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Simple Summary: CD229 is a cell-surface molecule predominantly expressed on lymphocytes. Its
expression in B-cell malignancies is poorly known. We tested the presence of this immunoreceptor
on a large number of malignancies and normal tissue using a new monoclonal antibody and tissue
microarrays. Our data show that CD229 expression is restricted to hematopoietic cells. It was strongly
expressed in myeloma and marginal-zone lymphomas. Because of the high expression on multiple
myeloma cells, we also analyze the presence of soluble CD229 in the sera of these patients. We
showed that serum levels of soluble CD229 in myeloma patients, at the time of diagnosis, could be
useful as a prognostic biomarker. Altogether, our results indicate that CD229 represents not only a
useful disease biomarker but also an attractive therapeutic target.

Abstract: CD229 (Ly9) homophilic receptor, which belongs to the SLAM family of cell-surface
molecules, is predominantly expressed on B and T cells. It acts as a signaling molecule, regulating
lymphocyte homoeostasis and activation. Studies of CD229 function indicate that this receptor
functions as a regulator of the development of marginal-zone B cells and other innate-like T and
B lymphocytes. The expression on leukemias and lymphomas remains poorly understood due to
the lack of CD229 monoclonal antibodies (mAb) for immunohistochemistry application (IHC). In
this study, we used a new mAb against the cytoplasmic region of CD229 to study the expression of
CD229 on normal tissues and B-cell malignancies, including multiple myeloma (MM), using tissue
microarrays. We showed CD229 to be restricted to hematopoietic cells. It was strongly expressed
in all cases of MM and in most marginal-zone lymphomas (MZL). Moderate CD229 expression was
also found in chronic lymphocyte leukemia (CLL), follicular (FL), classic mantle-cell (MCL) and
diffuse large B-cell lymphoma. Given the high expression on myeloma cells, we also analyzed for the
presence of soluble CD229 in the sera of these patients. Serum levels of soluble CD229 (sCD229) at the
time of diagnosis in MM patients could be useful as a prognostic biomarker. In conclusion, our results
indicate that CD229 represents not only a useful biomarker but also an attractive therapeutic target.
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1. Introduction

CD229 is a type I cell-surface glycoprotein that belongs to the signaling lymphocytic
activation molecule family (SLAMF) of cell-surface molecules. SLAMF receptors are a
group of signaling molecules that are involved in the regulation of immune responses
(reviewed in [1–3]). SLAMF receptors can either enhance or inhibit signals that regulate
leukocyte activation, differentiation, and cytokine secretion. CD229, as with most of the
SLAMF receptors, is activated by homophilic interactions, and therefore, acts as a self-
ligand [4]. CD229 possesses four Ig-like domains, while the rest of SLAMF receptors
contain two Ig-like domains. This molecule contains a long cytoplasmic tail with eight
tyrosines, two of them embedded in immunoreceptor tyrosine switch motifs (ITSMs) [5,6].
They are considered switch motifs because of their ability to activate either kinases or
phosphatases. The engagement of CD229 via its amino-terminal IgV-like domains induces
the phosphorylation of the cytoplasmic tyrosines initiating unique signaling pathways.
The primary ITSM binding partners are the SH2 domain-containing adaptor proteins,
SLAM-associated protein (SAP) or EWS/FLI-activated transcript-2 (EAT-2), and tyrosine
phosphatases such as SHP2 and SHIP1 [7–9]. The outcome of the signal delivered after
receptor ligation depends on the interaction of these motifs with intracellular adaptor
molecules or tyrosine phosphatases.

Studies from our group, using Ly9-deficient mice and agonistic monoclonal antibodies,
indicated that this receptor acts as a negative regulator of the development and homeostasis
of thymic innate-like CD8+, iNKT cells, and innate-like B cells such as marginal-zone B
cells [10–12]. Moreover, aged Ly9-deficient mice spontaneously develop features of systemic
autoimmunity indicating that the Ly9 cell-surface receptor is involved in the maintenance
of immune-cell tolerance [13].

Flow cytometry studies show that human CD229 is expressed on thymocytes, mature
T and B cells, and a subset of NK cells [5,14]. In mice its highest expression levels are found
on innate-like T lymphocytes such as iNKT and marginal-zone B cells [15]. Its expression is
not lost during B-cell differentiation, and it is highly expressed on plasmablasts and plasma
cells [16]. Consistently, several flow cytometry studies have found elevated levels of CD229
expression on malignant plasma cells in multiple myeloma (MM) cells [17–19]. In contrast,
CD229 is not detected on bone marrow hematopoietic stem cells, bone marrow multipotent
progenitors, monocytes, granulocytes, platelets, or red blood cells [5,20].

The absence of a mAb against CD229 that works on paraffin-embedded tissue and
lack of reports describing its expression in reactive human tissues and B-cell lymphomas,
prompted us to develop a specific mAb that could work on formalin-fixed paraffin-
embedded (FFPE) tissues with which we could investigate the potential diagnostic value of
CD229 as a marker for B-cell malignancies.

