial cells; vimentin
for stromal cells; CD11c for dendritic cells; CD38 for B cells; CD3
and CD4 for CD4 ™ T cells; CD3, CD4 and FOXP3 for Tregs; CD3
and CD8 for CD8T T cells, CD68 for macrophages). The
obtained relative proportions of immune cells across all samples
were highly concordant with those reported in the original study®
(Fig. 5b).

We then measured the distances of the main immune cell types
from tumour cells and blood vessels by performing a heterotypic
spatial analysis as implemented in SIMPLI. First, we calculated
the distances of each macrophage, CD8" T cell, CD4™ T cell,
Treg and B cell to the nearest tumour cell or endothelial cell using
the coordinates of the cell centroids. From these, we derived the
corresponding distance distributions from the nearest tumour cell
or endothelial cell in each sample. Finally, we compared the
resulting distributions between 17 CLR and 18 DII colorectal
cancer subtypes. After correcting for multiple testing, we
considered biologically relevant only differences between the
median distances of the two sample subtypes bigger than 8 um,
corresponding to the diameter of B and T lymphocytes3®. With
this approach, we found that Tregs were significantly closer to
tumour cells in DII (median distance = 22.4 pm) compared to
CLR (35.6 um, Fig. 5c). On the contrary, B cells were more
proximal to blood vessels in CLR (33.5 um) than in DII (43.3 um,
Fig. 5d). We further supported these results with a permutation
test, where we re-labelled randomly the identities to all cells in
each sample for 10,000 times to derive an expected distribution of
differences in distances between CLR and DII cells. The
comparisons of observed values to the expected distributions,
confirmed that Tregs were significantly closer to tumour cells in
DII (Fig.5e) while B cells were significantly closer to blood vessels
in CLR (Fig. 5f). Since the spatial randomness used as a baseline
for the permutation test is an approximation of the highly
organised structure of biological tissues, we sought further
support this result through independent inspection of the spatial
distributions of B cells in CLRs (Fig. 5g) and DII (Fig. 5h) in the
histological images.

This result, not reported in the original study, showcases the
discovery potential of the quantitative analysis of spatial
relationships between cell populations implemented in SIMPLL
In addition, the SIMPLI graphical representations of the tissue
composition as an overlay of cell boundaries colour-coded by cell
populations greatly facilitate the visual inspection of their spatial
interactions in their original tissue context.

Discussion

SIMPLI is an open-source, customisable and technology-
independent tool for the analysis of multiplexed imaging data.
It enables the processing of raw images, the extraction of cell data
and the spatially resolved quantification of cell types or functional
states as well as a cell-independent analysis of tissues at the pixel
level, all within a single platform (Table 1). Moreover, it gives
high flexibility to the user who can decide whether to skip pro-
cesses implemented in SIMPLI and replace them with external
tools to then re-start the pipeline at any point.

In comparison to currently available software, SIMPLI increases
the portability, scalability and reproducibility of the analysis
(Table 2). Moreover, it can easily accommodate specific analytical
requirements across a wide range of tissues and imaging technol-
ogies at different levels of resolution and multiplexing through user-
friendly configuration files. SIMPLI interoperates with multiple
software and programming languages by leveraging workflow
management and containerisation. This makes the inclusion of
additional algorithms, features and imaging data formats easy to
implement. For example, as possible future developments, SIMPLI
may include alternative methods of cell segmentation, pixel and cell
classification or a Graphical User Interface for interactive data
visualisation. For this reason, we will maintain SIMPLI and its
documentation up-to-date and will further expand it to leverage
new tools as they become adopted by the community. Similarly,
feedback from users will be collected through the dedicated GitHub
repository.

Multiplexed imaging methods have proven to be a powerful
approach for the study of tissues through the in-depth character-
isation of cell phenotypes and interactions. SIMPLI, which was
recently able to reveal differences in the composition of the micro-
environment between colorectal cancers responsive and resistant to
anti-PD1 immunotherapy3!, represents an effort to make these
analyses more accessible to a wider community. This will enable the
exploitation of highly multiplexed imaging technologies for multiple
applications, ranging from basic life science and pharmaceutical
research to precision medical use in the clinics.