We also determined the levels of soluble CD229 (sCD229) as a potential serum
biomarker for Multiple Myeloma (MM).

2. Materials and Methods
2.1. Production of an Anti-CD229 mAb for Immunohistology

A new anti-CD229 mAb (clone PIZCU426A) was produced by immunizing Wistar
rats with the carboxyl terminal amino acids of CD229/Ly9 (NP_002339.2, residues 477–654)
fused to a HIS-tag corresponding to the cytoplasmic domain that was produced in the
BL21 strain of Escherichia coli. CD229-HIS was purified using a HIS-trap FF column (GE
Healthcare, New York, NY, USA) connected to an ÄKTA-prime system (GE Healthcare,
New York, NY, USA). Wistar rats (pathogen-free Wistar Han, female, 6 weeks old, 135 g
weight, Charles River Laboratories, Lyon, France) were injected intraperitoneally (three
times at 14-day intervals) with 100 µg of CD229-HIS fusion protein and Complete Freund’s
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adjuvant (BD, Cockeysville, MD, USA). Rats were housed within temperature, humid-
ity, and room light ranges appropriate for the species. The cage used was a type IV
480 mm × 375 mm × 210 mm and animals had adequate bedding substrate and/or struc-
tures for resting and sleeping. Animal experiments were performed under the experimental
protocol approved by the Institutional Committee for Care and Use of Animals from Con-
sejería de Medio Ambiente y Ordenación del Territorio of the Comunidad de Madrid
(Madrid, Spain) with reference project PROEX038/15. All efforts were made to minimize
animal suffering.

A 150 µg last booster of the recombinant CD229-HIS protein was injected intraperi-
toneally and splenocytes were fused 3 days later (carbon dioxide was used for euthana-
sia). Hybridoma supernatants were screened by ELISA and using HEK293T cells trans-
fected with pCI-neo-CD229 plasmid. The rat mAb that was raised against CD229 (clone
PIZCU426A, IgG2a) was cloned by the limiting dilution technique.

2.2. Ly9 Gene Inactivation Using CRISPR/Cas9 Technology

The CRISPR/Cas9 knock-out generation was produced as previously described [21].
Briefly, sgRNAs were designed using the Benchling CRISPR sgRNA Design tool (http:
//www.bnchling.com, 13 January 2020). Specific sgRNAs were tested against Ly9 gene
(ENSG00000198846, exon 2) and a non-targeting (NT) guide was used as a control (sgLy9.1:
TGGTGATGTCTAGTCGGCCC, sgLy9.2: GAACTCACCATAGACGAACA and sgNT: CCG-
CGCCGTTAGGGAACGAG). Ribonucleoprotein (RNP) complexes were formed at room
temperature for at least 10 min by using in-vitro-synthesized guide sequences (IDT) and
Cas9 protein (IDT).

U266 cells were electroporated using the Neon Transfection System (Thermo Fisher
Scientific, Waltham, MA, USA). Before reaching confluence and 24 h prior to electroporation
cells were passed in order to keep them in log phase; next day cells were resuspended into
R solution and electroporated with 10µL tips with 1 pulse for 20 ms (miliseconds) at 1650 v
(volts). After electroporation, cells were maintained in 12-well plates with pre-warmed
media and left to recover for 24 h. Single cells were sorted in a 96-well plate in order to
establish single-cell CD229 KO clones and cultured in p96 plates.

2.3. Western Blot

WB analyses of CD229 protein were performed using total protein extracted from
six cell lines lysed in a RIPA lysis buffer (Sigma-Aldrich, St. Louis, MO, USA) with
protease inhibitors (Roche, Mannheim, Germany). The total lysates of each cell line were
denatured by heating in Laemmli sample buffer, resolved on a 7.5% sodium dodecyl
sulphate-polyacrylamide gel (SDS-PAGE) and transferred onto nitrocellulose membranes
for 2 h. Blotting membranes were incubated overnight with blocking solution (5% milk
in PBS) and immunoblotted for 1 h at room temperature with anti-CD229 PIZCU426A
mAb (diluted 1:100), and anti-GAPDH monoclonal antibody (diluted 1:5000), followed
by incubation with anti-mouse and rat AF680 (Invitrogen, Carlsbad, CA, USA) secondary
antibody The blots were visualized using the Odyssey Image System (Omaha, NE, USA)
in accordance with the supplier’s instructions. Information about commercial antibodies
used is showed in Table S1.

2.4. Human Tissues and Cell Lines

Labeling with the CD229 mAb (clone PIZCU426A) was performed across five types
of reactive lymphoid tissues: lymph node, tonsil, bone marrow, thymus, and spleen, and
240 different lymphomas corresponding to 14 different subtypes and 20 multiple myelomas
(Table 1). All the normal and tumor samples were retrospectively collected from the files
of the participant institutions, in accordance with the technical and ethical procedures of
the Spanish National Biobank Network, including anonymization processes and informed
consent according to the Helsinki Declaration. Approval was obtained from the Clinical
Research Ethical Committee (min no. 10/18 with code PIC075-18_FJD).

http://www.bnchling.com
http://www.bnchling.com
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Table 1. CD229 expression in lymphomas and myeloma.

Types of Lymphoma No.
Cases

Positive
Cases

Negative
Cases

% Positive
Cases

Precursor neoplasms

Precursor B lymphoblastic lymphoma 7 2 5 28%

Mature B-Cell Neoplasms

Chronic lymphocytic leukemia 20 14 6 70%
Follicular lymphoma 20 12 8 60%
Classic mantle-cell lymphoma 20 14 6 70%
Diffuse large B-cell lymphoma GCB Type 29 19 10 66%
Diffuse large B-cell lymphoma Non-GCB type 19 10 9 52%
Burkitt lymphoma 20 4 16 20%
Nodal marginal-zone lymphoma 34 28 6 82%
MALT lymphoma 28 24 4 86%
Splenic marginal-zone lymphoma 15 13 2 87%
Multiple myeloma 1 20 20 0 100%

Hodgkin Lymphomas

Nodular lymphocyte-predominant HL 7 0 7 0%
Lymphocyte-rich cHL 3 0 3 0%
Nodular sclerosis cHL 10 0 10 0%
Mixed cellularity cHL 8 0 8 0%

1 Bone marrow.

RPMI-8226, SKMM2, U266, AKATA, DAUDI, RAMOS, and RAJI cell lines used in
the present study were obtained from the German Collection of Microorganisms and Cell
Cultures (DSMZ, Braunschweigh, Germany). K562, SU-DHL-4, JURKAT, THP-1, REH,
REC.1, YT, and CESS-EBV cell lines were purchased from the American Type Culture
Collection (ATTC, Manassas, VA, USA).

HEK293T and KARPAS-620 cell lines were kindly provided by Miguel Angel Piris from
Department of Pathology, Fundación Jiménez Díaz, Spain. Cell lines were authenticated by
short tandem repeat (STR) profiling.

2.5. Immunohistochemistry

FFPE tissues from many of tumor samples were included in four tissue micro array
(TMA) (one multi lymphoma, one with MALT, 1 one NMZL, and one with DLBCL lym-
phomas) blocks using a Tissue Arrayer Device (Beecher Instrument, Silver Spring, MD,
USA). IHC analyses were performed on TMAs or full tissue sections. Antibody sources are
described in Table S2. The Bond Polymer Refine detection system and Bond RX automated
stainer system (Leica Biosystems, Wetzlar, Germany) were used for the immunoenzy-
matic labeling of FFPE tissues. Images were captured with an Axiocam charge-coupled
device (CCD) camera (Zeiss, Jena, Germany) and Axiovision software ZEN2.1 (Imag-
ing Associates, Bicester, UK) and adjusted using Photoshop version 9.0 software (Adobe,
San Jose, CA, USA).

2.6. Scoring CD229 Expression

CD229 protein expression was assessed by two independent observers (J.F.G. and
M.R.J.) by immunohistochemistry on reactive as well as neoplastic human TMA and on
complete sections. Since most tumors showed uniform immunohistochemical expression,
we selected a score of 10% as the most informative cut off. Each case was scored semi-
quantitatively, depending on the number of positive cells, as negative (0–10% positive
tumor cells) or positive (10–100% positive tumor cells).
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2.7. Immunofluorescence

After antigen retrieval (Tris-EDTA buffer), the slides were incubated for one hour
at room temperature in a humid chamber with primary antibodies (anti-CD229 clone
PIZCU426A, anti-PD1 clone NAT105C, anti-CD3 clone IR503, and anti-CD20 clone SP32
(Table S1). Slides were then washed in PBS 0.5%-Tween20 (Sigma-Aldrich, Saint Louis, MO,
USA) three times for 5 min each. The slides were incubated for 1 h with fluorochrome-
conjugated antibodies (Alexa Fluor 555, Alexa Fluor 488, and Alexa Fluor 680, dilution 1:200,
Invitrogen, Carlsbad, CA, USA) against the different species, diluted in PBS (Molecular
Probes, Leiden, The Netherlands) in a humid chamber in the dark. Subsequently, slides
were washed in PBS 0.5%-Tween20 (Sigma-Aldrich, Saint Louis, MO, USA) three times
for 5 min each. Following washing, antifading medium with Dapi (Qbiogene, Illkirch,
FR) was added. Slides were examined on a Leica TCS SP8 STED 3X (Leica, Wetzlar,
Germany) confocal microscope equipped with a 63 ×/NA 1.4 oil immersion objective, a
405 laser, a white light laser, and multispectral HyDTM detectors. Fluorescence images
were captured with LAS X Navigator software v3.5 (Leica, Wetzlar, Germany), and adjusted
using Photoshop version 9.0 software (Adobe, San Jose, CA, USA).