Methods

All patients enrolled in this study provided written informed consent in accordance
with approved institutional guidelines (University College London Hospital, REC
Reference: 20/YH/0088; Istituto Clinico Humanitas, REC Reference: ICH-25-09).

SIMPLI description and implementation. SIMPLI’s workflow is divided into three
steps (raw image processing; cell-based analysis; pixel-based analysis), which are
constituted of multiple standalone processes (Fig. 1 and Supplementary Fig. 1).
Processes can be executed sequentially or independently from the command line or
through a configuration file that can be edited with any text editor. This allows the
user to skip some of them and use alternative input data for downstream analyses.
In addition, parameters and options can be specified through the same
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configuration files without the need to set up tool-specific input files in any specific ~ pixel-based analyses. Alternatively, they can be first normalised across samples by

directory structure. rescaling pixel values of each channel up to the 99th percentile of the distribution

Raw data from IMC or MIBI experiments (.mcd or.txt files) are converted into  using the EBImage33 package and custom R scripts. Normalised images can then be
single or multi-channel.tiff images with imctools®2. Data from other multiplexed processed with CellProfiler4!! to generate thresholded images and masks of tissue
imaging platforms may be supplied directly as raw single or multi-channel tiff compartments or markers to be used in the following steps. In this step, the user
images (Supplementary Fig. 1a). Raw images can be thresholded individually to can apply a range of filters, thresholds and morphological operations to each image,

minimise the effect of non-uniform staining and then used directly for the cell- and ~ according to the experimental plan.
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Fig. 4 Characterisation of PDL1" and PD1" cells at the tumour invasive margin. a CD3 immunohistochemistry (main image) and sequential mIF image
(zoom-in, x20 magnification) of a rectal cancer sample (CRC1). The mIF image corresponded to a 5 mm? tissue area at the invasive margin of the tumour
and was obtained by combining the pre-processed images of seven markers. Scale bar = 50 um. b Density plot of PDL1 expression in CD8" cells. Cells with
>0.01PDL1 expression were considered as PDL1T cells. ¢ Density plots of CD8 and PD1 expression in T cells. Cells with >0.01 CD8 expression and >0.005
PD1 expression were considered as PD1TCD87 T cells. Expression thresholds were identified through histological inspection of PDL1, CD8 and PD1 channel
images and are indicated as dotted lines in the corresponding plots. d Proportions of PD1TCD8 cells and PDL17 cells over total cells, as measured using
SIMPLI data processing, including normalisation. e Proportions of PD1TCD8* cells and PDL1* cells over total cells, as measured using the Inform tissue
analysis software package?8. f Comparison of the mean intensity of GzB and Ki67 between PD1+CD8* T cells proximal (n = 21) and distal (n=73) to
PDL1*cells. Proximal PD1+CD8™ T cells were defined as those at less than 12 pm from a PDL1* cell. g Comparison of the mean intensity of CD68 and Ki67
between PDL1*cells proximal (n = 35) and distal (n=1991) to PD1tCD8%* T cells. Proximal PDL1* cells were defined as those at less than 12 um from a
PD1+CD8* T cell. h Density plots of CD68 and PD1 expression in all cells. Cells with >0.01 CD68 and PDL1 expression were considered as PDL1TCD68+
cells. i Comparison of distance of PDL1* (n = 265) and PDL1~ (n =1127) CD68* macrophages to the nearest PD1TCD87 T cell. Data in (f), (g) and (i) are
presented as a box centred around the median and extending from the first to the third quartile. Whiskers represent the minimum and maximum values.
An exact p value was calculated using a two-sided Wilcoxon test. j High-resolution (x40 magnification) mIF image of PD17CD8™ T cells proximal to

PDL1+CD68" cells. Zoom in images show each marker separately and merged. Scale bar = 20 um. Images in (a) and (j) were derived from a single

experiment (CRC1, Supplementary Data 1). DAPI and other cells, blue; PD1 and PD1TCD8* T cells, red; CD68 and PDL1- CD687 cells, magenta; PDL1 and
PDL1TCD68T cells, green; CD8, yellow; Granzyme B (GzB), orange; Ki67, white; proximal cells, pink; distal cells, violet. Source data are provided as a

Source Data file.