2.8. Flow Cytometry

Cell lines were counted, washed, and resuspended in PBS, 20% inactivated rabbit
serum, 6% FBS, and 0.09% NaN3. Then, 1 × 106 cells were incubated with the anti-human
CD229-PE (clone Ly9.1.25, BD, Jersey City, NJ, USA) on ice and protected from light for
45 min. After washing once, labelled cells were acquired on an LSRII Fortessa cytometer
(BD). FlowJo vX.0.7 (Tree Star, Inc., Ashland, TN, USA) software were used for the analysis.

2.9. Myeloma Patients

The clinical records of 221 patients with a monoclonal gammopathy who had been
followed at the Hospital Clínic of Barcelona were reviewed. A total of 144 patients had
been diagnosed with MM (122 patients with newly diagnosed MM (NDMM), 39 patients
achieving response after anti-myeloma therapy, and 18 patients with MM after disease
relapse), while 23 had smoldering MM (SMM) and 54 a monoclonal gammopathy of
undetermined significance (MGUS) (Table 2). The diagnoses were made according to the
criteria of the International Myeloma Working Group [22]. The study was approved by
the Ethics Committee of the Hospital Clínic of Barcelona and was in accordance with the
Declaration of Helsinki. All patients signed informed consent in accordance with our
institutional requirements.

Table 2. Clinical features of the patients with MM according to the sCD229 cut-off.

Characteristics sCD229 ≤ 5.0 ng/mL
(n = 99)

sCD229 > 5.0 ng/mL
(n = 23) p

Gender, male, n (%) 58 (58.6) 11 (47.8) 0.36
Age, median (IQR) 65 (56–73) 69 (66.5–78.5) 0.01

Immunological subtype, n (%)

0.14
IgG 60 (60.6) 10 (43.5)
IgA 20 (20.2) 9 (39.1)

Bence Jones 16 (16.2) 3 (13.0)
Light chain isotype, n (%)

0.09Kappa 65 (65.7) 10 (43.5)
Lambda 30 (30.3) 12 (52.2)

Hemoglobin g/L, median (IQR) 10.8 (10–12.1) 9.6 (8.85–11.4) 0.01
Platelets 109/L, median (IQR) 214 (175–171) 177 (129–207) 0.005

Calcium mg/dL, median (IQR) 9.3 (8.85–9.8) 9.8 (9.1–10.7) 0.10
Creatinine mg/dL, median (IQR) 0.88 (0.70–1.26) 1.16 (1.04–1.42) 0.003

Albumin g/L, median (IQR) 37 (33–42) 32 (28–37) 0.007
β2-microglobulin mg/L, median (IQR) 3.85 (2.8–6.1) 8.3 (5.8–11.1) <0.001
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Table 2. Cont.

Characteristics sCD229 ≤ 5.0 ng/mL
(n = 99)

sCD229 > 5.0 ng/mL
(n = 23) p

Lactate dehydrogensase ≥ ULN, n (%) 11 (11.1) 5 (21.7) 0.18
Bone lytic lesions, n (%) 69 (70.4) 12 (54.5) 0.35

Bone marrow plasma cells, median (IQR) 28 (13–49.5) 63 (50–73) <0.001
ECOG PS > 2, n (%) 15 (15.3) 6 (26.1) 0.23

International Staging System, n (%)

<0.001
I 32 (32.7) 0 (0)
II 35 (35.7) 4 (17.4)
III 31 (31.6) 19 (82.6)

Cytogenetic abnormalities

0.47

t(4;14) 3 (3.0) 1 (4.3)
t(11;14) 12 (12.1) 2 (8.7)
t(14;16) 2 (2.0) 1 (4.3)

gain(1q+) 3 (3.0) 0 (0)
del(17p) 0 (0) 0 (0)

Response, n (%)
0.80Overall response rate 73 (73.7) 16 (69.6)

Complete remission rate 19 (19.2) 4 (17.4) 1.00
Induction treatment, n (%)

0.32

Chemotherapy-based 9 (9.1) 3 (13.6)
PI-based 32 (32.3) 7 (31.8)

IMID-based 9 (9.1) 5 (22.7)
PI + IMI-based 40 (40.4) 5 (22.7)

Daratumumab-based 6 (6.1) 1 (4.5)
Elotuzumab-based 3 (3.0) 1 (4.5)

Autologous stem cell transplantation, n (%) 49 (49.5) 3 (13) 0.002

ECOG PS, East Cooperative Oncology Group Performance Status; IMID, immunomodulatory drugs; IQR, interquartile
range; PI, proteasome inhibitor; and ULN, upper limit of normal. Statistically significant p-value in bold.

2.10. Soluble CD229 ELISA

High binding plates (Corning, New York, NY, USA) were coated overnight with
3 µg/mL of the anti-human CD229 antibody (clone LY9.1.84) which recognizes the second
immunoglobulin domain of CD229 (produced in our laboratory) diluted in PBS [4]. Wells
were blocked with PBS 2%BSA and washed with PBS-Tween. Sera from patients was
diluted 1/10 in PBS 2%BSA and undiluted cell culture supernatants were incubated for 1 h
at room temperature. Human CD229-Fc protein (produced in our laboratory) was used as
standard [4]. To detect captured sCD299 biotin-anti-humanCD229 (clone Ly9.1.25), which
recognizes the first immunoglobulin domain of CD229 (produced in our laboratory), was
added [4]. Streptavidin HRP (Roche) and TMB substrate (BD Bioscience) were used to
develop the plates. Readings were carried out on Epoch plate reader at 450–570 nm. Limit
of detection corresponded to 0.0423 ± 0.0019 O.D. and limit of quantification corresponded
to 0.15 ng/mL of sCD229.

To test the production of sCD229 from different cell lines, we seeded 1 × 105 cells per
well into 96 flat-bottomed plates (JET-BIOFIL, Guangzhou, China). After 48 h, supernatants
were collected and immediately used to detect sCD229 by ELISA. The experiment was
carried out with triplicates. Sera were diluted 1/10 in PBS 2%BSA.

2.11. Statistical Analysis

Frequency and percentage were used for categorical variables while median and range
were used for continuous variables. Differences between groups were compared using
Fisher’s exact test or c2 test for categorical variables, as well as the t-test or Wilcoxon
test for continuous variables. Spearman’s rho correlation coefficient was used to com-
pare continuous variables. The starting point for time-to-event analysis was the date of
diagnosis. Prognosis was determined by analyzing PFS and OS. The starting point for
both was first line treatment initiation. The probability of PFS and OS was calculated
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with the Kaplan–Meier method and survival curves were compared using the log-rank
test. The Cochran–Mantel–Haenszel statistic was performed to stratify data and adjust
for confounding variables. Multivariate Cox regression models were performed using
the backward stepwise method to identify factors independently associated with PFS and
OS. The method of maximally selected rank statistics (maxstat and survmine packages,
R software) was used to calculate the best sCD229 cut-off to predict PFS and OS, and
a value of 5.0 ng/mL was obtained (Figure S3). P values were two-sided and p < 0.05
indicated statistical significance. All analyses were performed using R.3.6.1 (R Foundation
for Statistical Computing, Vienna, Austria) and GraphPad Prism version 8.0.2.

3. Results
3.1. CD229 Tissue Expression is Restricted to Hematopoietic Cells

A new mAb (clone PIZCU426A, rat isotype IgG2a/k), was generated in order to test
the expression of CD229 in formalin-fixed paraffin-embedded tissues (FFPE). It was raised
against the cytoplasmic tail of CD229 protein. The specificity of PIZCU426A mAb for the
endogenous CD229 protein was confirmed by Western blotting (WB) using cell extract
of the HEK293T transfected with an unrelated protein (IL11RA) versus HEK293T-CD229
cells (Figure S1A), U266 cell line before and after LY9 gene inactivation using CRISPR-Cas9
technology (Figure S1B) and positive and negative human cell lines and tonsil (Figure S1C).
WB with this mAb showed the two characteristic bands of CD229 ~120 kDa and ~100 kDa
that corresponded to the full-length CD229 and a shorter spliced isoform [5].

In the tonsil and lymph node, CD229 was strongly expressed in mature B and T cells
from the interfollicular area and in plasma cells present in the subepithelial area outside the
follicles, as well as in the mantle zone (Figure 1A,B). Weaker CD229 expression was found
in B and T cells of the germinal center (GC) light zone while the dark zone was negative
(Figure 1A,B). In the thymus, CD229 was found mainly in mature T cells in the medulla
while weaker expression was detected in the cortex (Figure 1C). In the spleen, the mantle
and marginal zone were strongly positive, as well as some T cells within the white-pulp
area (Figure 1D). These observations indicate a progressive increase in the expression of
CD229 during T and B cell maturation, with its highest expression on plasma cells.

In the thymus, CD229 was found mainly in the medulla while in the spleen strong
staining was observed in the mantle and marginal zone (image 40×).

We further analyzed the phenotype of the CD229-positive cells in the tonsillar GC
cells using triple immunostaining. As shown in Figure 2, CD229-positive cells were mainly
CD3+PD1+ cells that corresponded to T follicular helper cells (TFH). The majority of the
CD20 cells surrounding the PD1+/CD229+ TFH did not express CD229.

In contrast, all the normal non-hematopoietic human samples tested (lung, brain,
thyroid pancreas, small intestine, duodenum, colon, stomach, endometrium, uterus, testi-
cle, prostate, bladder, kidney, skin and placenta) were negative except for the lymphoid
component present in these tissues, such as in the gastrointestinal tract (Figure 3). These
data confirm that CD229 expression is restricted to hematopoietic cells.