Pixel-based and cell-based analyses can be run as single workflows or in parallel
within the same run. Both of them provide multiple outputs of the various
processes, including tabular text files, visualisation plots and comparisons across
samples (Supplementary Fig. 1).

The cell-based analysis is composed of cell data extraction, cell phenotyping and
spatial analysis (Supplementary Fig. 1b). The extraction of cell data starts with
single-cell segmentation using CellProfiler4!! or StarDist?? with scikit-image®*
used for feature extraction. In the latter case, default models or user-provided
trained models can be used. Cell segmentation returns (1) single-cell data
consisting of the marker expression values and the coordinates of each cell in the
ROI and (2) the ROI segmentation mask marking all the pixels belonging to each
cell with its unique identifier. Cells mapping to tissue compartments or positive for
certain markers can then be identified based on their overlap with the tissue
compartments or marker masks derived in the previous step. These cells are
visualised in the ROI as outlines, while their proportions are quantified in barplots
and boxplots.

All cells or only those in specific tissue compartments or positive for certain
markers can be further phenotyped using two approaches. The first consists of
unsupervised clustering based on the marker expression values using Seurat3>. Cells
are represented as nodes in a k-nearest neighbour graph based on their Euclidean
distances in a principal component analysis space. This graph is then partitioned
into clusters using the Louvain algorithm3® at user-defined levels of resolution
leading to the unsupervised identification of cell phenotypes. Clusters of cell
phenotypes are plotted as scatterplots in Uniform Manifold Approximation and
Projection (UMAP)37 space. The second phenotyping approach is based on user-
defined thresholds of marker expression values that can be combined using logical
operators for the identification of designated cell phenotypes. The distributions of
cells are represented as density plots based on the marker expression levels. In both
phenotyping approaches, the expression profiles of the cell types are plotted as
heatmaps, their proportions quantified in barplots and boxplots and their locations
in the ROI visualised as cell outlines.

Once cell populations and phenotypes have been identified, the spatial analysis
investigates the distance between cells of the same (homotypic aggregations) or
different (heterotypic aggregations) types. The homotypic and heterotypic spatial
analyses can be run in parallel or singularly on one or more sets of cells. In the
homotypic analysis, clusters of cells of the same type within a user-defined distance
are identified with DBSCAN3® as implemented in the fpc3® R package. These
homotypic cell aggregations are visualised as position maps, reporting cell location
and high-density clusters in the ROL In the heterotypic analysis, the cell distances,
defined as the Euclidean distances between cell centroids, are computed using
custom R scripts and visualised as density plots. The resulting distribution of cell
distances can be compared between group of samples using a two-sided Wilcoxon
test with Benjamini-Hochberg FDR correction. Observed distances can also be
compared to the distribution of expected distances obtained by reshuffling cell
identities in each sample randomly for a user-defined number of times (default
value = 10,000 reshufflings, Supplementary Fig. 1b). The statistical significance of
this comparison is evaluated with a two-tailed permutation test adjusted for
multiple hypothesis testing with the Benjamini-Hochberg correction.

The pixel-based analysis quantifies areas positive for a user-defined
combination of markers using the EBImage3? package with custom R scripts
(Supplementary Fig. 1c). These measurements are performed starting from the
thresholded images produced in the raw image processing step (Supplementary
Fig. 1a). The marker-positive areas obtained in this way are then normalised over
the area of the whole image or specific tissue or marker compartments. The
resulting normalised positive areas can then be quantified in barplots and boxplots.

SIMPLI is implemented as a Nextflow# pipeline employing Singularity
containers*! hosted on Singularity Hub*? to manage all the libraries and software
tools. This allows SIMPLI to automatically manage all dependencies, irrespective of
the running platform. Nextflow also manages automatic parallelisation of all
processes while still allowing the selection of parts of the analysis to execute.