3.2. CD229 Expression on B Cell Linage Lymphomas and Myeloma

The immunostaining results from paraffin sections of 260 primary B-cell lymphomas
are summarized in Table 1. CD229 was expressed in a large number of B-cell neoplasms
(Figure 4) representing different differentiation stages. In particular, CD229 expression
was lower in B-lymphoblastic lymphoma (L-BL) (28%) and a similar result was found
in Burkitt lymphoma (BL) (20%). Higher and heterogeneous expression was found in
chronic lymphocytic leukemia (CLL) (70%), classic mantle-cell lymphoma (MCL) (70%),
follicular lymphoma (FL) (60%), and diffuse large B-cell lymphoma (DLBCL) (60%). When
DLBCLs were classified as germinal center B-cell-like (GCB) and non-germinal center B-
cell-like (non-GCB) subtype accordingly to the Hans algorithm [23], we found that CD229
expression was independent of DLBCL origin (GCB, 66%; non-GCB, 52%).
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Figure 2. Expression of CD229 in tonsil GC. Triple color immunofluorescence of tonsil GC. (A) PD1
(green), CD3 (blue), and CD229 (red); (B) PD1 (green), CD20 (blue), and CD229 (red) (magnification:
40× and 63×).
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Figure 4 

Figure 3. Expression of CD229 in normal tissues. Single immunoperoxidase labeling in reactive
human tissues with mAb (clone PIZCU426) against CD229 (magnification: 20× images, brain, thyroid
pancreas, small intestine, duodenum, colon, stomach, endometrium, uterus, testicle, prostate, bladder,
kidney, skin, placenta and 40× lung and skin). 

2 

 

Figure 5 

 

Figure 4. CD229 expression in B-cell lymphomas. Single immunoperoxidase labeling in B-cell
lymphomas with mAb (clone PIZCU426) against CD229. Representative examples of B-cell lym-
phomas (A) B-lymphoblastic lymphoma (L-LB), (B) negative case, chronic lymphocytic leukemia
(CLL) and (C) positive case, CLL, (D) negative case, follicular lymphoma (FL) and (E) positive case,
FL, (F) Burkitt lymphoma (BL), (G) diffuse large B-cell lymphoma (DLBCL), (H) splenic marginal-
zone lymphoma (SMZL), and (I) nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL).
All the pictures are at 40× magnification.
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In B-cell lineage lymphomas from post-GC B cells, such as marginal-zone lymphomas
(MZL) and myeloma, CD229 expression was very high. High expression of CD229 was
found in nodal marginal-zone lymphoma (NMZL) (82%), mucosa-associated lymphoid
tissue lymphoma (MALT) (86%), and splenic marginal-zone lymphoma (SMZL) (87%)
(Table 1 and Figure 4). In myeloma, CD229 expression was very high and detected in 100%
of the cases (Table 1 and Figure 5).

 

2 

 

Figure 5 

 

Figure 5. Architectural patterns of bone marrow infiltration by plasma cells by CD229 immunohisto-
chemical stain. Single immunoperoxidase labeling in myeloma with mAb (clone PIZCU426) against
CD229. All the pictures are at 40× magnification.

In contrast, CD229 was not found in tumor cells in Hodgkin lymphoma (HL), al-
though it was highly abundant in the tumor microenvironment of nodular lymphocyte-
predominant Hodgkin lymphoma (NLPHL) (Figure 4).

3.3. Soluble CD229 (sCD229) Is Secreted by B-Cell Lymphoma and Myeloma Cells Lines

We studied the expression levels of CD229 of several B-cell lymphoma and myeloma
cell lines using flow cytometry. Consistent with the data shown above, the myeloma cell
lines were the ones that presented the highest expression levels (Figure 6A). We tested
the capacity of these cell lines to secrete sCD229, after 48 h of culturing them without
any stimuli, using an ELISA. We observed a correlation of CD229 expression intensity on
leukocyte cell lines and the levels of sCD229 present in their supernatants (Figure 6B).
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3.4. Soluble CD229 as a Biomarker in MM

The identification of potential prognostic biomarkers is helpful in predicting relapse
and survival in patients with cancer. Therefore, to figure out the possible relationship
between sCD229 levels and outcomes in patients with MM and asymptomatic monoclonal
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gammopathies, we evaluated sCD229 levels in the serum of patients with monoclonal
gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM),
newly diagnosed multiple myeloma (NDMM) and MM during response and after relapse
using sandwich ELISA. sCD229 levels were statistically significantly higher in patients
with active MM as compared with those with MGUS or SMM (Figure 7A). The samples
analyzed from patients in response after treatment showed a significant decrease in the
levels of sCD229. An elevation of this protein was observed again in those patients who
relapsed (Figure 7A). Among NDMM patients, serum levels were considerably increased
in advanced vs. early stages (International Staging System (ISS) stage II and III vs. I)
(Figure 7B).
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Figure 7. Serum sCD229 levels in patients with MM. (A) sCD229 levels in serum samples from
54 patients with MGUS, 23 patients with SMM, 122 patients with newly diagnosed MM, 39 patients
achieving response, and 18 patients after myeloma relapse. (B) sCD229 levels in serum samples from
122 patients with NDMM according to the International Staging System (ISS). ns, non-significant;
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

We observed a moderate positive correlation between the amount of sCD229 with
the percentage of bone marrow plasma cells (BMPC) (R = 0.486; p < 0.001) and serum
β2-microglobuline (R = 0.419; p < 0.001) (Figure S2A,B).

Later, we analyzed the clinical and laboratory differences of the 122 patients with
NDMM according to the established cut-off of 5.0 ng/mL (Table 2). Ninety-nine patients
(81%) had a sCD229 below 5.0 ng/mL. Patients with an sCD229 > 5.0 ng/mL were signifi-
cantly older with a higher percentage of BMPC, as well as levels of β2-microglobuline and
creatinine, with lower levels of hemoglobin, platelets and, albumin. The proportion of pa-
tients with stage III ISS score was higher among patients with a high sCD229 (82.6 vs. 31.6%,
p < 0.001). No differences were seen regarding sex, immunological subtype, light chain
isotype, calcium or lactate dehydrogenase levels, or the presence of lytic lesions. These data
suggest that patients with higher levels of sCD229 have a higher tumor burden and more
aggressive clinical features. In terms of predictive value (overall response and complete
remission rate), there were no relationship with serum sCD229 levels (Table 2).

Regarding prognosis (impact on progression-free survival (PFS) and overall survival
(OS)), median PFS was shorter after first line of treatment for NDMM patients with sCD229
levels > 5.0 ng/mL compared to those with levels ≤5.0 ng/mL (16.1 vs. 25.5 months; hazard
ratio (HR) 1.97; p = 0.01) (Figure 8A). Furthermore, the 5-year OS was shorter among those
with sCD229 levels >5.0 ng/mL compared with those ≤5.0 ng/mL (39.1 vs. 61.0%; HR
2.3; p = 0.01) (Figure 8B) However, when variables related to a worse prognosis in patients
with newly diagnosed MM were included in the multivariate Cox regression models for
PFS and OS, it was observed that the levels of hemoglobin, albumin and sCD229 lost their
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prognostic impact, but not age and β2-microglobulin (Table S1). These results hint that
serum levels of sCD229 at the time of diagnosis in patients with MM could be useful as a
prognostic biomarker.
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Figure 8. Kaplan-Meier analysis was performed to determine progression-free survival (A) and
overall survival (B) of 122 newly diagnosed MM patients according to whether their baseline sCD229
was above or below the cut-off point of 5.0 ng/mL.

4. Discussion

This study provides a detailed description of the distribution of CD229 cell-surface
protein in a wide variety of normal and malignant human tissues. The results were obtained
using a novel anti-CD229 mAb (clone PIZCU426A), suitable for immunohistochemical
staining of formalin-fixed paraffin-embedded tissue sections and WB analysis.

Novel finding in this paper show that CD229 expression was restricted to lympho-
hematopoietic tissues, mainly on B cell linage cells with high expression levels on mature
B cells. CD229 was also found in splenic marginal and mantle-zone B cells. Interestingly,
marginal-zone B cell numbers are increased in CD229-deficient mice, indicating that CD229
plays a key role in the development of this cells type [12]. However, the highest expression
levels were found on terminally differentiated plasma cells. These data agree with those
reported with flow cytometry using blood cells, tonsil and spleen cells where the CD229
was found on mature B cells, with the highest expression levels on plasmablasts and plasma
cells [15,16]. In contrast to these reports, we find a low CD229 expression on in germinal
center B cells, especially in the dark zone.

Here, we also show the expression of CD229 on thymic T cells located in the medulla.
Mature T cells were also stained in the interfollicular areas of tonsil and spleen. Interest-
ingly, triple immunofluorescence staining also showed that the majority of T follicular
helper CD3+/PD1+ cell present in the GC also expressed CD229. This is in concordance
with the observation made with gene microarrays, which identified CD229 as a molecule
preferentially expressed in T follicular helper cells [24].