Sample description. Six FFPE blocks of normal (non-cancerous) colon mucosa

(CLN1-CLNG®6), one of normal appendix (APP1) and one of rectal cancer (CRC1)
were obtained from eight individuals who underwent surgery for the removal of
colorectal cancers (Supplementary Data 1). All blocks were reviewed by an expert
pathologist (M.R.-].).

Staining and IMC ablation of human colon mucosa and appendix. Four-pm-
thick sections were cut from each block of samples CLN1-CLN6 and APP1 with a
microtome and used for staining with a panel of 26 antibodies targeting the main
immune, stromal and epithelial cell populations of the gastrointestinal tract
(Supplementary Data 2). The optimal dilution of each antibody in the panel was
identified by staining and ablating FFPE appendix sections. The resulting images
were reviewed by a mucosal immunologist (J.S.) and the dilution giving the best
signal to background ratio was selected for each antibody (Supplementary Data 2).
To perform the staining for IMC, slides were dewaxed after a 1-h incubation at
60 °C, rehydrated and heat-induced antigen retrieval was performed with a pres-
sure cooker in Antigen Retrieval Reagent-Basic (R&D Systems). Slides were
incubated in a 10% BSA (Sigma), 0.1% Tween (Sigma), and 2% Kiovig (Shire
Pharmaceuticals) Superblock Blocking Buffer (Thermo Fisher) blocking solution at
room temperature for 2 h. Each antibody was added to a primary antibody mix at
the selected concentration in blocking solution and incubated overnight at 4 °C.
After two washes in PBS and PBS-0.1% Tween, the slides were treated with the
DNA intercalator Cell-ID™ Intercalator-Ir (Fluidigm) (containing the two iridium
isotopes 191Ir and 193Ir) 1.25 mM in a PBS solution. After a 30-min incubation,
the slides were washed once in PBS and once in MilliQ water and air-dried. The
stained slides were then loaded in the Hyperion Imaging System (Fluidigm) ima-
ging module to obtain light-contrast high-resolution images of approximately

4 mm?. These images were used to select the ROI in each slide. For CLN1-CLNG6,
1 mm?2 ROIs were selected to contain the full thickness of the colon mucosa, with
epithelial crypts in a longitudinal orientation. For APP1, a 1-mm? ROI containing a
lymphoid follicle in its whole depth alongside a portion of lamina propria and of
the epithelium was selected. ROIs were ablated at a 1 um/pixel resolution and
200 Hz frequency.

IMC data analysis of human colon mucosa. Twenty-eight images from 26
antibodies (Supplementary Data 2) and two DNA intercalators were obtained from
the raw.txt files of the ablated regions in CLN1-CLN6 using the data extraction
process. Pixel intensities for each channel were normalised to the 99th percentile in
all samples and Otsu thresholding was performed on the normalised images with a
custom CellProfiler4 pipeline, which was employed also to generate the masks for
the lamina propria (using the Vimentin channel including all <75-pixel large
negative areas) and the epithelium (starting from the Pan-keratin and E-cadherin
channels, dilatating the images with a three-pixel disk and the filling up of all <75-
pixel large negative areas). These masks were then added into a sum image, which
underwent dilatation with a three-pixel disk and filling up of all <25-pixel large
negative areas. Positive features outside of the lamina and epithelium were removed
with an opening operation using a 150-pixel radius and the lamina propria mask
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was subtracted from the sum image to generate the final mask for the epithelial
compartment. These masks and the thresholded images were used as input for the
pixel-based and cell-based analysis processes. The IgA masks employed for the
pixel analysis were generated using a three-class global Otsu thresholding with two
background classes after applying a Gaussian filter with a 1.5-pixel large radius to
remove high-intensity artefacts of that size, which we noticed after manual
inspection of the images.

[ CD38 (B cells)
[ cD34 (Blood vessels)

DIl

Il DNA
[ other cells

To evaluate the effect of normalisation on the downstream analysis, sample-
specific thresholds were manually selected for IgA, E-Cadherin, Pan-Keratin and
Vimentin and applied to the raw images. The resulting thresholded images were
used to generate lamina propria and epithelial masks for each sample individually.