We also investigated CD229 expression in a large number of B-cell lymphomas using
tumor tissue microarrays. In agreement with the observed expression pattern on lymphoid
tissues, CD229 expression in B cells lymphomas seems to progressively increase depending
on the stage B cell maturation with its higher expression in mature B cells. Particularly,
CD229 was highly expressed in marginal-zone lymphomas (SMZL (87%), MALT (86%) and
NMZ (82%) lymphomas) while heterogeneous expression was found in CLL (70%), MCL
(70%), FL (60%) and DLBCL (GCB type 66% and non-GCB type (52%). When DLBCLs
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were classified in GCB and non-GCB subtype accordingly to the Hans algorithm we found
that CD229 was similarly expressed in the two subtypes. Low CD229 was found in BL.
CD229 was not found in tumor cells in cHL, although was highly abundant in the tumor
microenvironment of NLPHL. In agreement with is high expression on plasma cells, all
MM cases were positive. This has been already reported by others studying myeloma cells
in bone marrow [17–19]. Moreover, it has been suggested that CD229 could have a relevant
biological role in the survival of myeloma cells [25], and that its expression is higher in
myeloma-propagating cells, which are more quiescent, and more drug-resistant than the
common malignant plasma cell [26].

Furthermore, this study showed that the measurement of sCD229 levels could provide
important diagnostic and prognostic data for patients with MM. sCD229 levels correlated
with the percentage of BMPC infiltration from NDMM. It was observed that in more
initial or indolent stages of the monoclonal gammopathy spectrum (MGUS and SMM)
there was a limited serum concentration, having potential diagnostic relevance in these
patients. Further, those patients who achieved a response had a reduction in sCD229
serum concentration, while on relapse the expression increased again. The maximally
selected rank statistics method showed that the cut-off point of 5 ng/mL would be the
best threshold to detect prognostic differences. Elevated levels of sCD229 above cut-off
were associated with more aggressive clinical features and higher tumor burden. We also
examined the capability of sCD229 to predict PFS and OS, finding that those patients
with sCD229 levels above 5 ng/mL at the time of diagnosis had a shorter PFS and OS.
However, in the multivariate analysis, the prognostic impact of sCD229 was lost. This
could be explained due to the relatively small number of cases who presented levels of
sCD229 above 5 ng/mL. This is also reflected by observing that variables such as levels of
hemoglobin and albumin also lose their negative prognostic impact. The results presented
in this article are in concordance with those recently published by Ishibashi et al. [27]. In
this case, cut-off value for detecting high-risk patients was 3.3 ng/mL. This variation could
be due to the differences between the populations analyzed, ELISA technique, and the
method used to determine the best cut-off point. Nevertheless, both results support the
usefulness of sCD229 as a novel prognostic biomarker in MM.

Recently, the use of immunotherapy, such as chimeric antigen receptor (CAR) T-cell
therapy against B-cell maturation antigen (BCMA) and bispecific antibodies in patients
with MM has shown encouraging results [28–32]. The possible role of the soluble fraction
of BCMA (sBCMA) as a possible prognostic biomarker has been elucidated [33], even after
the use of anti-BCMA CAR T-cell therapy [34]. However, there is preclinical evidence
suggesting that sBCMA may interfere with CAR T-cell activity [33]. Regarding CD229,
there are already preclinical data that showed that CAR T-cells directed against this protein
could be a promising strategy in MM [35] due to its central role in the pathophysiology of
MM, its strong and homogeneous expression in myeloma cells and myeloma-propagating
precursor cells, and their lack of expression in most normal tissues [25]. However, poten-
tial disadvantages of CD229 targeted therapies could be the development of “on-target
off-tissue” toxicity due to its expression in NK cells and T cells and the possibility that
sCD229 could hamper CAR T-cell function in patients with MM. In this sense, Radhakrish-
nan et al. [35] recently produced and tested a CAR T cell against CD229. They demonstrated
that the CD229 CAR T cells were highly active in vitro and in vivo against MM plasma cells,
memory B cells, and MM-propagating cells. They did not observe fratricide during CAR
manufacture due to a downregulation of the CD229 protein in activated T cells. In contrast,
T cells with high expression of CD229 but not low or negative expression were killed by the
CD229 CAR T cells. This could lead to prolonged cellular immunosuppression in patients
with myeloma after receiving a CAR T cell therapy directed against this target antigen.
Therefore, therapeutic strategies will be required to facilitate immune reconstitution (stem
cell transplantation) or limit the persistence of the CAR T cell by integrating suicide genes
into the CAR construct.
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In summary, CD229 mAb will provide a valuable research tool to support further
investigations into the role of CD229 as marker of plasma cells in both routine clinical
samples and pre-clinical test. Specific and reproducible detection of CD229+ plasma cells
by flow cytometry and IHC, and sCD229 by ELISA could help to detect and to monitor
patients with multiple myeloma. Moreover, the data about expression of CD229 in B-cell
lymphomas will be useful to extend the potential target diseases that can benefit with
treatments targeting CD229.

5. Conclusions

Our results show that CD229 represents a new biomarker of B-cell malignancies,
especially in MM. We also show that higher levels of sCD229 is associated with more ag-
gressive clinical features and higher tumor burden, and it could also be used as a prognostic
biomarker for patients with MM. Moreover, our data also support the idea of CD229 as an
excellent therapeutic target for the treatment for MM and other B-cell malignancies.
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