Pixel-level analysis was performed on the IgA masks derived from either the
normalised or the raw images and IgA™ areas in the tissue, lamina propria and
epithelium were measured and normalised over the areas of the three compartments.

| (2022)13:781 https://doi.org/10.1038/s41467-022-28470-x | www.nature.com/naturecommunications 1


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Fig. 5 Spatial localisation of immune cells in two colorectal cancer subtypes. a CODEX images of two representative CLR (CRC_12_24) and DII
(CRC_31_16) colorectal cancer samples. b Proportions of CD8% T cells, CD4™ T cells, Tregs, macrophages, dendritic cells, B cells and other mixed immune
cell populations across the 35 analysed samples. Cell types were identified by applying expert-defined thresholds to the expression intensity of
representative markers and normalised over the total non-cancer cells. These thresholds were derived through histological inspection of the channel
images. The cell proportion corresponding to each population from the original study® is reported in brackets. Distance distribution of Tregs to the nearest
tumour cell (¢) and of B cells to the nearest endothelial cell (d) of CLR and DIl samples. Distances between cell pairs were calculated using the cell
centroids coordinates and the resulting distributions were compared between CRC subtypes using a two-sided Wilcoxon test. Benjamini-Hochberg FDR
correction was applied for testing over ten cell type comparisons. Only differences of at least 8 um and with FDR < 0.1 were considered significant. Dashed
lines represent the medians of the distributions. Distribution of the expected differences between the median distances of Tregs to the nearest tumour cell
(e) and of B cells to the nearest endothelial cell (f) in CLR and DIl samples. Expected values were calculated with a permutation test, where cell identities
were randomly reassigned for 10,000 times within each sample. The resulting median values were compared to the observed differences with a two-tailed
permutation test adjusted for multiple hypothesis testing with the Benjamini-Hochberg correction. Single-cell outlines of B cells and blood vessels (upper
panel) and associated images (lower panel) form a representative CLR (CRC_17_34) (g) and DIl (CRC_15_29) (h) sample out of 35 colorectal cancer
samples (Supplementary Data 1). CD38 and B cells, orange; CD8 and CD81 T cells, yellow; CD4 and CD4+ T cells, cyan; CD68 and macrophages, red;
cytokeratin and tumour cells, magenta; DNA, blue; Tregs, teal; dendritic cells, violet. Crohn's-like reaction (CLR) orange; diffuse inflammatory infiltration

(DII), teal. Scale bar = 100 pm. Source data are provided as a Source Data file.

Cell-level analysis started with CellProfiler4 segmentation first on DNA1 with
global Otsu thresholding to identify the cell nuclei. Then, cells were identified by
radially expanding each nucleus for up to 10 pixels over a membrane mask derived
from the IgA, CD3, CD68, CD11c and E-cadherin channels. After inspection by an
expert histologist (].S.), only cells overlapping with the lamina propria mask by at
least 30% were retained.

Cell identities were assigned according to the highest overlap of the cell area
with marker-specific thresholds defined by an expert histologist (J.S.): 215% of the
IgA mask for IgA cells; 215% of the CD3 mask for T cells; 225% of the CD68 mask
for macrophages; 215% of CD11c mask for dendritic cells.

IMC data analysis of human appendix. Images from the same 26 antibodies
and two DNA intercalators used in the colon mucosa (Supplementary Data 2)
were obtained from the raw.txt files of the ablated region in APP1, normalised
to the 99th percentile and thresholded with CellProfiler4 as described above.
For the cell-based analysis, nuclei were identified using the DNA1 channel
and cells were isolated through watershed segmentation with the nuclei as
seeds on a membrane mask summing up CD45, Pan-keratin and E-cadherin
thresholded images.

Cells were assigned to the epithelium or to immune cell populations if they
overlapped for >10% with the following masks: CD3 mask for T cells; CD20 and
CD27 masks for B cells; CD68 mask for macrophages; CD11c mask for dendritic
cells; E-cadherin™ and Pan-keratin™ masks for epithelial cells.

T cells were further phenotyped using unsupervised clustering at resolutions
between 0.1 and 1.0, with 0.05 intervals and based on the cell marker intensity for
CD3, CD45RA, CD45R0, CD4, CD8, Ki67 and PD1. The resulting clusters were
manually inspected and the clustering with the highest number of biologically
meaningful clusters (resolution = 0.25) was chosen. Clusters were re-identified
using mean intensity thresholds defined by an expert histologist (J.S.) for the
following markers: CD3 >0.06 for cluster 1; CD8a >0.125 for cluster 2; CD45RA
>0.125 for cluster 3; CD4 >0.125 and CD45RO >0.15 for cluster 4; and CD4 >0.1
and PD1 >0.15 for cluster 5.

Homotypic aggregations of PD1TCD4™" T cells (cluster 5, resolution = 0.25)
were computed using a minimum of five points per cluster and a reachability
parameter corresponding to a density of at least 5 cells/mm?.

CD3 staining and mIF of human rectal cancer. Two 4-pm-thick serial sections
were cut from CRCI FFPE block using a microtome. The first slide was dewaxed and
rehydrated before carrying out HIER with Antigen Retrieval Reagent-Basic (R&D
Systems). The tissue was then blocked and incubated with the anti-CD3 antibody
(Dako, Supplementary Data 2) followed by horseradish peroxidase (HRP) conjugated
anti-rabbit antibody (Dako) and stained with 3,3’ diaminobenzidine substrate (Abcam)
and haematoxylin. Areas with CD37 infiltration in the proximity of the tumour
invasive margin were identified by a clinical pathologist (M.R.-].)

The second slide was stained with a panel of six antibodies (CD8, PD1, Ki67,
PDLI1, CD68, GzB, Supplementary Data 2), Opal fluorophores and DAPI on a
Ventana Discovery Ultra automated staining platform (Roche). Expected
expression and cellular localisation of each marker as well as fluorophore
brightness were used to minimise fluorescence spillage upon antibody-Opal
pairing. Following a 1-h incubation at 60 °C, the slide was subjected to an
automated staining protocol on an autostainer. The protocol involved
deparaffinisation (EZ-Prep solution, Roche), HIER (DISC. CC1 solution, Roche)
and seven sequential rounds of 1-h incubation with the primary antibody, 12 min
incubation with the HRP-conjugated secondary antibody (DISC. Omnimap anti-
Ms HRP RUO or DISC. Omnimap anti-Rb HRP RUO, Roche) and 16-min

incubation with the Opal reactive fluorophore (Akoya Biosciences). For the last
round of staining, the slide was incubated with Opal TSA-DIG reagent (Akoya
Biosciences) for 12 min followed by Opal 780 reactive fluorophore for 1h (Akoya
Biosciences). A denaturation step (100 °C for 8 min) was introduced between
each staining round in order to remove the primary and secondary antibodies from
the previous cycle without disrupting the fluorescent signal. The slide was
counterstained with DAPI (Akoya Biosciences) and coverslipped using ProLong
Gold antifade mounting media (Thermo Fisher Scientific). The Vectra Polaris
automated quantitative pathology imaging system (Akoya Biosciences) was used to
scan the labelled slide. Six fields of view, within the area selected by the pathologist,
were scanned at x20 and x40 magnification using appropriate exposure times and
loaded into inForm?8 for spectral unmixing and autofluorescence isolation using
the spectral libraries.

miF data analysis. After spectral unmixing and merging of six x20 fields of view
for a total of >5 mm? ROI (Table 2), one single-tiff image was extracted for each
marker and its intensity was rescaled from 0 to 1 with custom R scripts. The
resulting single-tiff images were pre-processed to remove the background noise
with Otsu thresholding in CellProfiler4 and used for cell segmentation by applying
a global threshold to the DAPI channel and selecting all objects with a diameter
between four and 60 pixels. PD1TCD8 cells, CD687 cells and PDL1™ cells were
then identified using mean intensity thresholds of 0.01 for CD8, 0.005 for PD1, 0.01
for CD68 and 0.01 for PDL1. All thresholds were inspected by an expert histologist
(J.S.). To crosscheck these results, images were analysed with the Inform?8 package.
After spectral unmixing, images were segmented with the Adaptive Cell Segmen-
tation option applied to the DAPI channel for nuclei identification (“relative
intensity” = 0.1, “splitting sensitivity” = 0.1, “minimum size” = 5). Then
PD1+CD87 cells and PDL1+ cells were identified.

The distributions of minimum distances between PDL17 cells and PD1+CD8+
cells were calculated from the coordinates of the centroids of each cell in the image.
All PDL1T cells and PD1+CD8* cells at a distance from each other lower than
double the maximum cell radius (24 pixels = 12 um) were considered as proximal.
All other cells were classified as distal.

CODEX data analysis. A published dataset of colorectal CODEX images® was
downloaded from The Cancer Imaging Archive (https://doi.org/10.7937/
tcia.2020.qn0-0326). It consisted of processed CODEX data from 35 colorectal
cancer samples divided in two groups (CLR and DII) according to the peritumoral
inflammatory levels and the presence of tertiary lymphoid structures®. For each
sample, four.tiff images were available representing four 0.6-mm spots from two
70-core tissue microarrays. These images were hyperstacks of 58 channels
including 56 antibodies (Supplementary Data 2) and two DNA markers with a
resolution of 377 nm/pixel. After the manual review of all 140 spots, one repre-
sentative image per sample was selected, having the best focus and containing both
tumour and peritumoural immune infiltrates.

The single-channel tiff files for each selected image were extracted and the pixel
intensities were rescaled from 0 to 1 with a custom R script. Using SIMPLI, single-
cell segmentation was performed in each of the 35 images by applying a global
threshold to the HOECHST channel to identify the nuclei and retain all objects
with a diameter between 5 and 40 pixels. Each nucleus was then expanded by
5 pixels in all directions to define the cell area.

Resulting single cells were assigned to ten phenotypes according to the mean
cell expression of CDX2 >0.15 or MUCI1 >0.15 or cytokeratin >0.15 for tumour
cells; CD34 >0.15 or CD31 >0.15 for endothelial cells; vimentin >0.1 for other
stromal cells; CD11c¢ >0.3 for dendritic cells; CD38 >0.26 for B cells; CD4 >0.13 and
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CD3 >0.1 for CD4™ T cells; CD4 >0.12 and FOXP3 >0.5 and CD3 >0.1 for Tregs;
CD8 >0.16 and CD3 >0.1 for CD8" T cells, and CD68 >0.11 for macrophages. The
heterotypic spatial analysis was performed by calculating the minimum distances of
macrophages, CD8" T cells, CD4™ T cells, Treg cells, and B cells to tumour cells
and endothelial cells using the coordinates of the cell centroids. Only comparisons
where the difference of the median cell-cell distances between the two histological
subtypes was greater than 8 um, corresponding to the diameter of B and T cells®,
were retained, no samples or cells were excluded from the analysis. As further
support, a permutation test for each of the retained comparisons was run by re-
assigning cell identities randomly in each sample 10,000 times. The resulting
expected random distributions were compared to the observed values using a two-
tailed permutation test and corrected for multiple testing.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The imaging mass cytometry data of human colon mucosa generated in this study have
been deposited in the Zenodo database under accession code “5545882”43. The imaging
mass cytometry data of the human appendix generated in this study have been deposited
in the Zenodo database under accession code “5545760”4%. The multiplex
immunofluorescence data of human colorectal cancer generated in this study have been
deposited in the Zenodo database under accession code “5545864”4>. All other relevant
data supporting the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable
request. Source Data are provided with this paper.

Code availability

SIMPLI’s code, documentation and an example dataset are available at “SIMPLI [https://
github.com/ciccalab/SIMPLI]”0. The software code is protected by copyright. No
permission is required from the rights-holder for non-commercial research uses.
Commercial use will require a license from the rights-holder. For further information
contact translation@crick.ac.uk who will reply within 5 business days.
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